Elghth Edition

Software Engineering
A PRACTITIONER'S APPROACH

Roger S. :
PRESSMAN

Bruce R.
MAXIM

Software Engineering

A PRACTITIONER’S APPROACH

This page intentionally left blank

Software Engineering

A PRACTITIONER’S APPROACH

EIGHTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.

Education

SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH, EIGHTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2015 by McGraw-Hill
Education. All rights reserved. Printed in the United States of America. Previous editions © 2010, 2005, and
2001. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOC 10987654

ISBN 978-0-07-802212-8
MHID 0-07-802212-6

Senior Vice President, Products & Markets:
Kurt L. Strand
Vice President, General Manager: Marty Lange
Vice President, Content Production & Technology
Services: Kimberly Meriwether David
Managing Director: Thomas Timp
Publisher: Raghu Srinivasan
Developmental Editor: Vincent Bradshaw
Marketing Manager: Heather Wagner

Director, Content Production: Terri Schiesl
Project Manager: Heather Ervolino

Buyer: Sandy Ludovissy

Cover Designer: Studio Montage, St. Louis, MO.
Cover Image: Farinaz Taghavi/Getty images
Compositor: MPS Limited

Typeface: 8.5/13.5 Impressum Std

Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.

Software engineering : a practitioner’s approach / Roger S. Pressman,

Ph.D. — Eighth edition.
pages cm

Includes bibliographical references and index.
ISBN-13: 978-0-07-802212-8 (alk. paper)
ISBN-10: 0-07-802212-6 (alk. paper)

1. Software engineering. I. Title.

QA76.758.P75 2015

005.1—dc23

2013035493

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website
does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does
not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

To my granddaughters
Lily and Maya, who already
understand the importance
of software, even though they’re

still in preschool.
—Roger S. Pressman

In loving memory of
my parents, who taught
me from an early age that
pursuing a good education
was far more important

than pursuing money.
—Bruce R. Maxim

ABOUT THE AUTHORS

Roger S. Pressman is an internationally recognized consultant and author in soft-
ware engineering. For more than four decades, he has worked as a software engi-
neer, a manager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting
firm that specializes in helping companies establish effective software engineer-
ing practices. Over the years he has developed a set of techniques and tools that
improve software engineering practice. He is also the founder of Teslaccessories,
LLC, a start-up manufacturing company that specializes in custom products for
the Tesla Model S electric vehicle.

Dr. Pressman is the author of nine books, including two novels, and many techni-
cal and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Soft-
ware Engineering and at many other industry meetings. He has been a member of
the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, professor,
author, and consultant for more than thirty years. His research interests include
software engineering, human computer interaction, game design, social media,
artificial intelligence, and computer science education.

Dr. Maxim is associate professor of computer and information science at the
University of Michigan—Dearborn. He established the GAME Lab in the College
of Engineering and Computer Science. He has published a number of papers on
computer algorithm animation, game development, and engineering education.
He is coauthor of a best-selling introductory computer science text. Dr. Maxim
has supervised several hundred industry-based software development projects
as part of his work at UM-Dearborn.

Dr. Maxim'’s professional experience includes managing research informa-
tion systems at a medical school, directing instructional computing for a medical
campus, and working as a statistical programmer. Dr. Maxim served as the chief
technology officer for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards and a
distinguished community service award. He is a member of Sigma Xi, Upsilon Pi
Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer
Society, American Society for Engineering Education, Society of Women Engineers,
and International Game Developers Association.

vi

CHAPTER 1
CHAPTER 2

CONTENTS AT A GLANCE

The Nature of Software 1
Software Engineering 14

Human Aspects of Software Engineering 87

Requirements Modeling: ScenarioBased Methods 166
Requirements Modeling: ClassBased Methods 184
Requirements Modeling: Behavior, Patterns, and Web,/Mobile Apps 202

PART ONE THE SOFTWARE PROCESS 2o
CHAPTER 3 Software Process Structure 30
CHAPTER 4 Process Models 40
CHAPTER 5 Agile Development 66
CHAPTER 6

PART TWO MODELING 103
CHAPTER 7 Principles That Guide Practice 104
CHAPTER 8 Understanding Requirements 131
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12 Design Concepts 224
CHAPTER 13 Archifectural Design 252
CHAPTER 14 Componentlevel Design 285
CHAPTER 15 User Interface Design 317
CHAPTER 16 Patiern-Based Design 347
CHAPTER 17 WebApp Design 371
CHAPTER 18 MobileApp Design 391

PART THREE QUALITY MANAGEMENT 411

CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26

Quality Concepts 412

Review Techniques 431

Software Quality Assurance 448
Software Tesfing Strategies 466

Testing Conventional Applications 496
Testing Object-Oriented Applications 523
Testing Web Applications 540

Testing MobileApps 567

vii

viii CONTENTS AT A GLANCE

CHAPTER 27 Security Engineering 584

CHAPTER 28 Formal Modeling and Verification 601
CHAPTER 29 Software Configuration Management 623
CHAPTER 30 Product Mefrics 653

PART FOUR MANAGING SOFTWARE PROJECTS ¢s3

CHAPTER 31 Project Management Concepts 684
CHAPTER 32 Process and Project Metrics 703
CHAPTER 33 Esfimation for Software Projects 727
CHAPTER 34 Project Scheduling 754
CHAPTER 35 Risk Management 777

CHAPTER 36 Maintenance and Reengineering 795

PART FIVE ADVANCED TOPICS 517

CHAPTER 37 Software Process Improvement 818
CHAPTER 38 Emerging Trends in Software Engineering 839
CHAPTER 39 Concluding Comments 860

APPENDIX 1 An Infroduction to UML 869
APPENDIX 2 ObjectOriented Concepfs 891
APPENDIX 3 Formal Methods 899
REFERENCES 909

INDEX @33

TABLE OF CONTENTS

Preface xxvii

CHAPTER 1 THE NATURE OF SOFTWARE 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Application Domains 6
1.1.3 legacy Software 7

1.2 The Changing Nature of Software 9
1.2.1 WebApps 9
1.2.2 Mobile Applications @
1.2.3 Cloud Computing 10
1.2.4 Product Line Software 11

1.3 Summary 11

PROBLEMS AND POINTS TO PONDER |2

FURTHER READINGS AND INFORMATION SOURCES 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defining the Discipline 15

2.2 The Software Process 16
2.2.1 The Process Framework 17
2272 Umbrella Activities 18
2.2.3 Process Adaptation 18

2.3 Software Engineering Practice 19
2.3.1 The Essence of Practice 19
2.3.2 General Principles 21

2.4 Software Development Myths 23

2.5 How It All Starts 26

2.6 Summary 27

PROBLEMS AND POINTS TO PONDER 2/

FURTHER READINGS AND INFORMATION SOURCES 27

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 30

3.1 A Generic Process Model 31

3.2 Defining a Framework Activity 32

3.3 Identifying a Task Set 34

3.4 Process Patterns 35

3.5 Process Assessment and Improvement 37
3.6 Summary 38

PROBLEMS AND POINTS TO PONDER 38

FURTHER READINGS AND INFORMATION SOURCES 39

ix

TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS 40

4.1 Prescriptive Process Models 41
4.1 The Waterfall Model 41
4.1.2 Incremental Process Models 43

4.1.3 Evolutionary Process Models 45
4.1.4 Concurrent Models 49
4.1.5 A Final Word on Evolutionary Processes 51
4.2 Specialized Process Models 52
4.2.1 ComponentBased Development 53
4.2.2 The Formal Methods Model 53
4.2.3 AspectOriented Software Development 54
4.3 The Unified Process 55
4.3.1 A Brief History 56
4.3.2 Phases of the Unified Process 56
4.4 Personal and Team Process Models 59
4.4 Personal Software Process 59
4.4.2 Team Software Process 60
4.5 Process Technology 61
4.6 Product and Process 62
4.7 Summary 64
PROBLEMS AND POINTS TO PONDER 64
FURTHER READINGS AND INFORMATION SOURCES 65

CHAPTER 5 AGILE DEVELOPMENT 66

5.1 What Is Agility? 68
5.2 Agility and the Cost of Change 68
53 What Is an Agile Process? 69
5.3.1 Agility Principles 70
532 The Politics of Agile Development 71
54 Extreme Programming /2
5.4.1 The XP Process 72
5.4.2 Industrial XP 75
55 Other Agile Process Models 77
551 Scrum 78
552 Dynamic Systems Development Method 79
553 Agile Modeling 80
554 Agile Unified Process 82
5.6 A Tool Set for the Agile Process 83
5.7 Summary 84
PROBLEMS AND POINTS TO PONDER 85
FURTHER READINGS AND INFORMATION SOURCES 85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING

87

6.1 Characterisfics of a Software Engineer 88
6.2 The Psychology of Software Engineering 89
6.3 The Software Team 90
6.4 Team Structures 92
6.5 Agile Teams 93
6.5.1 The Generic Agile Team 93
6.5.2 The XP Team 94

TABLE OF CONTENTS

6.6 The Impact of Social Media 95

6.7 Software Engineering Using the Cloud 97
6.8 Collaboration Tools 98

6.9 Global Teams 99

6.10 Summary 100

PROBLEMS AND POINTS TO PONDER 101

FURTHER READINGS AND INFORMATION SOURCES 102

PART TWO MODELING 103

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 104

7.1 Software Engineering Knowledge 105
7.2 Core Principles 106
7.2.1 Principles That Guide Process 106

722 Principles That Guide Practice 107
7.3 Principles That Guide Each Framework Activity 109
7.3.1 Communication Principles 110
7.3.2 Planning Principles 112
7.3.3 Modeling Principles 114
7.3.4 Construction Principles 121
7.3.5 Deployment Principles 125
7.4 Work Practices 126
7.5 Summary 127
PROBLEMS AND POINTS TO PONDER 128
FURTHER READINGS AND INFORMATION SOURCES 129

CHAPTER 8 UNDERSTANDING REQUIREMENTS 131

8.1 Requirements Engineering 132
8.2 Establishing the Groundwork 138
8.2.1 Identifying Stakeholders 139

8.2.2 Recognizing Multiple Viewpoints 139
8.2.3 Working toward Collaboration 140
8.2.4 Asking the First Quesfions 140
8.2.5 Nonfunctional Requirements 141
8.2.6 Traceability 142
8.3 Eliciting Requirements 142
8.3.1 Collaborative Requirements Gathering 143
8.3.2 Quality Function Deployment 146
8.3.3 Usage Scenarios 146
8.3.4 Elicitation Work Products 147
8.3.5 Agile Requirements Elicitation 148
8.3.6 Service-Oriented Methods 148
8.4 Developing Use Cases 149
8.5 Building the Analysis Model 154
8.5.1 Elements of the Analysis Model 154
8.5.2 Analysis Patterns 157
8.5.3 Agile Requirements Engineering 158
8.5.4 Requirements for SelfAdaptive Systems 158
8.6 Negotiating Requirements 159

xii

TABLE OF CONTENTS

8.7 Requirements Monitoring 160

8.8 Validating Requirements 161

8.9 Avoiding Common Mistakes 162

8.10 Summary 162

PROBLEMS AND POINTS TO PONDER 163

FURTHER READINGS AND OTHER INFORMATION SOURCES 164

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED
METHODS 166

Q.1 Requirements Analysis 167
Q.11 Overall Objectives and Philosophy 168
9.1.2 Analysis Rules of Thumb 169
9.1.3 Domain Analysis 170
9.1.4 Requirements Modeling Approaches 171

9.2 ScenarioBased Modeling 173
Q.2.1 Creating a Preliminary Use Case 173
9.2.2 Refining a Preliminary Use Case 176
9.2.3 Writing a Formal Use Case 177

9.3 UML Models That Supplement the Use Case 179
9.3.1 Developing an Activity Diagram 180
9.3.2 Swimlane Diagrams 181

Q.4 Summary 182

PROBLEMS AND POINTS TO PONDER |82

FURTHER READINGS AND INFORMATION SOURCES 183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS

184

10.1 Identifying Analysis Classes 185

10.2 Specifying Atfributes 188

10.3 Defining Operations 189

10.4 ClassResponsibility-Collaborator Modeling 192
10.5 Associations and Dependencies 198

10.6 Analysis Packages 199

10.7 Summary 200

PROBLEMS AND POINTS TO PONDER 201

FURTHER READINGS AND INFORMATION SOURCES 201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,
AND WEB/MOBILE APPS 202

Creating a Behavioral Model 203

Identifying Events with the Use Case 203

State Representations 204

Patterns for Requirements Modeling 207

11.4.1 Discovering Analysis Patterns 208

11.4.2 A Requirements Pattern Example: Actuator-Sensor 209

11.5 Requirements Modeling for Web and Mobile Apps 213
11.5.1 How Much Analysis Is Enough? 214
11.5.2 Requirements Modeling Input 214

1.5.3 Requirements Modeling Output 215
1.5.4 Content Model 216

~ow N =

1
1

TABLE OF CONTENTS xiii

11.5.5 Interaction Model for Web and Mobile Apps 217
11.5.6 Functional Model 218
11.5.7 Configuration Models for WebApps 219
11.5.8 Navigation Modeling 220
1.6 Summary 221
PROBLEMS AND POINTS TO PONDER 222
FURTHER READINGS AND INFORMATION SOURCES 222

CHAPTER 12 DESIGN CONCEPTS 224

12.1 Design within the Context of Software Engineering 225
12.2 The Design Process 228
12.2.1 Software Quality Guidelines and Atfributes 228
12.2.2 The Evolution of Software Design 230
12.3 Design Concepts 231
12.3.1 Abstraction 232
12.3.2 Architecture 232
12.3.3 Patterns 233
12.3.4 Separation of Concerns 234
12.3.5 Modularity 234
12.3.6 Information Hiding 235
12.3.7 Functional Independence 236
12.3.8 Refinement 237
12.3.9 Aspects 237
12.3.10 Refactoring 238
12.3.11 ObjectOriented Design Concepts 238
12.3.12 Design Classes 239
12.3.13 Dependency Inversion 241
12.3.14 Design for Test 242
124 The Design Model 243
12.4.1 Data Design Elements 244
12.4.2 Architectural Design Elements 244
12.4.3 Inferface Design Elements 245
12.4.4 Componentlevel Design Elements 247
12.4.5 Deploymentlevel Design Elements 248
12.5 Summary 249
PROBLEMS AND POINTS TO PONDER 250
FURTHER READINGS AND INFORMATION SOURCES 251

CHAPTER 13 ARCHITECTURAL DESIGN 252

13.1 Software Architecture 253
13.1.1 What Is Architecture? 253
13.1.2 Why Is Architecture Important? 254
13.1.3 Architectural Descriptions 255
13.1.4 Architectural Decisions 256
13.2 Architectural Genres 257
13.3 Architectural Styles 258
13.3.1 A Brief Taxonomy of Architectural Styles 258
13.3.2 Architectural Patterns 263
13.3.3 Organization and Refinement 263
13.4 Architectural Considerations 264

xiv TABLE OF CONTENTS

13.5 Architectural Decisions 266

13.6 Architectural Design 267
13.6.1 Representing the System in Confext 267
13.6.2 Defining Archetypes 269
13.6.3 Refining the Architecture into Components 270
13.6.4 Describing Instanfiations of the System 272
13.6.5 Architectural Design for Web Apps 273
13.6.6 Architectural Design for Mobile Apps 274

13.7 Assessing Altlernative Architectural Designs 274
13.7.1 Architectural Description Languages 276
13.7.2 Architectural Reviews 277

13.8 lessons learned 278

13.9 Pattern-based Architecture Review 278

13.10 Architeciure Conformance Checking 279

13.11 Agility and Architecture 280

13.12 Summary 282

PROBLEMS AND POINTS TO PONDER 282

FURTHER READINGS AND INFORMATION SOURCES 283

CHAPTER 14 COMPONENT-LEVEL DESIGN 285

14.1 What Is a Component 286
14.1.1 An ObjectOriented View 286
14.1.2 The Traditional View 288
14.1.3 A ProcessRelated View 291
14.2 Designing ClassBased Components 291
14.2.1 Basic Design Principles 292
14.2.2 Componentlevel Design Guidelines 295
14.2.3 Cohesion 296
1424 Coupling 298
14.3 Conducting Componentlevel Design 299
14.4 Componentlevel Design for WebApps 305
14.4.1 Content Design at the Component Level 306
14.4.2 Functional Design at the Component level 306
14.5 Componentlevel Design for Mobile Apps 306
14.6 Designing Traditional Components 307
14.7 ComponentBased Development 308
14.7.1 Domain Engineering 308
14.7.2 Component Qualification, Adaptation, and Composition 309
14.7.3 Architectural Mismatch 311
14.7.4 Analysis and Design for Reuse 312
14.7.5 Classifying and Retrieving Components 312
14.8 Summary 313
PROBLEMS AND POINTS TO PONDER 315
FURTHER READINGS AND INFORMATION SOURCES 315

CHAPTER 15 USER INTERFACE DESIGN 317

15.1 The Golden Rules 318
15.1.1 Place the User in Control 318
15.1.2 Reduce the User's Memory load 319
1513 Make the Interface Consistent 321

TABLE OF CONTENTS

15.2

15.3

15.4

15.5

15.6
15.7

User Interface Analysis and

15.2.1 Inferface Analysis and Design Models

Design 322

15.2.2 The Process 323

Inferface Analysis 325
15.3.1 User Analysis

325

15.3.2 Task Analysis and Modeling 326
15.3.3 Analysis of Display Confent 331

15.3.4 Analysis of the Work Environment 331
Inferface Design Steps 332

15.4.1 Applying Inferface Design Steps

15.4.2 User Interface Design Patterns 334

15.4.3 Design lssues

335

WebApp and Mobile Interface Design

15.5.1 Interface Design Principles and Guidelines 337
15.5.2 Inferface Design Workflow for Web and Mobile Apps

Design Evaluation 342
Summary 344

PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 16

337

322

332

PATTERN-BASED DESIGN 347

341

16.1

16.2

16.3
16.4
16.5
16.6

16.7
16.8

Design Patterns 348

16.1.1 Kinds of Patterns 349
16.1.2 Frameworks 351
16.1.3 Describing a Pattern 352

16.1.4 Pattern Llanguages and Repositories 353
Pattern-Based Software Design 354
16.2.1 Pattern-Based Design in Context 354

16.2.2 Thinking in Patterns 354

16.2.3 Design Tasks

356

16.2.4 Building a Pattern-Organizing Table 358
16.2.5 Common Design Mistakes

Architectural Patterns 359

Componentlevel Design Patterns 360
User Interface Design Patterns 362

WebApp Design Patterns
16.6.1 Design Focus

364
365

16.6.2 Design Granularity 365
Patterns for Mobile Apps 366

Summary 367

PROBLEMS AND POINTS TO PONDER 368
FURTHER READINGS AND INFORMATION SOURCES 369

359

CHAPTER 17 WEBAPP DESIGN 371
17.1 WebApp Design Quality 372

17.2 Design Goals 374

17.3 A Design Pyramid for WebApps 375
174 WebApp Interface Design 376

xvi TABLE OF CONTENTS

17.5 Aesthetic Design 377
17.5.1 Layout Issues 378
17.5.2 Graphic Design Issues 378
17.6 Confent Design 379
17.6.1 Confent Objects 379
17.6.2 Content Design Issues 380
17.7 Archifecture Design 381
17.7.1 Content Architecture 381
17.7.2 WebApp Architecture 384
17.8 Navigation Design 385
17.8.1 Navigation Semantics 385
17.8.2 Navigation Syntax 387
17.9 Componentlevel Design 387
17.10 Summary 388
PROBLEMS AND POINTS TO PONDER 389
FURTHER READINGS AND INFORMATION SOURCES 389

CHAPTER 18 MOBILEAPP DESIGN 391

18.1 The Challenges 392
18.1.1 Development Considerations 392
18.1.2 Technical Considerations 393
18.2 Developing MobileApps 395
18.2.1 MobileApp Quality 397
18.2.2 User Inferface Design 398
18.2.3 Context-Aware Apps 399
18.2.4 lessons Llearned 400
18.3 MobileApp Design—Best Practices 401
18.4 Mobility Environments 403
18.5 The Cloud 405
18.6 The Applicability of Conventional Software Engineering 407
18.7 Summary 408
PROBLEMS AND POINTS TO PONDER 409
FURTHER READINGS AND INFORMATION SOURCES 409

PART THREE QUALITY MANAGEMENT 411

CHAPTER 19 QUALITY CONCEPTS 412

191 What Is Qualitye 413
19.2 Software Qudlity 414
19.2.1 Garvin's Quality Dimensions 415
19.2.2 McCall's Quality Factors 416
19.2.3 ISO 9126 Quality Factors 418
19.2.4 Targeted Quality Facfors 418
19.2.5 The Transition to a Quantitative View 420
19.3 The Software Quality Dilemma 420
19.3.1 "Good Enough” Software 421
19.3.2 The Cost of Quality 422
19.3.3 Risks 424
19.3.4 Negligence and Liability 425

TABLE OF CONTENTS

19.3.5 Quality and Security 425
19.3.6 The Impact of Management Actions 426
19.4 Achieving Software Quality 427
19.4.1 Software Engineering Methods 427
19.4.2 Project Management Techniques 427
19.4.3 Quality Control 427
19.4.4 Quality Assurance 428
19.5 Summary 428
PROBLEMS AND POINTS TO PONDER 429
FURTHER READINGS AND INFORMATION SOURCES 429

CHAPTER 20 REVIEW TECHNIQUES 431

xvii

20.1 Cost Impact of Software Defects 432
20.2 Defect Amplification and Removal 433
20.3 Review Metrics and Their Use 435
20.3.1 Analyzing Metrics 435
20.3.2 CostEffectiveness of Reviews 436
20.4 Reviews: A Formality Spectrum 438
20.5 Informal Reviews 439
20.6 Formal Technical Reviews 441
20.6.1 The Review Meefing 441
20.6.2 Review Reporting and Record Keeping 442
20.6.3 Review Guidelines 442
20.6.4 Sample-Driven Reviews 444
20.7 PostMortem Evaluations 445
20.8 Summary 446
PROBLEMS AND POINTS TO PONDER 446
FURTHER READINGS AND INFORMATION SOURCES 447

CHAPTER 21 SOFTWARE QUALITY ASSURANCE

448

21.1 Background lssues 449

21.2 Elements of Software Quality Assurance 450
21.3 SQA Processes and Product Characteristics 452
21.4 SQA Tasks, Goals, and Metrics 452

21.4.1 SQA Tasks 453
21.4.2 Goals, Attributes, and Metrics 454
21.5 Formal Approaches to SQA 456
21.6 Statistical Software Quality Assurance 456
21.6.1 A Generic Example 457
21.6.2 Six Sigma for Software Engineering 458
21.7 Software Reliability 459
21.7.1 Measures of Reliability and Availability 459
21.7.2 Software Safety 460
21.8 The ISO 9000 Qudlity Standards 461
21.9 The SQA Plan 463
21.10 Summary 463
PROBLEMS AND POINTS TO PONDER 464
FURTHER READINGS AND INFORMATION SOURCES 464

xviii

TABLE OF CONTENTS

CHAPTER 22 SOFTWARE TESTING STRATEGIES 466

22.1

22.2

22.3

224

22.5
22.6
22.7

22.8

22.9

22.10

A Strategic Approach to Software Testing 466
22.1.1 Verification and Validation 468
22.1.2 Organizing for Software Testing 468
22.1.3 Software Tesfing Strategy—The Big Picture 469
22.1.4 Criteria for Completion of Testing 472
Strategic Issves 472

Test Strategies for Conventional Software 473
22.3.1 Unit Testing 473

22.3.2 Integration Testing 475

Test Strategies for Object-Oriented Software 481
22.4.1 Unit Testing in the OO Context 481
22.4.2 Infegration Testing in the OO Confext 481
Test Strategies for WebApps 482

Test Strategies for MobileApps 483

Validation Testing 483

22.7.1 Validation-Test Criteria 484

22.7.2 Configuration Review 484

22.7.3 Alpha and Beta Testing 484

System Testing 486

22.8.1 Recovery Testing 486

22.8.2 Security Testing 486

22.8.3 Stress Testing 487

22.8.4 Performance Testing 487

22.8.5 Deployment Testing 487

The Art of Debugging 488

22.9.1 The Debugging Process 488

22.9.2 Psychological Considerations 490
22.9.3 Debugging Strategies 491

22.9.4 Correcting the Error 492

Summary 493

PROBLEMS AND POINTS TO PONDER 493
FURTHER READINGS AND INFORMATION SOURCES 494

CHAPTER 23 TESTING CONVENTIONAL APPLICATIONS

496

23.1
23.2
23.3
234

23.5
23.6

Software Testing Fundamentals 497

Internal and External Views of Testing 499
White-Box Testing 500

Basis Path Testing 500

23.4.1 Flow Graph Notation 500
23.4.2 Independent Program Paths 502
23.4.3 Deriving Test Cases 504
23.4.4 Graph Mafrices 506

Confrol Structure Testing 507

Black-Box Testing 509

23.6.1 Graph-Based Testing Methods 509
23.6.2 Equivalence Partitioning 511
23.6.3 Boundary Value Analysis 512
23.6.4 Orthogonal Array Testing 513

TABLE OF CONTENTS xix

23.7 ModelBased Testing 516

23.8 Testing Documentation and Help Facilities 516
23.9 Tesfing for RealTime Systems 517

23.10 Patters for Software Testing 519

23.11 Summary 520

PROBLEMS AND POINTS TO PONDER 52 1

FURTHER READINGS AND INFORMATION SOURCES 521

CHAPTER 24 TESTING OBJECT-ORIENTED APPLICATIONS 523

24.1 Broadening the View of Testing 524
24.2 Tesfing OOA and OOD Models 525
24.2.1 Correctness of OOA and OOD Models 525
24.2.2 Consistency of ObjectOriented Models 526
24.3 ObjectOriented Tesfing Strategies 528
24.3.1 Unit Testing in the OO Confext 528
24.3.2 Infegration Testing in the OO Context 529
24.3.3 Validation Testing in an OO Context 529
24.4 ObjectOriented Testing Methods 529
24.4.1 The TestCase Design Implications of OO Concepts 530
24.4.2 Applicability of Conventional TestCase Design Methods 531
24.4.3 FaultBased Testing 531
24.4.4 Scenario-Based Test Design 532
24.5 Tesfing Methods Applicable at the Class Llevel 532
24.5.1 Random Testing for OO Classes 532
2452 Partition Testing af the Class level 533
24.6 Inferclass TestCase Design 534
24.6.1 Multiple Class Testing 534
24.6.2 Tests Derived from Behavior Models 536
24.7 Summary 537
PROBLEMS AND POINTS TO PONDER 538
FURTHER READINGS AND INFORMATION SOURCES 538

CHAPTER 25 TESTING WEB APPLICATIONS 540

25.1 Tesfing Concepts for WebApps 541
25.1.1 Dimensions of Quality 541
25.1.2 Errors within @ WebApp Environment 542
25.1.3 Testing Strategy 543
25.1.4 Test Planning 543

25.2 The Testing Process—An Overview 544

25.3 Confent Testing 545
25.3.1 Confent Testing Objectives 545
25.3.2 Database Testing 547

254 User Interface Testing 549
25.4.1 Interface Testing Strategy 549
25.4.2 Testing Interface Mechanisms 550
25.4.3 Testing Interface Semantics 552
25.4.4 Usability Tests 552
25.4.5 Compatibility Tests 554

25.5 Componentlevel Testing 555

XX

TABLE OF CONTENTS

25.6 Navigation Testing 556
25.6.1 Testing Navigation Syntax 556
25.6.2 Testing Navigation Semantics 556
25.7 Configuration Testing 558
25.7.1 ServerSide Issues 558
25.7.2 Client-Side Issues 559
25.8 Security Testing 559
25.9 Performance Testing 560
25.9.1 Performance Testing Objectives 561
25.9.2 load Testing 562
25.9.3 Stress Testing 562
25.10 Summary 563
PROBLEMS AND POINTS TO PONDER 564
FURTHER READINGS AND INFORMATION SOURCES 565

CHAPTER 26 TESTING MOBILEAPPS 567

26.1 Testing Guidelines 568
26.2 The Tesfing Strategies 569
26.2.1 Are Conventional Approaches Applicable2 570
26.2.2 The Need for Automation 571
26.2.3 Building a Test Matrix 572
26.2.4 Stress Testing 573
26.2.5 Testing in a Production Environment 573
26.3 Considering the Spectrum of User Inferaction 574
26.3.1 Gesture Testing 575
26.3.2 Voice Input and Recognition 576
26.3.3 Virtual Key Board Input - 577
26.3.4 Alerts and Extraordinary Conditions 577
26.4 Test Across Borders 578
26.5 RealTime Tesfing Issues 578
26.6 Tesfing Tools and Environments 579
26.7 Summary 581
PROBLEMS AND POINTS TO PONDER 582
FURTHER READINGS AND INFORMATION SOURCES 582

CHAPTER 27 SECURITY ENGINEERING 584

27.1 Analyzing Security Requirements 585
27.2 Security and Privacy in an Online World 586
27.2.1 Social Media 587
27.2.2 Mobile Applications 587
27.2.3 Cloud Computing 587
27.2.4 The Internet of Things 588
27.3 Security Engineering Analysis 588
27.3.1 Security Requirement Elicitation 589
27.3.2 Security Modeling 590
27.3.3 Measures Design 591
27.3.4 Correctness Checks 591
274 Security Assurance 592
27.4.1 The Security Assurance Process 592
27.4.2 Organization and Management 593

TABLE OF CONTENTS xxi

27.5 Security Risk Analysis 594

27.6 The Role of Conventional Software Engineering Activities 595
27.7 Verification of Trustworthy Systems 597

27.8 Summary 599

PROBLEMS AND POINTS TO PONDER 599

FURTHER READINGS AND INFORMATION SOURCES 600

CHAPTER 28 FORMAL MODELING AND VERIFICATION 601

28.1 The Cleanroom Strategy 602

28.2 Functional Specification 604
28.2.1 BlackBox Specification 605
28.2.2 State-Box Specification 606
28.2.3 ClearBox Specification 607

28.3 Cleanroom Design 607
28.3.1 Design Refinement 608
28.3.2 Design Verification 608

28.4 Cleanroom Testing 610
28.4.1 Stafistical Use Testing 610
28.4.2 Certification 612

28.5 Rethinking Formal Methods 612

28.6 Formal Methods Concepts 615

28.7 Alternative Arguments 618

28.8 Summary 619

PROBLEMS AND POINTS TO PONDER 620

FURTHER READINGS AND INFORMATION SOURCES 621

CHAPTER 29 SOFTWARE CONFIGURATION MANAGEMENT 623

29.1 Software Configuration Management 624
29.1.1 An SCM Scenario 625
29.1.2 Elements of a Configuration Management System 626
29.1.3 Baselines 626
290.1.4 Software Configuration ltems 628
29.1.5 Management of Dependencies and Changes 628
29.2 The SCM Repository 630
29.2.1 General Features and Content 630
29.2.2 SCM Features 631
29.3 The SCM Process 632
29.3.1 Identification of Objects in the Software Configuration 633
20.3.2 Version Control 634
29.3.3 Change Confrol 635
29.3.4 Impact Management 638
29.3.5 Configuration Audit 639
29.3.6 Status Reporting 639
29.4 Configuration Management for Web and MobileApps 640
29.4.1 Dominant Issues 641
29.4.2 Configuration Objects 642
29.4.3 Content Management 643
29.4.4 Change Management 646
29.4.5 Version Control 648
29.4.6 Auditing and Reporting 649

xxii

PART FOUR

TABLE OF CONTENTS

29.5 Summary 650
PROBLEMS AND POINTS TO PONDER &5 1
FURTHER READINGS AND INFORMATION SOURCES 651

CHAPTER 30 PRODUCT METRICS 653

30.1 A Framework for Product Metrics 654
30.1.1 Measures, Metrics, and Indicators 654
30.1.2 The Challenge of Product Metrics 655
30.1.3 Measurement Principles 656
30.1.4 GoalOriented Software Measurement 656
30.1.5 The Attributes of Effective Software Mefrics 657
30.2 Metrics for the Requirements Model 659
30.2.1 FunctionBased Metrics 659
30.2.2 Metrics for Specification Quality 662
30.3 Metrics for the Design Model 663
30.3.1 Architectural Design Metrics 663
30.3.2 Mefrics for Object-Oriented Design 666
30.3.3 Class-Oriented Metrics—The CK Mefrics Suite 667
30.3.4 Class-Orienfed Metrics—The MOOD Metrics Suite 670
30.3.5 OO Metrics Proposed by Lorenz and Kidd 671
30.3.6 Componentlevel Design Metrics 671
30.3.7 Operation-Oriented Metfrics 671
30.3.8 User Inferface Design Metrics 672
30.4 Design Metrics for Web and Mobile Apps 672
30.5 Metrics for Source Code 675
30.6 Metrics for Testing 676
30.6.1 Halstead Metrics Applied to Testing 676
30.6.2 Mefrics for ObjectOriented Testing 677
30.7 Metrics for Maintenance 678
30.8 Summary 679
PROBLEMS AND POINTS TO PONDER ~ 6/Q
FURTHER READINGS AND INFORMATION SOURCES 680

MANAGING SOFTWARE PROJECTS 683

CHAPTER 31 PROJECT MANAGEMENT CONCEPTS 684

31.1 The Management Spectrum 685
31.1.1 The People 685
31.1.2 The Product 686
31.1.3 The Process 686
31.1.4 The Project 686

31.2 People 687
31.2.1 The Stakeholders 687
31.2.2 Team leaders 688
31.2.3 The Software Team 689
31.2.4 Agile Teams 691

31.2.5 Coordination and Communication Issues 692
31.3 The Product 693
31.3.1 Software Scope 694

31.3.2 Problem Decomposition 694

TABLE OF CONTENTS xxiii

31.4 The Process 694
31.4.1 Melding the Product and the Process 695
31.4.2 Process Decomposition 696

31.5 The Project 697

31.6 The W°HH Principle 698

31.7 Critical Practices 699

31.8 Summary 700

PROBLEMS AND POINTS TO PONDER /00

FURTHER READINGS AND INFORMATION SOURCES /01

CHAPTER 32 PROCESS AND PROJECT METRICS 703

32.1 Mefrics in the Process and Project Domains 704
32.1.1 Process Mefrics and Software Process Improvement 704
32.1.2 Project Metrics 70/

32.2 Software Measurement 708
32.2.1 Size-Oriented Metrics 709
32.2.2 Function-Oriented Metrics 710
32.2.3 Reconciling LOC and FP Metrics /11
32.2.4 ObjectOriented Mefrics 713
32.2.5 Use Case-Oriented Mefrics 714
32.2.6 WebApp Project Mefrics 714

32.3 Mefrics for Software Quality 716
32.3.1 Measuring Quality 717
32.3.2 Defect Removal Efficiency 718

32.4 Integrating Mefrics within the Software Process 719
32.4.1 Arguments for Software Metrics 720
32.4.2 Establishing a Baseline 720
32.4.3 Metrics Collection, Computation, and Evaluation 721

32.5 Mefrics for Small Organizations 721

32.6 Establishing a Software Metrics Program 722

32.7 Summary /24

PROBLEMS AND POINTS TO PONDER /24

FURTHER READINGS AND INFORMATION SOURCES /25

CHAPTER 33 ESTIMATION FOR SOFTWARE PROJECTS 727

33.1 Observations on Estimation /28
33.2 The Project Planning Process 729
33.3 Software Scope and Feasibility 730
33.4 Resources 731
33.4.1 Human Resources 731
33.4.2 Reusable Software Resources /32
33.4.3 Environmental Resources 732
33.5 Software Project Estimation 733
33.6 Decomposition Techniques 734
33.6.1 Software Sizing 734
33.6.2 Problem-Based Estimation 735
33.6.3 An Example of LOC-Based Esfimation 736
33.6.4 An Example of FP-Based Esfimation /38
33.6.5 Process-Based Estimation 739
33.6.6 An Example of Process-Based Esfimation 740
33.6.7 Estimation with Use Cases 740

xxiv TABLE OF CONTENTS

33.6.8 An Example of Estimation Using Use Case Points 742
33.6.9 Reconciling Estimates 742
33.7 Empirical Estimation Models 743
33.7.1 The Structure of Estimation Models 744
33.7.2 The COCOMO Il Model 744
33.7.3 The Software Equation 744
33.8 Estimation for ObjectOriented Projects 746
33.9 Specialized Estimation Techniques 746
33.9.1 Estimation for Agile Development 746
33.9.2 Estimation for VWebApp Projects 747
33.10 The Make/Buy Decision 748
33.10.1 Creating a Decision Tree 749
33.10.2 Outsourcing 750
33.11 Summary 752
PROBLEMS AND POINTS TO PONDER /52
FURTHER READINGS AND INFORMATION SOURCES /53

CHAPTER 34 PROJECT SCHEDULING 754

34.1 Basic Concepts 755
34.2 Project Scheduling 757
34.2.1 Basic Principles 758
34.2.2 The Relationship between People and Effort 759
34.2.3 Effort Distribution 760
34.3 Defining a Task Sef for the Software Project 761
34.3.1 A Task Set Example 762
34.3.2 Refinement of Major Tasks 763
34.4 Defining a Task Network 764
34.5 Scheduling 765
34.5.1 Time-Lline Charts 766
34.5.2 Tracking the Schedule 767
34.5.3 Tracking Progress for an OO Project 768
34.54 Scheduling for WebApp and Mobile Projects 769
34.6 Eamed Value Analysis 772
34.7 Summary /74
PROBLEMS AND POINTS TO PONDER / /4
FURTHER READINGS AND INFORMATION SOURCES /76

CHAPTER 35 RISK MANAGEMENT 777

35.1 Reactive versus Proactive Risk Strafegies /78
352 Software Risks 778
35.3 Risk Idenfification 780
35.3.1 Assessing Overall Project Risk 781
35.3.2 Risk Components and Drivers 782
354 Risk Projection 782
35.4.1 Developing a Risk Table 783
35.4.2 Assessing Risk Impact 785
35.5 Risk Refinement 787
35.6 Risk Mitigation, Monitoring, and Management 788
35.7 The RMMM Plan 790
35.8 Summary 792

PART FIVE

TABLE OF CONTENTS

PROBLEMS AND POINTS TO PONDER /92
FURTHER READINGS AND INFORMATION SOURCES /93

CHAPTER 36 MAINTENANCE AND REENGINEERING 795

XXV

36.1 Software Maintenance 796
36.2 Software Supportability 798
36.3 Reengineering 798
36.4 Business Process Reengineering 799
36.4.1 Business Processes /99
36.4.2 A BPR Model 800
36.5 Software Reengineering 802
36.5.1 A Software Reengineering Process Model 802
36.5.2 Software Reengineering Activities 803
36.6 Reverse Engineering 805
36.6.1 Reverse Engineering to Understand Data 807
36.6.2 Reverse Engineering fo Understand Processing 807
36.6.3 Reverse Engineering User Interfaces 808
36.7 Restructuring 809
36.7.1 Code Restructuring 809
36.7.2 Data Restructuring 810
36.8 Forward Engineering 811
36.8.1 Forward Engineering for Client-Server Architectures 812
36.8.2 Forward Engineering for ObjectOriented Architectures 813
36.9 The Economics of Reengineering 813
36.10 Summary 814
PROBLEMS AND POINTS TO PONDER 815
FURTHER READINGS AND INFORMATION SOURCES 816

ADVANCED TOPICS 817

CHAPTER 37 SOFTWARE PROCESS IMPROVEMENT 818

37.1 What Is SPI2 819
37.1.1 Approaches to SPI 819
37.1.2 Maturity Models 821
37.1.3 Is SPI for Everyone? 822

37.2 The SPI Process 823
37.2.1 Assessment and Gap Analysis 823
37.2.2 Education and Training 825
37.2.3 Selection and Justification 825
37.2.4 Installation/Migration 826
37.2.5 Evaluation 827
37.2.6 Risk Management for SPI 827

37.3 The CMMI 828

37.4 The People CMM 832

37.5 Other SPl Frameworks 832

37.6 SPIReturn on Investment 834

37.7 SPITrends 835

37.8 Summary 836

PROBLEMS AND POINTS TO PONDER 83/

FURTHER READINGS AND INFORMATION SOURCES 837

XxVvi

TABLE OF CONTENTS

CHAPTER 38 EMERGING TRENDS IN SOFTWARE ENGINEERING

839

38.1 Technology Evolution 840

38.2 Prospects for a True Engineering Discipline 841

38.3 Observing Software Engineering Trends 842

38.4 Identifying “Soft Trends” 843
38.4.1 Managing Complexity 845
38.4.2 Open-World Software 846
38.4.3 Emergent Requirements 846
38.4.4 The Talent Mix 847
38.4.5 Software Building Blocks 847
38.4.6 Changing Perceptions of "Value" 848
38.4.7 Open Source 848

38.5 Technology Direcfions 849
38.5.1 Process Trends 849
38.5.2 The Grand Challenge 851
38.5.3 Collaborative Development 852
38.5.4 Requirements Engineering 852
38.5.5 ModelDriven Software Development 853
38.5.6 Postmodern Design 854
38.5.7 TestDriven Development 854

38.6 ToolsRelated Trends 855

38.7 Summary 857

PROBLEMS AND POINTS TO PONDER 857

FURTHER READINGS AND INFORMATION SOURCES 858

CHAPTER 39 CONCLUDING COMMENTS 860

39.1 The Importance of Software—Revisited 861
39.2 People and the Way They Build Systems 861
39.3 New Modes for Representing Information 862
39.4 The long View 864

39.5 The Software Engineer's Responsibility 865
39.6 A Final Comment from RSP 867

APPENDIX 1 AN INTRODUCTION TO UML 869
APPENDIX 2 OBJECT-ORIENTED CONCEPTS = 891
APPENDIX 3 FORMAL METHODS 899

REFERENCES 909
INDEX @33

When computer software succeeds—when it meets the needs of the people who
use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner’s Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’s Approach.

The Eighth Edition. The 39 chapters of the eighth edition are organized into five
parts. This organization better compartmentalizes topics and assists instructors who

may not have the time to complete the entire book in one term.
xxvii

xxviii

PREFACE

Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Pattern-
based design and design for Web and mobile applications are also considered. Part 3,
Quality Management, presents the concepts, procedures, techniques, and methods
that enable a software team to assess software quality, review software engineering
work products, conduct SQA procedures, and apply an effective testing strategy and
tactics. In addition, formal modeling and verification methods are also considered.
Part 4, Managing Software Projects, presents topics that are relevant to those who
plan, manage, and control a software development project. Part 5, Advanced Topics,
considers software process improvement and software engineering trends. Continu-
ing in the tradition of past editions, a series of sidebars is used throughout the book to
present the trials and tribulations of a (fictional) software team and to provide supple-
mentary materials about methods and tools that are relevant to chapter topics.

The five-part organization of the eighth edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be
built around one or more of the five parts. A software engineering survey course
would select chapters from all five parts. A software engineering course that empha-
sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented
software engineering course would select topics from Parts 1 and 3, with a brief foray
into Part 2. A “management course” would stress Parts 1 and 4. By organizing the
eighth edition in this way, we have attempted to provide an instructor with a number
of teaching options. In every case the content of the eighth edition is complemented
by the following elements of the SEPA, 8/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-
line learning center encompassing chapter-by-chapter study guides, practice quizzes,
problem solutions, and a variety of Web-based resources including software engineer-
ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work
product templates, and many other resources. In addition, over 1,000 categorized Web
References allow a student to explore software engineering in greater detail and a
Reference Library with links to more than 500 downloadable papers provides an in-
depth source of advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the eighth edition. These include a complete online Instructor’s Guide
(also downloadable) and supplementary teaching materials including a complete set
of more than 700 PowerPoint Slides that may be used for lectures, and a test bank. Of
course, all resources available for students (e.g, tiny tools, the Web References, the
downloadable Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’s Approach pres-
ents suggestions for conducting various types of software engineering courses, rec-
ommendations for a variety of software projects to be conducted in conjunction with a
course, solutions to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists,

PREFACE XXix

a catalog of software engineering tools, a comprehensive collection of Web-based re-
sources, and an “adaptable process model” that provides a detailed task breakdown
of the software engineering process.

% Comect@ McGraw-Hill Connect® Computer Science provides

COMPUTER SCIENCE online presentation, assignment, and assessment solu-
tions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Computer Science you can
deliver assignments, quizzes, and tests online. A robust set of questions and activi-
ties are presented and aligned with the textbook’s learning outcomes. As an instruc-
tor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and
Blackboard—and much more. ConnectPlus® Computer Science provides students
with all the advantages of Connect Computer Science, plus 24/7 online access to a
media-rich eBook, allowing seamless integration of text, media, and assessments. To
learn more, visit www.mcgrawhillconnect.com

é"“w ‘ I_ E /_\ R N S M /_\ R T® McGraw-Hill LearnSmart® is avail-

able as a standalone product or
an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive
learning system designed to help students learn faster, study more efficiently, and
retain more knowledge for greater success. LearnSmart assesses a student’s knowl-
edge of course content through a series of adaptive questions. It pinpoints concepts
the student does not understand and maps out a personalized study plan for success.
This innovative study tool also has features that allow instructors to see exactly what
students have accomplished and a built-in assessment tool for graded assignments.
Visit the following site for a demonstration. www.mhlearnsmart.com

| S M /_\ R T B D D K"‘ Powered by the intelligent and adap-

tive LearnSmart engine, SmartBook™
is the first and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don’t, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading
is no longer a passive and linear experience but an engaging and dynamic one, where
students are more likely to master and retain important concepts, coming to class
better prepared. SmartBook includes powerful reports that identify specific topics
and learning objectives students need to study.

When coupled with its online support system, the eighth edition of Software
Engineering: A Practitioner’s Approach, provides flexibility and depth of content that
cannot be achieved by a textbook alone.

With this edition of Software Engineering: A Practitioner’s Approach, Bruce Maxim
joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software
engineering knowledge to the project and has added new content and insight that will
be invaluable to readers of this edition.

Acknowledgments. Special thanks go to Tim Lethbridge of the University of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.

XXX

PREFACE

In addition, we’d like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: I am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman

Bruce R. Maxim

CHAPTER

THE NATURE
OF SOFTWARE

Key s he finished showing me the latest build of one of the world’s
CONCEPTS A most popular first-person shooter video games, the young developer
application laughed.

domins 6 “You're not a gamer, are you?” he asked.

doud computing ... 10 . " , N

failure curves 5 I'smiled. “How’d you guess?

legacy software8 The young man was dressed in shorts and a tee shirt. His leg bounced up
P'“r::'l:"’l'l’:: :? and down like a piston, burning the nervous energy that seemed to be com-
software, monplace among his co-workers.

definition ... 4 “Because if you were,” he said, “you’d be a lot more excited. You've gotten a
::?r'e’ q"esmms 4 peek at our next generation product and that’s something that our customers
software, would kill for . . . no pun intended.”

"w“e'::”': We sat in a development area at one of the most successful game develop-
Webapps 9 ers on the planet. Over the years, earlier generations of the game he demoed

sold over 50 million copies and generated billions of dollars in revenue.
“So, when will this version be on the market?” I asked.
He shrugged. “In about five months, and we’ve still got a lot of work to do.”
He had responsibility for game play and artificial intelligence functionality
in an application that encompassed more than three million lines of code.
‘Do you guys use any software engineering techniques?” I asked, half-
expecting that he’d laugh and shake his head.

QUICK

What is it? Computer software is
the product that software profession-
als build and then support over the

What are the steps? Customers and other
stakeholders express the need for computer
software, engineers build the software prod-

Look

long term. It encompasses programs
that execute within a computer of any size and
architecture, content that is presented as the
computer programs execute, and descriptive
information in both hard copy and virtual forms

uct, and end users apply the software to solve
a specific problem or to address a specific
need.

What is the work product? A computer pro-

gram that runs in one or more specific environ-

ments and services the needs of one or more
end users.

How do | ensure that I've done it
right? If you're a software engineer, apply
the ideas contained in the remainder of this
book. If you're an end user, be sure you un-
derstand your need and your environment
and then select an application that best
meets them both.

that encompass virtually any electronic media.

Who does it? Software engineers build and
support software, and virtually everyone in
the industrialized world uses it either directly
or indirectly.

Why is it important? Software is important
because it affects nearly every aspect of our
lives and has become pervasive in our com-
merce, our culture, and our everyday activities.

Quote:

“Ideas and
technological
discoveries are the
driving engines of
economic growth.”

Wall Street
Journdl

CHAPTER 1 THE NATURE OF SOFTWARE

He paused and thought for a moment. Then he slowly nodded. “We adapt them
to our needs, but sure, we use them.”

“Where?” I asked, probing.

“Our problem is often translating the requirements the creatives give us.”

“The creatives?” I interrupted.

“You know, the guys who design the story, the characters, all the stuff that
make the game a hit. We have to take what they give us and produce a set of
technical requirements that allow us to build the game.”

“And after the requirements are established?”

He shrugged. “We have to extend and adapt the architecture of the previous
version of the game and create a new product. We have to create code from the
requirements, test the code with daily builds, and do lots of things that your book
recommends.”

“You know my book?” I was honestly surprised.

“Sure, used it in school. There’s a lot there.”

“I've talked to some of your buddies here, and they’re more skeptical about
the stuff in my book.”

He frowned. “Look, we're not an IT department or an aerospace company, SO we
have to customize what you advocate. But the bottom line is the same—we need
to produce a high-quality product, and the only way we can accomplish that in a
repeatable fashion is to adapt our own subset of software engineering techniques.”

“And how will your subset change as the years pass?”’

He paused as if to ponder the future. “Games will become bigger and more
complex, that’s for sure. And our development timelines will shrink as more
competition emerges. Slowly, the games themselves will force us to apply a bit
more development discipline. If we don’t, we’re dead.”

Computer software continues to be the single most important technology on
the world stage. And it’s also a prime example of the law of unintended conse-
quences. Sixty years ago no one could have predicted that software would be-
come an indispensable technology for business, science, and engineering; that
software would enable the creation of new technologies (e.g., genetic engineer-
ing and nanotechnology), the extension of existing technologies (e.g., telecom-
munications), and the radical change in older technologies (e.g., the media);
that software would be the driving force behind the personal computer revolu-
tion; that software applications would be purchased by consumers using their
smart phones; that software would slowly evolve from a product to a service as
“on-demand” software companies deliver just-in-time functionality via a Web
browser; that a software company would become larger and more influential
than all industrial-era companies; that a vast software-driven network would
evolve and change everything from library research to consumer shopping to
political discourse to the dating habits of young (and not so young) adults.

No one could foresee that software would become embedded in systems of
all kinds: transportation, medical, telecommunications, military, industrial,

CHAPTER 1 THE NATURE OF SOFTWARE 3

entertainment, office machines, . . . the list is almost endless. And if you believe the
law of unintended consequences, there are many effects that we cannot yet predict.

No one could predict that millions of computer programs would have to be
corrected, adapted, and enhanced as time passed. The burden of performing
these “maintenance” activities would absorb more people and more resources
than all work applied to the creation of new software.

As software’s importance has grown, the software community has continually
attempted to develop technologies that will make it easier, faster, and less ex-
pensive to build and maintain high-quality computer programs. Some of these
technologies are targeted at a specific application domain (e.g., website design
and implementation); others focus on a technology domain (e.g., object-oriented
systems or aspect-oriented programming); and still others are broad-based (e.g.,
operating systems such as Linux). However, we have yet to develop a software
technology that does it all, and the likelihood of one arising in the future is small.
And yet, people bet their jobs, their comforts, their safety, their entertainment,
their decisions, and their very lives on computer software. It better be right.

This book presents a framework that can be used by those who build computer
software—people who must get it right. The framework encompasses a process,
a set of methods, and an array of tools that we call software engineering.

THE NATURE OF SOFTWARE

1.1
%,
POINT

Software s both a
product and a vehicle

that delivers a product.

Today, software takes on a dual role. It is a product, and at the same time, the
vehicle for delivering a product. As a product, it delivers the computing potential
embodied by computer hardware or more broadly, by a network of computers
that are accessible by local hardware. Whether it resides within a mobile phone,
a hand-held tablet, on the desktop, or within a mainframe computer, software
is an information transformer—producing, managing, acquiring, modifying, dis-
playing, or transmitting information that can be as simple as a single bit or as
complex as a multimedia presentation derived from data acquired from dozens
of independent sources. As the vehicle used to deliver the product, software acts
as the basis for the control of the computer (operating systems), the communica-
tion of information (networks), and the creation and control of other programs
(software tools and environments).

Software delivers the most important product of our time—information. It
transforms personal data (e.g., an individual’s financial transactions) so that the
data can be more useful in a local context; it manages business information to
enhance competitiveness; it provides a gateway to worldwide information net-
works (e.g., the Internet), and provides the means for acquiring information in
all of its forms. It also provides a vehicle that can threaten personal privacy and a
gateway that enables those with malicious intent to commit criminal acts.

Quote:

“Software is

a place where
dreams are planted
and nightmares
harvested, an
abstract, mysfical
swamp where
terrible demons
compete with
magical panaceas,
a world of
werewolves and
silver bullets.”

Brad J. Cox

How should
® we define
software?

CHAPTER 1 THE NATURE OF SOFTWARE

The role of computer software has undergone significant change over the
last half-century. Dramatic improvements in hardware performance, profound
changes in computing architectures, vast increases in memory and storage ca-
pacity, and a wide variety of exotic input and output options have all precipitated
more sophisticated and complex computer-based systems. Sophistication and
complexity can produce dazzling results when a system succeeds, but they can
also pose huge problems for those who must build and protect complex systems.

Today, a huge software industry has become a dominant factor in the econ-
omies of the industrialized world. Teams of software specialists, each focusing
on one part of the technology required to deliver a complex application, have
replaced the lone programmer of an earlier era. And yet, the questions that were
asked of the lone programmer are the same questions that are asked when mod-
ern computer-based systems are built:!

e Why does it take so long to get software finished?
e Why are development costs so high?

e Why can’t we find all errors before we give the software to our customers?

Why do we spend so much time and effort maintaining existing programs?

Why do we continue to have difficulty in measuring progress as software is
being developed and maintained?

These, and many other questions, are a manifestation of the concern about
software and the manner in which it is developed—a concern that has led to the
adoption of software engineering practice.

1.1.1 Defining Software

Today, most professionals and many members of the public at large feel that they
understand software. But do they?
A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide de-
sired features, function, and performance; (2) data structures that enable the pro-
grams to adequately manipulate information, and (3) descriptive information in both
hard copy and virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered. But a
more formal definition probably won’t measurably improve your understanding.

1 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the
counterpoint. He states: “Instead of asking why software costs so much, we need to begin ask-
ing ‘What have we done to make it possible for today’s software to cost so little?” The answer
to that question will help us continue the extraordinary level of achievement that has always

distinguished the software industry.”

CHAPTER 1 THE NATURE OF SOFTWARE 5

Failure curve
for hardware

ﬁpwcs‘

If you want fo reduce
software deterioration,
you'll have to do
better software design
(Chapters 12 10 18).

“Infant “Wear out”
mortality”

Failure rate

Time

To accomplish that, it’s important to examine the characteristics of software that
make it different from other things that human beings build. Software is a logical
rather than a physical system element. Therefore, software has one fundamen-
tal characteristic that makes it considerably different from hardware: Software
doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The relation-
ship, often called the “bathtub curve,” indicates that hardware exhibits relatively
high failure rates early in its life (these failures are often attributable to design
or manufacturing defects); defects are corrected and the failure rate drops to a
steady-state level (hopefully, quite low) for some period of time. As time passes,
however, the failure rate rises again as hardware components suffer from the
cumulative effects of dust, vibration, abuse, temperature extremes, and many
other environmental maladies. Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hard-
ware to wear out. In theory, therefore, the failure rate curve for software should
take the form of the “idealized curve” shown in Figure 1.2. Undiscovered defects
will cause high failure rates early in the life of a program. However, these are
corrected and the curve flattens as shown. The idealized curve is a gross over-
simplification of actual failure models for software. However, the implication is
clear—software doesn’'t wear out. But it does deteriorate!

This seeming contradiction can best be explained by considering the actual
curve in Figure 1.2. During its life,? software will undergo change. As changes are

2 Infact, from the moment that development begins and long before the first version is delivered,
changes may be requested by a variety of different stakeholders.

Failure curves
for software

%,
POINT
Software engineering

methods strive fo
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

CHAPTER 1 THE NATURE OF SOFTWARE

Increased failure
rate due to side
effects

Failure rate

Actual curve

|dealized curve

Time

made, it is likely that errors will be introduced, causing the failure rate curve to
spike as shown in the “actual curve” (Figure 1.2). Before the curve can return to
the original steady-state failure rate, another change is requested, causing the
curve to spike again. Slowly, the minimum failure rate level begins to rise—the
software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and soft-
ware. When a hardware component wears out, it is replaced by a spare part. There
are no software spare parts. Every software failure indicates an error in design
or in the process through which design was translated into machine executable
code. Therefore, the software maintenance tasks that accommodate requests for
change involve considerably more complexity than hardware maintenance.

1.1.2 Software Application Domains

Today, seven broad categories of computer software present continuing chal-
lenges for software engineers:

System software—a collection of programs written to service other
programs. Some system software (e.g., compilers, editors, and file man-
agement utilities) processes complex, but determinate,? information struc-
tures. Other systems applications (e.g., operating system components,
drivers, networking software, telecommunications processors) process
largely indeterminate data.

3 Software is determinate if the order and timing of inputs, processing, and outputs is predict-
able. Software is indeterminate if the order and timing of inputs, processing, and outputs can-
not be predicted in advance.

One of the most
comprehensive libraries
of shareware/freeware
can be found af
shareware.cnet.com

Wi

“What a computer
is to me is the most
remarkable tool
that we have ever
come up with. It's
the equivalent of

a bicycle for our
minds.”

Steve Jobs

CHAPTER 1 THE NATURE OF SOFTWARE 7
Application software—stand-alone programs that solve a specific business
need. Applications in this area process business or technical data in a way
that facilitates business operations or management/technical decision
making.

Engineering/scientific software—a broad array of “number-crunching
programs that range from astronomy to volcanology, from automotive
stress analysis to orbital dynamics, and from computer-aided design to
molecular biology, from genetic analysis to meteorology.

Embedded software—resides within a product or system and is used to
implement and control features and functions for the end user and for the
system itself. Embedded software can perform limited and esoteric func-
tions (e.g., key pad control for a microwave oven) or provide significant
function and control capability (e.g., digital functions in an automobile
such as fuel control, dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use
by many different customers. Product-line software can focus on a limited
and esoteric marketplace (e.g., inventory control products) or address
mass consumer.

Web/Mobile applications—this network-centric software category spans a
wide array of applications and encompasses both browser-based apps and
software that resides on mobile devices.

Artificial intelligence software—makes use of nonnumerical algorithms to
solve complex problems that are not amenable to computation or straight-
forward analysis. Applications within this area include robotics, expert
systems, pattern recognition (image and voice), artificial neural networks,
theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software proj-
ects in one or more of these categories. In some cases, new systems are being
built, but in many others, existing applications are being corrected, adapted,
and enhanced. It is not uncommon for a young software engineer to work on
a program that is older than she is! Past generations of software people have
left a legacy in each of the categories we have discussed. Hopefully, the legacy
to be left behind by this generation will ease the burden on future software
engineers.

1.1.3 Legacy Software

Hundreds of thousands of computer programs fall into one of the seven broad
application domains discussed in the preceding subsection. Some of these are
state-of-the-art software—just released to individuals, industry, and government.
But other programs are older, in some cases much older.

@ What do | do

® if | encounter
a legacy system
that exhibits poor
quality?

® What types
® of changes

are made to
legacy systems?

ﬁpwcss

Every software engi-
neer must recognize
that change is natural.
Don’t try to fight it

CHAPTER 1 THE NATURE OF SOFTWARE

These older programs—often referred to as legacy software—have been the
focus of continuous attention and concern since the 1960s. Dayani-Fard and his
colleagues [Day99] describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually
modified to meet changes in business requirements and computing platforms. The
proliferation of such systems is causing headaches for large organizations who find

them costly to maintain and risky to evolve.

Liu and his colleagues [Liu98] extend this description by noting that “many
legacy systems remain supportive to core business functions and are ‘indispens-
able’ to the business.” Hence, legacy software is characterized by longevity and
business criticality.

Unfortunately, there is sometimes one additional characteristic that is pres-
ent in legacy software—poor quality.* Legacy systems sometimes have inextensi-
ble designs, convoluted code, poor or nonexistent documentation, test cases and
results that were never archived, a poorly managed change history—the list can
be quite long. And yet, these systems support “core business functions and are
indispensable to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy sys-
tem must undergo some significant change. If the legacy software meets the
needs of its users and runs reliably, it isn’t broken and does not need to be fixed.
However, as time passes, legacy systems often evolve for one or more of the fol-

lowing reasons:

e The software must be adapted to meet the needs of new computing envi-
ronments or technology.

e The software must be enhanced to implement new business requirements.

e The software must be extended to make it interoperable with other more
modern systems or databases.

o The software must be re-architected to make it viable within a evolving
computing environment.

When these modes of evolution occur, a legacy system must be reengineered
(Chapter 36) so that it remains viable into the future. The goal of modern soft-
ware engineering is to “devise methodologies that are founded on the notion
of evolution;” that is, the notion that software systems continually change, new
software systems are built from the old ones, and . . . all must interoperate and
cooperate with each other.” [Day99]

4 In this case, quality is judged based on modern software engineering thinking—a somewhat
unfair criterion since some modern software engineering concepts and principles may not

have been well understood at the time that the legacy software was developed.

CHAPTER 1 THE NATURE OF SOFTWARE 9

— 1.2 THe CHANGING NATURE OF SOFTWARE

Quole:

“By the time
we see any sort
of stabilization,
the Web will
have turned
into something
completely
different.”

Louis Monier

Four broad categories of software are evolving to dominate the industry. And yet,
these categories were in their infancy little more than a decade ago.

1.2.1 WebApps

In the early days of the World Wide Web (circa 1990 to 1995), websites consisted of
little more than a set of linked hypertext files that presented information using
text and limited graphics. As time passed, the augmentation of HTML by devel-
opment tools (e.g., XML, Java) enabled Web engineers to provide computing ca-
pability along with informational content. Web-based systems and applications®
(we refer to these collectively as WebApps) were born.

Today, WebApps have evolved into sophisticated computing tools that not only
provide stand-alone function to the end user, but also have been integrated with
corporate databases and business applications.

A decade ago, WebApps “involveld]l a mixture between print publishing and
software development, between marketing and computing, between inter-
nal communications and external relations, and between art and technology.”
[Pow98l But today, they provide full computing potential in many of the applica-
tion categories noted in Section 1.1.2.

Over the past decade, Semantic Web technologies (often referred to as Web
3.0) have evolved into sophisticated corporate and consumer applications that
encompass “‘semantic databases [that] provide new functionality that requires
Web linking, flexible [datal representation, and external access APIs.” [Hen10l
Sophisticated relational data structures will lead to entirely new WebApps that
allow access to disparate information in ways never before possible.

1.2.2 Mobile Applications

The term app has evolved to connote software that has been specifically de-
signed to reside on a mobile platform (e.g., iOS, Android, or Windows Mobile). In
most instances, mobile applications encompass a user interface that takes ad-
vantage of the unique interaction mechanisms provided by the mobile platform,
interoperability with Web-based resources that provide access to a wide array
of information that is relevant to the app, and local processing capabilities that
collect, analyze, and format information in a manner that is best suited to the
mobile platform. In addition, a mobile app provides persistent storage capabili-
ties within the platform.

5 In the context of this book, the term Web application (WebApp) encompasses everything from a
simple Web page that might help a consumer compute an automobile lease payment to a com-
prehensive website that provides complete travel services for businesspeople and vacationers.
Included within this category are complete websites, specialized functionality within websites,

and information processing applications that reside on the Internet or on an intranet or extranet.

10 CHAPTER 1 THE NATURE OF SOFTWARE

m Cloud computing logical architecture [Wik13]

2 1
(Servers

Application

m =

Collaboration

Laptops

Monitoring

Finance

Content Communication

Platform

John Doe

Identity

Object Storage Runtime Database

Infrastructure

£+ ™

Compute Block Storage Network

Phones Tablets
Cloud Computing
What is the It is important to recognize that there is a subtle distinction between mobile
o difference web applications and mobile apps. A mobile web application (WebApp) allows a
between a mobile device to gain access to web-based content via a browser that has been
:Y::ilt pzpupll;I g specifically designed to accommodate the strengths and weaknesses of the mo-

bile platform. A mobile app can gain direct access to the hardware characteris-
tics of the device (e.g., accelerometer or GPS location) and then provide the local
processing and storage capabilities noted earlier. As time passes, the distinction
between mobile WebApps and mobile apps will blur as mobile browsers become
more sophisticated and gain access to device level hardware and information.

1.2.3 Cloud Computing

Cloud computing encompasses an infrastructure or “ecosystem” that enables
any user, anywhere, to use a computing device to share computing resources on
a broad scale. The overall logical architecture of cloud computing is represented
in Figure 1.3.

1.3

CHAPTER 1 THE NATURE OF SOFTWARE 11

Referring to the figure, computing devices reside outside the cloud and have
access to a variety of resources within the cloud. These resources encompass ap-
plications, platforms, and infrastructure. In its simplest form, an external com-
puting device accesses the cloud via a Web browser or analogous software. The
cloud provides access to data that resides with databases and other data struc-
tures. In addition, devices can access executable applications that can be used in
lieu of apps that reside on the computing device.

The implementation of cloud computing requires the development of an ar-
chitecture that encompasses front-end and back-end services. The front-end in-
cludes the client (user) device and the application software (e.g., a browser) that
allows the back-end to be accessed. The back-end includes servers and related
computing resources, data storage systems (e.g., databases), server-resident ap-
plications, and administrative servers that use middleware to coordinate and
monitor traffic by establishing a set of protocols for access to the cloud and its
resident resources. [Stros8l

The cloud architecture can be segmented to provide access at a variety of
different levels from full public access to private cloud architectures accessible
only to those with authorization.

1.2.4 Product Line Software

The Software Engineering Institute defines a software product line as “a set of
software-intensive systems that share a common, managed set of features sat-
isfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way.” [SEI13]
The concept of a line of software products that are related in some way is not
new. But the idea that a line of software products, all developed using the same
underlying application and data architectures, and all implemented using a set
of reusable software components that can be reused across the product line pro-
vides significant engineering leverage.

A software product line shares a set of assets that include requirements
(Chapter 8), architecture (Chapter 13), design patterns (Chapter 16), reusable
components (Chapter 14), test cases (Chapters 22 and 23), and other software
engineering work products. In essence, a software product line results in the
development of many products that are engineered by capitalizing on the com-
monality among all the products within the product line.

SUMMARY.

Software is the key element in the evolution of computer-based systems and
products and one of the most important technologies on the world stage. Over
the past 50 years, software has evolved from a specialized problem solving and
information analysis tool to an industry in itself. Yet we still have trouble devel-
oping high-quality software on time and within budget.

12 CHAPTER 1 THE NATURE OF SOFTWARE

Software—programs, data, and descriptive information—addresses a wide
array of technology and application areas. Legacy software continues to present
special challenges to those who must maintain it.

The nature of software is changing. Web-based systems and applications have
evolved from simple collections of information content to sophisticated systems
that present complex functionality and multimedia content. Although these
WebApps have unique features and requirements, they are software nonethe-
less. Mobile applications present new challenges as apps migrate to a wide array
of platforms. Cloud computing will transform the way in which software is deliv-
ered and the environment in which it exists. Product line software offers poten-
tial efficiencies in the manner in which software is built.

PROBLEMS AND PoOINTS TO PONDER

1.1. Provide at least five additional examples of how the law of unintended consequences
applies to computer software.

1.2. Provide a number of examples (both positive and negative) that indicate the impact of
software on our society.

1.3. Develop your own answers to the five questions asked at the beginning of Section 1.1.
Discuss them with your fellow students.

1.4. Many modern applications change frequently—before they are presented to the end
user and then after the first version has been put into use. Suggest a few ways to build soft-
ware to stop deterioration due to change.

1.5. Consider the seven software categories presented in Section 1.1.2. Do you think that
the same approach to software engineering can be applied for each? Explain your answer.

FuRTHER READINGS AND INFORMATION SOURCES®

Literally thousands of books are written about computer software. The vast majority dis-
cuss programming languages or software applications, but a few discuss software itself.
Pressman and Herron (Software Shock, Dorset House, 1991) presented an early discussion
(directed at the layperson) of software and the way professionals build it. Negroponte’s
best-selling book (Being Digital, Alfred A. Knopf, 1995) provides a view of computing and
its overall impact in the twenty-first century. DeMarco (Why Does Software Cost So Much?
Dorset House, 1995) has produced a collection of amusing and insightful essays on software

6 The Further Reading and Information Sources section presented at the conclusion of each
chapter presents a brief overview of print sources that can help to expand your understanding
of the major topics presented in the chapter. We have created a comprehensive website to
support Software Engineering: A Practitioner’s Approach at www.mhhe.com/pressman. Among
the many topics addressed within the website are chapter-by-chapter software engineering
resources to Web-based information that can complement the material presented in each
chapter. An Amazon.com link to every book noted in this section is contained within these

resources.

CHAPTER 1 THE NATURE OF SOFTWARE 13

and the process through which it is developed. Ray Kurzweil (How to Create a Mind, Viking,
2013) discusses how software will soon mimic human thought and lead to a “singularity” in
the evolution of humans and machines.

Keeves (Catching Digital, Business Infomedia Online, 2012) discusses how business lead-
ers must adapt as software evolves at an ever-increasing pace. Minasi (The Software Con-
spiracy: Why Software Companies Put out Faulty Products, How They Can Hurt You, and
What You Can Do, McGraw-Hill, 2000) argues that the “modern scourge” of software bugs
can be eliminated and suggests ways to accomplish this. Books by Eubanks (Digital Dead
End: Fighting for Social Justice in the Information Age, MIT Press, 2011) and Compaine
(Digital Divide: Facing a Crisis or Creating a Myth, MIT Press, 2001) argue that the “divide”
between those who have access to information resources (e.g., the Web) and those that do
not is narrowing as we move into the first decade of this century. Books by Kuniavsky (Smart
Things: Ubiquitous Computing User Experience Design, Morgan Kaufman, 2010), Greenfield
(Everyware: The Dawning Age of Ubiquitous Computing, New Riders Publishing, 2006), and
Loke (Context-Aware Pervasive Systems: Architectures for a New Breed of Applications,
Auerbach, 2006) introduce the concept of “open-world” software and predict a wireless en-
vironment in which software must adapt to requirements that emerge in real time.

A wide variety of information sources that discuss the nature of software are available
on the Internet. An up-to-date list of World Wide Web references that are relevant to the
software process can be found at the SEPA website: www.mhhe.com/pressman

CHAPTER

SOFTWARE
ENGINEERING

Kevy
CONCEPTS
framework
activities 17
general principles . . 21
principles 21
problem solving ... 19
SafeHome. 26
software engineering,
definition 15
layers......... 15
practice........ 19
software
myths........... 23

software process .. 16
umbrella activities. . 17

n order to build software that is ready to meet the challenges of the
twenty-first century, you must recognize a few simple realities:

e Software has become deeply embedded in virtually every aspect of our
lives, and as a consequence, the number of people who have an inter-
est in the features and functions provided by a specific application' has
grown dramatically. It follows that a concerted effort should be made to
understand the problem before a software solution is developed.

e The information technology requirements demanded by individuals,
businesses, and governments grow increasing complex with each pass-
ing year. Large teams of people now create computer programs that
were once built by a single individual. Sophisticated software that was
once implemented in a predictable, self-contained, computing environ-
ment is now embedded inside everything from consumer electronics to
medical devices to weapons systems. It follows that design becomes a

pivotal activity.

What is it? Software engineering
encompasses a process, a collec-
tion of methods (practice) and an
array of tools that allow profession-
als to build high-quality computer software.

Who does it? Software engineers apply the
software engineering process.

Why is it important? Sofiware engineering is
important because it enables us to build com-
plex systems in a timely manner and with high
quality. It imposes discipline to work that can be-
come quite chaotic, but it also allows the people
who build computer software to adapt their ap-
proach in a manner that best suits their needs.

What are the steps? You build computer soft-
ware like you build any successful product,

QUICK
Look

by applying an agile, adaptable process that
leads to a high-quality result that meets the
needs of the people who will use the product.
You apply a software engineering approach.

What is the work product? From the point
of view of a software engineer, the work prod-
uct is the set of programs, content (data), and
other work products that are computer soft-
ware. But from the user’s viewpoint, the work
product is the resultant information that some-
how makes the user’s world betfter.

How do | ensure that I've done it
right? Read the remainder of this book, se-
lect those ideas that are applicable to the soft-
ware that you build, and apply them to your
work.

1 We will call these people “stakeholders” later in this book.

14

Understand the prob-
lem before you build a
solution.

%,
POINT
Both quality and

maintainability are

an outgrowth of good
design.

no
(-

CHAPTER 2 SOFTWARE ENGINEERING 15

e Individuals, businesses, and governments increasingly rely on software for
strategic and tactical decision making as well as day-to-day operations and
control. If the software fails, people and major enterprises can experience
anything from minor inconvenience to catastrophic failures. It follows that
software should exhibit high quality.

e Asthe perceived value of a specific application grows, the likelihood is that
its user base and longevity will also grow. As its user base and time-in-use
increase, demands for adaptation and enhancement will also grow. It fol-
lows that software should be maintainable.

These simple realities lead to one conclusion: software in all of its forms and
across all of its application domains should be engineered. And that leads us to
the topic of this book—software engineering.

DEFINING THE DISCIPLINE

O How do
® we define

software

engineering?

%,
POINT
Software engineering
encompasses a pro-

cess, methods for man-

aging and engineering
software, and tools.

The IEEE [IEE93al has developed the following definition for software engineering:

Software Engineering : (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the

application of engineering to software. (2) The study of approaches as in (1).

And yet, a “systematic, disciplined, and quantifiable” approach applied by one
software team may be burdensome to another. We need discipline, but we also
need adaptability and agility.

Software engineering is a layered technology. Referring to Figure 2.1, any en-
gineering approach (including software engineering) must rest on an organiza-
tional commitment to quality. Total quality management, Six Sigma, and similar
philosophies? foster a continuous process improvement culture, and it is this
culture that ultimately leads to the development of increasingly more effective
approaches to software engineering. The bedrock that supports software engi-
neering is a quality focus.

The foundation for software engineering is the process layer. The software
engineering process is the glue that holds the technology layers together and
enables rational and timely development of computer software. Process defines
a framework that must be established for effective delivery of software engineer-
ing technology. The software process forms the basis for management control
of software projects and establishes the context in which technical methods are

2 Quality management and related approaches are discussed throughout Part 3 of this book.

16

CHAPTER 2 SOFTWARE ENGINEERING

Software engi-
neering layers

(rossTalk is a journal
that provides pragmatic
information on process,
methods, and tools. It
can be found af:
www.stsc.hill.of.mil,

‘, What are

® the elements
of a software
process?

Qoote:

“A process defines
who is doing what
when and how to
reach a certain
goal.”

Ivar Jacobson,
Grady Booch,
and James
Rumbaugh

Tools P

Methods

A quality focus

applied, work products (models, documents, data, reports, forms, etc.) are pro-
duced, milestones are established, quality is ensured, and change is properly
managed.

Software engineering methods provide the technical how-to’s for building
software. Methods encompass a broad array of tasks that include communica-
tion, requirements analysis, design modeling, program construction, testing,
and support. Software engineering methods rely on a set of basic principles that
govern each area of the technology and include modeling activities and other
descriptive techniques.

Software engineering tools provide automated or semi-automated support
for the process and the methods. When tools are integrated so that information
created by one tool can be used by another, a system for the support of software
development, called computer-aided software engineering, is established.

E PROCESS

A process is a collection of activities, actions, and tasks that are performed when
some work product is to be created. An activity strives to achieve a broad objec-
tive (e.g., communication with stakeholders) and is applied regardless of the ap-
plication domain, size of the project, complexity of the effort, or degree of rigor
with which software engineering is to be applied. An action (e.g., architectural
design) encompasses a set of tasks that produce a major work product (e.g., an
architectural model). A task focuses on a small, but well-defined objective (e.g.,
conducting a unit test) that produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for
how to build computer software. Rather, it is an adaptable approach that enables
the people doing the work (the software team) to pick and choose the appropri-
ate set of work actions and tasks. The intent is always to deliver software in a
timely manner and with sufficient quality to satisfy those who have sponsored its
creation and those who will use it.

‘, What are
® the five
generic process
framework
activities?

Quote:

“Einstein argued
that there must
be a simplified
explanafion of
nature, because
God is not
capricious or
arbitrary. No such
faith comforts

the software
engineer. Much
of the complexity
that he must
master is arbitrary
complexity.”

Fred Brooks

CHAPTER 2 SOFTWARE ENGINEERING 17

2.2.1 The Process Framework

A process framework establishes the foundation for a complete software engi-
neering process by identifying a small number of framework activities that are
applicable to all software projects, regardless of their size or complexity. In ad-
dition, the process framework encompasses a set of umbrella activities that are
applicable across the entire software process. A generic process framework for
software engineering encompasses five activities:

Communication. Before any technical work can commence, it is critically im-
portant to communicate and collaborate with the customer (and other stake-
holders).? The intent is to understand stakeholders’ objectives for the project and
to gather requirements that help define software features and functions.

Planning. Any complicated journey can be simplified if a map exists. A software
project is a complicated journey, and the planning activity creates a “map” that
helps guide the team as it makes the journey. The map—called a software project
plan—defines the software engineering work by describing the technical tasks to
be conducted, the risks that are likely, the resources that will be required, the
work products to be produced, and a work schedule.

Modeling. Whether you're a landscaper, a bridge builder, an aeronautical engi-
neer, a carpenter, or an architect, you work with models every day. You create a
“sketch” of the thing so that you'll understand the big picture—what it will look
like architecturally, how the constituent parts fit together, and many other char-
acteristics. If required, you refine the sketch into greater and greater detail in
an effort to better understand the problem and how you're going to solve it. A
software engineer does the same thing by creating models to better understand
software requirements and the design that will achieve those requirements.

Construction. What you design must be built. This activity combines code gen-
eration (either manual or automated) and the testing that is required to uncover
errors in the code.

Deployment. The software (as a complete entity or as a partially completed in-
crement) is delivered to the customer who evaluates the delivered product and
provides feedback based on the evaluation.

These five generic framework activities can be used during the development of

small, simple programs, the creation of Web applications, and for the engineering

3 A stakeholder is anyone who has a stake in the successful outcome of the project—business
managers, end users, software engineers, support people, etc. Rob Thomsett jokes that, “a
stakeholder is a person holding a large and sharp stake . . . If you don’t look after your stake-
holders, you know where the stake will end up.”

18

Umbrella activities
occur throughout the
software process and
focus primarily on
project management,
tracking, and control.

[/
&Q“
POINT

Software process
adaptation is essential
for project success.

CHAPTER 2 SOFTWARE ENGINEERING

of large, complex computer-based systems. The details of the software process will
be quite different in each case, but the framework activities remain the same.

For many software projects, framework activities are applied iteratively as a
project progresses. That is, communication, planning, modeling, construction,
and deployment are applied repeatedly through a number of project iterations.
Each iteration produces a software increment that provides stakeholders with a
subset of overall software features and functionality. As each increment is pro-
duced, the software becomes more and more complete.

2.2.2 Umbrella Activities

Software engineering process framework activities are complemented by a num-
ber of umbrella activities. In general, umbrella activities are applied throughout
a software project and help a software team manage and control progress, qual-
ity, change, and risk. Typical umbrella activities include:

Software project tracking and control—allows the software team to assess
progress against the project plan and take any necessary action to maintain the
schedule.

Risk management—assesses risks that may affect the outcome of the project
or the quality of the product.

Software quality assurance—defines and conducts the activities required to
ensure software quality.

Technical reviews—assess software engineering work products in an effort to
uncover and remove errors before they are propagated to the next activity.

Measurement—defines and collects process, project, and product measures
that assist the team in delivering software that meets stakeholders’ needs; can
be used in conjunction with all other framework and umbrella activities.

Software configuration management—manages the effects of change
throughout the software process.

Reusability management—defines criteria for work product reuse (includ-
ing software components) and establishes mechanisms to achieve reusable
components.

Work product preparation and production—encompass the activities re-
quired to create work products such as models, documents, logs, forms, and
lists.

Each of these umbrella activities is discussed in detail later in this book.

2.2.3 Process Adaptation

Previously in this section, we noted that the software engineering process is not a
rigid prescription that must be followed dogmatically by a software team. Rather,
it should be agile and adaptable (to the problem, to the project, to the team,

“| feel a recipe is
only a theme which
an intelligent cook
can play each time
with a variation.”

Madame Benoit

2.3

CHAPTER 2 SOFTWARE ENGINEERING 19

and to the organizational culture). Therefore, a process adopted for one proj-
ect might be significantly different than a process adopted for another project.
Among the differences are

o Overall flow of activities, actions, and tasks and the interdependencies
among them.

o Degree to which actions and tasks are defined within each framework
activity.

e Degree to which work products are identified and required.

e Manner in which quality assurance activities are applied.

e Manner in which project tracking and control activities are applied.

e Overall degree of detail and rigor with which the process is described.

o Degree to which the customer and other stakeholders are involved with
the project.

e Level of autonomy given to the software team.

e Degree to which team organization and roles are prescribed.

In Part 1 of this book, we examine software process in considerable detail.

SOoFTWARE ENGINEERING PRACTICE

Avariety of thought-
provoking quotes on
the practice of software
engineering can be
found af www.literate-
programming.com.

Gpwc:s

You might argue that
Polya’s approach is
simply common sense.
True. But it's amazing
how often common
sense is uncommon in
the software world.

In Section 2.2, we introduced a generic software process model composed of a
set of activities that establish a framework for software engineering practice. Ge-
neric framework activities—communication, planning, modeling, construction,
and deployment—and umbrella activities establish a skeleton architecture for
software engineering work. But how does the practice of software engineering
fit in? In the sections that follow, you’ll gain a basic understanding of the generic
concepts and principles that apply to framework activities.*

2.3.1 The Essence of Practice

In the classic book, How to Solve It, written before modern computers existed,
George Polya [Pol45] outlined the essence of problem solving, and consequently,
the essence of software engineering practice:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).
3. Carry out the plan (code generation).
4

. Examine the result for accuracy (testing and quality assurance).

4 You should revisit relevant sections within this chapter as we discuss specific software engi-
neering methods and umbrella activities later in this book.

20

ﬁpwcss.

The most important
element of problem
understanding is
listening.

Qoote:

“There is a grain
of discovery in the
solution of any
problem.”

George Polya

CHAPTER 2 SOFTWARE ENGINEERING

In the context of software engineering, these commonsense steps lead to a
series of essential questions [adapted from Pol45l:

Understand the problem. It's sometimes difficult to admit, but most of us suffer
from hubris when we're presented with a problem. We listen for a few seconds
and then think, Oh yeah, I understand, let’s get on with solving this thing. Unfor-
tunately, understanding isn’t always that easy. It’'s worth spending a little time
answering a few simple questions:

o Who has a stake in the solution to the problem? That is, who are the
stakeholders?

o What are the unknowns? What data, functions, and features are required
to properly solve the problem?

e Can the problem be compartmentalized? Is it possible to represent smaller
problems that may be easier to understand?

o Can the problem be represented graphically? Can an analysis model be
created?

Plan the solution. Now you understand the problem (or so you think), and you
can’'t wait to begin coding. Before you do, slow down just a bit and do a little
design:

e Have you seen similar problems before? Are there patterns that are recog-
nizable in a potential solution? Is there existing software that implements
the data, functions, and features that are required?

e Has a similar problem been solved? If so, are elements of the solution
reusable?

e Can subproblems be defined? If so, are solutions readily apparent for the
subproblems?

o Can you represent a solution in a manner that leads to effective implemen-
tation? Can a design model be created?

Carry out the plan. The design you've created serves as a road map for the sys-
tem you want to build. There may be unexpected detours, and it’s possible that
you’ll discover an even better route as you go, but the “plan” will allow you to
proceed without getting lost.

e Does the solution conform to the plan? Is source code traceable to the de-
sign model?

e [s each component part of the solution provably correct? Has the design
and code been reviewed, or better, have correctness proofs been applied
to the algorithm?

&pwcs‘

Before beginning a
software project, be
sure the software has
@ business purpose
and that users perceive
valve in it.

Quote:

“There is a

certain maijesty in
simplicity which is
far above all the
quaintness of wit.”

Alexander Pope
(1688-1744)

CHAPTER 2 SOFTWARE ENGINEERING 21

Examine the result. You can’t be sure that your solution is perfect, but you can
be sure that you've designed a sufficient number of tests to uncover as many
errors as possible.

o [s it possible to test each component part of the solution? Has a reasonable
testing strategy been implemented?

e Does the solution produce results that conform to the data, functions, and
features that are required? Has the software been validated against all
stakeholder requirements?

It shouldn’t surprise you that much of this approach is common sense. In fact,
it’s reasonable to state that a commonsense approach to software engineering
will never lead you astray.

2.3.2 General Principles

The dictionary defines the word principle as “an important underlying law or
assumption required in a system of thought.” Throughout this book we’ll dis-
cuss principles at many different levels of abstraction. Some focus on software
engineering as a whole, others consider a specific generic framework activity
(e.g., communication), and still others focus on software engineering actions (e.g.,
architectural design) or technical tasks (e.g., write a usage scenario). Regardless
of their level of focus, principles help you establish a mind-set for solid software
engineering practice. They are important for that reason.

David Hooker [Hoo96] has proposed seven principles that focus on software en-
gineering practice as a whole. They are reproduced in the following paragraphs:®

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All
decisions should be made with this in mind. Before specifying a system re-
quirement, before noting a piece of system functionality, before determining
the hardware platforms or development processes, ask yourself questions such
as: “Does this add real value to the system?” If the answer is no, don’t do it. All
other principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to con-
sider in any design effort. All design should be as simple as possible, but no
simpler. This facilitates having a more easily understood and easily maintained
system. This is not to say that features, even internal features, should be dis-
carded in the name of simplicity. Indeed, the more elegant designs are usually
the more simple ones. Simple also does not mean “quick and dirty.” In fact, it

5 Reproduced with permission of the author [Hoo96l. Hooker defines patterns for these princi-
ples at http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.

22

(ﬁ."
POINT

If software has value,

it will change over

its useful life. For

that reason, software

must be built to be

maintainable.

CHAPTER 2 SOFTWARE ENGINEERING

often takes a lot of thought and work over multiple iterations to simplify. The
payoff is software that is more maintainable and less error-prone.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a
project almost unfailingly ends up being “of two [or morel minds” about itself.
Without conceptual integrity, a system threatens to become a patchwork of incom-
patible designs, held together by the wrong kind of screws . . . Compromising the
architectural vision of a software system weakens and will eventually break even
the well-designed systems. Having an empowered architect who can hold the vi-
sion and enforce compliance helps ensure a very successful software project.

The Fourth Principle: What You Produce, Others Will Consume

Seldom is an industrial-strength software system constructed and used in a
vacuum. In some way or other, someone else will use, maintain, document, or
otherwise depend on being able to understand your system. So, always specify,
design, and implement knowing someone else will have to understand what you
are doing. The audience for any product of software development is potentially
large. Specify with an eye to the users. Design, keeping the implementers in
mind. Code with concern for those that must maintain and extend the system.
Someone may have to debug the code you write, and that makes them a user of
your code. Making their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today's computing envi-
ronments, where specifications change on a moment’s notice and hardware
platforms are obsolete just a few months old, software lifetimes are typically
measured in months instead of years. However, true “industrial-strength”
software systems must endure far longer. To do this successfully, these sys-
tems must be ready to adapt to these and other changes. Systems that do this
successfully are those that have been designed this way from the start. Never
design yourselfinto a corner. Always ask “what if,” and prepare for all possible
answers by creating systems that solve the general problem, not just the spe-
cific one.® This could very possibly lead to the reuse of an entire system.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort.” Achieving a high level of reuse is arguably the
hardest goal to accomplish in developing a software system. The reuse of code

6 This advice can be dangerous if it is taken to extremes. Designing for the “general problem”
sometimes requires performance compromises and can make specific solutions inefficient.

7 Although this is true for those who reuse the software on future projects, reuse can be expen-
sive for those who must design and build reusable components. Studies indicate that designing
and building reusable components can cost between 25 to 200 percent more than targeted

software. In some cases, the cost differential cannot be justified.

CHAPTER 2 SOFTWARE ENGINEERING 23

and designs has been proclaimed as a major benefit of using object-oriented
technologies. However, the return on this investment is not automatic. To lever-
age the reuse possibilities that object-oriented [or conventionall programming
provides requires forethought and planning. There are many techniques to re-
alize reuse at every level of the system development process . .. Planning ahead
for reuse reduces the cost and increases the value of both the reusable compo-
nents and the systems into which they are incorporated.

The Seventh Principle: Think!

This last Principle is probably the most overlooked. Placing clear, complete
thought before action almost always produces better results. When you think about
something, you are more likely to do it right. You also gain knowledge about how to
do it right again. If you do think about something and still do it wrong, it becomes
a valuable experience. A side effect of thinking is learning to recognize when you
don’t know something, at which point you can research the answer. When clear
thought has gone into a system, value comes out. Applying the first six principles
requires intense thought, for which the potential rewards are enormous.

If every software engineer and every software team simply followed Hooker’s
seven principles, many of the difficulties we experience in building complex
computer-based systems would be eliminated.

2.4 SorTwARE DEVELOPMENT MYTHS

The Software Project

Managers Network at
WWW.Spmn.com can

help you dispel these

and other myths.

Software development myths—erroneous beliefs about software and the process
that is used to build it—can be traced to the earliest days of computing. Myths
have a number of attributes that make them insidious. For instance, they appear
to be reasonable statements of fact (sometimes containing elements of truth),
they have an intuitive feel, and they are often promulgated by experienced prac-
titioners who “know the score.”

Today, most knowledgeable software engineering professionals recognize
myths for what they are—misleading attitudes that have caused serious prob-
lems for managers and practitioners alike. However, old attitudes and habits are
difficult to modify, and remnants of software myths remain.

Management myths. Managers with software responsibility, like managers in
most disciplines, are often under pressure to maintain budgets, keep sched-
ules from slipping, and improve quality. Like a drowning person who grasps at a
straw, a software manager often grasps at belief in a software myth, if that belief
will lessen the pressure (even temporarily).

Myth: We already have a book that's full of standards and procedures for
building software. Won't that provide my people with everything
they need to know?

24

&pwcss

Work very hard fo
understand what you
have to do before you
start. You may not be
able to develop every
detail, but the more
you know, the less risk
you fake.

CHAPTER 2 SOFTWARE ENGINEERING

Reality:

Myth:

Reality:

Myth:

Reality:

The book of standards may very well exist, but is it used? Are soft-
ware practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it complete? Is it adaptable? Is
it streamlined to improve time-to-delivery while still maintaining
a focus on quality? In many cases, the answer to all of these ques-
tions is no.

If we get behind schedule, we can add more programmers and
catch up (sometimes called the “Mongolian horde” concept).

Software development is not a mechanistic process like man-
ufacturing. In the words of Brooks [Bro95l: “adding people to a
late software project makes it later.” At first, this statement may
seem counterintuitive. However, as new people are added, people
who were working must spend time educating the newcomers,
thereby reducing the amount of time spent on productive devel-
opment effort. People can be added but only in a planned and
well-coordinated manner.

If I decide to outsource the software project to a third party, I can
just relax and let that firm build it.

If an organization does not understand how to manage and control
software projects internally, it will invariably struggle when it out-
sources software projects.

Customer myths. A customer who requests computer software may be a per-

son at the next desk, a technical group down the hall, the marketing/sales de-

partment, or an outside company that has requested software under contract.

In many cases, the customer believes myths about software because software

managers and practitioners do little to correct misinformation. Myths lead to

false expectations (by the customer) and, ultimately, dissatisfaction with the

developer.

Myth:

Reality:

Myth:

Reality:

A general statement of objectives is sufficient to begin writing
programs—we can fill in the details later.

Although a comprehensive and stable statement of requirements
is not always possible, an ambiguous “statement of objectives” is a
recipe for disaster. Unambiguous requirements (usually derived
iteratively) are developed only through effective and continuous
communication between customer and developer.

Software requirements continually change, but change can be eas-
ily accommodated because software is flexible.

It is true that software requirements change, but the impact of
change varies with the time at which it is introduced. When re-
quirements changes are requested early (before design or code

&pwcss.

Whenever you think,
we don’t have time for
software engineering,
ask yourself, “Will we
have time to do it over
again?”

CHAPTER 2 SOFTWARE ENGINEERING 25

has been started), the cost impact is relatively small.? However, as
time passes, the cost impact grows rapidly— resources have been
committed, a design framework has been established, and change
can cause upheaval that requires additional resources and major
design modification.

Practitioner’s myths. Myths that are still believed by software practitioners

have been fostered by over 60 years of programming culture. During the early

days, programming was viewed as an art form. Old ways and attitudes die hard.

Myth:

Reality:

Myth:

Reality:

Myth:

Reality:

Myth:

Reality:

Once we write the program and get it to work, our job is done.

Someone once said that “the sooner you begin ‘writing code,’
the longer it’'ll take you to get done.” Industry data indicate that
between 60 and 80 percent of all effort expended on software
will be expended after it is delivered to the customer for the first
time.

Until I get the program “running” I have no way of assessing its
quality.

One of the most effective software quality assurance mechanisms
can be applied from the inception of a project—the technical
review. Software reviews (described in Chapter 20) are a “quality
filter” that have been found to be more effective than testing for
finding certain classes of software defects.

The only deliverable work product for a successful project is the
working program.

A working program is only one part of a software configuration
that includes many elements. A variety of work products (e.g.,
models, documents, plans) provide a foundation for successful en-
gineering and, more important, guidance for software support.

Software engineering will make us create voluminous and unnec-
essary documentation and will invariably slow us down.

Software engineering is not about creating documents. It is about
creating a quality product. Better quality leads to reduced rework.
And reduced rework results in faster delivery times.

Today, most software professionals recognize the fallacy of the myths just de-

scribed. Recognition of software realities is the first step toward formulation of

practical solutions for software engineering.

8 Many software engineers have adopted an “agile” approach that accommodates change incre-

mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 5.

26 CHAPTER 2 SOFTWARE ENGINEERING

2.5 How It ALL STARTS

Every software project is precipitated by some business need—the need to cor-
rect a defect in an existing application; the need to adapt a “legacy system” to a
changing business environment; the need to extend the functions and features of
an existing application; or the need to create a new product, service, or system.

At the beginning of a software project, the business need is often expressed
informally as part of a simple conversation. The conversation presented in the
sidebar is typical.

SareHoME®

How a Project Starts

fiile

[I The scene: Meeting room at CPI
Corporation, a (fictional) company that
makes consumer products for home and commercial use.

The players: Mal Golden, senior manager, product
development; Lisa Perez, marketing manager; Lee
Warren, engineering manager; Joe Camalleri, execu-
tive vice president, business development

The conversation:

Joe: Okay, Lee, what's this | hear about your folks de-
veloping a what? A generic universal wireless box?2

Lee: It's pretfty cool . . . about the size of a small match-
book . . . we can aftach it to sensors of all kinds, a
digital camera, just about anything. Using the 802.11n
wireless protocol. It allows us to access the device's
output without wires. We think it'll lead to a whole new
generation of products.

Joe: You agree, Mal?

Mal: | do. In fact, with sales as flat as they've been
this year, we need something new. Lisa and | have been
doing a little market research, and we think we've got a
line of products that could be big.

Joe: How big . . . bottom line big?

Mal (avoiding a direct commitment): Tell him
about our idea, Lisa.

Lisa: It's a whole new generation of what we calll
“home management products.” We call ‘em SafeHome.
They use the new wireless interface, provide homeown-
ers or small-businesspeople with a system that's con-
trolled by their PC—home security, home surveillance,
appliance and device control—you know, turn down the
home air conditioner while you're driving home, that
sort of thing.

Lee (jumping in): Engineering’s done a fechnical
feasibility study of this ideq, Joe. It's doable at low man-
ufacturing cost. Most hardware is off the shelf. Software
is an issue, but it's nothing that we can’t do.

Joe: Interesting. Now, | asked about the bottom line.

Mal: PCs and tablets have penetrated over 70 percent
of all households in the USA. If we could price this thing
right, it could be a killer app. Nobody else has our
wireless box . . . it's proprietary. We'll have a 2-year
jump on the competition. Revenue2 Maybe as much as
$30 to $40 million in the second year.

Joe (smiling): Let's take this o the next level. I'm
interested.

With the exception of a passing reference, software was hardly mentioned as
part ofthe conversation. And yet, software will make or break the SafeHome prod-
uct line. The engineering effort will succeed only if SafeHome software succeeds.

9 The SafeHome project will be used throughout this book to illustrate the inner workings of
a project team as it builds a software product. The company, the project, and the people are

fictitious, but the situations and problems are real.

CHAPTER 2 SOFTWARE ENGINEERING 27
The market will accept the product only if the software embedded within it prop-

erly meets the customer’s (as yet unstated) needs. We’ll follow the progression of
SafeHome software engineering in many of the chapters that follow.

2.6 SUMMARY

Software engineering encompasses process, methods, and tools that enable
complex computer-based systems to be built in a timely manner with quality. The
software process incorporates five framework activities—communication, plan-
ning, modeling, construction, and deployment—that are applicable to all soft-
ware projects. Software engineering practice is a problem-solving activity that
follows a set of core principles.

A wide array of software myths continue to lead managers and practitioners
astray, even as our collective knowledge of software and the technologies re-
quired to build it grows. As you learn more about software engineering, you’ll
begin to understand why these myths should be debunked whenever they are
encountered.

PROBLEMS AND POINTS TO PONDER

2.1. Figure 2.1 places the three software engineering layers on top of a layer entitled “A
quality focus.” This implies an organizational quality program such as total quality man-
agement. Do a bit of research and develop an outline of the key tenets of a total quality
management program.

2.2. Is software engineering applicable when WebApps are built? If so, how might it be mod-
ified to accommodate the unique characteristics of WebApps?

2.3. As software becomes more pervasive, risks to the public (due to faulty programs) be-
come an increasingly significant concern. Develop a doomsday but realistic scenario in
which the failure of a computer program could do great harm, either economic or human.

2.4. Describe a process framework in your own words. When we say that framework activ-
ities are applicable to all projects, does this mean that the same work tasks are applied for
all projects, regardless of size and complexity? Explain.

2.5. Umbrella activities occur throughout the software process. Do you think they are
applied evenly across the process, or are some concentrated in one or more framework
activities?

2.6. Add two additional myths to the list presented in Section 2.4. Also state the reality that
accompanies the myth.

— FUrTHER READINGS AND INFORMATION SOURCES

The current state of the software engineering and the software process can best be de-
termined from publications such as IEEE Software, IEEE Computer, CrossTalk, and IEEE
Transactions on Software Engineering. Industry periodicals such as Application Develop-
ment Trends and Cutter IT Journal often contain articles on software engineering topics.
The discipline is “summarized” every year in the Proceeding of the International Conference

28

CHAPTER 2 SOFTWARE ENGINEERING

on Software Engineering, sponsored by the IEEE and ACM, and is discussed in depth in jour-
nals such as ACM Transactions on Software Engineering and Methodology, ACM Software
Engineering Notes, and Annals of Software Engineering. Tens of thousands of Web pages are
dedicated to software engineering and the software process.

Many books addressing the software process and software engineering have been pub-
lished in recent years. Some present an overview of the entire process, while others delve
into a few important topics to the exclusion of others. Among the more popular offerings (in
addition to this book!) are

SWEBOK: Guide to the Software Engineering Body of Knowledge,'° IEEE, 2013, see: http://
www.computer.org/portal/web/swebok

Andersson, E., et al., Software Engineering for Internet Applications, MIT Press, 2006.

Braude, E., and M. Bernstein, Software Engineering: Modern Approaches, 2nd ed., Wiley,
2010.

Christensen, M., and R. Thayer, A Project Manager’s Guide to Software Engineering Best
Practices, IEEE-CS Press (Wiley), 2002.

Glass, R., Fact and Fallacies of Software Engineering, Addison-Wesley, 2002.
Hussain, S., Software Engineering, I K International Publishing House, 2013.

Jacobson, 1., Object-Oriented Software Engineering: A Use Case Driven Approach, 2nd
ed., Addison-Wesley, 2008.

Jalote, P., An Integrated Approach to Software Engineering, 3rd ed., Springer, 2010.
Pfleeger, S., Software Engineering: Theory and Practice, 4th ed., Prentice Hall, 2009.

Schach, S., Object-Oriented and Classical Software Engineering, 8th ed., McGraw-Hill,
2010.

Sommerville, 1., Software Engineering, 9th ed., Addison-Wesley, 2010.

Stober, T., and U. Hansmann, Agile Software Development: Best Practices for Large Devel-
opment Projects, Springer, 2009.

Tsui, F., and O. Karam, Essentials of Software Engineering, 2nd ed., Jones & Bartlett
Publishers, 2009.

Nygard (Release It!: Design and Deploy Production-Ready Software, Pragmatic Bookshelf,
2007), Richardson and Gwaltney (Ship it! A Practical Guide to Successful Software Projects,
Pragmatic Bookshelf, 2005), and Humble and Farley (Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, Addison-Wesley, 2010) present a
broad collection of useful guidelines that are applicable to the deployment activity.

Many software engineering standards have been published by the IEEE, ISO, and their
standards organizations over the past few decades. Moore (The Road Map to Software En-
gineering: A Standards-Based Guide, IEEE Computer Society Press [Wileyl, 2006) provides a
useful survey of relevant standards and how they apply to real projects.

A wide variety of information sources on software engineering and the software process
are available on the Internet. An up-to-date list of World Wide Web references that are rel-
evant to the software process can be found at the SEPA website: www.mhhe.com/pressman

10 Available free of charge at <http://www.computer.org/portal/web/swebok/htmlformat>

PART

THE SOFTWARE
PROCESS

n this part of Software Engineering: A Practitioner’s Ap-

proach you’ll learn about the process that provides a frame-

work for software engineering practice. These questions are
addressed in the chapters that follow:

e What is a software process?

e What are the generic framework activities that are present
in every software process?

e How are processes modeled and what are process patterns?

e What are the prescriptive process models and what are
their strengths and weaknesses?

e Why is agility a watchword in modern software engineering
work?

e What is agile software development and how does it differ
from more traditional process models?

Once these questions are answered you’ll be better prepared to
understand the context in which software engineering practice
is applied.

29

CHAPTER

SOFTWARE PROCESS
STRUCTURE

Key n a fascinating book that provides an economist’s view of software and soft-
CONCEPTS ware engineering, Howard Baetjer Jr. [Bae98] comments on the software
generic process process:

model........... 31

process Because software, like all capital, is embodied knowledge, and because that
ussessmfelm """" g: knowledge is initially dispersed, tacit, latent, and incomplete in large measure,
rocess flow......

:mess software development is a social learning process. The process is a dialogue in
improvement 38 which the knowledge that must become the software is brought together and
:;:::::s 35 embodied in the software. The process provides interaction between users and
task set .ooovnn.. 34 designers, between users and evolving tools, and between designers and evolving

tools [technologyl. It is an iterative process in which the evolving tool itself serves
as the medium for communication, with each new round of the dialogue eliciting

more useful knowledge from the people involved.

Indeed, building computer software is an iterative social learning process,
and the outcome, something that Baetjer would call “software capital,” is an
embodiment of knowledge collected, distilled, and organized as the process

30

is conducted.

What is it? When you work to

build a product or system, it's im-

portant to go through a series of

predictable steps—a road map that
helps you create a timely, high-quality result.
The road map that you follow is called a “soft-
ware process.”

Who does it? Software engineers and their
managers adapt the process to their needs and
then follow it. In addition, the people who have
requested the software have a role to play in
the process of defining, building, and testing it.

Why is it important? Because it provides sta-
bility, control, and organization to an activity
that can, if left uncontrolled, become quite cha-
ofic. However, a modern software engineering
approach must be “agile.” It must demand
only those activities, controls, and work prod-
ucts that are appropriate for the project team
and the product that is to be produced.

QUICK

Looxk

What are the steps? At a detailed level, the
process that you adopt depends on the soft-
ware that you're building. One process might
be appropriate for creating software for an air-
craft avionics system, while an entirely differ-
ent process would be indicated for the creation
of a website.

What is the work product? From the point
of view of a software engineer, the work prod-
ucts are the programs, documents, and data
that are produced as a consequence of the ac-
tivities and tasks defined by the process.

How do | ensure that I’ve done it right?
There are a number of software process assess-
ment mechanisms that enable organizations
to determine the “maturity” of their software
process. However, the quality, timeliness, and
long-term viability of the product you build are
the best indicators of the efficacy of the pro-
cess that you use.

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 31

But what exactly is a software process from a technical point of view? Within
the context of this book, we define a software process as a framework for the
activities, actions, and tasks that are required to build high-quality software. Is
“process” synonymous with “software engineering”? The answer is yes and no. A
software process defines the approach that is taken as software is engineered.
But software engineering also encompasses technologies that populate the
process—technical methods and automated tools.

More important, software engineering is performed by creative, knowledge-
able people who should adapt a mature software process so that it is appropriate
for the products that they build and the demands of their marketplace.

3.1 A GENERIc Process MoODEL

[/5]
Ko
POINT

The hierarchy of
technical work within
the software process is
activities, encompass:
ing actions, populated
by tasks.

2 What is
@ process
flow?

In Chapter 2, a process was defined as a collection of work activities, actions, and
tasks that are performed when some work product is to be created. Each of these
activities, actions, and tasks resides within a framework or model that defines
their relationship with the process and with one another.

The software process is represented schematically in Figure 3.1. Referring to
the figure, each framework activity is populated by a set of software engineering
actions. Each software engineering action is defined by a task set that identifies
the work tasks that are to be completed, the work products that will be pro-
duced, the quality assurance points that will be required, and the milestones that
will be used to indicate progress.

As we discussed in Chapter 2, a generic process framework for software engi-
neering defines five framework activities—communication, planning, modeling,
construction, and deployment. In addition, a set of umbrella activities—project
tracking and control, risk management, quality assurance, configuration man-
agement, technical reviews, and others—are applied throughout the process.

You should note that one important aspect of the software process has not
yet been discussed. This aspect—called process flow—describes how the frame-
work activities and the actions and tasks that occur within each framework ac-
tivity are organized with respect to sequence and time and is illustrated in
Figure 3.2.

A linear process flow executes each of the five framework activities in se-
quence, beginning with communication and culminating with deployment (Fig-
ure 3.2a). An iterative process flow repeats one or more of the activities before
proceeding to the next (Figure 3.2b). An evolutionary process flow executes the
activities in a “circular” manner. Each circuit through the five activities leads
to a more complete version of the software (Figure 3.2c). A parallel process flow
(Figure 3.2d) executes one or more activities in parallel with other activities (e.g.,
modeling for one aspect of the software might be executed in parallel with con-
struction of another aspect of the software).

32

PART ONE THE SOFTWARE PROCESS

A software
process
framework

Software process

Process fra mework

Umbrella activities

framework activity # 1

software engineering action #1.1

work tasks

Task sets work products

quality assurance points
project milestones

software engineering action #1.k

work tasks

Task sets work products

quality assurance points
project milestones

framework activity # n

software engineering action #n.1

work tasks

Task sets work products

quality assurance points
project milestones

software engineering action #n.m

work tasks

Task sets work products

quality assurance points
project milestones

.2 DEFINING A FRAMEWORK ACTIVITY

Quote:

“If the process is
right, the results
will take care of
themselves.”

Takashi Osada

Although we have described five framework activities and provided a basic defi-
nition of each in Chapter 2, a software team would need significantly more infor-
mation before it could properly execute any one of these activities as part of the
software process. Therefore, you are faced with a key question: What actions are
appropriate for a framework activity, given the nature of the problem to be solved,
the characteristics of the people doing the work, and the stakeholders who are
sponsoring the project?

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 33

—>Communicq’rion|— Planning |— Modeling |— Construction |— Deployment |—

(a) Linear process flow

—>Communico’rion|— Planning |— Modeling |— Construction |— Deployment |—

—__ <~ 2 >

How does a
® framework
activity change as
the nature of the
project changes?

Planning
Modeling
—| Communication
Increment Deployment Construction
released

(b) lterative process flow

(c) Evolutionary process flow

—| Communication |— Planning I
Modeling |<— Time —
Construction |— Deployment |—

(d) Parallel process flow

For a small software project requested by one person (at a remote location)
with simple, straightforward requirements, the communication activity might
encompass little more than a phone call or email with the appropriate stake-
holder. Therefore, the only necessary action is phone conversation, and the work
tasks (the task set) that this action encompasses are:

1. Make contact with stakeholder via telephone.

2. Discuss requirements and develop notes.

34 PART ONE THE SOFTWARE PROCESS

3. Organize notes into a brief written statement of requirements.

4. Email to stakeholder for review and approval.

%

P’i)’N‘l’ If the project was considerably more complex with many stakeholders, each
Diferent projets with a different set of (sometime conflicting) requirements, the communication
demand different fusk ~~ @ctivity might have six distinct actions (described in Chapter 8): inception, elici-
sets. The software tation, elaboration, negotiation, specification, and validation. Each of these soft-
feam chooses the ware engineering actions would have many work tasks and a number of distinct

task set based on
problem and project
characteristics.

work products.

SET

Referring again to Figure 3.1, each software engineering action (e.g., elicitation,
an action associated with the communication activity) can be represented by a
number of different task sets—each a collection of software engineering work
tasks, related work products, quality assurance points, and project milestones.

K Task Set 3. Build a preliminary list of functions and features

A task set defines the actual work to be done

to accomplish the objectives of a software
engineering action. For example, elicitation (more com-
monly called “requirements gathering”) is an important
software engineering action that occurs during the
communication activity. The goal of requirements
gathering is to understand what various stakeholders
want from the software that is fo be built.

For a small, relatively simple project, the task set for

requirements gathering might look like this:

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and
functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

For a larger, more complex software project, a differ-
ent task set would be required. It might encompass the
following work tasks:

1. Make a list of stakeholders for the project.
2. Inferview each stakeholder separately to determine

\ overall wants and needs.

based on stakeholder input.
4. Schedule a series of facilitated application specifi-
cation meetings.
5. Conduct meetings.
6. Produce informal user scenarios as part of each
meeting.
7. Refine user scenarios based on stakeholder
feedback.
8. Build a revised list of stakeholder requirements.
9. Use quality function deployment techniques to
prioritize requirements.
10. Package requirements so that they can be deliv-
ered incrementally.
11. Note constraints and restrictions that will be placed
on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve “requirements gath-
ering,” but they are quite different in their depth and
formality. The software team chooses the task set that will
allow it to achieve the goal of each action and still main-
tain quality and agility.

/

3.4

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 35

You should choose a task set that best accommodates the needs of the project
and the characteristics of your team. This implies that a software engineering
action can be adapted to the specific needs of the software project and the char-
acteristics of the project team.

PRocESS PATTERNS

@ What is
® " a process
pattern?

Quole:

“The repetifion of
patterns is quite a
different thing than
the repetition of
parts. Indeed, the
different parts will
be unique hecause
the patterns are
the same.”

Christopher
Alexander

%,
POINT

A pattern template

provides a consistent

means for describing a

pattem.

Every software team encounters problems as it moves through the software pro-
cess. It would be useful if proven solutions to these problems were readily avail-
able to the team so that the problems could be addressed and resolved quickly. A
process pattern' describes a process-related problem that is encountered during
software engineering work, identifies the environment in which the problem has
been encountered, and suggests one or more proven solutions to the problem.
Stated in more general terms, a process pattern provides you with a template
[Amb98l—a consistent method for describing problem solutions within the con-
text of the software process. By combining patterns, a software team can solve
problems and construct a process that best meets the needs of a project.
Patterns can be defined at any level of abstraction.? In some cases, a pattern
might be used to describe a problem (and solution) associated with a complete
process model (e.g., prototyping). In other situations, patterns can be used to
describe a problem (and solution) associated with a framework activity (e.g.,
planning) or an action within a framework activity (e.g., project estimating).
Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it
within the context of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the
issues that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework
activity for the process. Since a framework activity encompasses
multiple actions and work tasks, a stage pattern incorporates mul-
tiple task patterns (see the following) that are relevant to the stage
(framework activity). An example of a stage pattern might be
EstablishingCommunication. This pattern would incorporate the
task pattern RequirementsGathering and others.

A detailed discussion of patterns is presented in Chapter 11
2 Patterns are applicable to many software engineering activities. Analysis, design, and testing
patterns are discussed in Chapters 11, 13, 15, 16, and 20. Patterns and “antipatterns” for project

management activities are discussed in Part 4 of this book.

36

oote:

“We think

that software
developers are
missing a vital
truth: most
organizations don't
know what they
do. They think they
know, but they
don't know.”

Tom DeMarco

PART ONE THE SOFTWARE PROCESS

2. Task pattern—defines a problem associated with a software engineer-
ing action or work task and relevant to successful software engineering
practice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs
within the process, even when the overall flow of activities is iterative
in nature. An example of a phase pattern might be SpiralModel or
Prototyping.?

Initial Context. Describes the conditions under which the pattern applies.
Prior to the initiation of the pattern: (1) What organizational or team-related
activities have already occurred? (2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

For example, the Planning pattern (a stage pattern) requires that (1) custom-
ers and software engineers have established a collaborative communication;

(2) successful completion of a number of task patterns [specified] for the
Communication pattern has occurred; and (3) the project scope, basic business
requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section
describes how the initial state of the process (that exists before the pattern
is implemented) is modified as a consequence of the initiation of the pattern.
It also describes how software engineering information or project informa-
tion that is available before the initiation of the pattern is transformed as a
consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern
has been successfully implemented. Upon completion of the pattern: (1) What
organizational or team-related activities must have occurred? (2) What is the
exit state for the process? (3) What software engineering information or project
information has been developed?

Related Patterns. Provide a list of all process patterns that are directly
related to this one. This may be represented as a hierarchy or in some other
diagrammatic form. For example, the stage pattern Communication encom-
passes the task patterns: ProjectTeam, CollaborativeGuidelines, Scopelsolation,
RequirementsGathering, ConstraintDescription, and ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the
pattern is applicable. For example, Communication is mandatory at the
beginning of every software project, is recommended throughout the software
project, and is mandatory once the Deployment activity is under way.

3 These phase patterns are discussed in Chapter 4.

Comprehensive
TESOUICES O Process
patterns can be

found at
www.ambysoft.com/
processPatternsPage
himl.

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 37

Process patterns provide an effective mechanism for addressing problems
associated with any software process. The patterns enable you to develop a hier-
archical process description that begins at a high level of abstraction (a phase
pattern). The description is then refined into a set of stage patterns that describe
framework activities and are further refined in a hierarchical fashion into more
detailed task patterns for each stage pattern. Once process patterns have been
developed, they can be reused for the definition of process variants—that is, a
customized process model can be defined by a software team using the patterns

as building blocks for the process model.

7

An Example Process Pattern

The following abbreviated process pattern de-

scribes an approach that may be applicable
when stakeholders have a general idea of what must be
done but are unsure of specific software requirements.

Pattern Name. RequirementsUnclear

Intent. This pattern describes an approach for building
a model (a profotype) that can be assessed iteratively by
stakeholders in an effort to identify or solidify software
requirements.

Type. Phase pattern.

Initial Context. The following conditions must be met
prior to the initiation of this pattern: (1) stakeholders have
been identified; (2) a mode of communication between
stakeholders and the software team has been established;
(3) the overriding software problem to be solved has been
identified by stakeholders; (4) an initial understanding of
project scope, basic business requirements, and project
constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet
@re is clear recognition that there is a problem to be

solved, and the problem must be addressed with a

software solution. Stakeholders are unsure of what they
want; that is, they cannot describe software requirements
in any detail.

Solution. A description of the prototyping process
would be presented here and is described later in

Section 4.1.3.

Resulting Context. A software prototype that
identifies basic requirements (e.g., modes of interaction,
computational features, processing functions) is
approved by stakeholders. Following this, (1) the
prototype may evolve through a series of increments to
become the production software or (2) the prototype
may be discarded and the production software built
using some other process pattern.

Related Patterns. The following patterns are
related fo this pattern: CustomerCommunication,
IterativeDesign, IterativeDevelopment,
CustomerAssessment, RequirementExtraction.

/

Known Uses and Examples. Prototyping is
recommended when requirements are uncertain.

— 3.5 PROCESS ASSESSMENT AND IMPROVEMENT

The existence of a software process is no guarantee that software will be de-
livered on time, that it will meet the customer’s needs, or that it will exhibit
the technical characteristics that will lead to long-term quality characteristics
(Chapter 19). Process patterns must be coupled with solid software engineering
practice (Part 2 of this book). In addition, the process itself can be assessed to

38

POINT
Assessment attempts to
understand the current
state of the software
process with the infent
of improving it.

Qoote:

PART ONE THE SOFTWARE PROCESS

ensure that it meets a set of basic process criteria that have been shown to be
essential for a successful software engineering.*

A number of different approaches to software process assessment and im-
provement have been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement (SCAMPI)—
provides a five-step process assessment model that incorporates five phases:
initiating, diagnosing, establishing, acting, and learning. The SCAMPI method
uses the SEI CMMI as the basis for assessment [SEI00].

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—
provides a diagnostic technique for assessing the relative maturity of a software
organization; uses the SEI CMM as the basis for the assessment [Dun01l.

“Software
- SPICE (ISO/IEC15504)—a standard that defines a set of requirements for

organizations have
exhibited significant ~ software process assessment. The intent of the standard is to assist organi-
shortcomings in zations in developing an objective evaluation of the efficacy of any defined
their ability to software process [1SO08I.
capitalize on the
experiences gained ISO 9001:2000 for Software—a generic standard that applies to any organiza-
from completed tion that wants to improve the overall quality of the products, systems, or ser-
projects.” vices that it provides. Therefore, the standard is directly applicable to software

NASA organizations and companies [Ant06l.

A more detailed discussion of software assessment and process improvement
methods is presented in Chapter 37.
3.6 SUMMARY

A generic process model for software engineering encompasses a set of frame-
work and umbrella activities, actions, and work tasks. Each of a variety of pro-
cess models can be described by a different process flow—a description of how
the framework activities, actions, and tasks are organized sequentially and
chronologically. Process patterns can be used to solve common problems that
are encountered as part of the software process.

PROBLEMS AND PoOINTS TO PONDER

3.1. In the introduction to this chapter Baetjer notes: “The process provides interaction be-
tween users and designers, between users and evolving tools, and between designers and
evolving tools [technologyl.” List five questions that (1) designers should ask users, (2) users
should ask designers, (3) users should ask themselves about the software product that is to
be built, (4) designers should ask themselves about the software product that is to be built
and the process that will be used to build it.

4 The SEI's CMMI ICMMOo07]1 describes the characteristics of a software process and the criteria

for a successful process in voluminous detail.

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 39

3.2. Discuss the differences among the various process flows described in Section 3.1.
Can you identify types of problems that might be applicable to each of the generic flows
described?

3.3. Try to develop a set of actions for the communication activity. Select one action and
define a task set for it.

3.4. A common problem during communication occurs when you encounter two stakehold-
ers who have conflicting ideas about what the software should be. That is, you have mutually
conflicting requirements. Develop a process pattern (this would be a stage pattern) using
the template presented in Section 3.4 that addresses this problem and suggest an effective
approach to it.

FURTHER READINGS AND INFORMATION SOURCES

Most software engineering textbooks consider process models in some detail. Books
by Sommerville (Software Engineering, 9th ed., Addison-Wesley, 2010), Schach (Object-
Oriented and Classical Software Engineering, 8th ed., McGraw-Hill, 2010) and Pfleeger and
Atlee (Software Engineering: Theory and Practice, 4th ed., Prentice Hall, 2009) consider
traditional paradigms and discuss their strengths and weaknesses. Munch and his col-
leagues (Software Process Definition and Management, Springer, 2012) present a software
and systems engineering view of the process and the product. Glass (Facts and Fallacies of
Software Engineering, Prentice Hall, 2002) provides an unvarnished, pragmatic view of the
software engineering process. Although not specifically dedicated to process, Brooks (The
Mpythical Man-Month, 2nd ed., Addison-Wesley, 1995) presents age-old project wisdom that
has everything to do with process.

Firesmith and Henderson-Sellers (The OPEN Process Framework: An Introduction,
Addison-Wesley, 2001) present a general template for creating “flexible, yet discipline
software processes” and discuss process attributes and objectives. Madachy (Software
Process Dynamics, Wiley-IEEE, 2008) discusses modeling techniques that allow the inter-
related technical and social elements of the software process to be analyzed. Sharpe and
McDermott (Workflow Modeling: Tools for Process Improvement and Application Develop-
ment, 2nd ed., Artech House, 2008) present tools for modeling both software and business
processes.

A wide variety of information sources on software engineering and the software pro-
cess are available on the Internet. An up-to-date list of World Wide Web references that
are relevant to the software process can be found at the SEPA website: www.mhhe.com/
pressman

CHAPTER

PROCESS
MODELS

Key rocess models were originally proposed to bring order to the chaos of
CONCEPTS software development. History has indicated that these models have
aspect-oriented software brought a certain amount of useful structure to software engineering
development. ... 54 work and have provided a reasonably effective road map for software teams.
component-based . i

development. 53 However, software engineering work and the products that are produced re-

concurrent models... 49
evolutionary process

main on “the edge of chaos.”
In an intriguing paper on the strange relationship between order and chaos

::::;II meﬂwds e in the software world, Nogueira and his colleagues [Nog00I state
imn:rdei'e;.;.;l'p.r;;;s;. » The edge of chaos is defined as “a natural state between order and chaos, a grand
::::I:(;I.S.o'h.v;;r'e” 43 compromise between structure and surprise.” [Kau95] The edge of chaos can be
P 59 visualized as an unstable, partially structured state . . . It is unstable because it is
proltess modeling 0 constantly attracted to chaos or to absolute order.

tools

process technology . 61 We have the tendency to think that order is the ideal state of nature. This
g;?:;'ﬂ:gl :; could be a mistake. Research . . . supports the theory that operation away from
Team Software equilibrium generates creativity, self-organized processes, and increasing re-
Process 60 turns [Roo96l. Absolute order means the absence of variability, which could be an
unified process 55

V-model......... 42

waterfall model . .. 41

demand only those activities, controls, and
work products that are appropriate for the proj-
ect team and the product that is to be produced.
What are the steps? The process model pro-

What is it? A process model pro-
vides a specific roadmap for soft-
ware engineering work. It defines
the flow of all activities, actions and

QUICK
| oY} 4

tasks, the degree of iteration, the work prod-
ucts, and the organization of the work that
must be done.

Who does it? Software engineers and their
managers adapt a process model to their
needs and then follow it. In addition, the peo-
ple who have requested the software have a
role to play in the process of defining, build-
ing, and testing it.

Why is it important? Because process pro-
vides stability, control, and organization to an
activity that can, if left uncontrolled, become
quite chaotic. However, a modern software
engineering approach must be “agile.” It must

40

vides you with the “steps” you'll need to per-
form disciplined software engineering work.

What is the work product? From the point
of view of a software engineer, the work prod-
uct is a customized description of the activities
and tasks defined by the process.

How do | ensure that I’ve done it right?
There are a number of software process assess-
ment mechanisms that enable organizations
to determine the “maturity” of their software
process. However, the quality, timeliness, and
long-term viability of the product you build are
the best indicators of the efficacy of the pro-
cess that you use.

The purpose of process
models is to fry to

CHAPTER 4 PROCESS MODELS 41

advantage under unpredictable environments. Change occurs when there is some
structure so that the change can be organized, but not so rigid that it cannot occur.
Too much chaos, on the other hand, can make coordination and coherence impossi-
ble. Lack of structure does not always mean disorder.

The philosophical implications of this argument are significant for software

reduce the chaos press ~ engineering. Each process model described in this chapter tries to strike a bal-
entin developngnew ance between the need to impart order in a chaotic world and the need to be
software products. adaptable when things change constantly.

4.1 PRESCRIPTIVE ProcEss MODELS

An award-winning “pro-
cess simulation game”
that includes most
important prescriptive
process models can be
found at:
http://www.ics
.uci.edu/~emilyo/
SimSE/
downloads.html.

(Q.}
POINT

Prescriptive process
models define o
prescribed sef of
process elements and
a predictable process
work flow.

A prescriptive process model' strives for structure and order in software devel-
opment. Activities and tasks occur sequentially with defined guidelines for prog-
ress. But are prescriptive models appropriate for a software world that thrives
on change? If we reject traditional process models (and the order they imply)
and replace them with something less structured, do we make it impossible to
achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives
available to software engineers. In the sections that follow, we examine the pre-
scriptive process approach in which order and project consistency are domi-
nant issues. We call them “prescriptive” because they prescribe a set of process
elements—framework activities, software engineering actions, tasks, work prod-
ucts, quality assurance, and change control mechanisms for each project. Each
process model also prescribes a process flow (also called a work flow)—that is,
the manner in which the process elements are interrelated to one another.

All software process models can accommodate the generic framework activi-
ties described in Chapters 2 and 3, but each applies a different emphasis to these
activities and defines a process flow that invokes each framework activity (as
well as software engineering actions and tasks) in a different manner.

4.1.1 The Waterfall Model

There are times when the requirements for a problem are well understood—
when work flows from communication through deployment in a reasonably linear
fashion. This situation is sometimes encountered when well-defined adaptations
or enhancements to an existing system must be made (e.g., an adaptation to ac-
counting software that has been mandated because of changes to government
regulations). It may also occur in a limited number of new development efforts,
but only when requirements are well defined and reasonably stable.

1 Prescriptive process models are sometimes referred to as “traditional” process models.

42

PART ONE THE SOFTWARE PROCESS

Ficure 4.1 The waterfall model

—| Communication .
project initiation Plun_nms Modelin
requirements gathering eshmah'ng v 9 Construction
scheduling CIElAE code Deployment
tracking design ost delivery
support
feedback
a: The waterfall model, sometimes called the classic life cycle, suggests a system-
0" atic, sequential approach? to software development that begins with customer
POINT

The V-model illustrates
how verification and
validation actions are
associated with earlier
engineering actions.

Why does
® the waterfall

model sometimes
fail?

specification of requirements and progresses through planning, modeling, con-
struction, and deployment, culminating in ongoing support of the completed
software (Figure 4.1).

A variation in the representation of the waterfall model is called the V-model.
Represented in Figure 4.2, the V-model [Buc99] depicts the relationship of quality
assurance actions to the actions associated with communication, modeling, and
early construction activities. As a software team moves down the left side of the
V, basic problem requirements are refined into progressively more detailed and
technical representations of the problem and its solution. Once code has been
generated, the team moves up the right side of the V, essentially performing a
series of tests (quality assurance actions) that validate each of the models cre-
ated as the team moves down the left side.® In reality, there is no fundamental
difference between the classic life cycle and the V-model. The V-model provides
a way of visualizing how verification and validation actions are applied to earlier
engineering work.

The waterfall model is the oldest paradigm for software engineering. How-
ever, over the past four decades, criticism of this process model has caused even
ardent supporters to question its efficacy [Han95]. Among the problems that are
sometimes encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so indi-
rectly. As a result, changes can cause confusion as the project team
proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natu-
ral uncertainty that exists at the beginning of many projects.

2 Although the original waterfall model proposed by Winston Royce [Roy70] made provision for
“feedback loops,” the vast majority of organizations that apply this process model treat it as if
it were strictly linear.

3 A detailed discussion of quality assurance actions is presented in Part 3 of this book.

CHAPTER 4 PROCESS MODELS 43

The V-model
Requirements Acceptance
modeling testing
Architectural System
design testing
Component Integration
design testing
Code B Unit
generation testing
Executable
software
3. The customer must have patience. A working version of the program(s)
will not be available until late in the project time span. A major blunder, if
undetected until the working program is reviewed, can be disastrous.
In an interesting analysis of actual projects, Bradac [Bra94l found that the
uote: linear nature of the classic life cycle leads to “blocking states” in which some
Too offen project team members must wait for other members of the team to complete
software work dependent tasks. In fact, the time spent waiting can exceed the time spent on
follows the first productive work! The blocking state tends to be more prevalent at the beginning

law of bicycling:
No matter where
you're going, it's
uphill and against changes (to features, functions, and information content). The waterfall model

and end of a linear sequential process.
Today, software work is fast paced and subject to a never-ending stream of

the wind.” is often inappropriate for such work. However, it can serve as a useful process
Nothorlunknows model in situations where requirements are fixed and work is to proceed to com-

pletion in a linear manner.

4.1.2 Incremental Process Models

There are many situations in which initial software requirements are reasonably
well defined, but the overall scope of the development effort precludes a purely

44

PART ONE THE SOFTWARE PROCESS

The incremen-
tal model

N
a;?(‘"NT
The incremental
model delivers o
series of releases,
called increments, that
provide progressively
more functionality for
the customer as each
increment is delivered.

GDVICEs

Your customer de-
mands delivery by a
date that is impossible
to meet. Suggest deliv-
ering one or more in-
crements by that dote
and the rest of the
software (additional
increments) lafer.

I:, Communication

I:l Planning

I:, Modeling (analysis, design)

increment # n

L T T

" delivery of

increment # 2 ® nth increment

increment # 1 D

Project Calendar Time

I:, Construction (code, test)
I:l Deployment (delivery, feedback)

delivery of
2nd increment

Software Functionality and Features

delivery of
1st increment

linear process. In addition, there may be a compelling need to provide a limited
set of software functionality to users quickly and then refine and expand on that
functionality in later software releases. In such cases, you can choose a process
model that is designed to produce the software in increments.

The incremental model combines the elements’ linear and parallel process
flows discussed in Chapter 3. Referring to Figure 4.3, the incremental model
applies linear sequences in a staggered fashion as calendar time progresses.
Each linear sequence produces deliverable “increments” of the software
[McD93l.

For example, word-processing software developed using the incremental par-
adigm might deliver basic file management, editing, and document production
functions in the first increment; more sophisticated editing and document pro-
duction capabilities in the second increment; spelling and grammar checking
in the third increment; and advanced page layout capability in the fourth incre-
ment. It should be noted that the process flow for any increment can incorporate
the prototyping paradigm discussed in the next subsection.

When an incremental model is used, the first increment is often a core prod-
uct. That is, basic requirements are addressed but many supplementary fea-
tures (some known, others unknown) remain undelivered. The core product is
used by the customer (or undergoes detailed evaluation). As a result of use and/
or evaluation, a plan is developed for the next increment. The plan addresses
the modification of the core product to better meet the needs of the customer
and the delivery of additional features and functionality. This process is re-
peated following the delivery of each increment, until the complete product is
produced.

%,

POINT
Evolutionary process
models produce an
increasingly more
complete version of
the software with each
iferafion.

Doote:

“Plan to throw
one away. You will
do that, anyway.
Your only choice is
whether fo try to
sell the throwaway
to customers.”

Frederick P.
Brooks

QA'pch‘

When your customer
has a legitimate need,
but is clueless about
the details, develop

a prototype as a first
step.

CHAPTER 4 PROCESS MODELS 45

4.1.3 Evolutionary Process Models

Software, like all complex systems, evolves over a period of time. Business and
product requirements often change as development proceeds, making a straight
line path to an end product unrealistic; tight market deadlines make completion
of a comprehensive software product impossible, but a limited version must be
introduced to meet competitive or business pressure; a set of core product or
system requirements is well understood, but the details of product or system
extensions have yet to be defined. In these and similar situations, you need a
process model that has been explicitly designed to accommodate a product that
grows and changes.

Evolutionary models are iterative. They are characterized in a manner that
enables you to develop increasingly more complete versions of the software.
In the paragraphs that follow, we present two common evolutionary process
models.

Prototyping. Often, a customer defines a set of general objectives for software,
but does not identify detailed requirements for functions and features. In other
cases, the developer may be unsure of the efficiency of an algorithm, the adapt-
ability of an operating system, or the form that human-machine interaction
should take. In these, and many other situations, a prototyping paradigm may
offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more
commonly used as a technique that can be implemented within the context of
any one of the process models noted in this chapter. Regardless of the manner in
which it is applied, the prototyping paradigm assists you and other stakeholders
to better understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 4.4) begins with communication. You
meet with other stakeholders to define the overall objectives for the software,
identify whatever requirements are known, and outline areas where further
definition is mandatory. A prototyping iteration is planned quickly, and mod-
eling (in the form of a “quick design”) occurs. A quick design focuses on a rep-
resentation of those aspects of the software that will be visible to end users
(e.g., human interface layout or output display formats). The quick design leads
to the construction of a prototype. The prototype is deployed and evaluated
by stakeholders, who provide feedback that is used to further refine require-
ments. Iteration occurs as the prototype is tuned to satisfy the needs of various
stakeholders, while at the same time enabling you to better understand what
needs to be done.

Ideally, the prototype serves as a mechanism for identifying software require-
ments. If a working prototype is to be built, you can make use of existing pro-
gram fragments or apply tools that enable working programs to be generated
quickly.

46

PART ONE THE SOFTWARE PROCESS

The prototyp-
ing paradigm

ﬁpwcs‘

Resist pressure to
extend a rough proto-
type into @ production
product. Quality almost
always suffers as a
resulf.

Quick plan
Communication \

\ Modeling

Quick design

Deployment
Delivery
& Feedback

Construction
of

profotype

But what do you do with the prototype when it has served the purpose de-
scribed earlier? Brooks [Bro95] provides one answer:

In most projects, the first system built is barely usable. It may be too slow, too big,
awkward in use or all three. There is no alternative but to start again, smarting but
smarter, and build a redesigned version in which these problems are solved.

The prototype can serve as “the first system.” The one that Brooks recom-
mends you throw away. But this may be an idealized view. Although some pro-
totypes are built as “throwaways,” others are evolutionary in the sense that the
prototype slowly evolves into the actual system.

Both stakeholders and software engineers like the prototyping paradigm.
Users get a feel for the actual system, and developers get to build something im-
mediately. Yet, prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software,
unaware that the prototype is held together haphazardly, unaware that in
the rush to get it working you haven't considered overall software quality
or long-term maintainability. When informed that the product must be re-
built so that high levels of quality can be maintained, stakeholders cry foul
and demand that “a few fixes” be applied to make the prototype a working

product. Too often, software development management relents.

2. As a software engineer, you often make implementation compromises
in order to get a prototype working quickly. An inappropriate operat-
ing system or programming language may be used simply because it is

CHAPTER 4 PROCESS MODELS

SAreHoME

ll_—l' The scene: Meeting room for the

software engineering group at CPI
Corporation, a (fictional) company that makes consumer
products for home and commercial use.

The players: Lee Warren, engineering manager;
Doug Miller, software engineering manager; Jamie
Lazar, software team member; Vinod Raman, software
team member; and Ed Robbins, software team member.

The conversation:

Lee: So let's recapitulate. I've spent some time dis-
cussing the SafeHome product line as we see it at the
moment. No doubt, we've got a lot of work fo do to
simply define the thing, but Id like you guys to begin
thinking about how you're going to approach the
software part of this project.

Doug: Seems like we've been pretty disorganized in
our approach fo software in the past.

Ed: | don't know, Doug, we always got product out
the door.

Doug: True, but not without a lot of grief, and this
project looks like it’s bigger and more complex than
anything we've done in the past.

Jamie: Doesn't look that hard, but | agree . . . our ad
hoc approach to past projects won't work here, particu-
larly if we have a very tight time line.

Selecting a Process Model, Part 1

Doug (smiling): | want to be a bit more professional
in our approach. | went to a short course last week and
learned a lot about software engineering . . . good
stuff. We need a process here.

Jamie (with a frown): My job is to build computer
programs, not push paper around.

Doug: Give it a chance before you go negative on
me. Here’s what | mean. (Doug proceeds to describe
the process framework described in Chapter 3 and the
prescriptive process models presented to this point.)

Doug: So anyway, it seems to me that a linear model
is not for us . . . assumes we have all requirements up
front and, knowing this place, that's not likely.

Vinod: Yeah, and it sounds way too [T-oriented . . .
probably good for building an inventory control system
or something, but it's just not right for SafeHome.
Doug: | agree.

Ed: That prototyping approach seems okay. A lot like
what we do here anyway.

Vinod: That's a problem. I'm worried that it doesn't
provide us with enough structure.

Doug: Not to worry. We've got plenty of other
options, and | want you guys to pick what's best for the
team and best for the project.

47

available and known; an inefficient algorithm may be implemented simply

to demonstrate capability. After a time, you may become comfortable with

these choices and forget all the reasons why they were inappropriate. The

less-than-ideal choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for

software engineering. The key is to define the rules of the game at the beginning;

that is, all stakeholders should agree that the prototype is built to serve as a

mechanism for defining requirements. It is then discarded (at least in part), and

the actual software is engineered with an eye toward quality.

The Spiral Model.

Originally proposed by Barry Boehm [Boe88l, the spiral

model is an evolutionary software process model that couples the iterative na-

ture of prototyping with the controlled and systematic aspects of the waterfall

model. It provides the potential for rapid development of increasingly more

48

The spiral model

can be adapted to
apply throughout the
enfire life cycle of

an application, from
concept development
fo maintenance.

A typical
spiral model

PART ONE THE SOFTWARE PROCESS

complete versions of the software. Boehm [Boe0O1lal describes the model in the
following manner:

The spiral development model is a risk-driven process model generator that is used
to guide multi-stakeholder concurrent engineering of software intensive systems.
It has two main distinguishing features. One is a cyclic approach for incrementally
growing a system’s degree of definition and implementation while decreasing its de-
gree of risk. The other is a set of anchor point milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary re-
leases. During early iterations, the release might be a model or prototype. During
later iterations, increasingly more complete versions of the engineered system
are produced.

A spiral model is divided into a set of framework activities defined by the soft-
ware engineering team. For illustrative purposes, we use the generic framework
activities discussed earlier.* Each of the framework activities represent one seg-
ment of the spiral path illustrated in Figure 4.5. As this evolutionary process be-
gins, the software team performs activities that are implied by a circuit around
the spiral in a clockwise direction, beginning at the center. Risk (Chapter 35) is
considered as each revolution is made. Anchor point milestones—a combination
of work products and conditions that are attained along the path of the spiral—
are noted for each evolutionary pass.

Planning
estimation
scheduling
risk analysis

Deployment

Modeling
analysis
design

Construction
code
test

delivery

feedback

4 The spiral model discussed in this section is a variation on the model proposed by Boehm.
For further information on the original spiral model, see [Boe88l. More recent discussion of
Boehm'’s spiral model can be found in [Boe98l.

Useful information
about the spiral model
can be obained at:
WWW.sei.cmu.
edu/publications/
documents/00.
reports/00sr008.
html.

ancss

If your management
demands fixed-budget
development (gen-
erally o bad idea),

the spiral can be a
problem. As each
circuit is completed,
project cost is revisited
and revised.

“I'm only this far
and only tomorrow
leads my way.”

Dave
Matthews Band

CHAPTER 4 PROCESS MODELS 49

The first circuit around the spiral might result in the development of a prod-
uct specification; subsequent passes around the spiral might be used to develop
a prototype and then progressively more sophisticated versions of the software.
Each pass through the planning region results in adjustments to the project plan.
Cost and schedule are adjusted based on feedback derived from the customer
after delivery. In addition, the project manager adjusts the planned number of
iterations required to complete the software.

Unlike other process models that end when software is delivered, the spiral
model can be adapted to apply throughout the life of the computer software.
Therefore, the first circuit around the spiral might represent a “concept develop-
ment project” that starts at the core of the spiral and continues for multiple iter-
ations® until concept development is complete. If the concept is to be developed
into an actual product, the process proceeds outward on the spiral and a “new
product development project” commences. The new product will evolve through
anumber of iterations around the spiral. Later, a circuit around the spiral might
be used to represent a “product enhancement project.” In essence, the spiral,
when characterized in this way, remains operative until the software is retired.
There are times when the process is dormant, but whenever a change is initiated,
the process starts at the appropriate entry point (e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale
systems and software. Because software evolves as the process progresses, the
developer and customer better understand and react to risks at each evolution-
ary level. The spiral model uses prototyping as a risk reduction mechanism but,
more important, enables you to apply the prototyping approach at any stage in
the evolution of the product. It maintains the systematic stepwise approach sug-
gested by the classic life cycle but incorporates it into an iterative framework
that more realistically reflects the real world. The spiral model demands a direct
consideration of technical risks at all stages of the project and, if properly ap-
plied, should reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult
to convince customers (particularly in contract situations) that the evolutionary
approach is controllable. It demands considerable risk assessment expertise
and relies on this expertise for success. If a major risk is not uncovered and man-
aged, problems will undoubtedly occur.

4.1.4 Concurrent Models

The concurrent development model, sometimes called concurrent engineering,
allows a software team to represent iterative and concurrent elements of any of
the process models described in this chapter. For example, the modeling activity

5 The arrows pointing inward along the axis separating the deployment region from the commu-

nication region indicate a potential for local iteration along the same spiral path.

50 PART ONE THE SOFTWARE PROCESS

SAreHoME

fiile

lm' The scene: Meeting room for the

software engineering group at CPI
Corporation, a company that makes consumer products
for home and commercial use.

The players: Lee Warren, engineering manager;
Doug Miller, software engineering manager; Vinod and
Jamie, members of the software engineering team.

The conversation: (Doug describes evolutionary
process options.)

Jamie: Now | see something | like. An incremental
approach makes sense, and | really like the flow of that
spiral model thing. That's keepin’ it real.

Vinod: | agree. We deliver an increment, learn from
customer feedback, re-plan, and then deliver another
increment. It also fits into the nature of the product. We

Selecting a Process Model, Part 2

can have something on the market fast and then add
functionality with each version, er, increment.

Lee: Wait a minute. Did you say that we regenerate
the plan with each tour around the spiral, Doug? That's
not so great; we need one plan, one schedule, and
we've got fo stick to it.

Doug: That's old-school thinking, Lee. Like the guys
said, we've got to keep it real. | submit that it's better to
tweak the plan as we learn more and as changes are
requested. It's way more realistic. What's the point of a
plan if it doesn't reflect reality?

Lee (frowning): | suppose so, but . . . senior manage-
ment's not going to like this . . . they want a fixed plan.

Doug (smiling): Then you'll have to reeducate them,

buddy.

[)
P
P’é'N T

Project plans must

be viewed as living
documents; progress
must be assessed often
and revised fo take
changes info account.

ﬁpwcss

The concurrent mode!
is often more appro-
priate for product engi-
neering projects where
different engineering
teams are involved.

Quote:

“Every process in
your organization
has a customer,
and without a
customer a process
has no purpose.”

V. Daniel Hunt

defined for the spiral model is accomplished by invoking one or more of the fol-
lowing software engineering actions: prototyping, analysis, and design.®

Figure 4.6 provides an example of the concurrent modeling approach. An
activity—modeling—may be in any one of the states” noted at any given time.
Similarly, other activities, actions, or tasks (e.g., communication or construction)
can be represented in an analogous manner. All software engineering activities
exist concurrently but reside in different states.

For example, early in a project the communication activity (not shown in the
figure) has completed its first iteration and exists in the awaiting changes state.
The modeling activity (which existed in the none state while initial communica-
tion was completed) now makes a transition into the under development state.
If, however, the customer indicates that changes in requirements must be made,
the modeling activity moves from the under development state into the awaiting
changes state.

Concurrent modeling defines a series of events that will trigger transitions
from state to state for each ofthe software engineering activities, actions, or tasks.
For example, during early stages of design (a major software engineering action
that occurs during the modeling activity), an inconsistency in the requirements

6 It should be noted that analysis and design are complex tasks that require substantial discus-
sion. Part 2 of this book considers these topics in detail.

7 A state is some externally observable mode of behavior.

CHAPTER 4 PROCESS MODELS 51

One element of
the concurrent
process model

Inactive
Modeling activity
r

Represents the state
Under of a software engineering
development activity or task

Awaiting
changes

Baselined

Under

revision

model is uncovered. This generates the event analysis model correction, which
will trigger the requirements analysis action from the done state into the await-
ing changes state.

Concurrent modeling is applicable to all types of software development and
provides an accurate picture of the current state of a project. Rather than con-
fining software engineering activities, actions, and tasks to a sequence of events,
it defines a process network. Each activity, action, or task on the network exists
simultaneously with other activities, actions, or tasks. Events generated at one
point in the process network trigger transitions among the states associated with
each activity.

4.1.5 A Final Word on Evolutionary Processes

We have already noted that modern computer software is characterized by con-
tinual change, by very tight time lines, and by an emphatic need for customer-user
satisfaction. In many cases, time-to-market is the most important management

52

M What are

® the potential
weaknesses of
evolutionary
process models?

PART ONE THE SOFTWARE PROCESS

requirement. If a market window is missed, the software project itself may be
meaningless.®

Evolutionary process models were conceived to address these issues, and yet,
as a general class of process models, they too have weaknesses. These are sum-
marized by Nogueira and his colleagues [Nog00l:

Despite the unquestionable benefits of evolutionary software processes, we have
some concerns. The first concern is that prototyping [and other more sophisticated
evolutionary processesl poses a problem to project planning because of the uncertain
number of cycles required to construct the product . ..

Second, evolutionary software processes do not establish the maximum speed of
the evolution. If the evolutions occur too fast, without a period of relaxation, it is cer-
tain that the process will fall into chaos. On the other hand if the speed is too slow
then productivity could be affected . . .

Third, [evolutionaryl software processes should be focused on flexibility and

extensibility rather than on high quality. This assertion sounds scary.

Indeed, a software process that focuses on flexibility, extensibility, and speed of
development over high quality does sound scary. And yet, this idea has been pro-
posed by a number of well-respected software engineering experts (e.g., [You95l,
[Bac97D.

The intent of evolutionary models is to develop high-quality software® in an
iterative or incremental manner. However, it is possible to use an evolutionary
process to emphasize flexibility, extensibility, and speed of development. The
challenge for software teams and their managers is to establish a proper balance
between these critical project and product parameters and customer satisfac-
tion (the ultimate arbiter of software quality).

SPECIALIZED PROCESS MODELS

Specialized process models take on many of the characteristics of one or more
of the traditional models presented in the preceding sections. However, these
models tend to be applied when a specialized or narrowly defined software engi-
neering approach is chosen.!

8 It is important to note, however, that being the first to reach a market is no guarantee of suc-
cess. In fact, many very successful software products have been second or even third to reach
the market (learning from the mistakes of their predecessors).

9 In this context software quality is defined quite broadly to encompass not only customer satis-
faction, but also a variety of technical criteria discussed in Part 2 of this book.

10 In some cases, these specialized process models might better be characterized as a collec-
tion of techniques or a “methodology” for accomplishing a specific software development goal.

However, they do imply a process.

Useful information

on component-based
development can be
obtained at:
www.chd-hq.com.

CHAPTER 4 PROCESS MODELS 53

4.2.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors
who offer them as products, provide targeted functionality with well-defined in-
terfaces that enable the component to be integrated into the software that is
to be built. The component-based development model incorporates many of the
characteristics of the spiral model. It is evolutionary in nature [Nie92], demand-
ing an iterative approach to the creation of software. However, the component-
based development model comprises applications from prepackaged software
components.

Modeling and construction activities begin with the identification of candidate
components. These components can be designed as either conventional software
modules or object-oriented classes or packages!' of classes. Regardless of the
technology that is used to create the components, the component-based devel-
opment model incorporates the following steps (implemented using an evolu-
tionary approach):

1. Available component-based products are researched and evaluated for
the application domain in question.

2. Component integration issues are considered.
3. A software architecture is designed to accommodate the components.
4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and re-
usability provides software engineers with a number of measurable benefits in-
cluding a reduction in development cycle time and a reduction in project cost if
component reuse becomes part of your organization’s culture. Component-based
development is discussed in more detail in Chapter 14.

4.2.2 The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal
mathematical specification of computer software. Formal methods enable you
to specify, develop, and verify a computer-based system by applying a rigorous,
mathematical notation. A variation on this approach, called cleanroom software
engineering [IMil87, Dye92l, is currently applied by some software development
organizations.

11 Object-oriented concepts are discussed in Appendix 2 and are used throughout Part 2 of this
book. In this context, a class encompasses a set of data and the procedures that process the
data. A package of classes is a collection of related classes that work together to achieve some

end result.

54

2 If formal

® methods
can demonstrate
software
correctness, why
is it they are not
widely used?

A wide array of
resources and infor-
mation on AOP can be
found at: aosd.net.

&
POINT
AQSD defines
“aspects” that express
cusfomer concerns that
cut across multiple
system functions,
features, and
information.

PART ONE THE SOFTWARE PROCESS

When formal methods (Appendix 3) are used during development, they pro-
vide a mechanism for eliminating many of the problems that are difficult to over-
come using other software engineering paradigms. Ambiguity, incompleteness,
and inconsistency can be discovered and corrected more easily—not through ad
hoc review, but through the application of mathematical analysis. When formal
methods are used during design, they serve as a basis for program verification
and therefore enable you to discover and correct errors that might otherwise go
undetected.

Although not a mainstream approach, the formal methods model offers the
promise of defect-free software. Yet, concern about its applicability in a business
environment has been voiced:

e The development of formal models is currently quite time consuming and
expensive.

e Because few software developers have the necessary background to apply
formal methods, extensive training is required.

e It is difficult to use the models as a communication mechanism for techni-
cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained
adherents among software developers who must build safety-critical software
(e.g., developers of aircraft avionics and medical devices) and among developers
that would suffer severe economic hardship should software errors occur.

4.2.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex soft-
ware invariably implement a set of localized features, functions, and information
content. These localized software characteristics are modeled as components
(e.g., object-oriented classes) and then constructed within the context of a sys-
tem architecture. As modern computer-based systems become more sophisti-
cated (and complex), certain concerns—customer required properties or areas
of technical interest—span the entire architecture. Some concerns are high-level
properties of a system (e.g., security, fault tolerance). Other concerns affect func-
tions (e.g., the application of business rules), while others are systemic (e.g., task
synchronization or memory management).

When concerns cut across multiple system functions, features, and informa-
tion, they are often referred to as crosscutting concerns. Aspectual requirements
define those crosscutting concerns that have an impact across the software ar-
chitecture. Aspect-oriented software development (AOSD), often referred to as
aspect-oriented programming (AOP) or aspect-oriented component engineering
(AOCE) [Gruo2l, is a relatively new software engineering paradigm that provides
a process and methodological approach for defining, specifying, designing, and

CHAPTER 4 PROCESS MODELS 55

constructing aspects—“mechanisms beyond subroutines and inheritance for
localizing the expression of a crosscutting concern” [Elr01].

A distinct aspect-oriented process has not yet matured. However, it is likely
that such a process will adopt characteristics of both evolutionary and concurrent
process models. The evolutionary model is appropriate as aspects are identified
and then constructed. The parallel nature of concurrent development is essential
because aspects are engineered independently of localized software components
and yet, aspects have a direct impact on these components. Hence, it is essential
to instantiate asynchronous communication between the software process activi-
ties applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to
books dedicated to the subject. If you have further interest, see [Ras11], [Saf08l,
[Cla0sl], [Filosl, [Jac04], and [Grao03l.

process.

K SorTwaRE TooLs
Process Management (www.informatik.uni-bremen.de/uniform/

"
Q Objective: To assist in the definition,

execution, and management of prescriptive
process models.

Mechanics: Process management tools allow a
software organization or team to define a complete
software process model (framework activities, actions,
tasks, QA checkpoints, milestones, and work products).
In addition, the tools provide a road map as software
engineers do technical work and a template for
managers who must track and control the software

Representative tools:'?
GDPA, a research process definition tool suite,

\developed at Bremen University in Germany J

gdpa/home.htm), provides a wide array of
process modeling and management functions.

ALM Studio, developed by Kovair Corporation (http://
www.kovair.com/) encompasses a suite of tools
for process definition, requirements management,
issue resolution, project planning, and tracking.

ProVision BPMx, developed by OpenText (http://
bps.opentext.com/), is representative of many
tools that assist in process definition and workflow
automation.

A worthwhile listing of many different tools associ-
ated with the software process can be found at www

.computer.org/portal/web/swebok/html/ch10.

4.3

THE UNIFIED PROCESS

Intheir seminal book on the Unified Process (UP), Ivar Jacobson, Grady Booch, and
James Rumbaugh [Jac99] discuss the need for a “use case driven, architecture-
centric, iterative and incremental” software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in
part to the fact that computers become more powerful every year, leading users to
expect more from them. This trend has also been influenced by the expanding use of

12 Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers.

56

PART ONE THE SOFTWARE PROCESS

the Internet for exchanging all kinds of information . . . Our appetite for ever-more
sophisticated software grows as we learn from one product release to the next how
the product could be improved. We want software that is better adapted to our needs,

but that, in turn, merely makes the software more complex. In short, we want more.

In some ways the Unified Process is an attempt to draw on the best features
and characteristics of traditional software process models, but characterize them
in a way that implements many of the best principles of agile software develop-
ment (Chapter 5). The Unified Process recognizes the importance of customer
communication and streamlined methods for describing the customer’s view of
a system (the use case).'” It emphasizes the important role of software architec-
ture and “helps the architect focus on the right goals, such as understandability,
reliance to future changes, and reuse” [Jac99l. It suggests a process flow that
is iterative and incremental, providing the evolutionary feel that is essential in
modern software development.

4.3.1 A Brief History

During the early 1990s James Rumbaugh [Rum91l, Grady Booch [Boo94l, and
Ivar Jacobson [Jac92] began working on a “unified method” that would com-
bine the best features of each of their individual object-oriented analysis and
design methods and adopt additional features proposed by other experts (e.g.,
[Wir9ol) in object-oriented modeling. The result was UML—a unified modeling
language that contains a robust notation for the modeling and development of
object-oriented systems. By 1997, UML became a de facto industry standard for
object-oriented software development.

UML is used throughout Part 2 of this book to represent both requirements
and design models. Appendix 1 presents an introductory tutorial for those who
are unfamiliar with basic UML notation and modeling rules. A comprehensive
presentation of UML is best left to textbooks dedicated to the subject. Recom-
mended books are listed in Appendix 1.

4.3.2 Phases of the Unified Process4

In Chapter 3, we discussed five generic framework activities and argued that
they may be used to describe any software process model. The Unified Process

13 A use case (Chapter 8) is a text narrative or template that describes a system function or fea-
ture from the user’s point of view. A use case is written by the user and serves as a basis for the
creation of a more comprehensive analysis model.

14 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational
Corporation (subsequently acquired by IBM), an early contributor to the development and re-
finement of the UP and a builder of complete environments (tools and technology) that support

the process.

CHAPTER 4 PROCESS MODELS 57

The Unified
Process

UP phases are similar
in intent o the generic
framework activities
defined in this book.

Elaboration

Inception

Construction

Release Transition

software increment

Production

is no exception. Figure 4.7 depicts the “phases” of the UP and relates them to
the generic activities that have been discussed in Chapter 1 and earlier in this
chapter.

The inception phase of the UP encompasses both customer communication
and planning activities. By collaborating with stakeholders, business require-
ments for the software are identified; a rough architecture for the system is pro-
posed; and a plan for the iterative, incremental nature of the ensuing project is
developed. Fundamental business requirements are described through a set of
preliminary use cases (Chapter 8) that describe which features and functions
each major class of users desires. Architecture at this point is nothing more
than a tentative outline of major subsystems and the functions and features that
populate them. Later, the architecture will be refined and expanded into a set
of models that will represent different views of the system. Planning identifies
resources, assesses major risks, defines a schedule, and establishes a basis for
the phases that are to be applied as the software increment is developed.

The elaboration phase encompasses the communication and modeling activ-
ities of the generic process model (Figure 4.7). Elaboration refines and expands
the preliminary use cases that were developed as part of the inception phase
and expands the architectural representation to include five different views of
the software—the use case model, the analysis model, the design model, the im-
plementation model, and the deployment model. In some cases, elaboration cre-
ates an “executable architectural baseline” [Arl02] that represents a “first cut”
executable system.!” The architectural baseline demonstrates the viability of the

15 It is important to note that the architectural baseline is not a prototype in that it is not thrown

away. Rather, the baseline is fleshed out during the next UP phase.

58

An interesting dis-
cussion of the UP in
the confext of agile
development can be
found ot www.
ambysoft.com/
unifiedprocess/
agileUP.html.

PART ONE THE SOFTWARE PROCESS

architecture but does not provide all features and functions required to use the
system. In addition, the plan is carefully reviewed at the culmination of the elab-
oration phase to ensure that scope, risks, and delivery dates remain reasonable.
Modifications to the plan are often made at this time.

The construction phase of the UP is identical to the construction activity de-
fined for the generic software process. Using the architectural model as input,
the construction phase develops or acquires the software components that will
make each use case operational for end users. To accomplish this, analysis and
design models that were started during the elaboration phase are completed to
reflect the final version of the software increment. All necessary and required
features and functions for the software increment @.e., the release) are then im-
plemented in source code. As components are being implemented, unit tests!®
are designed and executed for each. In addition, integration activities (compo-
nent assembly and integration testing) are conducted. Use cases are used to de-
rive a suite of acceptance tests that are executed prior to the initiation of the
next UP phase.

The transition phase of the UP encompasses the latter stages of the generic
construction activity and the first part of the generic deployment (delivery and
feedback) activity. Software is given to end users for beta testing, and user feed-
back reports both defects and necessary changes. In addition, the software team
creates the necessary support information (e.g., user manuals, troubleshooting
guides, installation procedures) that is required for the release. At the conclu-
sion of the transition phase, the software increment becomes a usable software
release.

The production phase of the UP coincides with the deployment activity of the
generic process. During this phase, the ongoing use of the software is monitored,
support for the operating environment (infrastructure) is provided, and defect
reports and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production
phases are being conducted, work may have already begun on the next software
increment. This means that the five UP phases do not occur in a sequence, but
rather with staggered concurrency.

A software engineering workflow is distributed across all UP phases. In the
context of UP, a workflow is analogous to a task set (described in Chapter 3). That
is, a workflow identifies the tasks required to accomplish an important software
engineering action and the work products that are produced as a consequence
of successfully completing the tasks. It should be noted that not every task iden-
tified for a UP workflow is conducted for every software project. The team adapts
the process (actions, tasks, subtasks, and work products) to meet its needs.

16 A comprehensive discussion of software testing (including unit tests) is presented in Chapters 22
through 26).

CHAPTER 4 PROCESS MODELS 59

4 4 PersoNAL AND Team ProcEeEss MODELS

The best software process is one that is close to the people who will be doing
QUOTG: the work. If a software process model has been developed at a corporate or
“A person who organizational level, it can be effective only if it is amenable to significant ad-
is successful has aptation to meet the needs of the project team that is actually doing software
:Lmlﬂyg?fl?ed engineering work. In an ideal setting, you would create a process that best fits

e habit o

C your needs, and at the same time, meets the broader needs of the team and the
doing things that

unsuccessful people
will not do.” the same time meet the narrower needs of individuals and the broader needs

organization. Alternatively, the team itself can create its own process, and at

Dexter Yager of the organization. Watts Humphrey (IHumo05] and [HumoO00l) argues that it is
: possible to create a “personal software process” and/or a “team software
process.” Both require hard work, training, and coordination, but both are

achievable.'”

4.4.1 Personal Software Process

Every developer uses some process to build computer software. The process
A wide array of may be haphazard or ad hoc; may change on a daily basis; may not be efficient,
resources for PSP can effective, or even successful; but a “process” does exist. Watts Humphrey [Humo5]
It:itf;f;d/aww.sei suggests that in order to change an ineffective personal process, an individual
.cmu.edu/tsp/ must move through four phases, each requiring training and careful instrumen-
tools /academic/. tation. The Personal Software Process (PSP) emphasizes personal measurement
of both the work product that is produced and the resultant quality of the work
product. In addition PSP makes the practitioner responsible for project planning
(e.g., estimating and scheduling) and empowers the practitioner to control the
quality of all software work products that are developed. The PSP model defines
five framework activities:
Planning. This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate (the number of defects
projected for the work) is made. All metrics are recorded on worksheets
or templates. Finally, development tasks are identified and a project
schedule is created.
What High-level design. External specifications for each component to be
® framework constructed are developed and a component design is created. Proto-
activities are used types are built when uncertainty exists. All issues are recorded and
during PSP? tracked.

17 It’s worth noting the proponents of agile software development (Chapter 5) also argue that the

process should remain close to the team. They propose an alternative method for achieving this.

60

PSP emphasizes the
need to record and
analyze the types of
errors you make, so
that you can develop
sfrategies to eliminate
them.

Information on building
high-performance
teams using TSP and
PSP can be obfained
at www.sei.cmu
.edu/tsp/.

PART ONE THE SOFTWARE PROCESS

High-level design review. Formal verification methods (Appendix 3) are
applied to uncover errors in the design. Metrics are maintained for im-
portant tasks and work results.

Development. The component-level design is refined and reviewed.
Code is generated, reviewed, compiled, and tested. Metrics are main-
tained for important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a
substantial amount of data that should be analyzed statistically), the
effectiveness of the process is determined. Measures and metrics should
provide guidance for modifying the process to improve its effectiveness.

PSP stresses the need for you to identify errors early and, just as important, to
understand the types of errors that you are likely to make. This is accomplished
through a rigorous assessment activity performed on all work products you produce.

PSP represents a disciplined, metrics-based approach to software engineer-
ing that may lead to culture shock for many practitioners. However, when PSP is
properly introduced to software engineers [Hum96l, the resulting improvement
in software engineering productivity and software quality are significant [Fer97].
However, PSP has not been widely adopted throughout the industry. The reasons,
sadly, have more to do with human nature and organizational inertia than they
do with the strengths and weaknesses of the PSP approach. PSP is intellectu-
ally challenging and demands a level of commitment (by practitioners and their
managers) that is not always possible to obtain. Training is relatively lengthy, and
training costs are high. The required level of measurement is culturally difficult
for many software people.

Can PSP be used as an effective software process at a personal level? The an-
swer is an unequivocal “yes.” But even if PSP is not adopted in its entirely, many
of the personal process improvement concepts that it introduces are well worth
learning.

4.4.2 Team Software Process

Because manyindustry-grade software projects are addressed by ateam of prac-
titioners, Watts Humphrey extended the lessons learned from the introduction
of PSP and proposed a Team Software Process (TSP). The goal of TSP is to build
a “self-directed” project team that organizes itself to produce high-quality soft-
ware. Humphrey [Hum98] defines the following objectives for TSP:

e Build self-directed teams that plan and track their work, establish goals,
and own their processes and plans. These can be pure software teams or
integrated product teams (IPTs) of 3 to about 20 engineers.

e Show managers how to coach and motivate their teams and how to help
them sustain peak performance.

ﬁpwcss

To form a self-directed
feam, you must col-

laborate well internally

and communicate well

externally.

%

P’C‘)INT

TSP scripts define
elements of the feam
process and activities
that occur within the

process.

4.5

CHAPTER 4 PROCESS MODELS 61

o Accelerate software process improvement by making CMM!' level 5
behavior normal and expected.

e Provide improvement guidance to high-maturity organizations.

e Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and ob-
jectives; defines roles and responsibilities for each team member; tracks quantita-
tive project data (about productivity and quality); identifies a team process that is
appropriate for the project and a strategy for implementing the process; defines
local standards that are applicable to the team’s software engineering work; contin-
ually assesses risk and reacts to it; and tracks, manages, and reports project status.

TSP defines the following framework activities: project launch, high-level
design, implementation, integration and test, and postmortem. Like their coun-
terparts in PSP (note that terminology is somewhat different), these activities
enable the team to plan, design, and construct software in a disciplined manner
while at the same time quantitatively measuring the process and the product.
The postmortem sets the stage for process improvements.

TSP makes use of a wide variety of scripts, forms, and standards that serve
to guide team members in their work. “Scripts” define specific process activi-
ties (i.e., project launch, design, implementation, integration and system testing,
postmortem) and other more detailed work functions (e.g., development plan-
ning, requirements development, software configuration management, unit test)
that are part of the team process.

TSP recognizes that the best software teams are self-directed.!* Team members
set project objectives, adapt the process to meet their needs, control the project
schedule, and through measurement and analysis of the metrics collected, work
continually to improve the team’s approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides
distinct and quantifiable benefits in productivity and quality. The team must
make a full commitment to the process and must undergo thorough training to
ensure that the approach is properly applied.

PRrocEss TECHNOLOGY.

One or more of the process models discussed in the preceding sections must be
adapted for use by a software team. To accomplish this, process technology tools
have been developed to help software organizations analyze their current process,
organize work tasks, control and monitor progress, and manage technical quality.

18 The Capability Maturity Model (CMM), a measure of the effectiveness of a software process, is
discussed in Chapter 37.
19 In Chapter 5 we discuss the importance of “self-organizing” teams as a key element in agile

software development.

62

PART ONE THE SOFTWARE PROCESS

Process technology tools allow a software organization to build an automated
model of the process framework, task sets, and umbrella activities discussed in
Chapter 3. The model, normally represented as a network, can then be analyzed
to determine typical workflow and examine alternative process structures that
might lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools
can be used to allocate, monitor, and even control all software engineering ac-
tivities, actions, and tasks defined as part of the process model. Each member
of a software team can use such tools to develop a checklist of work tasks to be
performed, work products to be produced, and quality assurance activities to be
conducted. The process technology tool can also be used to coordinate the use of
other software engineering tools that are appropriate for a particular work task.

(o
Q@

Process Modeling Tools

Objective: If an organization works to
improve a business (or software) process,

SorTwARE TooLs
detailed guidance on the content or description of each

process element, and then manage the process as it is
conducted. In some cases, the process technology fools
incorporate standard project management tasks such as

it must first understand it. Process modeling tools (also
called process technology or process management tools)
are used to represent the key elements of a process so
that it can be better understood. Such tools can also
provide links to process descriptions that help those
involved in the process to understand the actions and
work tasks that are required to perform it. Process
modeling tools provide links to other tools that provide
support to defined process activities.

Mechanics: Tools in this category allow a team
to define the elements of a unique process model

estimating, scheduling, tracking, and control.

Representative tools:2°

Igrafx Process Tools—tools that enable a team to map,
measure, and model the software process (http://
www.igrafx.com/)

Adeptia BPM Server—designed to manage, automate,
and optimize business processes (www.adeptia
.com)

ALM Studio Suite—a collection of tools with a heavy
emphasis on the management of communication and

@ions, tasks, work products, QA points), provide

modeling activities (th://www.kovuir.com/)J

4.6

PropucT AND PROCESS

If the process is weak, the end product will undoubtedly suffer. But an obsessive
overreliance on process is also dangerous. In a brief essay written many years
ago, Margaret Davis [Dav95al makes timeless comments on the duality of prod-
uct and process:

About every ten years give or take five, the software community redefines “the
problem” by shifting its focus from product issues to process issues. Thus, we have

20 Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers.

CHAPTER 4 PROCESS MODELS 63

embraced structured programming languages (product) followed by structured
analysis methods (process) followed by data encapsulation (product) followed by the
current emphasis on the Software Engineering Institute’s Software Development Ca-
pability Maturity Model (process) [followed by object-oriented methods, followed by
agile software developmentl.

While the natural tendency of a pendulum is to come to rest at a point midway
between two extremes, the software community’s focus constantly shifts because new
force is applied when the last swing fails. These swings are harmful in and of them-
selves because they confuse the average software practitioner by radically changing
what it means to perform the job let alone perform it well. The swings also do not
solve “the problem” for they are doomed to fail as long as product and process are
treated as forming a dichotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality
when contradictions in observations cannot be fully explained by one competing the-
ory or another. The dual nature of light, which seems to be simultaneously particle
and wave, has been accepted since the 1920s when Louis de Broglie proposed it. I
believe that the observations we can make on the artifacts of software and its devel-
opment demonstrate a fundamental duality between product and process. You can
never derive or understand the full artifact, its context, use, meaning, and worth if

you view it as only a process or only a product.

All of human activity may be a process, but each of us derives a sense of self-worth
from those activities that result in a representation or instance that can be used or
appreciated either by more than one person, used over and over, or used in some
other context not considered. That is, we derive feelings of satisfaction from reuse of
our products by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development
potentially increases the satisfaction software practitioners derive from their work,
it also increases the urgency for acceptance of the duality of product and process.
Thinking of a reusable artifact as only product or only process either obscures the
context and ways to use it or obscures the fact that each use results in product that
will, in turn, be used as input to some other software development activity. Taking
one view over the other dramatically reduces the opportunities for reuse and, hence,
loses the opportunity for increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as
they do from the end product. An artist enjoys the brush strokes as much as the
framed result. A writer enjoys the search for the proper metaphor as much as
the finished book. As creative software professional, you should also derive as
much satisfaction from the process as the end product. The duality of product
and process is one important element in keeping creative people engaged as
software engineering continues to evolve.

64

4.7

PART ONE THE SOFTWARE PROCESS

SUMMARY

Prescriptive process models have been applied for many years in an effort to
bring order and structure to software development. Each of these models sug-
gests a somewhat different process flow, but all perform the same set of generic
framework activities: communication, planning, modeling, construction, and
deployment.

Sequential process models, such as the waterfall and V-models, are the oldest
software engineering paradigms. They suggest a linear process flow that is often
inconsistent with modern realities (e.g., continuous change, evolving systems,
tight time lines) in the software world. They do, however, have applicability in
situations where requirements are well defined and stable.

Incremental process models are iterative in nature and produce working ver-
sions of software quite rapidly. Evolutionary process models recognize the itera-
tive, incremental nature of most software engineering projects and are designed
to accommodate change. Evolutionary models, such as prototyping and the spiral
model, produce incremental work products (or working versions of the software)
quickly. These models can be adopted to apply across all software engineering
activities—from concept development to long-term system maintenance.

The concurrent process model allows a software team to represent iterative
and concurrent elements of any process model. Specialized models include the
component-based model that emphasizes component reuse and assembly; the
formal methods model that encourages a mathematically based approach to
software development and verification; and the aspect-oriented model that ac-
commodates crosscutting concerns spanning the entire system architecture. The
Unified Process is a “use case driven, architecture-centric, iterative and incre-
mental” software process designed as a framework for UML methods and tools.

Personal and team models for the software process have been proposed. Both
emphasize measurement, planning, and self-direction as key ingredients for a
successful software process.

ProBLEMS AND POINTS TO PONDER

4.1. Provide three examples of software projects that would be amenable to the waterfall
model. Be specific.

4.2. Provide three examples of software projects that would be amenable to the prototyping
model. Be specific.

4.3. What process adaptations are required if the prototype will evolve into a delivery sys-
tem or product?

4.4. Provide three examples of software projects that would be amenable to the incremen-
tal model. Be specific.

4.5. As you move outward along the spiral process flow, what can you say about the software
that is being developed or maintained?

CHAPTER 4 PROCESS MODELS 65

4.6. Is it possible to combine process models? If so, provide an example.

4.7. The concurrent process model defines a set of “states.” Describe what these states rep-
resent in your own words, and then indicate how they come into play within the concurrent
process model.

4.8. What are the advantages and disadvantages of developing software in which quality is
“good enough”? That is, what happens when we emphasize development speed over prod-
uct quality?

4.9. Provide three examples of software projects that would be amenable to the
component-based model. Be specific.

4.10. It is possible to prove that a software component and even an entire program is
correct. So why doesn’t everyone do this?

4.11. Are the Unified Process and UML the same thing? Explain your answer.

— FurTHER READINGS AND INFORMATION SOQURCES

Most of the software engineering books discussed in the Further Readings section of Chap-
ter 2 address prescriptive process models in some detail.

Cynkovic and Larsson (Building Reliable Component-Based Systems, Addison-Wesley,
2002) and Heineman and Council (Component-Based Software Engineering, Addison-Wesley,
2001) describe the process required to implement component-based systems. Jacobson
and Ng (Aspect-Oriented Software Development with Use Cases, Addison-Wesley, 2005) and
Filman and his colleagues (Aspect-Oriented Software Development, Addison-Wesley, 2004)
discuss the unique nature of the aspect-oriented process. Monin and Hinchey (Understand-
ing Formal Methods, Springer, 2003) present a worthwhile introduction, and Boca and his
colleagues (Formal Methods, Springer, 2009) discuss the state of the art and new directions.

Books by Kenett and Baker (Software Process Quality: Management and Control, Marcel
Dekker, 1999) and Chrissis, Konrad, and Shrum (CMMI for Development: Guidelines for Pro-
cess Integration and Product Improvement, 3rd ed., Addison-Wesley, 2011) consider how
quality management and process design are intimately connected to one another.

In addition to Jacobson, Rumbaugh, and Booch’s seminal book on the Unified Process
[Jac99l, books by Shuja and Krebs (IBM Rational Unified Process Reference and Certification
Guide, IBM Press, 2008), Arlow and Neustadt (UML 2 and the Unified Process, Addison-Wesley,
2005), Kroll and Kruchten (The Rational Unified Process Made Easy, Addison-Wesley,
2003), and Farve (UML and the Unified Process, IRM Press, 2003) provide excellent com-
plementary information. Gibbs (Project Management with the IBM Rational Unified
Process, IBM Press, 2006) discusses project management within the context of the UP.
Dennis, Wixom, and Tegarden (Systems Analysis and Design with UML, 4th ed., Wiley, 2012)
tackles programming and business process modeling as it relates to UP.

A wide variety of information sources on software process models are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to the software
process can be found at the SEPA website: www.mhhe.com/pressman.

CHAPTER

AGILE
DEVELOPMENT

Kevy
CONCEPTS
acceptance tests ... 75
agile alliance. 70
agile process. 69
Agile Unified

Process 82
agility 68

agility principles . . . 70
cost of change. 68
Dynamic Systems
Development Method
(DSDM} 79

n 2001, Kent Beck and 16 other noted software developers, writers, and con-
sultants [BecO01l (referred to as the “Agile Alliance”) signed the “Manifesto
for Agile Software Development.” It stated:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

66

That is, while there is value in the items on the right, we value the items on the

left more.

What is it? Agile software engi-

neering combines a philosophy and

a set of development guidelines.

The philosophy encourages cus-
tomer satisfaction and early incremental deliv-
ery of software; small, highly motivated project
teams; informal methods; minimal software
engineering work products; and overall de-
velopment simplicity. The development guide-
lines stress delivery over analysis and design
(although these activities are not discouraged),
and active and continuous communication
between developers and customers.

Who does it? Software engineers and other
project stakeholders (managers, customers,
end users) work together on an agile team—a
team that is self-organizing and in control of its
own destiny. An agile team fosters communi-
cation and collaboration among all who serve
on it.

Why is it important? The modern business
environment that spawns computer-based
systems and software products is fast-paced
and everchanging. Agile software engineer-
ing represents a reasonable alternative to

QUICK

Look

conventional software engineering for cer-
tain classes of software and certain types of
software projects. It has been demonstrated to
deliver successful systems quickly.

What are the steps? Agile development might
best be termed “software engineering lite.” The
basic framework activities—communication,
planning, modeling, construction, and
deployment—remain. But they morph into a
minimal task set that pushes the project team
toward construction and delivery (some would
argue that this is done at the expense of prob-
lem analysis and solution design).

What is the work product? Both the cus-
tomer and the software engineer have the
same view—the only really important work
product is an operational “software increment”
that is delivered to the customer on the appro-
priate commitment date.

How do | ensure that I’'ve done it right? |If
the agile team agrees that the process works,
and the team produces deliverable software
increments that satisfy the customer, you've
done it right.

Extreme Programming

(XP).evvruvnnnn. 72
Industrial XP....... 72
pair

programming 75
politics of agile

development. n
project velocity. ... 73
refactoring 74
Saum........... 78
spike solution. 74
XP story......... 72
[/5]
K P
€.
POINT

Agile development
does not mean no
documents are created,
it means only creating
documents that will be
referred fo later in the
development process.

Quote:

"Agility: 1,
everything else: 0."

Tom DeMarco

CHAPTER 5 AGILE DEVELOPMENT 67

A manifesto is normally associated with an emerging political movement—
one that attacks the old guard and suggests revolutionary change (hopefully for
the better). In some ways, that’s exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with
us for many years, it has been less than two decades since these ideas have crys-
tallized into a “movement.” In essence, agile' methods were developed in an
effort to overcome perceived and actual weaknesses in conventional software
engineering. Agile development can provide important benefits, but it is not ap-
plicable to all projects, all products, all people, and all situations. It is also not
antithetical to solid software engineering practice and can be applied as an over-
riding philosophy for all software work.

In the modern economy, it is often difficult or impossible to predict how a
computer-based system (e.g., a mobile application) will evolve as time passes.
Market conditions change rapidly, end-user needs evolve, and new competi-
tive threats emerge without warning. In many situations, you won'’t be able to
define requirements fully before the project begins. You must be agile enough to
respond to a fluid business environment.

Fluidity implies change, and change is expensive—particularly if it is uncon-
trolled or poorly managed. One of the most compelling characteristics of the agile
approach is its ability to reduce the costs of change through the software process.

Does this mean that a recognition of challenges posed by modern realities
causes you to discard valuable software engineering principles, concepts, meth-
ods, and tools? Absolutely not! Like all engineering disciplines, software en-
gineering continues to evolve. It can be adapted easily to meet the challenges
posed by a demand for agility.

In athought-provokingbook on agile software development, Alistair Cockburn
[Coc02] argues that the prescriptive process models introduced in Chapter 4
have a major failing: they forget the frailties of the people who build computer
software. Software engineers are not robots. They exhibit great variation in
working styles; significant differences in skill level, creativity, orderliness, con-
sistency, and spontaneity. Some communicate well in written form, others do not.
Cockburn argues that process models can “deal with people’s common weak-
nesses with [either] discipline or tolerance” and that most prescriptive process
models choose discipline. He states: “Because consistency in action is a human
weakness, high discipline methodologies are fragile.”

If process models are to work, they must provide a realistic mechanism for
encouraging the discipline that is necessary, or they must be characterized in
a manner that shows “tolerance” for the people who do software engineering
work. Invariably, tolerant practices are easier for software people to adopt and
sustain, but (as Cockburn admits) they may be less productive. Like most things
in life, trade-offs must be considered.

1 Agile methods are sometimes referred to as light methods or lean methods.

68

5.1

PART ONE THE SOFTWARE PROCESS

WeuAT Is AGILITY?

ﬁpwcss

Don’t make the
mistake of assuming
that agility gives you
license to hack out
solutions. A process is
required and discipline
is essential.

5.2

Just what is agility in the context of software engineering work? Ivar Jacobson
[Jac02al provides a useful discussion:

Agility has become today’s buzzword when describing a modern software process.
Everyone is agile. An agile team is a nimble team able to appropriately respond to
changes. Change is what software development is very much about. Changes in the
software being built, changes to the team members, changes because of new technol-
ogy, changes of all kinds that may have an impact on the product they build or the
project that creates the product. Support for changes should be built-in everything
we do in software, something we embrace because it is the heart and soul of software.
An agile team recognizes that software is developed by individuals working in teams
and that the skills of these people, their ability to collaborate is at the core for the
success of the project.

In Jacobson’s view, the pervasiveness of change is the primary driver for agil-
ity. Software engineers must be quick on their feet if they are to accommodate
the rapid changes that Jacobson describes.

But agility is more than an effective response to change. It also encompasses
the philosophy espoused in the manifesto noted at the beginning of this chapter.
It encourages team structures and attitudes that make communication (among
team members, between technologists and business people, between software
engineers and their managers) more facile. It emphasizes rapid delivery of
operational software and deemphasizes the importance of intermediate work
products (not always a good thing); it adopts the customer as a part of the devel-
opment team and works to eliminate the “us and them” attitude that continues
to pervade many software projects; it recognizes that planning in an uncertain
world has its limits and that a project plan must be flexible.

Agility can be applied to any software process. However, to accomplish this, it
is essential that the process be designed in a way that allows the project team to
adapt tasks and to streamline them, conduct planning in a way that understands
the fluidity of an agile development approach, eliminate all but the most essen-
tial work products and keep them lean, and emphasize an incremental delivery
strategy that gets working software to the customer as rapidly as feasible for the
product type and operational environment.

AGILITY AND THE CosT oF CHANGE

The conventional wisdom in software development (supported by decades of ex-
perience) is that the cost of change increases nonlinearly as a project progresses
(Figure 5.1, solid black curve). It is relatively easy to accommodate a change
when a software team is gathering requirements (early in a project). A usage sce-
nario might have to be modified, a list of functions may be extended, or a written

CHAPTER 5 AGILE DEVELOPMENT 69

Change costs
as a function
of time in

development

Quote:

“Agility is dynamic,
confent specific,
aggressively
change embracing,
and growth
oriented.”

Steven Goldman
et al.

a:
POINT

An agile process
reduces the cost

of change because
software is released in
increments and change
can be better controlled
within an increment.

5.3

Cost of change
using conventional
software processes

Cost of change
using agile processes

Development cost

Idealized cost of change
using agile process

Development schedule progress

specification can be edited. The costs of doing this work are minimal, and the
time required will not adversely affect the outcome of the project. But what if we
fast-forward a number of months? The team is in the middle of validation testing
(something that occurs relatively late in the project), and an important stake-
holder is requesting a major functional change. The change requires a modifi-
cation to the architectural design of the software, the design and construction
of three new components, modifications to another five components, the design
of new tests, and so on. Costs escalate quickly, and the time and cost required
to ensure that the change is made without unintended side effects is nontrivial.

Proponents of agility (e.g., [Bec00l, [Amb04]) argue that a well-designed agile
process “flattens” the cost of change curve (Figure 5.1, shaded, solid curve), allowing
a software team to accommodate changes late in a software project without dra-
matic cost and time impact. You've already learned that the agile process encom-
passes incremental delivery. When incremental delivery is coupled with other agile
practices such as continuous unit testing and pair programming (discussed later
in this chapter), the cost of making a change is attenuated. Although debate about
the degree to which the cost curve flattens is ongoing, there is evidence [Coc01al to
suggest that a significant reduction in the cost of change can be achieved.

WaAT Is AN AcILE PROCESS?

Any agile software process is characterized in a manner that addresses a num-
ber of key assumptions [Fow02] about the majority of software projects:

1. It is difficult to predict in advance which software requirements will per-
sist and which will change. It is equally difficult to predict how customer
priorities will change as the project proceeds.

70

A comprehensive
collection of arficles
on the agile process
can be found at
http:/ /www
.agilemodeling
.com/.

3’%
POINT
Although agile
processes embrace
change, it s still
important fo examine
the reasons for change.

ﬁbVICE‘

Working software

is important, but

don't forget that it
must also exhibit

a variety of quality
attributes including
reliability, usability, and
mainfainability.

PART ONE THE SOFTWARE PROCESS

2. For many types of software, design and construction are interleaved. That
is, both activities should be performed in tandem so that design models
are proven as they are created. It is difficult to predict how much design is
necessary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a
planning point of view) as we might like.

Given these three assumptions, an important question arises: How do we cre-
ate a process that can manage unpredictability? The answer, as we have already
noted, lies in process adaptability (to rapidly changing project and technical con-
ditions). An agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little.
Therefore, an agile software process must adapt incrementally. To accom-
plish incremental adaptation, an agile team requires customer feedback
(so that the appropriate adaptations can be made). An effective catalyst for
customer feedback is an operational prototype or a portion of an operational
system. Hence, an incremental development strategy should be instituted.
Software increments (executable prototypes or portions of an operational
system) must be delivered in short time periods so that adaptation keeps
pace with change (unpredictability). This iterative approach enables the cus-
tomer to evaluate the software increment regularly, provide necessary feed-
back to the software team, and influence the process adaptations that are
made to accommodate the feedback.

5.3.1 Agility Principles
The Agile Alliance (see [Agio3l, [Fow01]) defines 12 agility principles for those
who want to achieve agility:
1. Our highest priority is to satisfy the customer through early and continu-
ous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

ﬁpwcsg

You don’t have to
choose between agility
and software engineer-
ing. Rather, define a
software engineering
approach that is agile.

CHAPTER 5 AGILE DEVELOPMENT 71

8. Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.
10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Not every agile process model applies these 12 principles with equal weight,
and some models choose to ignore (or at least downplay) the importance of one
or more of the principles. However, the principles define an agile spirit that is
maintained in each of the process models presented in this chapter.

5.3.2 The Politics of Agile Development

There has been considerable debate (sometimes strident) about the benefits and
applicability of agile software development as opposed to more conventional
software engineering processes. Jim Highsmith [Hig02al (facetiously) states the
extremes when he characterizes the feeling of the pro-agility camp (“agilists”).
“Traditional methodologists are a bunch of stick-in-the-muds who’d rather pro-
duce flawless documentation than a working system that meets business needs.”
As a counterpoint, he states (again, facetiously) the position of the traditional
software engineering camp: “Lightweight, er, ‘agile’ methodologists are a bunch
of glorified hackers who are going to be in for a heck of a surprise when they try
to scale up their toys into enterprise-wide software.”

Like all software technology arguments, this methodology debate risks degen-
erating into a religious war. If warfare breaks out, rational thought disappears
and beliefs rather than facts guide decision making.

No one is against agility. The real question is: What is the best way to achieve
it? As important, how do you build software that meets customers’ needs today
and exhibits the quality characteristics that will enable it to be extended and
scaled to meet customers’ needs over the long term?

There are no absolute answers to either of these questions. Even within the
agile school itself, there are many proposed process models (Section 5.4), each
with a subtly different approach to the agility problem. Within each model there
is a set of “ideas” (agilists are loath to call them “work tasks”) that represent a
significant departure from traditional software engineering. And yet, many agile
concepts are simply adaptations of good software engineering concepts. Bottom
line: there is much that can be gained by considering the best of both schools and
virtually nothing to be gained by denigrating either approach.

72

PART ONE THE SOFTWARE PROCESS

If you have further interest, see [Hig01l], [Hig02al, and [DeMo02] for an enter-
taining summary of other important technical and political issues.

5.4 EKIBEME ERQQRAMMING

An award-winnng
“process simulafion
game” that includes
an XP process module
can be found ot
http:/ /www.ics
.uci.edu/~emilyo/
SimSE/downloads
html.

What is an
® XP “story”?

In order to illustrate an agile process in a bit more detail, we’ll provide you with
an overview of Extreme Programming (XP), the most widely used approach to
agile software development. Although early work on the ideas and methods as-
sociated with XP occurred during the late 1980s, the seminal work on the subject
has been written by Kent Beck [Bec04al. A variant of XP, called Industrial XP
(IXP), refines XP and targets the agile process specifically for use within large
organizations [Kero05l.

5.4.1 The XP Process

Extreme Programming uses an object-oriented approach (Appendix 2) as its pre-
ferred development paradigm and encompasses a set of rules and practices that
occur within the context of four framework activities: planning, design, coding,
and testing. Figure 5.2 illustrates the XP process and notes some of the key ideas
and tasks that are associated with each framework activity. Key XP activities are
summarized in the paragraphs that follow.

Planning. The planning activity (also called the planning game) begins with
listening—a requirements gathering activity that enables the technical members

The Extreme
Programming
process

simple design spike solutions
CRC cards protofypes
user stories
valves
acceptance test criteria
iteration plan

refactoring

pair programming

Release

software increment
project velocity computed

unit test
continuous integration

acceptance testing

A worthwhile XP
“planning game”

can be found af:
http://csis.pace.
edu/~bergin/xp/
planninggame
html.

(/>
e,
P’é'N T

Project velocity is a
subtle measure of
team productivity.

GDWCE9

XP deemphasizes the
importance of design.
Not everyone agrees.
In fact, there are fimes
when design should be
emphasized.

CHAPTER 5 AGILE DEVELOPMENT 73

of the XP team to understand the business context for the software and to get a
broad feel for required output and major features and functionality. Listening
leads to the creation of a set of “stories” (also called user stories) that describe
required output, features, and functionality for software to be built. Each story
(similar to use cases described in Chapter 8) is written by the customer and is
placed on an index card. The customer assigns a value (i.e., a priority) to the
story based on the overall business value of the feature or function.2 Members of
the XP team then assess each story and assign a cost—measured in development
weeks—to it. If the story is estimated to require more than three development
weeks, the customer is asked to split the story into smaller stories and the as-
signment of value and cost occurs again. It is important to note that new stories
can be written at any time.

Customers and developers work together to decide how to group stories into
the next release (the next software increment) to be developed by the XP team.
Once a basic commitment (agreement on stories to be included, delivery date,
and other project matters) is made for a release, the XP team orders the stories
that will be developed in one of three ways: (1) all stories will be implemented
immediately (within a few weeks), (2) the stories with highest value will be moved
up in the schedule and implemented first, or (3) the riskiest stories will be moved
up in the schedule and implemented first.

After the first project release (also called a software increment) has been de-
livered, the XP team computes project velocity. Stated simply, project velocity is
the number of customer stories implemented during the first release. Project
velocity can then be used to (1) help estimate delivery dates and schedule for
subsequent releases and (2) determine whether an overcommitment has been
made for all stories across the entire development project. If an overcommitment
occurs, the content of releases is modified or end delivery dates are changed.

As development work proceeds, the customer can add stories, change the
value of an existing story, split stories, or eliminate them. The XP team then re-
considers all remaining releases and modifies its plans accordingly.

Design. XP design rigorously follows the KIS (keep it simple) principle. A sim-
ple design is always preferred over a more complex representation. In addition,
the design provides implementation guidance for a story as it is written—nothing
less, nothing more. The design of extra functionality (because the developer as-
sumes it will be required later) is discouraged.?

XP encourages the use of CRC cards (Chapter 10) as an effective mech-
anism for thinking about the software in an object-oriented context. CRC

2 The value of a story may also be dependent on the presence of another story.
3 These design guidelines should be followed in every software engineering method, although
there are times when sophisticated design notation and terminology may get in the way of

simplicity.

74

Refactoring techniques
and fools can be
found at: www.
refactoring.com.

[/
&Q“
POINT

Refactoring improves
the infernal structure

of a design (or source
code) without changing
its external functionality
or hehavior.

Useful information on
XP can be obtained ot
WWW.Xprogram-
ming.com.

PART ONE THE SOFTWARE PROCESS

(class-responsibility-collaborator) cards identify and organize the object-
oriented classes* that are relevant to the current software increment. The XP
team conducts the design exercise using a process similar to the one described
in Chapter 10. The CRC cards are the only design work product produced as part
of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP
recommends the immediate creation of an operational prototype of that portion
of the design. Called a spike solution, the design prototype is implemented and
evaluated. The intent is to lower risk when true implementation starts and to
validate the original estimates for the story containing the design problem.

XP encourages refactoring—a construction technique that is also a design

technique. Fowler [Fow00] describes refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code yet improves the internal structure. It
is a disciplined way to clean up code [and modify/simplify the internal designl that
minimizes the chances of introducing bugs. In essence, when you refactor you are

improving the design of the code after it has been written.

Because XP design uses virtually no notation and produces few, if any, work
products other than CRC cards and spike solutions, design is viewed as a tran-
sient artifact that can and should be continually modified as construction pro-
ceeds. The intent of refactoring is to control these modifications by suggesting
small design changes that “can radically improve the design” [Fow00l. It should
be noted, however, that the effort required for refactoring can grow dramatically
as the size of an application grows.

A central notion in XP is that design occurs both before and after coding com-
mences. Refactoring means that design occurs continuously as the system is con-
structed. In fact, the construction activity itself will provide the XP team with
guidance on how to improve the design.

Coding. After stories are developed and preliminary design work is done, the

team does not move to code, but rather develops a series of unit tests that will
exercise each of the stories that is to be included in the current release (software
increment).® Once the unit test® has been created, the developer is better able to
focus on what must be implemented to pass the test. Nothing extraneous is added

4 Object-oriented classes are discussed in Appendix 2, in Chapter10, and throughout Part 2 of
this book.

5 This approach is analogous to knowing the exam questions before you begin to study. It makes
studying much easier by focusing attention only on the questions that will be asked.

6 Unit testing, discussed in detail in Chapter 22, focuses on an individual software component,
exercising the component’s interface, data structures, and functionality in an effort to uncover

errors that are local to the component.

A What is
® pair
programming?

Gpwcsg

Many software feams
are populated by
individualists. You'll
have to work fo
change that culture if
pair programming is fo
work effectively.

‘, How are unit
® tests used
in XP?

%
POINT
XP acceptance tests

are derived from user
stories.

What new
® practices are

appended to XP to

create IXP?

CHAPTER 5 AGILE DEVELOPMENT 75

(KIS). Once the code is complete, it can be unit-tested immediately, thereby pro-
viding instantaneous feedback to the developers.

A key concept during the coding activity (and one of the most talked-about as-
pects of XP) is pair programming. XP recommends that two people work together
at one computer workstation to create code for a story. This provides a mechanism
for real-time problem solving (two heads are often better than one) and real-time
quality assurance (the code is reviewed as it is created). It also keeps the develop-
ers focused on the problem at hand. In practice, each person takes on a slightly
different role. For example, one person might think about the coding details of a
particular portion of the design while the other ensures that coding standards (a
required part of XP) are being followed or that the code for the story will satisfy the
unit test that has been developed to validate the code against the story.”

As pair programmers complete their work, the code they develop is inte-
grated with the work of others. In some cases this is performed on a daily basis
by an integration team. In other cases, the pair programmers have integration
responsibility. This “continuous integration” strategy helps to avoid compatibility
and interfacing problems and provides a “smoke testing” environment (Chap-

ter 22) that helps to uncover errors early.

Testing. The unit tests that are created should be implemented using a frame-
work that enables them to be automated (hence, they can be executed easily and
repeatedly). This encourages a regression testing strategy (Chapter 22) when-
ever code is modified (which is often, given the XP refactoring philosophy).

As the individual unit tests are organized into a “universal testing suite”
[Wel99], integration and validation testing of the system can occur on a daily
basis. This provides the XP team with a continual indication of progress and also
can raise warning flags early if things go awry. Wells [Wel99] states: “Fixing small
problems every few hours takes less time than fixing huge problems just before
the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer
and focus on overall system features and functionality that are visible and re-
viewable by the customer. Acceptance tests are derived from user stories that
have been implemented as part of a software release.

5.4.2

Joshua Kerievsky [Ker05] describes Industrial Extreme Programming (IXP) in

Industrial XP

the following manner: “IXP is an organic evolution of XP. It is imbued with XP’s
minimalist, customer-centric, test-driven spirit. IXP differs most from the origi-
nal XP in its greater inclusion of management, its expanded role for customers,
and its upgraded technical practices.” IXP incorporates six new practices that

7 Pair programming has become so widespread throughout the software community that
The Wall Street Journal [Wal12] ran a front-page story about the subject.

76 PART ONE THE SOFTWARE PROCESS

are designed to help ensure that an XP project works successfully for significant
projects within a large organization:

Readiness assessment. The IXP team ascertains whether all members of
the project community (e.g., stakeholders, developers, management) are
on board, have the proper environment established, and understand the

skill levels involved.

Project community. The IXP team determines whether the right people,
with the right skills and training have been staged for the project. The

Quote' “community” encompasses technologists and other stakeholders.
“Ability is what Project chartering. The IXP team assesses the project itself to determine
you're capable of whether an appropriate business justification for the project exists and
doing, Motivation whether the project will further the overall goals and objectives of the
determines what organization.

you do. Attitude

determines how
well you do it.” “destinations” [Ker05] that assess progress to date and then defines mecha-

Test-driven management. An IXP team establishes a series of measurable

Lou Holiz nisms for determining whether or not these destinations have been reached.

Retrospectives. An IXP team conducts a specialized technical review
(Chapter 20) after a software increment is delivered. Called a retrospec-
tive, the review examines “issues, events, and lessons-learned” [Ker05]
across a software increment and/or the entire software release.
Continuous learning. The IXP team is encouraged (and possibly, incented)

to learn new methods and techniques that can lead to a higher-quality
product.

In addition to the six new practices discussed, IXP modifies a number of exist-
ing XP practices and redefines certain roles and responsibilities to make them
more amenable to significant projects for large organizations. For further discus-
sion of IXP, visit http://industrialxp.org.

SAreHoOME

TP Considering Agile Software Development

- lr—l. The scene: Doug Miller’s office. Doug: Sure Jamie, what's up?@
The Players: Doug Miller, software engineering Jamie: We've been thinking about our process discus-
manager; Jamie Lazar, software team member; Vinod sion yesterday . . . you know, what process we're going
Raman, software team member. to choose for this new SafeHome project.
The conversation: Doug: And?
(A.knock on the door, Jamie and Vinod enter Doug's Vinod: | was talking to a friend at another company,
office.) and he was telling me about Extreme Programming. It's

Jamie: Doug, you got a minute? an agile process model . . . heard of it2

CHAPTER 5 AGILE DEVELOPMENT

Doug: Yeah, some good, some bad.

Jamie: Well, it sounds pretty good to us. Lets you
develop software really fast, uses something called pair
programming to do realtime quality checks . . . it's
pretty cool, | think.

Doug: It does have a lot of really good ideas. | like the
pair-programming concept, for instance, and the idea
that stakeholders should be part of the team.

Jamie: Huh2 You mean that marketing will work on
the project team with us2

Doug (nodding): They're a stakeholder, aren’t they?

Jamie: Jeez . . . they'll be requesting changes every
five minutes.

Vinod: Not necessarily. My friend said that there are
ways to “embrace” changes during an XP project.

Doug: So you guys think we should use XP2
Jamie: |i's definitely worth considering.

Doug: | agree. And even if we choose an incremental
model as our approach, there’s no reason why we can't
incorporate much of what XP has to offer.

2.5

77

Vinod: Doug, before you said “some good, some
bad.” What was the bad?

Doug: The thing | don't like is the way XP downplays
analysis and design . . . sort of says that writing code is
where the action is . . .

(The team members look at one another and smile.)
Doug: So you agree with the XP approach?

Jamie (speaking for both): Writing code is what
we do, Boss!

Doug (laughing): True, but I'd like to see you spend
a little less time coding and then recoding and a little
more time analyzing what has to be done and design-
ing a solution that works.

Vinod: Maybe we can have it both ways, agility with
a little discipline.

Doug: | think we can, Vinod. In fact, I'm sure of it.

OTHER AGILE ProcEss MODELS

Quole:

“Our profession
goes through
methodologies like
a 14-year-old goes
through clothing.”

Stephen
Hawrysh and
Jim Ruprecht

The history of software engineering is littered with dozens of obsolete process
descriptions and methodologies, modeling methods and notations, tools, and
technology. Each flared in notoriety and was then eclipsed by something new
and (purportedly) better. With the introduction of a wide array of agile process
models—each contending for acceptance within the software development
community—the agile movement is following the same historical path.?

As we noted in the last section, the most widely used of all agile process mod-
els is Extreme Programming (XP). But many other agile process models have
been proposed and are in use across the industry. In this section, we present
a brief overview of four common agile methods: Scrum, DSSD, Agile Modeling
(AM), and Agile Unified Process (AUP).

8 This is not a bad thing. Before one or more models or methods are accepted as a de facto
standard, all must contend for the hearts and minds of software engineers. The “winners”

evolve into best practice, while the “losers” either disappear or merge with the winning models.

78

PART ONE THE SOFTWARE PROCESS

m Scrum process flow

Sprint Backlog: Backlog

Scrum: 15 minute daily meeting.

Team members respond to basics:

1) What did you do since last Scrum
meeting?

2) Do you have any obstacles@

3) What will you do before next

Feature(s) items 30 days meeting?

Useful Scrum informa-
tion and resources can
be found at www.

controlchaos.com.

assigned expanded
to sprint by team :

New functionality
is demonstrated
at end of sprint

Product Backlog:

Prioritized product features desired by the customer

5.5.1 Scrum

Scrum (the name is derived from an activity that occurs during a rugby match)?
is an agile software development method that was conceived by Jeff Sutherland
and his development team in the early 1990s. In recent years, further devel-
opment on the Scrum methods has been performed by Schwaber and Beedle
[Scho1bl.

Scrum principles are consistent with the agile manifesto and are used to guide
development activities within a process that incorporates the following frame-
work activities: requirements, analysis, design, evolution, and delivery. Within
each framework activity, work tasks occur within a process pattern (discussed in
the following paragraph) called a sprint. The work conducted within a sprint (the
number of sprints required for each framework activity will vary depending on
product complexity and size) is adapted to the problem at hand and is defined
and often modified in real time by the Scrum team. The overall flow of the Scrum
process is illustrated in Figure 5.3.

9 A group of players forms around the ball and the teammates work together (sometimes

violently!) to move the ball downfield.

a:
;t)lNT

Scrum incorporates a
set of process patterns
that emphasize project
priorities, comparf-
mentalized work units,
communication, and
frequent customer
feedback.

Useful resources for
DSDM can be found at
www.dsdm.org.

CHAPTER 5 AGILE DEVELOPMENT 79

Scrum emphasizes the use of a set of software process patterns [Noy02] that
have proven effective for projects with tight timelines, changing requirements,
and business criticality. Each of these process patterns defines a set of develop-
ment activities:

Backlog—a prioritized list of project requirements or features that provide
business value for the customer. Items can be added to the backlog at any time
(this is how changes are introduced). The product manager assesses the back-
log and updates priorities as required.

Sprints—consist of work units that are required to achieve a requirement
defined in the backlog that must be fit into a predefined time-box!° (typically
30 days). Changes (e.g., backlog work items) are not introduced during the
sprint. Hence, the sprint allows team members to work in a short-term, but
stable environment.

Scrum meetings—are short (typically 15-minute) meetings held daily by the
Scrum team. Three key questions are asked and answered by all team mem-
bers [Noy021:

e What did you do since the last team meeting?
e What obstacles are you encountering?
e What do you plan to accomplish by the next team meeting?

A team leader, called a Scrum master, leads the meeting and assesses the re-
sponses from each person. The Scrum meeting helps the team to uncover poten-
tial problems as early as possible. Also, these daily meetings lead to “knowledge
socialization” [Bee991] and thereby promote a self-organizing team structure.

Demos—deliver the software increment to the customer so that functionality
that has been implemented can be demonstrated and evaluated by the cus-
tomer. It is important to note that the demo may not contain all planned func-
tionality, but rather those functions that can be delivered within the time-box
that was established.

Beedle and his colleagues [Bee99] present a comprehensive discussion of
these patterns in which they state: “Scrum assumes up-front the existence of
chaos . ..” The Scrum process patterns enable a software team to work success-
fully in a world where the elimination of uncertainty is impossible.

5.5.2 Dynamic Systems Development Method

The Dynamic Systems Development Method (DSDM) [Sta97] is an agile software
development approach that “provides a framework for building and maintain-
ing systems which meet tight time constraints through the use of incremental

10 A time-box is a project management term (see Part 4 of this book) that indicates a period of

time that has been allocated to accomplish some task.

80

%

POINT
DSDM is a process
framework that can
adopt the tactics of
another agile approach
such as XP.

Comprehensive infor-
mation on agile model-
ing can be found af:
www.agilemodel-
ing.com.

PART ONE THE SOFTWARE PROCESS

prototyping in a controlled project environment” [CCS02]. The DSDM philosophy
is borrowed from a modified version of the Pareto principle—80 percent of an
application can be delivered in 20 percent of the time it would take to deliver the
complete (100 percent) application.

DSDM is an iterative software process in which each iteration follows the
80 percent rule. That is, only enough work is required for each increment to
facilitate movement to the next increment. The remaining detail can be com-
pleted later when more business requirements are known or changes have been
requested and accommodated.

The DSDM Consortium (www.dsdm.org) is a worldwide group of member
companies that collectively take on the role of “keeper” of the method. The con-
sortium has defined an agile process model, called the DSDM life cycle, that
begins with a feasibility study that establishes basic business requirements and
constraints and is followed by a business study that identifies functional and in-
formation requirements. DSDM then defines three different iterative cycles:

Functional model iteration—produces a set of incremental prototypes that
demonstrate functionality for the customer. (Note: All DSDM prototypes are
intended to evolve into the deliverable application.) The intent during this iter-
ative cycle is to gather additional requirements by eliciting feedback from users
as they exercise the prototype.

Design and build iteration—revisits prototypes built during the functional
model iteration to ensure that each has been engineered in a manner that
will enable it to provide operational business value for end users. In some
cases, the functional model iteration and the design and build iteration occur
concurrently.

Implementation—places the latest software increment (an “operationalized”
prototype) into the operational environment. It should be noted that (1) the in-
crement may not be 100 percent complete or (2) changes may be requested as
the increment is put into place. In either case, DSDM development work contin-
ues by returning to the functional model iteration activity.

DSDM can be combined with XP (Section 5.4) to provide a combination ap-
proach that defines a solid process model (the DSDM life cycle) with the nuts and
bolts practices (XP) that are required to build software increments.

5.5.3 Agile Modeling

There are many situations in which software engineers must build large,
business-critical systems. The scope and complexity of such systems must be
modeled so that (1) all constituencies can better understand what needs to be ac-
complished, (2) the problem can be partitioned effectively among the people who
must solve it, and (3) quality can be assessed as the system is being engineered
and built. But in some cases, it can be daunting to manage the volume of notation

“| was in the
drugstore the other
day trying fo get a
cold medication . . .
Not easy. There's
an entire wall of
producis you need.
You stand there
going, Well, this
one is quick acting
but this is long
lasting ... Which is
more imporfant,
the present or the
future?”

Jerry Seinfeld

&pwcss

“Traveling light” is an
appropriate philosophy
for all software engi-
neering work. Build
only those models that
provide valve . . . no
more, 10 less.

CHAPTER 5 AGILE DEVELOPMENT 8l

required, the degree of formalism suggested, the sheer size of the models for
large projects, and the difficulty in maintaining the model(s) as changes occur.
Is there an agile approach to software engineering modeling that might provide
some relief?

At “The Official Agile Modeling Site,” Scott Ambler [Ambo02al describes agile
modeling (AM) in the following manner:

Agile Modeling (AM) is a practice-based methodology for effective modeling and doc-
umentation of software-based systems. Simply put, Agile Modeling (AM) is a collec-
tion of values, principles, and practices for modeling software that can be applied
on a software development project in an effective and light-weight manner. Agile
models are more effective than traditional models because they are just barely good,
they don’t have to be perfect.

Agile modeling adopts all of the values that are consistent with the agile man-
ifesto. The agile modeling philosophy recognizes that an agile team must have
the courage to make decisions that may cause it to reject a design and refactor.
The team must also have the humility to recognize that technologists do not have
all the answers and that business experts and other stakeholders should be re-
spected and embraced.

Although AM suggests a wide array of “core” and “supplementary” modeling
principles, those that make AM unique are [Ambo02al:

Model with a purpose. A developer who uses AM should have a specific goal
(e.g., to communicate information to the customer or to help better understand
some aspect of the software) in mind before creating the model. Once the goal
for the model is identified, the type of notation to be used and level of detail

required will be more obvious.

Use multiple models. There are many different models and notations that
can be used to describe software. Only a small subset is essential for most proj-
ects. AM suggests that to provide needed insight, each model should present a
different aspect of the system and only those models that provide value to their
intended audience should be used.

Travel light. As software engineering work proceeds, keep only those models
that will provide long-term value and jettison the rest. Every work product that
is kept must be maintained as changes occur. This represents work that slows
the team down. Ambler [Ambo02al notes that “Every time you decide to keep a
model you trade off agility for the convenience of having that information avail-
able to your team in an abstract manner (hence potentially enhancing commu-

nication within your team as well as with project stakeholders).”

Content is more important than representation. Modeling should impart in-
formation to its intended audience. A syntactically perfect model that imparts
little useful content is not as valuable as a model with flawed notation that
nevertheless provides valuable content for its audience.

82

PART ONE THE SOFTWARE PROCESS

Know the models and the tools you use to create them. Understand the
strengths and weaknesses of each model and the tools that are used to create it.

Adapt locally. The modeling approach should be adapted to the needs of the
agile team.

A major segment of the software engineering community has adopted the
Unified Modeling Language (UML)'' as the preferred method for representing
analysis and design models. The Unified Process (Chapter 4) has been devel-
oped to provide a framework for the application of UML. Scott Ambler [Amb06]
has developed a simplified version of the UP that integrates his agile modeling
philosophy.

5.5.4 Agile Unified Process

The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in
the small” [Amb06] philosophy for building computer-based systems. By adopt-
ing the classic UP phased activities—inception, elaboration, construction, and
transition—AUP provides a serial overlay (i.e., a linear sequence of software
engineering activities) that enables a team to visualize the overall process flow
for a software project. However, within each of the activities, the team iterates
to achieve agility and to deliver meaningful software increments to end users
as rapidly as possible. Each AUP iteration addresses the following activities
[AmbO06l:

o Modeling. UML representations of the business and problem domains are
created. However, to stay agile, these models should be “just barely good
enough” [Ambo06] to allow the team to proceed.

o Implementation. Models are translated into source code.

o Testing. Like XP, the team designs and executes a series of tests to un-
cover errors and ensure that the source code meets its requirements.

e Deployment. Like the generic process activity discussed in Chapters 3,
deployment in this context focuses on the delivery of a software increment
and the acquisition of feedback from end users.

e Configuration and project management. In the context of AUP, configu-
ration management (Chapter 29) addresses change management, risk
management, and the control of any persistent work products'? that are
produced by the team. Project management tracks and controls the prog-
ress of the team and coordinates team activities.

11 A brief tutorial on UML is presented in Appendix 1.

12 A persistent work product is a model or document or test case produced by the team that will be
kept for an indeterminate period of time. It will not be discarded once the software increment
is delivered.

CHAPTER 5 AGILE DEVELOPMENT

83

o Environment management. Environmental management coordinates a

process infrastructure that includes standards, tools, and other support

technology available to the team.

Although the AUP has historical and technical connections to the Unified
Modeling Language, it is important to note that UML modeling can be used in

conjunction with any of the agile process models described in this chapter.

K Agile Development
Obijective: The objective of agile

)

\/ development tools is to assist in one or more
aspects of agile development with an emphasis on
facilitating the rapid generation of operational software.
These tools can also be used when prescriptive process
models (Chapter 4) are applied.

Mechanics: Tool mechanics vary. In general, agile tool

sets encompass automated support for project planning,

use case development and requirements gathering, rapid
design, code generation, and testing.

SorTwaRE TooLs
support the agile approach. The tools noted here

have characteristics that make them particularly
useful for agile projects.

OnTime, developed by Axosoft (www.axosoft.com),
provides agile process management support for
various technical activities within the process.

Ideogramic UML, developed by Ideogramic (http://
ideogramic-uml.software.informer.com/) is a
UML tool set specifically developed for use within an
agile process.

Together Tool Set, distributed by Borland (www.

Representative tools:'*
Note: Because agile development is a hot topic, most
\sof’rwcre tools vendors purport to sell tools that

borland.com), provides a tools suite that supports
many technical activities within XP and other agile

processes.

5.6 A TooL SET ForR THE AGILE PROCESS

%,

POINT
The “tool set” that
supports agile pro-
cesses focuses more
on people issues than
it does on technology
issues.

Some proponents of the agile philosophy argue that automated software tools
(e.g., design tools) should be viewed as a minor supplement to the team’s activi-
ties, and not at all pivotal to the success of the team. However, Alistair Cockburn
[Coc04] suggests that tools can have a benefit and that “agile teams stress using
tools that permit the rapid flow of understanding. Some of those tools are social,
starting even at the hiring stage. Some tools are technological, helping distrib-
uted teams simulate being physically present. Many tools are physical, allowing
people to manipulate them in workshops.”

Collaborative and communication “tools” are generally low tech and incor-
porate any mechanism (“physical proximity, whiteboards, poster sheets, index
cards, and sticky notes” [Coc04] or modern social networking techniques) that
provides information and coordination among agile developers. Active com-
munication is achieved via the team dynamics (e.g., pair programming), while

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers.

84

0.7

PART ONE THE SOFTWARE PROCESS

passive communication is achieved by “information radiators” (e.g., a flat panel
display that presents the overall status of different components of an increment).
Project management tools deemphasize the Gantt chart and replace it with
earned value charts or “graphs of tests created versus passed . .. other agile tools
are using to optimize the environment in which the agile team works (e.g., more
efficient meeting areas), improve the team culture by nurturing social interac-
tions (e.g., collocated teams), physical devices (e.g., electronic whiteboards), and
process enhancement (e.g., pair programming or time-boxing)” [Coc04l.

Are any of these things really tools? They are, if they facilitate the work per-
formed by an agile team member and enhance the quality of the end product.

SUMMARY

In a modern economy, market conditions change rapidly, customer and end-
user needs evolve, and new competitive threats emerge without warning. Prac-
titioners must approach software engineering in a manner that allows them to
remain agile—to define maneuverable, adaptive, lean processes that can accom-
modate the needs of modern business.

An agile philosophy for software engineering stresses four key issues: the im-
portance of self-organizing teams that have control over the work they perform,
communication and collaboration between team members and between practi-
tioners and their customers, a recognition that change represents an opportu-
nity, and an emphasis on rapid delivery of software that satisfies the customer.
Agile process models have been designed to address each of these issues.

Extreme programming (XP) is the most widely used agile process. Organized
as four framework activities—planning, design, coding, and testing—XP suggests
a number of innovative and powerful techniques that allow an agile team to cre-
ate frequent software releases that deliver features and functionality that have
been described and then prioritized by stakeholders.

Other agile process models also stress human collaboration and team self-
organization, but define their own framework activities and select different
points of emphasis. For example, Scrum emphasizes the use of a set of software
process patterns that have proven effective for projects with tight time lines,
changing requirements, and business criticality. Each process pattern defines
a set of development tasks and allows the Scrum team to construct a process
that is adapted to the needs of the project. The Dynamic Systems Development
Method (DSDM) advocates the use of time-box scheduling and suggests that only
enough work is required for each software increment to facilitate movement to
the next increment. Agile modeling (AM) suggests that modeling is essential for
all systems, but that the complexity, type, and size of the model must be tuned to
the software to be built. The Agile Unified Process (AUP) adopts a “serial in the
large” and “iterative in the small” philosophy for building software.

CHAPTER 5 AGILE DEVELOPMENT 85

PROBLEMS AND POINTS TO PONDER

5.1. Reread the “Manifesto for Agile Software Development” at the beginning of this chap-
ter. Can you think of a situation in which one or more of the four “values” could get a soft-
ware team into trouble?

5.2. Describe agility (for software projects) in your own words.

5.3. Why does an iterative process make it easier to manage change? Is every agile process
discussed in this chapter iterative? Is it possible to complete a project in just one iteration
and still be agile? Explain your answers.

5.4. Could each of the agile processes be described using the generic framework activities
noted in Chapter 3? Build a table that maps the generic activities into the activities defined
for each agile process.

5.5. Try to come up with one more “agility principle” that would help a software engineering
team become even more maneuverable.

5.6. Select one agility principle noted in Section 5.3.1 and try to determine whether each
of the process models presented in this chapter exhibits the principle. [Note: We have pre-
sented an overview of these process models only, so it may not be possible to determine
whether a principle has been addressed by one or more of the models, unless you do addi-
tional research (which is not required for this problem).]

5.7. Why do requirements change so much? After all, don’t people know what they want?

5.8. Most agile process models recommend face-to-face communication. Yet today, mem-
bers of a software team and their customers may be geographically separated from one
another. Do you think this implies that geographical separation is something to avoid? Can
you think of ways to overcome this problem?

5.9. Write an XP user story that describes the “favorite places” or “favorites” feature avail-
able on most Web browsers.

5.10. What is a spike solution in XP?
5.11. Describe the XP concepts of refactoring and pair programming in your own words.

5.12. Using the process pattern template presented in Chapter 3, develop a process pattern
for any one of the Scrum patterns presented in Section 5.5.1.

5.13. Visit the Official Agile Modeling site and make a complete list of all core and supple-
mentary AM principles.

5.14. The tool set proposed in Section 5.6 supports many of the “soft” aspects of agile meth-
ods. Since communication is so important, recommend an actual tool set that might be used
to enhance communication among stakeholders on an agile team.

— FUurTHER READINGS AND INFORMATION SOQURCES

The overall philosophy and underlying principles of agile software development are consid-
ered in-depth in many of the books referenced in the body of this chapter. In addition, books
by Pichler (Agile Project Management with Scrum: Creating Products that Customers Love,
Addison-Wesley, 2010), Highsmith (Agile Project Management: Creating Innovative Products,
2nd ed. Addison-Wesley, 2009), Shore and Chromatic (The Art of Agile Development, O Reilly
Media, 2008), Hunt (Agile Software Construction, Springer, 2005), and Carmichael and Hay-
wood (Better Software Faster, Prentice Hall, 2002) present useful discussions of the subject.
Aguanno (Managing Agile Projects, Multi-Media Publications, 2005), and Larman (Agile and

86

PART ONE THE SOFTWARE PROCESS

Iterative Development: A Manager's Guide, Addison-Wesley, 2003) present a management
overview and consider project management issues. Highsmith (Agile Software Development
Ecosystems, Addison-Wesley, 2002) presents a survey of agile principles, processes, and
practices. A worthwhile discussion of the delicate balance between agility and discipline is
presented by Booch and his colleagues (Balancing Agility and Discipline, Addison-Wesley,
2004).

Martin (Clean Code: A Handbook of Agile Software Craftsmanship, Prentice Hall, 2009)
presents the principles, patterns, and practices required to develop “clean code” in an
agile software engineering environment. Leffingwell (Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and the Enterprise, Addison-Wesley, 2011) and
(Scaling Software Agility: Best Practices for Large Enterprises, Addison-Wesley, 2007) dis-
cusses strategies for scaling up agile practices for large projects. Lippert and Rook (Refac-
toring in Large Software Projects: Performing Complex Restructurings Successfully, Wiley,
2006) discuss the use of refactoring when applied in large, complex systems. Stamelos and
Sfetsos (Agile Software Development Quality Assurance, IGI Global, 2007) discuss SQA tech-
niques that conform to the agile philosophy.

Dozens of books have been written about Extreme Programming over the past decade.
Beck (Extreme Programming Explained: Embrace Change, 2nd ed., Addison-Wesley, 2004)
remains the definitive treatment of the subject. In addition, Jeffries and his colleagues
(Extreme Programming Installed, Addison-Wesley, 2000), Succi and Marchesi (Extreme
Programming Examined, Addison-Wesley, 2001), Newkirk and Martin (Extreme Program-
ming in Practice, Addison-Wesley, 2001), and Auer and his colleagues (Extreme Program-
ming Applied: Play to Win, Addison-Wesley, 2001) provide a nuts-and-bolts discussion of XP
along with guidance on how best to apply it. McBreen (Questioning Extreme Programming,
Addison-Wesley, 2003) takes a critical look at XP, defining when and where it is appropriate.
An in-depth consideration of pair programming is presented by McBreen (Pair Program-
ming Illuminated, Addison-Wesley, 2003).

Kohut (Professional Agile Development Process: Real World Development Using SCRUM,
Wrox, 2013), Rubin (Essential Scrum: A Practical Guide to the Most Popular Agile Process,
Addison-Wesley, 2012), Larman and Vodde (Scaling Lean and Agile Development: Thinking
and Organizational Tools for Large Scale Scrum, Addison-Wesley, 2008), and Schwaber (The
Enterprise and Scrum, Microsoft Press, 2007) discuss the use of Scrum for projects that have
a major business impact. The nuts and bolts of Scrum are discussed by Cohn (Succeeding
with Agile, Addison-Wesley, 2009), and Schwaber and Beedle (Agile Software Development
with SCRUM, Prentice-Hall, 2001). Worthwhile treatments of DSDM have been written by
the DSDM Consortium (DSDM: Business Focused Development, 2nd ed., Pearson Education,
2003) and Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997).

Books by Ambler and Lines (Disciplined Agile Delivery: A Practitioner’s Guide to Agile
Delivery in the Enterprise, IBM Press, 2012) and Poppendieck and Poppendieck (Lean
Development: An Agile Toolkit for Software Development Managers, Addison-Wesley, 2003)
provide guidelines for managing and controlling agile projects. Ambler and Jeffries (Agile
Modeling, Wiley, 2002) discuss AM in some depth.

A wide variety of information sources on agile software development are available on
the Internet. An up-to-date list of World Wide Web references that are relevant to the agile
process can be found at the SEPA website: www.mhhe.com/pressman.

CHAPTER

HuMAN ASPECTS OF SOFTWARE
ENGINEERING

Key n a special issue of IEEE Software, the guest editors [deS09] make the
CONCEPTS following observation:
agile teams. 93

doud computing .. .97 Software engineering has an abundance of techniques, tools, and methods de-
collaborative develop-

signed to improve both the software development process and the final product.
ment environments

(CDES) v eennnnn. 98 Technical improvements continue to emerge and yield encouraging results. How-
global teams. 99 ever, software isn’'t simply a product of the appropriate technical solutions applied
:,es"y‘:::ﬁ::;:g inappropriate technical ways. Software is developed by people, used by people,
roles oovuennnnn. 89 and supports interaction among people. As such, human characteristics, behavior,
social media 95

and cooperation are central to practical software development.
team attributes. . . . 90

vees 92 5), . « .
feam structures 01 Throughout the chapters that follow this one, we’ll discuss the “techniques,

tools, and methods” that will result in the creation of a successful software
product. But before we do, it is essential to understand that without skilled
and motivated people, success is unlikely.

What is it? We all tend to get
caught up in the latest program-
ming language, the best new de-
sign methods, the most fashionable

What are the steps? First, you have to un-
derstand the personal characteristics of a
successful software engineer and then try to
emulate them. Next, you should appreciate

QUICK

Look

agile process, or a just released whiz-bang
software tool. But at the end of the day, people
build computer software. And for that reason,
the human aspects of software engineering
often have as much to do with the success of a
project as the latest and greatest technology.

Who does it? Individuals and teams do soft-
ware engineering work. In some cases, one
person has much of the responsibility, but in

the complex psychology of software engineer-
ing work, so that you can navigate your way
through a project without peril. Then, you have
to understand the structure and dynamics of a
software team, because team-based software
engineering is common in an industry sefting.
Finally, you should appreciate the impact of
social media, the cloud, and other collabora-
tive tools.

What is the work product? Better insight
info the people, the process, and the end
product.

How do | ensure that I’'ve done it right?

most industry-grade software efforts, a team of
people does the work.

Why is it important? A software team will
be successful only if the dynamics of the team

are right. Software engineers sometimes have
a reputation of not playing well with others. In
reality, it is essential for software engineers on a
team to play well with their colleagues and with
other stakeholders in the product to be built.

Spend the time to observe how successful soft-
ware engineers do their work and tune your
approach to take advantage of the strengths
they project.

87

88

PART ONE THE SOFTWARE PROCESS

Most good
programmers do
programming

not because they
expect fo get paid
or get adulation
by the public, but
because it is fun to
program.

Linus Torvalds

', What are

® the personal
characteristics
of an effective
software
engineer?

So you want to be a software engineer? Obviously, you have to master the tech-
nical stuff, learn and apply the skills required to understand the problem, design
an effective solution, build the software, and test it in an effort to develop the
highest quality possible. You have to manage change, communicate with stake-
holders, and use appropriate tools in the appropriate situations. All of these
things are discussed at length later in this book.

But there are other things that are equally important—the human aspects
that will make you an effective software engineer. Erdogmus [Erd09l identifies
seven traits that are present when an individual software engineer exhibits
“superprofessional” behavior.

An effective software engineer has a sense of individual responsibility. This
implies a drive to deliver on her promises to peers, stakeholders, and her man-
agement. It implies that she will do what needs to be done, when it needs to be
done in an overriding effort to achieve a successful outcome.

An effective software engineer has an acute awareness of the needs of other
members of his team, of the stakeholders that have requested a software solu-
tion to an existing problem, and the managers who have overall control over the
project that will achieve that solution. He is able to observe the environment in
which people work and adapt his behavior to both the environment and the peo-
ple themselves.

An effective software engineer is brutally honest. If she sees a flawed design,
she points out the flaws in a constructive but honest manner. If asked to distort
facts about schedule, features, performance, or other product or project charac-
teristics she opts to be realistic and truthful.

An effective software engineer exhibits resilience under pressure. As we noted
previously in this book, software engineering is always on the edge of chaos.
Pressure (and the chaos that can result) comes in many forms—changes in re-
quirements and priorities, demanding stakeholders or peers, an unrealistic or
overbearing manager. But an effective software engineer is able to manage the
pressure so that his performance does not suffer.

An effective software engineer has a heightened sense of fairness. She gladly
shares credit with her colleagues. She tries to avoid conflicts of interest and
never acts to sabotage the work of others.

An effective software engineer exhibits attention to detail. This does not imply
an obsession with perfection, but it does suggest that he carefully considers the
technical decisions he makes on a daily basis against broader criteria (e.g., per-
formance, cost, quality) that have been established for the product and the project.

Finally, an effective software engineer is pragmatic. She recognizes that soft-
ware engineering is not a religion in which dogmatic rules must be followed, but
rather a discipline that can be adapted based on the circumstances at hand.

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 89

6.2 THE PSYCHOLOGY OF SorTWARE ENGINEERING

‘, What roles

® do members
of a software
team play?

In a seminal paper on the psychology of software engineering, Bill Curtis and
Diane Walz [Cur90l suggest a layered behavioral model for software development
(Figure 6.1). At an individual level, software engineering psychology focuses on rec-
ognition of the problem to be solved, the problem-solving skills required to solve it,
and the motivation to complete the solution within the constraints established by
outer layers in the model. At the team and project levels, group dynamics becomes
the dominating factor. Here, team structure and social factors govern success.
Group communication, collaboration, and coordination are as important as the
skills of an individual team member. At the outer layers, organizational behavior
governs the actions of the company and its response to the business milieu.

At the team level, Sawyer and his colleagues [Saw08] suggest that teams often
establish artificial boundaries that reduce communication and, as a consequence,
reduce the team effectiveness. They suggest a set of “boundaries spanning roles”
that allow members of a software team to effectively move across team boundar-
ies. The following roles may be assigned explicitly or can evolve naturally.

o Ambassador—represents the team to outside constituencies with the
intent of negotiating time and resources and gaining feedback from
stakeholders.

e Scout—crosses the team’s boundary to collect organizational information.
“Scouting can include scanning about external markets, searching for new

A layers
behavioral
model for
software
engineering
(adapted from
[Cur90])

Software

Business milieu
Organizational
behavior
Company
Project
Group
dynamics
Team
Individual Cognition

and
motivation

Problem

90

— 6.3 THE SOFTWARE TEAM

What is a
® “jelled”
team?

PART ONE THE SOFTWARE PROCESS

technologies, identifying relevant activities outside of the team and uncov-
ering pockets of potential competition.” [Saw08]

e Guard—protects access to the team’s work products and other informa-
tion artifacts.
e Sentry—controls the flow of information that stakeholders and others send

to the team.

e Coordinator—focuses on communicating horizontally across the team and
within the organization (e.g., discussing a specific design problem with a
group of specialists within the organization).

In their classic book Peopleware, Tom DeMarco and Tim Lister [DeM98] discuss
the cohesiveness of a software team:

We tend to use the word team fairly loosely in the business world, calling any group of
people assigned to work together a “team.” But many of these groups just don’t seem
like teams. They don’t have a common definition of success or any identifiable team
spirit. What is missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than
the sum of the parts

Once a team begins to jell, the probability of success goes way up. The team can
become unstoppable, a juggernaut for success They don’'t need to be managed
in the traditional way, and they certainly don’t need to be motivated. They've got

momentum.

DeMarco and Lister contend that members of jelled teams are significantly
more productive and more motivated than average. They share a common goal,
a common culture, and in many cases, a “sense of eliteness” that makes them
unique.

There is no foolproof method for creating a jelled team. But there are attri-
butes that are normally found in effective software teams.! Miguel Carrasco
[Caro8l suggests that an effective software team must establish a sense of
purpose. For example, if all team members agree that the goal of the team is to
develop software that will transform a product category, and as a consequence,
vault their company into an industry leader, they have a strong sense of purpose.
An effective team must also inculcate a sense of involvement that allows every
member to feel that his skill set and contributions are valued.

1 Bruce Tuckman observes that successful teams go through four phases (Forming, Storming,
Norming, and Performing) on their way to becoming productive (http://www.realsoftware

development.com/7-key-attributes-of-high-performance-software-development-teams/)

%
€
POINT

An effective software

team is diverse,

populated by people
who have a sense

of purpose, involve-

ment, trust, and

improvement.

A Why is it
® that teams
fail to jell?

Quote:

“Not every group
is a team, and
not every team is
effective.”

Glenn Parker

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 91

An effective team should foster a sense of trust. Software engineers on the
team should trust the skills and competence of their peers and their managers.
The team should encourage a sense of improvement, by periodically reflecting on
its approach to software engineering and looking for ways to improve their work.

The most effective software teams are diverse in the sense that they combine
a variety of different skill sets. Highly skilled technologists are complemented by
members who may have less technical background but are more empathetic to
the needs of stakeholders.

But not all teams are effective and not all teams jell. In fact, many teams suffer
from what Jackman [Jac98l calls “team toxicity.” She defines five factors that
“foster a potentially toxic team environment”: (1) a frenzied work atmosphere,
(2) high frustration that causes friction among team members, (3) a “fragmented
or poorly coordinated” software process, (4) an unclear definition of roles on the
software team, and (5) “continuous and repeated exposure to failure.”

To avoid a frenzied work environment, the team should have access to all
information required to do the job. Major goals and objectives, once defined,
should not be modified unless absolutely necessary. A software team can avoid
frustration if it is given as much responsibility for decision making as possible.
An inappropriate process (e.g., unnecessary or burdensome work tasks or poorly
chosen work products) can be avoided by understanding the product to be built,
the people doing the work, and by allowing the team to select the process model.
The team itself should establish its own mechanisms for accountability (technical
reviews? are an excellent way to accomplish this) and define a series of corrective
approaches when a member of the team fails to perform. And finally, the key to
avoiding an atmosphere of failure is to establish team-based techniques for feed-
back and problem solving.

In addition to the five toxins described by Jackman, a software team often
struggles with the differing human traits of its members. Some team members
are extroverts; others are introverts. Some people gather information intuitively,
distilling broad concepts from disparate facts. Others process information lin-
early, collecting and organizing minute details from the data provided. Some
team members are comfortable making decisions only when a logical, orderly
argument is presented. Others are intuitive, willing to make a decision based on
“feel.” Some practitioners want a detailed schedule populated by organized tasks
that enable them to achieve closure for some element of a project. Others prefer
a more spontaneous environment in which open issues are okay. Some work hard
to get things done long before a milestone date, thereby avoiding stress as the
date approaches, while others are energized by the rush to make a last-minute
deadline. Recognition of human differences, along with other guidelines pre-
sented in this section, provide a higher likelihood of creating teams that jell.

2 Technical reviews are discussed in detail in Chapter 20.

92

PART ONE THE SOFTWARE PROCESS

6.4 TEeEAM STRUCTURES

What factors
® should be
considered when
the structure of a
software team is
chosen?

‘, What

® options do
we have when
defining the
structure of a
software team?

Qoote:

“If you want to
be incrementally
better: Be
competifive. If
you want to he
exponentially
better: Be
cooperafive.”

Avthor unknown

The “best” team structure depends on the management style of your organiza-
tion, the number of people who will populate the team and their skill levels, and
the overall problem difficulty. Mantei [IMan81] describes a number of project fac-
tors that should be considered when planning the structure of software engi-
neering teams: (1) difficulty of the problem to be solved, (2) “size” of the resultant
program(s) in lines of code or function points,® (3) time that the team will stay
together (team lifetime), (4) degree to which the problem can be modularized,
(5) required quality and reliability of the system to be built, (6) rigidity of the deliv-
ery date, and (7) degree of sociability (communication) required for the project.

Constantine [Con93] suggests four “organizational paradigms” for software
engineering teams:

1. A closed paradigm structures a team along a traditional hierarchy of au-
thority. Such teams can work well when producing software that is quite
similar to past efforts, but they will be less likely to be innovative when
working within the closed paradigm.

2. A random paradigm structures a team loosely and depends on individual
initiative of the team members. When innovation or technological break-
through is required, teams following the random paradigm will excel. But
such teams may struggle when “orderly performance” is required.

3. An open paradigm attempts to structure a team in a manner that achieves
some of the controls associated with the closed paradigm but also much of
the innovation that occurs when using the random paradigm. Work is per-
formed collaboratively, with heavy communication and consensus-based
decision making the trademarks of open paradigm teams. Open paradigm
team structures are well suited to the solution of complex problems but
may not perform as efficiently as other teams.

4. A synchronous paradigm relies on the natural compartmentalization of a
problem and organizes team members to work on pieces of the problem

with little active communication among themselves.

As a historical footnote, one of the earliest software team organizations was
a closed paradigm structure originally called the chief programmer team. This
structure was first proposed by Harlan Mills and described by Baker [Bak72]l. The
nucleus of the team was composed of a senior engineer (the chief programmer),
who plans, coordinates, and reviews all technical activities of the team; technical
staff (normally two to five people), who conduct analysis and development

3 Lines of code (LOC) and function points are measures of the size of a computer program and
are discussed in Chapter 33.

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 93

activities; and a backup engineer, who supports the senior engineer in her activi-
ties and can replace the senior engineer with minimum loss in project continuity.
The chief programmer may be served by one or more specialists (e.g., telecom-
munications expert, database designer), support staff (e.g., technical writers,
clerical personnel), and a software librarian.

As a counterpoint to the chief programmer team structure, Constantine’s random
paradigm [Con93l suggests a software team with creative independence whose ap-
proach to work might best be termed innovative anarchy. Although the free-spirited
approach to software work has appeal, channeling creative energy into a high-

performance team must be a central goal of a software engineering organization.

SareHoME

Team Structure

I—I. The scene: Doug Miller’s office Jamie: I'm really into the agile philosophy, Doug. |

prior to the initiation of the SafeHome
software project.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug: Have you guys had a chance to look over
the preliminary info on SafeHome that marketing has
prepared?

Vinod (nodding and looking at his team-
mates): Yes. But we have a bunch of questions.
Doug: Let's hold onto that for a moment. I'd like to

talk about how we're going to structure the team, who's
responsible for what . . .

think we should be a self-organizing team.

Vinod: | agree. Given the tight time line and some of
the uncertainty, and that fact that we're all really compe-
tent [laughs], that seems like the right way to go.
Doug: That's okay with me, but you guys know the dfill.
Jamie (smiling and talking as if she was
reciting something): We make factical decisions,
about who does what and when, but it’s our responsibil-
ity to get product out the door on time.

Vinod: And with quality.

Doug: Exactly. But remember there are constraints.

Marketing defines the software increments to be
produced—in consultation with us, of course.

Jamie: And?

6.5 AgciLE TEAMS

Over the past decade, agile software development (Chapter 5) has been sug-

gested as an antidote to many of the problems that have plagued software proj-
ect work. To review, the agile philosophy encourages customer satisfaction and
early incremental delivery of software, small highly motivated project teams,
informal methods, minimal software engineering work products, and overall
development simplicity.

6.5.1 The Generic Agile Team

The small, highly motivated project team, also called an agile team, adopts
many of the characteristics of successful software project teams discussed in the

94

%,
POINT

An agile team is @
self-organizing team
that has autonomy to
plan and make techni-
cal decisions.

WP

“Collective
ownership is
nothing more than
an instantiation
of the idea that
producis should
be attributable to
the [agile] team,
not individuals
who make up the
team.”

Jim Highsmith

QA'pwcss.

Keep it simple
whenever you can,
but recognize that
continual “refactoring”
can absorb significant
time and resources.

PART ONE THE SOFTWARE PROCESS

preceding section and avoids many of the toxins that create problems. However,
the agile philosophy stresses individual (team member) competency coupled
with group collaboration as critical success factors for the team. Cockburn and
Highsmith [CocO1al note this when they write:

If the people on the project are good enough, they can use almost any process and
accomplish their assignment. If they are not good enough, no process will repair their
inadequacy—“people trump process” is one way to say this. However, lack of user and
executive support can kill a project—“politics trump people.” Inadequate support
can keep even good people from accomplishing the job.

To make effective use of the competencies of each team member and to
foster effective collaboration through a software project, agile teams are self-
organizing. A self-organizing team does not necessarily maintain a single team
structure, but instead, uses elements of Constantine’s random, open, and syn-
chronous paradigms discussed in Section 6.2.

Many agile process models (e.g., Scrum) give the agile team significant au-
tonomy to make the project management and technical decisions required to
get the job done. Planning is kept to a minimum, and the team is allowed to se-
lect its own approach (e.g., process, methods, tools), constrained only by business
requirements and organizational standards. As the project proceeds, the team
self-organizes to focus individual competency in a way that is most beneficial to
the project at a given point in time. To accomplish this, an agile team might con-
duct daily team meetings to coordinate and synchronize the work that must be
accomplished for that day.

Based on information obtained during these meetings, the team adapts its
approach in a way that accomplishes an increment of work. As each day passes,
continual self-organization and collaboration move the team toward a completed
software increment.

6.5.2 The XP Team

Beck [Bec04al defines a set of five values that establish a foundation for all work
performed as part of extreme programming (XP)—communication, simplicity,
feedback, courage, and respect. Each of these values is used as a driver for spe-
cific XP activities, actions, and tasks.

In order to achieve effective communication between the agile team and other
stakeholders (e.g., to establish required features and functions for the software),
XP emphasizes close, yet informal (verbal) collaboration between customers
and developers, the establishment of effective metaphors* for communicating

4 In the XP context, a metaphor is “a story that everyone—customers, programmers, and

managers—can tell about how the system works” [Bec04al.

Qoote:

“XP is the answer
to the question,
‘How little can we

do and sfill build
great software?"

Anonymous

6.6

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 95

important concepts, continuous feedback, and the avoidance of voluminous doc-
umentation as a communication medium.

To achieve simplicity, the agile team designs only for immediate needs, rather
than considering future needs. The intent is to create a simple design that can be
easily implemented in code. If the design must be improved, it can be refactored®
at a later time.

Feedback is derived from three sources: the implemented software itself, the
customer, and other software team members. By designing and implementing an
effective testing strategy (Chapters 22 through 26), the software (via test results)
provides the agile team with feedback. The team makes use of the unit test as
its primary testing tactic. As each class is developed, the team develops a unit
test to exercise each operation according to its specified functionality. As an in-
crement is delivered to a customer, the user stories or use cases (Chapter 9) that
are implemented by the increment are used to perform acceptance tests. The
degree to which the software implements the output, function, and behavior of
the use case is a form of feedback. Finally, as new requirements are derived as
part of iterative planning, the team provides the customer with rapid feedback
regarding cost and schedule impact.

Beck [Bec04al argues that strict adherence to certain XP practices demands
courage. A better word might be discipline. For example, there is often signifi-
cant pressure to design for future requirements. Most software teams succumb,
arguing that “designing for tomorrow” will save time and effort in the long run.
An XP team must have the discipline (courage) to design for today, recognizing
that future requirements may change dramatically, thereby demanding substan-
tial rework of the design and implemented code.

By following each of these values, the XP team inculcates respect among its
members, between other stakeholders and team members, and indirectly, for
the software itself. As they achieve successful delivery of software increments,
the team develops growing respect for the XP process.

THE IMmPACT OF SocialL MEDIA

Email, texting, and videoconferencing have become ubiquitous activities in soft-
ware engineering work. But these communication mechanisms are really noth-
ing more than modern substitutes or supplements for the face-to-face contact.
Social media is different.

5 Refactoring allows a software engineer to improve the internal structure of a design (or source
code) without changing its external functionality or behavior. In essence, refactoring can be
used to improve the efficiency, readability, or performance of a design or the code that imple-

ments a design.

96

Quote:

“If content is king,
then conversation
is queen.”

John Munsell

PART ONE THE SOFTWARE PROCESS

Begel [Beg10l] and his colleagues address the growth and application of social
media in software engineering when they write:

The social processes around software development are . . . highly dependent on engi-
neers’ abilities to find and connect with individuals who share similar goals and com-
plementary skills, to harmonize each team member’s communication and teaming
preferences, to collaborate and coordinate during the entire software lifecycle, and
advocate for their product’s success in the marketplace.

In some ways, this “connection” can be as important as face-to-face communi-
cation. The value of social media grows as team size increases, and is magnified
further when the team is geographically dispersed.

First, a social network is defined for a software project. Using the network, the
software team can draw from the collective experience of team members, stake-
holders, technologists, specialists, and other businesspeople who have been in-
vited to participate in the network (if the network is private) or to any interested
party (if the network is public). And it can do this whenever an issue, a question,
or a problem arises. There are a number of different forms of social media and
each has a place in software engineering work.

A blog can be used to post a series of short articles describing important as-
pects of a system or voicing opinions about system features or functions that
are yet to be developed. It is also important to note that “software companies
frequently use blogs to share technical information and opinions with their em-
ployees, and very profitably, with their customers, both internal and external.”
[Beg10l

Microblogs (e.g., Twitter) allow a member of a software engineering network to
post short messages to followers who subscribe to them. Because the messages
are instantaneous and can be read from all mobile platforms, dispersion of infor-
mation is close to real time. This enables a software team to call an impromptu
meeting if an issue arises, to ask for specialized help if a problem occurs, or to
inform stakeholders about some aspect of the project.

Targeted on-line forums allow participants to post questions, opinions, case
studies or any other relevant information. A technical question can be posted
and within a few minutes, multiple “answers” are often available.

Social networking sites (e.g., Facebook, LinkedIn) allow degrees-of-separation
connections among software developers and related technologists. This allows
“friends” on a social networking site to learn about friends of friends who may
have knowledge or expertise related to the application domain or problem to
be solved. Specialized private networks built on the social networking paradigm
can be used within an organization.

Most social media enables the formation of “communities” of users with sim-
ilar interests. For example, a community of software engineers who specialize
in real-time embedded systems might provide a useful way for an individual or

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 97

team working in that area to make connections that would enhance their work.
As a community grows, participants discuss technology trends, application sce-
narios, new tools, and other software engineering knowledge. Finally, social
bookmarking sites (e.g., Delicious, Stumble, CiteULike) allow a software engi-
neer or team to recommend Web-based resources that may be of interest to a
social media community of like-minded individuals.

It is very important to note that privacy and security issues should not be over-
looked when using social media for software engineering work. Much of the work
performed by software engineers may be proprietary to their employer and dis-
closure could be very harmful. For that reason, the distinct benefits of social media
must be weighed against the treat of uncontrolled disclosure of private information.

Quole:

“They don't call

it the Infernet
anymore, they call
it cloud computing.
I'm no longer
resisting the name.
Call it what you
want.”

Larry Ellison

QA'pwcsg

The cloud is a powerful
repository for software
engineering informa-
tion, but you must

be sure fo consider

the change confrol
Issues discussed in
Chapter 29.

Cloud computing provides a mechanism for access to all software engineering
work products, artifacts, and project-related information. It runs everywhere and
removes the device dependency that was once a constraint for many software
projects. It allows members of a software team to conduct platform-independent,
low-risk trials of new software tools and to provide feedback on those tools. It
provides new avenues for distribution and testing of beta software. It provides
the potential for improved approaches to content and configuration manage-
ment (Chapter 29).

Because cloud computing can accomplish these things, it has the potential
to influence the manner in which software engineers organize their teams, the
way they do their work, the manner in which they communicate and connect,
and the way software projects are managed. Software engineering information
developed by one team member can be instantly available to all team members,
regardless of the platform others are using or their location.

In essence, information dispersion speeds up and broadens dramatically. That
changes the software engineering dynamic and can have a profound impact on
the human aspects of software engineering.

But cloud computing in a software engineering milieu is not without risk
[The13l. The cloud is dispersed over many servers and the architecture and ser-
vices are often outside the control of a software team. As a consequence, there
are multiple points of failure, presenting reliability and security risks. As the
number of services provided by the cloud grows, the relative complexity of the
software development environment also grows. Does each of these services play
well with other services, possibly provided by other vendors? This presents an
interoperability risk for cloud services. Finally, if the cloud becomes the develop-
ment environment, services must stress usability and performance. These attri-
butes sometime conflict with security, privacy, and reliability.

98

6.8

PART ONE THE SOFTWARE PROCESS

But from the human perspective, the cloud offers far more benefits than risks
for software engineers. Dana Gardner [Gar09] summarizes the benefits (with a
warning):

Anything having to do with the social or collaboration aspects of software develop-
ment lent themselves well to the cloud. Project management, scheduling, task lists,
requirements, and defect management all suit themselves well as these are at core
group functions where communications is essential to keeping projects in sync and
all members of the team — wherever they are located — on literally the same page.
Of course, there is a huge caveat here - if your company designs embedded software
that goes into products, it is not a good candidate for the cloud: imagine getting a hold
of Apple’s project plans for the next version of the iPhone.

As Gardner states, one of the key benefits of the cloud is its ability to enhance
the “social and collaborative aspects of software development.” In the next sec-
tion, you'll learn a bit more about collaborative tools.

CoLLABORATION TooOLS

#) What generic
® services

are found in

collaborative

development

environments?

Fillipo Lanubile and his colleagues [Lan10l suggest that the software develop-
ment environments (SDEs) of the last century have morphed into collaborative
development environments (CDEs).® They state:

Tools are essential to collaboration among team members, enabling the facilitation,
automation, and control of the entire development process. Adequate tool support is
especially needed in global software engineering because distance aggravates coor-
dination and control problems, directly or indirectly, through its negative effects on

communication.

Many of the tools used in a CDE are no different from the tools that are used to
assist in the software engineering activities discussed in Parts 2, 3, and 4 of this
book. But a worthwhile CDE also provides a set of services that are specifically
designed to enhance collaborative work [Fok10l. These services include:

o A namespace that allows a project team to store all work products and
other information in a manner that enhances security and privacy, allow-
ing access only to authorized individuals.

e A calendar for coordinating meeting and other project events.

o Templates that enable team members to create work products that have a
consistent look and structure.

e Metrics support that tracks each team member’s contributions in a quanti-
tative manner.

6 The term collaborative development environment (CDE) was coined by Grady Booch [Boo02l.

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 99

o Communication analysis that tracks communication across the team and
isolates patterns that may imply problems or issues that need to be resolved.

o Artifact-clustering that organizes work products and other project
artifacts in a manner that answers questions such as: “What triggered a
particular change, who has discussed a specific artifact that should poten-
tially be consulted about changes to it, and how might a [team]l member’s
own work affect other people’s work?” [Fok10l.

7

and over long distances.

Mechanics: Tools and services in this category allow a
team to establish mechanisms for collaborative work.
A CDE will implement many or all of the services
described in Section 6.6, while at the same time
provide access to process management (Chapter 4)

Collaborative Development

Environments

Objective: As software development
becomes global, software teams need more than
development tools. They need a set of services that
enable members of the team to collaborate locally

SorTware TooLs
conventional software engineering tools discussed

throughout this book.
Representative tools:”

GForge—a collaborative environment that contains both
project and code management facilities (hitp://
gforge.com/gf/)

OneDesk—provides a collaborative environment that

creates and manages a project workspace for
developers and stakeholders (www.onedesk.com)

Rational Team Concert—an in-depth, collaborative life-
cycle management system (hitp://www-01.ibm
.com/software/rational/products/rtc/) J

Quole:

“More and more,
in any company,
managers are
dealing with
different cultures.
Companies are
going global, but
the teams are
being divided and
scattered all over
the planet.”

Carlos Ghosn,
Nissan

S

In the software domain, globalization implies more than the transfer of goods and
services across international boundaries. For the past few decades, an increasing
number of major software products have been built by software teams that are often
located in different countries. These global software development (GSD) teams
have many of the characteristics of a conventional software team (Section 6.4), but
a GSD team has other unique challenges that include coordination, collaboration,
communication, and specialized decision making. Approaches to coordination,
collaboration, and communication have been discussed earlier in this chapter. De-
cision making on all software teams is complicated by four factors [Gar10l:

e Complexity of the problem.

o Uncertainty and risk associated with the decision.

e The law of unintended consequences (i.e., work-associated decision has an
unintended effect on another project objective).

o Different views of the problem that lead to different conclusions about the
way forward.

7 Tools noted here do not represent an endorsement, but rather, a sampling of tools in this cate-
gory. In most cases, tool names are trademarked by their respective developers.

100 PART ONE

THE SOFTWARE PROCESS

6.10 SumMMARY

Factors
affecting a Distance
GSD team
(adapted from
[Cas06])
Introduces
Complicates Accentuates
the need for

Barriers and complexity

Attenuate Reduces

Collaboration Coordination

o]

Improves

Communication

Enhances

For a GSD team, the challenges associated with coordination, collaboration,
and communication can have a profound effect on decision making. Figure 6.2 il-
lustrates the impact of distance on the challenges that face a GSD team. Distance
complicates communication, but at the same time, accentuates the need for co-
ordination. Distance also introduces barriers and complexity that can be driven
by cultural differences. Barriers and complexity attenuate communication (i.e.,
the signal-to-noise ratio decreases). The problems inherent in this dynamic can
result in a project that becomes unstable.

Although there is no silver bullet that can fully correct the relationships im-
plied by Figure 6.2, the use of effective CDEs (Section 6.6) can help reduce the
impact of distance.

A successful software engineer must have technical skills. But in addition, he
must take responsibility for his commitments, be aware of the needs of his peers,
be honest in his assessment of the product and the project, be resilient under
pressure, treat his peers fairly, and exhibit attention to detail.

The psychology of software engineering includes individual cognition and mo-
tivation, the group dynamics of a software team, and the organization behavior
of the company. In order to improve communication and collaboration, members
of a software team can take on boundary-spanning roles.

A successful (“jelled”) software team is more productive and motivated than
average. To be effective, a software team must have a sense of purpose, a sense of
involvement, a sense of trust, and a sense of improvement. In addition the team

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING 101

must avoid “toxicity” that is characterized by a frenzied and frustrating work
atmosphere, an inappropriate software process, an unclear definition of roles on
the software team, and continuous exposure to failure.

There are many different team structures. Some teams organize hierarchi-
cally, while others prefer a loose structure that relies on individual initiative.
Agile teams subscribe to the agile philosophy and generally have more auton-
omy than more conventional software teams. Agile teams emphasize communi-
cation, simplicity, feedback, courage, and respect.

Social media is becoming an integral part of many software projects. Blogs,
microblogs, forums, and social networking capabilities help to form a software
engineering community that communicates and coordinates more effectively.

Cloud computing has the potential to influence the manner in which software
engineers organize their teams, the way they do their work, the manner in which
they communicate and connect, and the way software projects are managed. In
situations in which the cloud can enhance the social and collaborative aspects of
software development, its benefits far outweigh its risks.

Collaborative development environments contain a number of services that
enhance communication and collaboration for a software team. These environ-
ments are particularly useful for global software development where geographic
separation can precipitate barriers to successful software engineering.

PROBLEMS AND PoOINTS To PONDER

6.1. Based on your personal observation of people who are excellent software developers,
name three personality traits that appear to be common among them.

6.2. How can you be “brutally honest” and still not be perceived (by others) as insulting or
aggressive?

6.3. How does a software team construct “artificial boundaries” that reduce their ability to
communicate with others?

6.4. Write a brief scenario that describes each of the “boundary-spanning roles” described
in Section 6.2.

6.5. In Section 6.3, we note that a sense of purpose, involvement, trust, and improvement
are essential attributes for effective software teams. Who is responsible for instilling these
attributes as a team is formed?

6.6. Which of the four organizational paradigms for teams (Section 6.4) do you think would
be most effective (a) for the IT department at a major insurance company; (b) for a software
engineering group at a major defense contractor; (c) for a software group that builds com-
puter games; (d) for a major software company? Explain why you made the choices you did.

6.7. If you had to pick one attribute of an agile team that makes it different from a conven-
tional software team, what would it be?

6.8. Of the forms of social media that were described for software engineering work in
Section 6.6, which do you think would be most effective and why?

6.9. Write a scenario in which the SafeHome team members make use of one or more forms
of social media as part of their software project.

102

PART ONE THE SOFTWARE PROCESS

6.10. Presently, the cloud is one of the more hyped concepts in the world of computing.
Describe how the cloud can add value for a software engineering organization with specific
reference to services that are specifically designed to enhance software engineering work.

6.11. Do some research on one of the CDE tools noted in the sidebar in Section 6.8 (or a tool
assigned by your instructor) and prepare a brief presentation of the tool’s capabilities for
your class.

6.12. Referring to Figure 6.2, why does distance complicate communication? Why does dis-
tance accentuate the need for coordination? Why types of barriers and complexity are in-
troduced by distance?

FuRTHER READINGS AND INFORMATION SOURCES

Although many books have addressed the human aspects of software engineering, two
books can legitimately be called classics. Jerry Weinberg (The Psychology of Computer Pro-
gramming, Silver Anniversary Edition, Dorset House, 1998) was the first to consider the
psychology of the people who build computer software. Tom DeMarco and Tim Lister (Peo-
pleware: Productive Projects and Teams, 2nd ed., Dorset House, 1999) argue that the major
challenges in software development are human, not technical.

Useful insights into the human aspects of software engineering have also been provided
by Mantle and Lichty (Managing the Unmanageable: Rules, Tools, and Insights for Managing
Software People and Teams, Addison-Wesley, 2012), Fowler (The Passionate Programmer,
Pragmatic Bookshelf, 2009), McConnell (Code Complete, 2nd ed., Microsoft Press, 2004),
Brooks (The Mythical Man-Month, 2nd ed., Addison-Wesley, 1999), and Hunt and Thomas
(The Pragmatic Programmer, Addison-Wesley, 1999). Tomayko and Hazzan (Human Aspects
of Software Engineering, Charles River Media, 2004) address both the psychology and sociol-
ogy of software engineering with an emphasis on XP.

The human aspects of the agile development have been addressed by Rasmussen (The
Agile Samurai, Pragmatic Bookshelf, 2010) and Davies (Agile Coaching, Pragmatic Book-
shelf, 2010). Important aspects of agile teams are considered by Adkins (Coaching Agile
Teams, Addison-Wesley, 2010), and Derby, Larsen, and Schwaber (Agile Retrospectives: Mak-
ing Good Teams Great, Pragmatic Bookshelf, 2006).

Problem solving is a uniquely human activity and is addressed in books by Adair (Deci-
sion Making and Problem Solving Strategies, Kogan Page, 2010), Roam (Unfolding the Nap-
kin, Portfolio Trade, 2009), and Wananabe (Problem Solving 101, Portfolio Hardcover, 2009).

Guidelines for facilitating collaboration within a software team are presented by Tabaka
(Collaboration Explained, Addison-Wesley, 2006). Rosen (The Culture of Collaboration, Red
Ape Publishing, 2009), Hansen (Collaboration, Harvard Business School Press, 2009), and
Sawyer (Group Genius: The Creative Power of Collaboration, Basic Books, 2007) present
strategies and practical guidelines for improving collaboration on technical teams.

Fostering human innovation is the subject of books by Gray, Brown, and Macanufo (Game
Storming, O-Reilly Media, 2010), Duggan (Strategic Intuition, Columbia University Press,
2007), and Hohmann (Innovation Games, Addison-Wesley, 2006).

An overall look at global software development is presented by Ebert (Global Software
and IT: A Guide to Distributed Development, Projects, and Outsourcing, Wiley-IEEE Com-
puter Society Press, 2011). Mite and his colleagues (Agility Across Time and Space: Imple-
menting Agile Methods in Global Software Projects, Springer, 2010) have edited an anthology
that addresses the use of agile teams in global development.

A wide variety of information sources that discuss the human aspects of software engineer-
ing are available on the Internet. An up-to-date list of World Wide Web references that are rel-
evant to the software process can be found at the SEPA website: www.mhhe.com/pressman.

PART

Two

MODELING

n this part of Software Engineering: A Practitioner’s Approach

you’ll learn about the principles, concepts, and methods that are

used to create high-quality requirements and design models.
These questions are addressed in the chapters that follow:

e What concepts and principles guide software engineering
practice?

e What is requirements engineering and what are the under-
lying concepts that lead to good requirements analysis?

e How is the requirements model created and what are its
elements?

e What are the elements of a good design?

e How does architectural design establish a framework for
all other design actions and what models are used?

e How do we design high-quality software components?

e What concepts, models, and methods are applied as a user
interface is designed?

e What is pattern-based design?

e What specialized strategies and methods are used to design
WebApps?

e What specialized strategies and methods are used to design
mobile apps?

Once these questions are answered you’ll be better prepared to
apply software engineering practice.
103

CHAPTER

KEey
CONCEPTS

coding principles . . 122
communication

principles 110
core principles. . . . 106
deployment

principles 125
design modeling
principles 17
living modeling
principles 120
modeling

principles 114
planning

principles
practice

process. 00
requirements modeling
principles 116

testing principles. . 123

PrINCIPLES THAT
GuIDE PRACTICE

n a book that explores the lives and thoughts of software engineers, Ellen
Ullman [Ul1197] depicts a slice of life as she relates the thoughts of a practi-

tioner under pressure:

I have no idea what time it is. There are no windows in this office and no clock, only
the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00.
Joel and I have been programming for days. We have a bug, a stubborn demon of a
bug. So the red pulse no-time feels right, like a read-out of our brains, which have
somehow synchronized themselves at the same blink rate . . .

What are we working on? . .. The details escape me just now. We may be helping
poor sick people or tuning a set of low-level routines to verify bits on a distributed
database protocol—I don’t care. I should care; in another part of my being—Ilater,
perhaps when we emerge from this room full of computers—I will care very much
why and for whom and for what purpose I am writing software. But just now: no.
I have passed through a membrane where the real world and its uses no longer

matter. I am a software engineer . . .

(Shif{elid) What is it? Software engineering
practice is a broad array of princi-
ples, concepts, methods, and tools
that you must consider as software
is planned and developed. Principles that
guide practice establish a foundation from
which software engineering is conducted.

Who does it? Practitioners (software engi-
neers) and their managers conduct a variety of
software engineering tasks.

Why is it important? The software process
provides everyone involved in the creation of a
computer-based system or product with a road
map for getting to a successful destination.
Practice provides you with the detail you'll
need to drive along the road. It tells you where
the bridges, the roadblocks, and the forks are
located. It helps you understand the concepts
and principles that must be understood and
followed to drive safely and rapidly. It instructs
you on how to drive, where to slow down, and
where to speed up. In the context of software

Looxk

104

engineering, practice is what you do day in
and day out as software evolves from an idea
to a reality.

What are the steps? Three elements of prac-
tice apply regardless of the process model that
is chosen. They are: principles, concepts, and
methods. A fourth element of practice —tools—
supports the application of method:s.

What is the work product? Practice encom-
passes the technical activities that produce all
work products that are defined by the software
process model that has been chosen.

How do | ensure that I've done it right?
First, have a firm understanding of the princi-
ples that apply to the work (e.g., design) that
you're doing at the moment. Then, be certain
that you've chosen an appropriate method for
the work, be sure that you understand how to
apply the method, use automated fools when
they’re appropriate for the task, and be ada-
mant about the need for techniques to ensure
the quality of work products that are produced.

7.1

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 105

A dark image of software engineering practice to be sure, but upon reflection,
many of the readers of this book will be able to relate to it.

People who create computer software practice the art or craft or discipline!
that is software engineering. But what is software engineering “practice”? In a
generic sense, practice is a collection of concepts, principles, methods, and tools
that a software engineer calls upon on a daily basis. Practice allows managers to
manage software projects and software engineers to build computer programs.
Practice populates a software process model with the necessary technical and
management how-to’s to get the job done. Practice transforms a haphazard unfo-
cused approach into something that is more organized, more effective, and more
likely to achieve success.

Various aspects of software engineering practice will be examined throughout
the remainder of this book. In this chapter, our focus is on principles and con-
cepts that guide software engineering practice in general.

SoFTWARE ENGINEERING KNOWLEDGE

In an editorial published in IEEE Software, Steve McConnell IMcC99] made the
following comment:

Many software practitioners think of software engineering knowledge almost exclu-
sively as knowledge of specific technologies: Java, Perl, html, C++, Linux, Windows
NT, and so on. Knowledge of specific technology details is necessary to perform com-
puter programming. If someone assigns you to write a program in C++, you have to
know something about C++ to get your program to work.

You often hear people say that software development knowledge has a 3-year half-
life: half of what you need to know today will be obsolete within 3 years. In the domain
of technology-related knowledge, that’s probably about right. But there is another
kind of software development knowledge—a kind that I think of as “software engi-
neering principles”—that does not have a three-year half-life. These software engi-
neering principles are likely to serve a professional programmer throughout his or

her career.

McConnell goes on to argue that the body of software engineering knowledge
(circa the year 2000) had evolved to a “stable core” that he estimated represented
about “75 percent of the knowledge needed to develop a complex system.” But
what resides within this stable core?

Over the intervening years, we have seen the evolution of new operat-
ing systems like iOS or Android and languages like Java, Python, and C#.

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software
engineering is all three.

106

7.2

PART TWO MODELING

But, as McConnell indicates, core principles—the elemental ideas that guide
software engineers in the work that they do—still provide a foundation from
which software engineering models, methods, and tools can be applied and
evaluated.

CoRE PRINCIPLES

Q!ote:

“In theory there

is no difference
between theory
and practice. But, in
practice, there is.”

Jan van de
Snepscheut

cA'pwcss

Every project and every
team is unique. That
means that you must
adapt your process to
best fit your needs.

Software engineering is guided by a collection of core principles that help in the
application of a meaningful software process and the execution of effective soft-
ware engineering methods. At the process level, core principles establish a phil-
osophical foundation that guides a software team as it performs framework and
umbrella activities, navigates the process flow, and produces a set of software
engineering work products. At the level of practice, core principles establish a
collection of values and rules that serve as a guide as you analyze a problem,
design a solution, implement and test the solution, and ultimately deploy the
software in the user community.

In Chapter 2, we identified a set of general principles that span software en-
gineering process and practice: (1) provide value to end users, (2) keep it simple,
(3) maintain the vision (of the product and the project), (4) recognize that others
consume (and must understand) what you produce, (5) be open to the future,
(6) plan ahead for reuse, and (7) think! Although these general principles are
important, they are characterized at such a high level of abstraction that they are
sometimes difficult to translate into day-to-day software engineering practice. In
the subsections that follow, we take a more detailed look at the core principles
that guide process and practice.

7.2.1 Principles That Guide Process

In Part 1 of this book we discussed the importance of the software process and
described the many different process models that have been proposed for soft-
ware engineering work. Regardless of whether a model is linear or iterative,
prescriptive or agile, it can be characterized using the generic process frame-
work that is applicable for all process models. The following set of core prin-
ciples can be applied to the framework, and by extension, to every software
process.

Principle 1. Be agile. Whether the process model you choose is prescrip-
tive or agile, the basic tenets of agile development should govern your
approach. Every aspect of the work you do should emphasize economy
of action—keep your technical approach as simple as possible, keep the
work products you produce as concise as possible, and make decisions
locally whenever possible.

Wi

“The truth of the
matter is that you
always know the
right thing to do.
The hard part is
doing it.”

General H.
Norman
Schwarzkopf

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 107

Principle 2. Focus on quality at every step. The exit condition for every
process activity, action, and task should focus on the quality of the work
product that has been produced.

Principle 3. Be ready to adapt. Process is not a religious experience, and
dogma has no place in it. When necessary, adapt your approach to con-
straints imposed by the problem, the people, and the project itself.

Principle 4. Build an effective team. Software engineering process and
practice are important, but the bottom line is people. Build a self-organizing
team that has mutual trust and respect.?

Principle 5. Establish mechanisms for communication and coordination.
Projects fail because important information falls into the cracks and/
or stakeholders fail to coordinate their efforts to create a successful end
product. These are management issues and they must be addressed.

Principle 6. Manage change. The approach may be either formal or infor-
mal, but mechanisms must be established to manage the way changes are
requested, assessed, approved, and implemented.

Principle 7. Assess risk. Lots of things can go wrong as software is being
developed. It’s essential that you establish contingency plans. Some of
these contingency plans will form the basis for security engineering tasks
(Chapter 27).

Principle 8. Create work products that provide value for others. Create
only those work products that provide value for other process activities,
actions, or tasks. Every work product that is produced as part of software
engineering practice will be passed on to someone else. A list of required
functions and features will be passed along to the person (people) who will
develop a design, the design will be passed along to those who generate
code, and so on. Be sure that the work product imparts the necessary
information without ambiguity or omission.

Part 4 of this book focuses on project and process management issues and con-
siders various aspects of each of these principles in some detail.

7.2.2 Principles That Guide Practice

Software engineering practice has a single overriding goal—to deliver on-time,
high-quality, operational software that contains functions and features that
meet the needs of all stakeholders. To achieve this goal, you should adopt a set
of core principles that guide your technical work. These principles have merit
regardless of the analysis and design methods that you apply, the construction
techniques (e.g., programming language, automated tools) that you use, or the

2 The characteristics of effective software teams have been discussed in Chapter 6.

108 PART TWO MODELING

verification and validation approach that you choose. The following set of core
principles are fundamental to the practice of software engineering:

Principle 1. Divide and conquer. Stated in a more technical manner, analysis
and design should always emphasize separation of concerns (SoCs). A large
problem is easier to solve if it is subdivided into a collection of elements (or
concerns). Ideally, each concern delivers distinct functionality that can be
developed, and in some cases validated, independently of other concerns.

Principle 2. Understand the use of abstraction. At its core, an abstraction

is a simplification of some complex element of a system used to communi-
cate meaning in a single phrase. When we use the abstraction spreadsheet,
it is assumed that you understand what a spreadsheet is, the general struc-
ture of content that a spreadsheet presents, and the typical functions that
can be applied to it. In software engineering practice, you use many differ-
ent levels of abstraction, each imparting or implying meaning that must

be communicated. In analysis and design work, a software team normally
begins with models that represent high levels of abstraction (e.g., a spread-
sheet) and slowly refines those models into lower levels of abstraction (e.g.,
a column or the SUM function).

Joel Spolsky [Spo02] suggests that “all non-trivial abstractions, to some
degree, are leaky.” The intent of an abstraction is to eliminate the need to
communicate details. But sometimes, problematic effects precipitated by
these details “leak” through. Without an understanding of the details, the
cause of a problem cannot be easily diagnosed.

Principle 3. Strive for consistency. Whether it’s creating an analysis model,
developing a software design, generating source code, or creating test
cases, the principle of consistency suggests that a familiar context makes
software easier to use. As an example, consider the design of a user in-
terface for a WebApp. Consistent placement of menu options, the use of a
consistent color scheme, and the consistent use of recognizable icons all
help to make the interface ergonomically sound.

Principle 4. Focus on the transfer of information. Software is about infor-
mation transfer—from a database to an end user, from a legacy system to a
WebApp, from an end user into a graphic user interface (GUD, from an op-
erating system to an application, from one software component to another—
the list is almost endless. In every case, information flows across an interface,
and as a consequence, there are opportunities for error, or omission, or am-
biguity. The implication of this principle is that you must pay special atten-
tion to the analysis, design, construction, and testing of interfaces.

Principle 5. Build software that exhibits effective modularity. Separation

of concerns (Principle 1) establishes a philosophy for software. Modularity
provides a mechanism for realizing the philosophy. Any complex system

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 109

can be divided into modules (components), but good software engineer-
ing practice demands more. Modularity must be effective. That is, each
module should focus exclusively on one well-constrained aspect of the
system—it should be cohesive in its function and/or constrained in the
content it represents. Additionally, modules should be interconnected in
a relatively simple manner—each module should exhibit low coupling to
other modules, to data sources, and to other environmental aspects.

Principle 6. Look for patterns. Brad Appleton [App00] suggests that:

Gpwczs

The goal of patterns within the software community is to create a body of

Use patterns (Chap- literature to help software developers resolve recurring problems encoun-
If(er hj) dm (ap{fjur ¢ tered throughout all of software development. Patterns help create a shared
nowledge and expe-
Jience fog future g ; i language for communicating insight and experience about these problems and
erafions of software their solutions. Formally codifying these solutions and their relationships lets
engineers. us successfully capture the body of knowledge which defines our understand-
ing of good architectures that meet the needs of their users.

The use of design patterns can be applied to wider systems engineering
and systems integration problems, by allowing components in complex
systems to evolve independently.

Gpwcss Principle 7. When possible, represent the problem and its solution from
Avoid tunnel vision by a number of different perspectives. When a problem and its solution are
examining a problem examined from a number of different perspectives, it is more likely that
from a number of greater insight will be achieved and that errors and omissions will be un-
d’ffe"?m perspecfives. covered. For example, a requirements model can be represented using a
You discover aspects
scenario-oriented viewpoint, a class-oriented viewpoint, or a behavioral
that would haven been
hidden otherwise. viewpoint (Chapters 9 through 11). Each provides a different perspective

of the problem and its requirements.

Principle 8. Remember that someone will maintain the software. Over the
long term, software will be corrected as defects are uncovered, adapted as
its environment changes, and enhanced as stakeholders request more ca-
pabilities. These maintenance activities can be facilitated if solid software
engineering practice is applied throughout the software process.

These principles are not all you’ll need to build high-quality software, but
they do establish a foundation for every software engineering method discussed
in this book.

7.3 PRriNcIPLES THAT GuiDE EAcH FRAMEWORK ACTIVITY

In the sections that follow we consider principles that have a strong bearing

on the success of each generic framework activity defined as part of the soft-
ware process. In many cases, the principles that are discussed for each of the

110

Gpwcsg

Before communicating
be sure you understand
the point of view of
the other party, know
o bit about his or her
needs, and then listen.

Quote:

“Plain questions
and plain answers
make the shortest
road o most
perplexities.”

Mark Twain

PART TWO MODELING

framework activities are a refinement of the principles presented in Section 7.2.
They are simply core principles stated at a lower level of abstraction.

7.3.1 Communication Principles

Before customer requirements can be analyzed, modeled, or specified they must
be gathered through the communication activity. A customer has a problem that
may be amenable to a computer-based solution. You respond to the customer’s
request for help. Communication has begun. But the road from communication
to understanding is often full of potholes.

Effective communication (among technical peers, with the customer and other
stakeholders, and with project managers) is among the most challenging activi-
ties that you will confront. In this context, we discuss communication principles
as they apply to customer communication. However, many of the principles apply
equally to all forms of communication that occur within a software project.

Principle 1. Listen. Try to focus on the speaker’s words, rather than for-
mulating your response to those words. Ask for clarification if something
is unclear, but avoid constant interruptions. Never become contentious in
your words or actions (e.g., rolling your eyes or shaking your head) as a
person is talking.

Principle 2. Prepare before you communicate. Spend the time to under-
stand the problem before you meet with others. If necessary, do some
research to understand business domain jargon. If you have responsibility
for conducting a meeting, prepare an agenda in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communication
meeting should have a leader (a facilitator) to keep the conversation mov-
ing in a productive direction, (2) to mediate any conflict that does occur,
and (3) to ensure that other principles are followed.

Principle 4. Face-to-face communication is best. But it usually works bet-
ter when some other representation of the relevant information is pres-
ent. For example, a participant may create a drawing or a “strawman”
document that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of fall-
ing into the cracks. Someone participating in the communication should
serve as a “‘recorder” and write down all important points and decisions.

Principle 6. Strive for collaboration. Collaboration and consensus occur

when the collective knowledge of members of the team is used to describe
product or system functions or features. Each small collaboration serves to
build trust among team members and creates a common goal for the team.

Principle 7. Stay focused; modularize your discussion. The more people
are involved in any communication, the more likely that discussion will

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 111

bounce from one topic to the next. The facilitator should keep the conver-

sation modular, leaving one topic only after it has been resolved (however,

see Principle 9).

Principle 8. If something is unclear, draw a picture. Verbal communication

goes only so far. A sketch or drawing can often provide clarity when words

fail to do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t

What
® happens if
| can’t come to an
agreement with
the customer on
some project-
related issve?

agree to something, move on. (c) If a feature or function is unclear and
cannot be clarified at the moment, move on. Communication, like any soft-
ware engineering activity, takes time. Rather than iterating endlessly, the
people who participate should recognize that many topics require discus-
sion (see Principle 2) and that “moving on” is sometimes the best way to

achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best when
both parties win. There are many instances in which you and other stake-

holders must negotiate functions and features, priorities, and delivery

dates. If the team has collaborated well, all parties have a common goal.

Still, negotiation will demand compromise from all parties.

>

The Difference Between
Customers and End Users

Software engineers communicate with many
different stakeholders, but customers and end users have
the most significant impact on the technical work that
follows. In some cases the customer and the end user are
one and the same, but for many projects, the customer
and the end user are different people, working for differ-
ent managers in different business organizations.

A customer is the person or group who (1) originally
@uesred the software to be built, (2) defines overall

business obijectives for the software, (3) provides basic

product requirements, and (4) coordinates funding for
the project. In a product or system business, the customer
is often the marketing department. In an information
technology (IT) environment, the customer might be a
business component or department.

An end user is the person or group who (1) will
actually use the software that is built to achieve some
business purpose and (2) will define operational
details of the software so the business purpose can
be achieved.

J

Communication Mistakes

|
L lm. The scene: Software engineering

team workspace

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member.

The conversation:
Ed: What have you heard about this SafeHome project?

Vinod: The kick-off meeting is scheduled for next
week.

112

Jamie: |'ve already done a little bit of investigation,
but it didn't go well.

Ed: “What do you mean?”

Jamie: Well, | gave Lisa Perez a call. She’s the market-
ing honcho on this thing.

Vinod: And . .

Jamie: | wanted her to tell me about SafeHome

.2

PART TWO MODELING

product area before our kick-off meeting. Doug said
that he wanted us to “collaborate” with our customer, so
we'd better learn how to do that.

Ed: Probably would have been better to stop by her
office. Phone calls just don’t work as well for this sort of
thing.

Jamie: You're both right. We've got to get our act fo-
gether or our early communications will be a struggle.

features and functions . . . that sort of thing. Instead, .
she began asking me questions about security systems, Vinod: | saw Doug reading a book on “requirements
surveillance systems . . . I'm no expert. engineering.” I'll bet that lists some principles of good

Vinod: What does that tell you?

(Jamie shrugs)

Vinod: That marketing will need us to act as consul-

communication. I'm going to borrow it from him.
Jamie: Good idea . . . then you can teach us.

Vinod (smiling): Yeah, right.

tants and that we’d better do some homework on this

“In preparing

for battle I have
always found that
plans are useless,
but planning is
indispensable.”

General Dwight
D. Eisenhower

An excellent repository
of plonning and project
management informa-
tion can be found o
www.4pm.com/
repository.htm.

7.3.2 Planning Principles

The communication activity helps you to define your overall goals and objectives
(subject, of course, to change as time passes). However, understanding these
goals and objectives is not the same as defining a plan for getting there. The
planning activity encompasses a set of management and technical practices that
enable the software team to define a road map as it travels toward its strategic
goal and tactical objectives.

Try as we might, it’s impossible to predict exactly how a software project will
evolve. There is no easy way to determine what unforeseen technical problems
will be encountered, what important information will remain undiscovered until
late in the project, what misunderstandings will occur, or what business issues
will change. And yet, a good software team must plan its approach.

There are many different planning philosophies.? Some people are “minimal-
ists,” arguing that change often obviates the need for a detailed plan. Others
are “traditionalists,” arguing that the plan provides an effective road map and
the more detail it has, the less likely the team will become lost. Still others are
“agilists,” arguing that a quick “planning game” may be necessary, but that the
road map will emerge as “real work” on the software begins.

What to do? On many projects, overplanning is time consuming and fruitless
(too many things change), but underplanning is a recipe for chaos. Like most
things in life, planning should be conducted in moderation, enough to provide

3 A detailed discussion of software project planning and management is presented in Part 4 of
this book.

Quote:

“Success is more

a function of
consistent common
sense than it is of
genius.”

An Wang
[/5]
Y,
POINT

The term granularity
refers fo the detail with
which some element of
planning is represented
or conducted.

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 113

useful guidance for the team—no more, no less. Regardless of the rigor with
which planning is conducted, the following principles always apply:

Principle 1. Understand the scope of the project. It’s impossible to use
a road map if you don’t know where you're going. Scope provides the
software team with a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders
define priorities and establish project constraints. To accommodate these
realities, software engineers must often negotiate order of delivery, time
lines, and other project-related issues.

Principle 3. Recognize that planning is iterative. A project plan is never
engraved in stone. As work begins, it is very likely that things will change.
As a consequence, the plan must be adjusted to accommodate these
changes. In addition, iterative, incremental process models dictate re-
planning after the delivery of each software increment based on feedback
received from users.

Principle 4. Estimate based on what you know. The intent of estimation
is to provide an indication of effort, cost, and task duration, based on the
team’s current understanding of the work to be done. If information is
vague or unreliable, estimates will be equally unreliable.

Principle 5. Consider risk as you define the plan. If you have identified
risks that have high impact and high probability, contingency planning is
necessary. In addition, the project plan (including the schedule) should be
adjusted to accommodate the likelihood that one or more of these risks
will occur. Take into account the likely exposure due to losses or compro-
mises of project assets.

Principle 6. Be realistic. People don’t work 100 percent of every day. Noise
always enters into any human communication. Omissions and ambiguity
are facts of life. Change will occur. Even the best software engineers make
mistakes. These and other realities should be considered as a project plan
is established.

Principle 7. Adjust granularity as you define the plan. Granularity refers
to the level of detail that is introduced as a project plan is developed.

A “high-granularity” plan provides significant work task detail that is
planned over relatively short time increments (so that tracking and con-
trol occur frequently). A “low-granularity” plan provides broader work
tasks that are planned over longer time periods. In general, granularity
moves from high to low as the project time line moves away from the cur-
rent date. Over the next few weeks or months, the project can be planned
in significant detail. Activities that won’t occur for many months do not
require high granularity (too much can change).

114

%,

POINT
Analysis models
represent customer
requirements. Design
models provide a
concrete specification
for the construction of
the software.

PART TWO MODELING

Principle 8. Define how you intend to ensure quality. The plan should
identify how the software team intends to ensure quality. If technical
reviews* are to be conducted, they should be scheduled. If pair program-
ming (Chapter 5) is to be used during construction, it should be explicitly
defined within the plan.

Principle 9. Describe how you intend to accommodate change. Even the
best planning can be obviated by uncontrolled change. You should iden-
tify how changes are to be accommodated as software engineering work
proceeds. For example, can the customer request a change at any time? If
a change is requested, is the team obliged to implement it immediately?
How is the impact and cost of the change assessed?

Principle 10. Track the plan frequently and make adjustments as required.
Software projects fall behind schedule one day at a time. Therefore,

it makes sense to track progress on a daily basis, looking for problem
areas and situations in which scheduled work does not conform to ac-
tual work conducted. When slippage is encountered, the plan is adjusted
accordingly.

To be most effective, everyone on the software team should participate in the
planning activity. Only then will team members “sign up” to the plan.

7.3.3 Modeling Principles

We create models to gain a better understanding of the actual entity to be built.
When the entity is a physical thing (e.g., a building, a plane, a machine), we can
build a model that is identical in form and shape but smaller in scale. However,
when the entity to be built is software, our model must take a different form.
It must be capable of representing the information that software transforms,
the architecture and functions that enable the transformation to occur, the fea-
tures that users desire, and the behavior of the system as the transformation
is taking place. Models must accomplish these objectives at different levels of
abstraction—first depicting the software from the customer’s viewpoint and later
representing the software at a more technical level.

In software engineering work, two classes of models can be created: require-
ments models and design models. Requirements models (also called analysis
models) represent customer requirements by depicting the software in three dif-
ferent domains: the information domain, the functional domain, and the behav-
ioral domain. Design models represent characteristics of the software that help
practitioners to construct it effectively: the architecture, the user interface, and
component-level detail.

4 Technical reviews are discussed in Chapter 20.

ﬁpwcsg

The intent of any
model is to communi-
cate information. To
accomplish this, use

a consistent format.
Assume that you won't
be there fo explain the
model. It should stand
on ifs own.

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 115

In their book on agile modeling, Scott Ambler and Ron Jeffries [Amb02bl de-
fine a set of modeling principles® that are intended for those who use the agile
process model (Chapter 5) but are appropriate for all software engineers who
perform modeling action and tasks:

Principle 1. The primary goal of the software team is to build software, not
create models. Agility means getting software to the customer in the fast-
est possible time. Models that make this happen are worth creating, but
models that slow the process down or provide little new insight should be
avoided.

Principle 2. Travel light—don’t create more models than you need. Every
model that is created must be kept up-to-date as changes occur. More
importantly, every new model takes time that might otherwise be spent
on construction (coding and testing). Therefore, create only those models
that make it easier and faster to construct the software.

Principle 3. Strive to produce the simplest model that will describe the
problem or the software. Don’t overbuild the software [Ambo02bl. By keep-
ing models simple, the resultant software will also be simple. The result is
software that is easier to integrate, easier to test, and easier to maintain
(to change). In addition, simple models are easier for members of the
software team to understand and critique, resulting in an ongoing form
of feedback that optimizes the end result.

Principle 4. Build models in a way that makes them amenable to change.
Assume that your models will change, but in making this assumption don’t
get sloppy. For example, since requirements will change, there is a ten-
dency to give requirements models short shrift. Why? Because you know
that they’ll change anyway. The problem with this attitude is that without
a reasonably complete requirements model, you’ll create a design (design
model) that will invariably miss important functions and features.

Principle 5. Be able to state an explicit purpose for each model that is
created. Every time you create a model, ask yourself why you're doing so.
If you can’t provide solid justification for the existence of the model, don’t
spend time on it.

Principle 6. Adapt the models you develop to the system at hand. It may
be necessary to adapt model notation or rules to the application; for
example, a video game application might require a different modeling
technique than real-time, embedded software that controls an automobile
engine.

5 The principles noted in this section have been abbreviated and rephrased for the purposes of
this book.

116

Qoote:

“The engineer's
first problem

in any design
situation is fo
discover what the
problem really is.”

Avuthor unknown

PART TWO MODELING

Principle 7. Try to build useful models, but forget about building perfect
models. When building requirements and design models, a software en-
gineer reaches a point of diminishing returns. That is, the effort required
to make the model absolutely complete and internally consistent is not
worth the benefits of these properties. Are we suggesting that modeling
should be sloppy or low quality? The answer is no. But modeling should be
conducted with an eye to the next software engineering steps. Iterating
endlessly to make a model “perfect” does not serve the need for agility.

Principle 8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary. Although
everyone on a software team should try to use consistent notation during
modeling, the most important characteristic of the model is to commu-
nicate information that enables the next software engineering task. If a
model does this successfully, incorrect syntax can be forgiven.

Principle 9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned. If you

are an experienced software engineer, trust your instincts. Software work
teaches many lessons—some of them on a subconscious level. If something
tells you that a design model is doomed to fail (even though you can’t
prove it explicitly), you have reason to spend additional time examining
the model or developing a different one.

Principle 10. Get feedback as soon as you can. Every model should be re-
viewed by members of the software team. The intent of these reviews is to
provide feedback that can be used to correct modeling mistakes, change
misinterpretations, and add features or functions that were inadvertently
omitted.

Requirements modeling principles. Over the past three decades, a large num-
ber of requirements modeling methods have been developed. Investigators have
identified requirements analysis problems and their causes and have developed
a variety of modeling notations and corresponding sets of heuristics to overcome
them. Each analysis method has a unique point of view. However, all analysis
methods are related by a set of operational principles:

Principle 1. The information domain of a problem must be represented and
understood. The information domain encompasses the data that flow into
the system (from end users, other systems, or external devices), the data that
flow out of the system (via the user interface, network interfaces, reports,
graphics, and other means), and the data stores that collect and organize
persistent data objects (i.e., data that are maintained permanently).

Principle 2. The functions that the software performs must be defined.
Software functions provide direct benefit to end users and also provide

%
POINT

Analysis modeling
focuses on three
atfributes of software:
information to be pro-
cessed, function fo be
delivered, and behavior
to be exhibited.

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 117

internal support for those features that are user visible. Some functions
transform data that flow into the system. In other cases, functions effect
some level of control over internal software processing or external system
elements. Functions can be described at many different levels of abstrac-
tion, ranging from a general statement of purpose to a detailed descrip-
tion of the processing elements that must be invoked.

Principle 3. The behavior of the software (as a consequence of external
events) must be represented. The behavior of computer software is driven
by its interaction with the external environment. Input provided by end
users, control data provided by an external system, or monitoring data
collected over a network all cause the software to behave in a specific way.

Principle 4. The models that depict information, function, and behavior
must be partitioned in a manner that uncovers detail in a layered (or hi-
erarchical) fashion. Requirements modeling is the first step in software
engineering problem solving. It allows you to better understand the prob-
lem and establishes a basis for the solution (design). Complex problems
are difficult to solve in their entirety. For this reason, you should use a
divide-and-conquer strategy. A large, complex problem is divided into
subproblems until each subproblem is relatively easy to understand. This
concept is called partitioning or separation of concerns, and it is a key
strategy in requirements modeling.

Principle 5. The analysis task should move from essential information to-
ward implementation detail. Analysis modeling begins by describing the
problem from the end user’s perspective. The “essence” of the problem

is described without any consideration of how a solution will be imple-
mented. For example, a video game requires that the player “instruct” its
protagonist on what direction to proceed as she moves into a dangerous
maze. That is the essence of the problem. Implementation detail (nor-
mally described as part of the design model) indicates how the essence
will be implemented. For the video game, voice input might be used. Al-
ternatively, a keyboard command might be typed, a game pad joystick (or
mouse) might be pointed in a specific direction, a motion-sensitive device
might be waved in the air, or a device that reads the player’s body move-
ments directly can be used.

By applying these principles, a software engineer approaches a problem sys-
tematically. But how are these principles applied in practice? This question will
be answered in Chapters 8 through 11.

Design modeling principles. The software design model is the equivalent of an
architect’s plans for a house. It begins by representing the totality of the thing to
be built (e.g., a three-dimensional rendering of the house) and slowly refines the

118

Quote:

“See first that

the design is wise
and just: that
ascertained, pursue
it resolutely; do
not for one repulse
forego the purpose
that you resolved
to effect.”

William
Shakespeare

Insightful comments
on the design process,
along with a discussion
of design aesthefics,
can be found o
http:/ /www.
gobookee.net/
search.php?
q=aabyan+
design+aesthetics.

PART TWO MODELING

thing to provide guidance for constructing each detail (e.g., the plumbing layout).
Similarly, the design model that is created for software provides a variety of dif-
ferent views of the system.

There is no shortage of methods for deriving the various elements of a software
design. Some methods are data driven, allowing the data structure to dictate
the program architecture and the resultant processing components. Others are
pattern driven, using information about the problem domain (the requirements
model) to develop architectural styles and processing patterns. Still others are
object oriented, using problem domain objects as the driver for the creation of
data structures and the methods that manipulate them. Yet all embrace a set of
design principles that can be applied regardless of the method that is used:

Principle 1. Design should be traceable to the requirements model. The
requirements model describes the information domain of the problem,
user-visible functions, system behavior, and a set of requirements classes
that package business objects with the methods that service them. The
design model translates this information into an architecture, a set of sub-
systems that implement major functions, and a set of components that are
the realization of requirements classes. The elements of the design model
should be traceable to the requirements model.

Principle 2. Always consider the architecture of the system to be built.
Software architecture (Chapter 13) is the skeleton of the system to be
built. It affects interfaces, data structures, program control flow and be-
havior, the manner in which testing can be conducted, the maintainability
of the resultant system, and much more. For all of these reasons, design
should start with architectural considerations. Only after the architecture
has been established should component-level issues be considered.

Principle 3. Design of data is as important as design of processing functions.
Data design is an essential element of architectural design. The manner in
which data objects are realized within the design cannot be left to chance.
A well-structured data design helps to simplify program flow, makes the
design and implementation of software components easier, and makes
overall processing more efficient.

Principle 4. Interfaces (both internal and external) must be designed with
care. The manner in which data flows between the components of a sys-
tem has much to do with processing efficiency, error propagation, and
design simplicity. A well-designed interface makes integration easier and
assists the tester in validating component functions.

Principle 5. User interface design should be tuned to the needs of the end
user. However, in every case, it should stress ease of use. The user interface
is the visible manifestation of the software. No matter how sophisticated
its internal functions, no matter how comprehensive its data structures,

Quole:

“The differences
are not minor —
they are rather
like the differences
between Salieri
and Mozart. Study
after study shows
that the very best
designers produce
structures that are
faster, smaller,
simpler, clearer,
and produced with
less effort.”

Frederick P.
Brooks

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 119

no matter how well designed its architecture, a poor interface design
often leads to the perception that the software is “bad.”

Principle 6. Component-level design should be functionally independent.
Functional independence is a measure of the “single-mindedness” of a
software component. The functionality that is delivered by a component
should be cohesive—that is, it should focus on one and only one function
or subfunction.®

Principle 7. Components should be loosely coupled to one another and to
the external environment. Coupling is achieved in many ways—via a com-
ponent interface, by messaging, through global data. As the level of cou-
pling increases, the likelihood of error propagation also increases and the
overall maintainability of the software decreases. Therefore, component
coupling should be kept as low as is reasonable.

Principle 8. Design representations (models) should be easily understand-
able. The purpose of design is to communicate information to practitioners
who will generate code, to those who will test the software, and to others
who may maintain the software in the future. If the design is difficult to un-
derstand, it will not serve as an effective communication medium.

Principle 9. The design should be developed iteratively. With each iteration,
the designer should strive for greater simplicity. Like almost all creative
activities, design occurs iteratively. The first iterations work to refine the
design and correct errors, but later iterations should strive to make the
design as simple as is possible.

Principle 10. Creation of a design model does not preclude an agile
approach. Some proponents of agile software development (Chapter 5)
insist that the code is the only design documentation that is needed. Yet
the purpose of a design model is to help others who must maintain and
evolve the system. It is extremely difficult to understand either the higher
level purpose of a code fragment or its interactions with other modules in
a modern multithreaded run-time environment.

Although in-line code documentation can be useful, it is often difficult to keep
code and code descriptions consistent. The design model provides benefit because
it is created at a level of abstraction that is stripped of unnecessary technical detail
and is closely coupled to the application concepts and requirements.

Complementary design information can incorporate a design rationale in-
cluding the descriptions of rejected architectural design alternatives. This in-
formation may be needed to help you see through the code forest. In addition, it
can help maintain consistency when finer-grained design decisions are required.

6 Additional discussion of cohesion can be found in Chapter 12.

120

PART TWO MODELING

This type of architectural specification can also help diverse system stakehold-
ers communicate with the design team and each other.

With the exception of relatively small systems that can be prototyped and ex-
perimented with quickly, doing high-level design using only source code is un-
wise. Agile design documentation keeps step with design and development. To
avoid waste, the effort expended on these documents should be proportional to
the stability of the design. In the early stages of design, descriptions must be ad-
equate to communicate with stakeholders. The more stable the design the more
extensive the descriptions. One approach might be to use design modeling tools
that produce executable models that can be evaluated in the usual agile manner.

When these design principles are properly applied, you create a design that
exhibits both external and internal quality factors [Mye78l. External quality fac-
tors are those properties of the software that can be readily observed by users
(e.g., speed, reliability, correctness, usability). Internal quality factors are of
importance to software engineers. They lead to a high-quality design from the
technical perspective. To achieve internal quality factors, the designer must un-
derstand basic design concepts (Chapter 12).

Living modeling principles. Breu [Brel0l describes living models as a paradigm
that combines model-based development” with the management and operation
of service-oriented systems.? Living models support cooperation among all proj-
ect stakeholders by providing appropriate model-based abstractions that de-
scribe interdependencies among system elements. There are eight principles
that are crucial for establishing a living models environment:

Principle 1. Stakeholder-centric models should target specific stakehold-
ers and their tasks. This means that stakeholders are allowed to operate
on the models at a level of abstraction that is appropriate, and that lower
levels are hidden from them. For example, the CIO is concerned with
business processes while a tester needs to formulate test cases at the
requirements level.

Principle 2. Models and code should be closely coupled. If an operable
system is the main target, any model that does not reflect the operable
system is useless. This means that the code and model need to be in con-
sistent states. Tools can be used to support linking models and the code.

Principle 3. Bidirectional information flow should be established between
models and code. Changes within the model, code, and operable system
must be allowed to propagate when they occur. Traditionally, changes

7 Model-based development (also called model-driven engineering) builds domain models that
depict specific aspects of an application domain.
8 A service-oriented system packages software functionality in the form of services that are ac-

cessible through a networked infrastructure.

“For much of

my life, | have
been a software
voyeur, peeking
furtively at other
people's dirty code.
Occasionally, |

find a real jewel,
a well-structured
program written in
a consistent style,
free of kludges,
developed so that
each component

is simple and
organized, and
designed so that
the product is easy
to change.”

David Parnas

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 121

made at the code level are reflected in the running system. It is also im-
portant to have those code changes reflected in the model.

Principle 4. A common system view should be created. A system meta
model defines business processes and information objects in the IT man-
agement layer, running services and physical nodes in the systems oper-
ations layer, and a requirements view in the software engineering layer.
The associations in the system meta model describe dependencies from
business processes and business objects to the technology layer.

Principle 5. The information in the model must be persistent to allow track-
ing of system changes. The system model describes the current state of
the system at all levels of abstraction. System evolution may be described
and documented as a sequence of system model snapshots.

Principle 6. Information consistency across all levels of the model must be
verified. Model constraint checking and state information retrieval are
two important services required to support stakeholder decision making.
For example, a software architect may need to check to see that each ser-
vice at the requirements level has a corresponding service at the architec-
ture level.

Principle 7. Each model element has assigned stakeholder rights and
responsibilities. Each stakeholder is responsible for an identified subset of
model elements. Each model subset is a stakeholder’s domain. This means
that each model element has access to information describing the actions
each stakeholder is able to perform on the element.

Principle 8. The states of various model elements should be represented.
Just as the state of computation is defined by the values held by key vari-
ables during run time, the state of each model element can be defined by
the values assigned to its attributes.

7.3.4 Construction Principles

The construction activity encompasses a set of coding and testing tasks that lead
to operational software that is ready for delivery to the customer or end user.
In modern software engineering work, coding may be (1) the direct creation of
programming language source code (e.g., Java), (2) the automatic generation of
source code using an intermediate designlike representation of the component to
be built (e.g., Enterprise Architect),® or (3) the automatic generation of executable
code using a fourth-generation programming language (e.g., Visual C#).

9 Enterprise Architect is tool created by Sparx Systems http://www.sparxsystems.com/products/

ea/index.html

122

ﬁpwcss

Avoid developing an
elegant program that
solves the wrong
problem. Pay particular
atfention fo the first
preparation principle.

PART TWO MODELING

The initial focus of testing is at the component level, often called unit testing.

Other levels of testing include (1) integration testing (conducted as the system

is constructed), (2) validation testing that assesses whether requirements have

been met for the complete system (or software increment), and (3) acceptance

testing that is conducted by the customer in an effort to exercise all required

features and functions. The following set of fundamental principles and concepts

are applicable to coding and testing.

Coding principles. The principles that guide the coding task are closely aligned

with programming style, programming languages, and programming methods.

However, there are a number of fundamental principles that can be stated:

Preparation Principles: Before you write one line of code, be sure you

Understand of the problem you're trying to solve.
Understand basic design principles and concepts.

Pick a programming language that meets the needs of the software to be
built and the environment in which it will operate.

Select a programming environment that provides tools that will make
your work easier.

Create a set of unit tests that will be applied once the component you code
is completed.

Coding Principles: As you begin writing code, be sure you

Constrain your algorithms by following structured programming [Boh00l
practice.

Consider the use of pair programming.
Select data structures that will meet the needs of the design.

Understand the software architecture and create interfaces that are

consistent with it.

Keep conditional logic as simple as possible.

Create nested loops in a way that makes them easily testable.

Select meaningful variable names and follow other local coding standards.
Write code that is self-documenting.

Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

Validation Principles: After youve completed your first coding pass, be sure you

Conduct a code walkthrough when appropriate.
Perform unit tests and correct errors you’ve uncovered.

Refactor the code.

A wide variety of links
to coding standards

can be found at
http:/ /www
Jiterateprogramming
.com/links.html.

@ What are the
® objectives of
software testing?

eArpwczs.

In a broader software
design context, recall
that we begin “in the
large” by focusing on
software architecture
and end “in the small
focusing on compo-
nents. For tesfing,

we simply reverse

the focus and test our
way out.

"

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 123

More books have been written about programming (coding) and the princi-
ples and concepts that guide it than about any other topic in the software pro-
cess. Books on the subject include early works on programming style [Ker78l,
practical software construction [IMcCo04Il, programming pearls [Ben99l, the art of
programming [Knu98l, pragmatic programming issues [Hun99l], and many, many
other subjects. A comprehensive discussion of these principles and concepts is
beyond the scope of this book. If you have further interest, examine one or more
of the references noted.

Testing principles. In a classic book on software testing, Glen Myers [Mye79]

states a number of rules that can serve well as testing objectives:

o Testing is a process of executing a program with the intent of finding an
error.

e A good test case is one that has a high probability of finding an as-yet un-
discovered error.

e A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software de-
velopers. They move counter to the commonly held view that a successful test is
one in which no errors are found. Your objective is to design tests that systemat-
ically uncover different classes of errors and to do so with a minimum amount of
time and effort.

If testing is conducted successfully (according to the objectives stated pre-
viously), it will uncover errors in the software. As a secondary benefit, testing
demonstrates that software functions appear to be working according to specifi-
cation, and that behavioral and performance requirements appear to have been
met. In addition, the data collected as testing is conducted provide a good indica-
tion of software reliability and some indication of software quality as a whole. But
testing cannot show the absence of errors and defects; it can show only that soft-
ware errors and defects are present. It is important to keep this (rather gloomy)
statement in mind as testing is being conducted.

Davis [Dav95bl suggests a set of testing principles!® that have been adapted
for use in this book. In addition, Everett and Meyer [Eve09] suggest additional
principles:

Principle 1. All tests should be traceable to customer requirements.!' The
objective of software testing is to uncover errors. It follows that the most

10 Only a small subset of Davis’s testing principles are noted here. For more information, see
[Dav9sbl.

11 This principle refers to functional tests, that is, tests that focus on requirements. Structural
tests (tests that focus on architectural or logical detail) may not address specific requirements
directly.

124

PART TWO MODELING

severe defects (from the customer’s point of view) are those that cause the
program to fail to meet its requirements.

Principle 2. Tests should be planned long before testing begins. Test plan-
ning (Chapter 22) can begin as soon as the requirements model is com-
plete. Detailed definition of test cases can begin as soon as the design
model has been solidified. Therefore, all tests can be planned and de-
signed before any code has been generated.

Principle 3. The Pareto principle applies to software testing. In this context
the Pareto principle implies that 80 percent of all errors uncovered during
testing will likely be traceable to 20 percent of all program components.
The problem, of course, is to isolate these suspect components and to
thoroughly test them.

Principle 4. Testing should begin “in the small” and progress toward test-
ing “in the large.” The first tests planned and executed generally focus on
individual components. As testing progresses, focus shifts in an attempt
to find errors in integrated clusters of components and ultimately in the
entire system.

Principle 5. Exhaustive testing is not possible. The number of path permu-
tations for even a moderately sized program is exceptionally large. For
this reason, it is impossible to execute every combination of paths during
testing. It is possible, however, to adequately cover program logic and

to ensure that all conditions in the component-level design have been
exercised.

Principle 6. Apply to each module in the system a testing effort
commensurate with its expected fault density. These are often the newest
modules or the ones that are least understood by the developers.

Principle 7. Static testing techniques can yield high results. More than 85%
of software defects originated in the software documentation (require-
ments, specifications, code walkthroughs, and user manuals) [Jon91].
There may be value in testing the system documentation.

Principle 8. Track defects and look for patterns in defects uncovered by
testing. The total defects uncovered is a good indicator of software quality.
The types of defects uncovered can be a good measure of software stabil-
ity. Patterns of defects found over time can forecast numbers of expected
defects.

Principle 9. Include test cases that demonstrate software is behaving cor-
rectly. As software components are being maintained or adapted, unex-
pected interactions cause unintended side effects in other components.
It is important to have a set of regression test cases (Chapter 22) ready to
check system behavior after changes are applied to a software product.

&pwc:’

Be sure that your
customer knows what
to expect before a
software increment is
delivered. Otherwise,
you can bet the
customer will expect
more than you deliver.

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 125

7.3.5 Deployment Principles

As we noted in Part 1 of this book, the deployment activity encompasses three ac-
tions: delivery, support, and feedback. Because modern software process models
are evolutionary or incremental in nature, deployment happens not once, but a
number of times as software moves toward completion. Each delivery cycle pro-
vides the customer and end users with an operational software increment that
provides usable functions and features. Each support cycle provides documen-
tation and human assistance for all functions and features introduced during all
deployment cycles to date. Each feedback cycle provides the software team with
important guidance that results in modifications to the functions, features, and
approach taken for the next increment.

The delivery of a software increment represents an important milestone for
any software project. A number of key principles should be followed as the team
prepares to deliver an increment:

Principle 1. Customer expectations for the software must be managed. Too
often, the customer expects more than the team has promised to deliver,
and disappointment occurs immediately. This results in feedback that is
not productive and ruins team morale. In her book on managing expecta-
tions, Naomi Karten [Kar94l states: “The starting point for managing ex-
pectations is to become more conscientious about what you communicate
and how.” She suggests that a software engineer must be careful about
sending the customer conflicting messages (e.g., promising more than
you can reasonably deliver in the time frame provided or delivering more
than you promise for one software increment and then less than promised
for the next).

Principle 2. A complete delivery package should be assembled and tested.
All executable software, support data files, support documents, and other
relevant information should be assembled and thoroughly beta-tested with
actual users. All installation scripts and other operational features should
be thoroughly exercised in all possible computing configurations (i.e., hard-
ware, operating systems, peripheral devices, networking arrangements).

Principle 3. A support regime must be established before the sofiware is
delivered. An end user expects responsiveness and accurate information
when a question or problem arises. If support is ad hoc, or worse, nonex-
istent, the customer will become dissatisfied immediately. Support should
be planned, support materials should be prepared, and appropriate
record-keeping mechanisms should be established so that the software team
can conduct a categorical assessment of the kinds of support requested.

Principle 4. Appropriate instructional materials must be provided to
end users. The software team delivers more than the software itself.

126

7.4

PART TWO MODELING

Appropriate training aids (if required) should be developed; troubleshoot-
ing guidelines should be provided, and when necessary, a “what’s different
about this software increment” description should be published.!?

Principle 5. Buggy software should be fixed first, delivered later. Under
time pressure, some software organizations deliver low-quality incre-
ments with a warning to the customer that bugs “will be fixed in the next
release.” This is a mistake. There’s a saying in the software business:
“Customers will forget you delivered a high-quality product a few days
late, but they will never forget the problems that a low-quality product
caused them. The software reminds them every day.”

The delivered software provides benefit for the end user, but it also pro-
vides useful feedback for the software team. As the increment is put into use,
end users should be encouraged to comment on features and functions, ease
of use, reliability, security concerns, and any other characteristics that are
appropriate.

WoRK PRACTICES

WP

“The ideal engineer
is a composite . . .
He is not a
scienfist, he is not
mathematician, he
is not a sociologist
or a writer; but

he may use the
knowledge and
techniques of any
or all of these
disciplines in
solving engineering
problems.”

N. W. Dougherty

Iskold [Isk08] writes that the quality of software has become the competitive
differentiator between software companies. As you learned in Chapter 6, the
human aspects of software engineering are as important as any other technol-
ogy area. For that reason, it is interesting to examine the traits and work habits
that seem to be shared among successful software engineers. Among the more
important are a desire to continuously refactor the design and code, actively
use proven design patterns, acquire reusable components whenever possible,
focus on usability, develop maintainable applications, apply the programming
language that is best for the application, and build software using proven design
and testing practices.

Beyond basic traits and work habits, Isklod [Isk08] suggests 10 concepts that
transcend programming languages and specific technologies. Some of these
concepts form the prerequisite knowledge needed to appreciate the role of soft-
ware engineering in the software process.

1. Interfaces. Simple, familiar interfaces are less error-prone than complex
or unique interfaces.

2. Conventions and templates. Naming conventions and software templates
are a good way to communicate with a larger number of developers and
end users.

12 During the communication activity, the software team should determine what types of help

materials users want.

7.5

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 127

3. Layering. Layering is the key to both data and programming abstractions.
It allows a separation of design concepts and implementation details and,
at the same time, reduces the complexity of the software design.

4. Algorithmic complexity. Software engineers must be able to appreciate
the elegance and performance characteristics of algorithms, even when
selecting among library routines. Writing simple and readable code is
often a good way to ensure the time and space efficiency of an application.

5. Hashing. Hashes are important for efficient storage and retrieval of data.
Hashes can also be important as a means to allocate data evenly among
computers in a cloud database.

6. Caching. Software engineers need to appreciate the trade-offs associated
with providing quick access to a subset of data by storing it in computer
memory and not secondary storage devices. Thrashing may occur when
mutually dependent data are not in memory at the same time. Applica-
tions can slow down when new information needs to be brought into mem-
ory (e.g., playing cut scenes in a real-time video game).

7. Concurrency. The widespread availability of multiprocessor computers
and multithreaded programming environments creates software engi-
neering challenges.

8. Cloud computing. Cloud computing provides powerful and readily
accessible web services and data to computing platforms of all types.

9. Security. Protecting the confidentiality and integrity of system assets
should be the concern of every computing professional.

10. Relational databases. Relational databases are the cornerstone of infor-
mation storage and retrieval. It is important to know how to minimize
data redundancy and to maximize the speed of retrieval.

In many cases a few good software engineers working “smart” can be more
productive than groups many times their size. A good software engineer must
know what principles, practices, and tools to use, when to use them, and why
they are needed.

SUMMARY.

Software engineering practice encompasses principles, concepts, methods, and
tools that software engineers apply throughout the software process. Every soft-
ware engineering project is different. Yet, a set of generic principles apply to the
process as a whole and to the practice of each framework activity regardless of
the project or the product.

A set of core principles help in the application of a meaningful software pro-
cess and the execution of effective software engineering methods. At the process

128

PART TWO MODELING

level, core principles establish a philosophical foundation that guides a software
team as it navigates through the software process. At the level of practice, core
principles establish a collection of values and rules that serve as a guide as you
analyze a problem, design a solution, implement and test the solution, and ulti-
mately deploy the software in the user community.

Communication principles focus on the need to reduce noise and improve
bandwidth as the conversation between developer and customer progresses.
Both parties must collaborate for the best communication to occur.

Planning principles provide guidelines for constructing the best map for the
journey to a completed system or product. The plan may be designed solely for
a single software increment, or it may be defined for the entire project. Regard-
less, it must address what will be done, who will do it, and when the work will be
completed.

Modeling encompasses both analysis and design, describing representations
of the software that progressively become more detailed. The intent of the mod-
els is to solidify understanding of the work to be done and to provide technical
guidance to those who will implement the software. Modeling principles serve
as a foundation for the methods and notation that are used to create representa-
tions of the software.

Construction incorporates a coding and testing cycle in which source code for a
component is generated and tested. Coding principles define generic actions that
should occur before code is written, while it is being created, and after it has been
completed. Although there are many testing principles, only one is dominant:
testing is a process of executing a program with the intent of finding an error.

Deployment occurs as each software increment is presented to the customer
and encompasses delivery, support, and feedback. Key principles for delivery
consider managing customer expectations and providing the customer with
appropriate support information for the software. Support demands advance
preparation. Feedback allows the customer to suggest changes that have busi-
ness value and provide the developer with input for the next iterative software
engineering cycle.

PROBLEMS AND PoINTS To PONDER

7.1. Since a focus on quality demands resources and time, is it possible to be agile and still
maintain a quality focus?

7.2. Ofthe eight core principles that guide process (discussed in Section 7.2.1), which do you
believe is most important?

7.3. Describe the concept of separation of concerns in your own words.

7.4. An important communication principle states, “Prepare before you communicate.”
How should this preparation manifest itself in the early work that you do? What work prod-
ucts might result as a consequence of early preparation?

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 129

7.5. Do some research on “facilitation” for the communication activity (use the references
provided or others) and prepare a set of guidelines that focus solely on facilitation.

7.6. How does agile communication differ from traditional software engineering communi-
cation? How is it similar?

7.7. Why is it necessary to “move on”?

7.8. Do some research on “negotiation” for the communication activity and prepare a set of
guidelines that focus solely on negotiation.

7.9. Describe what granularity means in the context of a project schedule.

7.10. Why are models important in software engineering work? Are they always necessary?
Are there qualifiers to your answer about necessity?

7.11. What three “domains” are considered during requirements modeling?
7.12. Try to add one additional principle to those stated for coding in Section 7.3.4.
7.13. What is a successful test?

7.14. Do you agree or disagree with the following statement: “Since we deliver multi-
ple increments to the customer, why should we be concerned about quality in the early
increments—we can fix problems in later iterations.” Explain your answer.

7.15. Why is feedback important to the software team?

FURTHER READINGS AND INFORMATION SOURCES

Customer communication is a critically important activity in software engineering, yet few
practitioners spend any time reading about it. Withall (Software Requirements Patterns,
Microsoft Press, 2007) presents a variety of useful patterns that address communications
problems. van Lamsweerde (Requirement Engineering: From System Goals to UML Models
to Software Specifications, Wiley, 2009) and Sutliff (User-Centered Requirements Engineering,
Springer, 2002) focuses heavily on communications-related challenges.

Books by Karten (Changing How You Manage and Communicate Change, IT Governace
Publishing, 2009), Weigers (Software Requirements, 2nd ed., Microsoft Press, 2003), Pardee
(To Satisfy and Delight Your Customer, Dorset House, 1996), and Karten [Kar94l provide
much insight into methods for effective customer interaction. Although their book does not
focus on software, Hooks and Farry (Customer-Centered Products, American Management
Association, 2000) present useful generic guidelines for customer communication. Young
(Project Requirements: A Guide to Best Practices, Management Concepts, 2006 and Effective
Requirements Practices, Addison-Wesley, 2001) emphasizes a “joint team” of customers and
developers who develop requirements collaboratively. Hull, Jackson, and Dick (Require-
ments Engineering, Springer, 3rd ed., 2010) and Somerville and Kotonya (Requirements
Engineering: Processes and Techniques, Wiley, 1998) discuss “elicitation” concepts and tech-
niques and other requirements engineering principles.

Communication and planning concepts and principles are considered in many project
management books. Useful project management offerings include books by Juli (Leadership
Principles for Project Success, CRC Press, 2012), West and his colleagues (Project Manage-
ment for IT Related Projects, British Informatics Society, 2012), Wysocki (Effective Project
Management: Agile, Adaptive, Extreme, 5th ed., Wiley, 2009), Hughes (Software Project Man-
agement, 5th ed., McGraw-Hill, 2009), Bechtold (Essentials of Software Project Management,
2nd ed., Management Concepts, 2007), Leach (Lean Project Management: Eight Principles for
Success, BookSurge Publishing, 2006), and Stellman and Greene (Applied Software Project
Management, O'Reilly Media, 2005).

Davis [Dav95bl has compiled an excellent collection of software engineering principles.
In addition, virtually every book on software engineering contains a useful discussion of

130

PART TWO MODELING

concepts and principles for analysis, design, and testing. Among the most widely used of-
ferings (in addition to this book!) are:

Abran, A., and J. Moore, SWEBOK: Guide to the Software Engineering Body of Knowl-
edge, IEEE, 2002.'3

Pfleeger, S., Software Engineering: Theory and Practice, 4th ed., Prentice Hall, 2009.

Schach, S., Object-Oriented and Classical Software Engineering, McGraw-Hill, 8th ed.,
2010.

Sommerville, 1., Software Engineering, 9th ed., Addison-Wesley, 2010.

These books also present detailed discussion of modeling and construction principles.

Modeling principles are considered in many books dedicated to requirements analy-
sis and/or software design. Books by Lieberman (The Art of Software Modeling, Auerbach,
2007), Rosenberg and Stephens (Use Case Driven Object Modeling with UML: Theory and
Practice, Apress, 2007), Roques (UML in Practice, Wiley, 2004), Penker and Eriksson (Business
Modeling with UML: Business Patterns at Work, Wiley, 2001) discuss modeling principles and
methods.

Norman’s (The Design of Everyday Things, Basic Books, 2002) is must reading for every
software engineer who intends to do design work. Winograd and his colleagues (Bringing
Design to Software, Addison-Wesley, 1996) have edited an excellent collection of essays
that address practical issues for software design. Constantine and Lockwood (Software for
Use, Addison-Wesley, 1999) present the concepts associated with “user-centered design.”
Tognazzini (Tog on Software Design, Addison-Wesley, 1995) presents a worthwhile philo-
sophical discussion of the nature of design. Stahl and his colleagues (Model-Driven Software
Development: Technology, Engineering, Wiley, 2006) discuss the principles of model-driven
development. Halladay (Principle-Based Refactoring, Principle Publishing, 2012) considers
eight fundamental design principles and identifies 50 rules for refactoring.

Hundreds of books address one or more elements of the construction activity. Kernighan
and Plauger [Ker78] have written a classic text on programming style, McConnell [IMcC04I]
presents pragmatic guidelines for practical software construction, Bentley [Ben99] suggests
a wide variety of programming pearls, Knuth [Knu98l has written a classic three-volume
series on the art of programming, and Hunt [Hun99] suggests pragmatic programming
guidelines.

Myers and his colleagues (The Art of Software Testing, 3rd ed., Wiley, 2011) have devel-
oped a major revision of his classic text and discuss many important testing principles.
Books by How Google Tests Software, Addison-Wesley, 2012), Perry (Effective Methods for
Software Testing, 3rd ed., Wiley, 2006), and Whittaker (How to Break Software, Addison-
Wesley, 2002), Kaner and his colleagues (Lessons Learned in Software Testing, Wiley, 2001),
and Marick (The Craft of Software Testing, Prentice-Hall, 1997) each present important test-
ing concepts and principles and much pragmatic guidance.

A wide variety of information sources on software engineering practice are available on
the Internet. An up-to-date list of World Wide Web references that are relevant to software
engineering practice can be found at the SEPA website: www.mhhe.com/pressman.

13 Available free of charge at http://www.computer.org/portal/web/swebok/v3guide

CHAPTER

UNDERSTANDING
REQUIREMENTS

KEey
CONCEPTS

nderstanding the requirements of a problem is among the most diffi-
cult tasks that face a software engineer. When you first think about it,

analysis patterns . 157 developing a clear understanding of requirements doesn’t seem that

collaboration. 140 hard. After all, doesn’t the customer know what is required? Shouldn’t the

elaboration. 135 . . .

clicitation. 134 end users have a good understanding of the features and functions that will

incepfion. 133 provide benefit? Surprisingly, in many instances the answer to these ques-

::::::::::: """" ::g tions is “no.” And even if customers and end users are explicit in their needs,

quality function those needs will change throughout the project.

deployment. ... 146 In the forward to a book by Ralph Young [You01l on effective requirements

requirements ti £ [RSPI te:

engineering. 132 [ARCDICEE, @Il OIr U ViLEOME

;‘::::i:';ms 143 It’s your worst nightmare. A customer walks into your office, sits down, looks you

requirements straight in the eye, and says, “I know you think you understand what I said, but

management. 138 what you don’t understand is what I said is not what I meant.” Invariably, this hap-
irement

:::;::::; .s _____ 160 pens late in the project, after deadline commitments have been made, reputations

specification 135 are on the line, and serious money is at stake.

What is it? Before you begin any
technical work, it's a good idea to
create a set of requirements for any
engineering tasks. These tasks lead to
an understanding of what the business impact of
the software will be, what the customer wants,
and how end users will inferact with the software.

Who does it? Software engineers (sometimes
referred to as system engineers or “analysts”
in the IT world) and other project stakeholders
(managers, customers, and end users) all par-
ticipate in requirements engineering.

Why is it important? Designing and building
an elegant computer program that solves the
wrong problem serves no one’s needs. That's
why it's important to understand what the cus-
tomer wants before you begin to design and
build a computer-based system.

What are the steps? Requirements engineering
begins with inception (a task that defines the
scope and nature of the problem to be solved).
It moves onward to elicitation (a task that helps

QUICK

Looxk

stakeholders define what is required), and then
elaboration (where basic requirements are re-
fined and modified). As stakeholders define the
problem, negotiation occurs (what are the prior-
ities, what is essential, when is it required?) Fi-
nally, the problem is specified in some manner
and then reviewed or validated to ensure that
your understanding of the problem and the stake-
holders’ understanding of the problem coincide.

What is the work product? The intent of re-
quirements engineering is to provide all parties
with a written understanding of the problem. This
can be achieved though a number of work prod-
ucts: usage scenarios, functions and features
lists, requirements models, or a specification.

How do | ensure that I’ve done it right?
Requirements engineering work products are
reviewed with stakeholders to ensure that what
you have learned is what they really meant. A
word of warning: Even after all parties agree,
things will change, and they will continue to
change throughout the project.

131

132

stakeholders. 139

Use Cases 149
validating

requirements 161
validation. 136
viewpoints...... 139

work products ... 147

8.1

PART TWO MODELING

All of us who have worked in the systems and software business for more than
a few years have lived this nightmare, and yet, few of us have learned to make it go
away. We struggle when we try to elicit requirements from our customers. We have
trouble understanding the information that we do acquire. We often record require-
ments in a disorganized manner, and we spend far too little time verifying what we do
record. We allow change to control us, rather than establishing mechanisms to con-
trol change. In short, we fail to establish a solid foundation for the system or software.
Each of these problems is challenging. When they are combined, the outlook is daunt-
ing for even the most experienced managers and practitioners. But solutions do exist.

It’s reasonable to argue that the techniques we’ll discuss in this chapter are
not a true “solution” to the challenges just noted. But they do provide a solid ap-
proach for addressing these challenges.

REQUIREMENTS ENGINEERING

Quote:

“The hardest single
part of building a
software system is
deciding what to
build. No part of
the work so cripples
the resulting system
if done wrong. No
other part is more
difficult to rectify
later.”

Fred Brooks

Requirements
engineering
establishes a solid
base for design and
construction. Without
it, the resulting
software has a high
probability of not
meeting customer’s
needs.

Designing and building computer software is challenging, creative, and just plain
fun. In fact, building software is so compelling that many software developers
want to jump right in before they have a clear understanding of what is needed.
They argue that things will become clear as they build, that project stakeholders
will be able to understand need only after examining early iterations of the soft-
ware, that things change so rapidly that any attempt to understand requirements
in detail is a waste of time, that the bottom line is producing a working program,
and that all else is secondary. What makes these arguments seductive is that they
contain elements of truth.' But each argument is flawed and can lead to a failed
software project.

The broad spectrum of tasks and techniques that lead to an understanding of
requirements is called requirements engineering. From a software process per-
spective, requirements engineering is a major software engineering action that
begins during the communication activity and continues into the modeling activ-
ity. It must be adapted to the needs of the process, the project, the product, and
the people doing the work.

Requirements engineering builds a bridge to design and construction. But
where does the bridge originate? One could argue that it begins at the feet of
the project stakeholders (e.g., managers, customers, and end users), where busi-
ness need is defined, user scenarios are described, functions and features are
delineated, and project constraints are identified. Others might suggest that it

1 This is particularly true for small projects (less than one month) and smaller, relatively simple
software efforts. As software grows in size and complexity, these arguments begin to break
down.

ﬂpwcss

Expect to do a bit of
design during require-
ments work and a bit
of requirements work
during design.

Quole:

“The seeds of
major software
disasters are
usually sown in the
first three months
of commencing the
software project.”

Caper Jones

CHAPTER 8 UNDERSTANDING REQUIREMENTS 133
begins with a broader system definition, where software is but one component
of the larger system domain. But regardless of the starting point, the journey
across the bridge takes you high above the project, allowing you to examine the
context of the software work to be performed; the specific needs that design and
construction must address; the priorities that guide the order in which work is
to be completed; and the information, functions, and behaviors that will have a
profound impact on the resultant design.

Over the past decade, there have been many technology changes that impact
the requirements engineering process [Wevl1l. Ubiquitous computing allows
computer technology to be integrated into many everyday objects. When these
objects are networked they can allow the creation of more complete user pro-
files, with the accompanying concerns for privacy and security.

Widespread availability of applications in the electronic marketplace will lead
to more diverse stakeholder requirements. Stakeholders can customize a prod-
uct to meet specific, targeted requirements that are applicable to only a small
subset of all end users. As product development cycles shorten, there are pres-
sures to streamline requirements engineering so that products come to market
more quickly. But the fundamental problem remains the same, getting timely,
accurate, and stable stakeholder input.

Requirements engineering encompasses seven distinct tasks: inception, elic-
itation, elaboration, negotiation, specification, validation, and management. It is
important to note that some of these tasks occur in parallel and all are adapted
to the needs of the project.

Inception. How does a software project get started? Is there a single event that
becomes the catalyst for a new computer-based system or product, or does the
need evolve over time? There are no definitive answers to these questions. In
some cases, a casual conversation is all that is needed to precipitate a major
software engineering effort. But in general, most projects begin when a business
need is identified or a potential new market or service is discovered. Stakehold-
ers from the business community (e.g., business managers, marketing people,
product managers) define a business case for the idea, try to identify the breadth
and depth of the market, do a rough feasibility analysis, and identify a working
description of the project’s scope. All of this information is subject to change, but
it is sufficient to precipitate discussions with the software engineering organiza-
tion.2 At project inception,® you establish a basic understanding of the problem,

2 Ifacomputer-based system is to be developed, discussions begin within the context of a system
engineering process. For a detailed discussion of system engineering, visit the website that
accompanies this book: www.mhhe.com/pressman

3 Recall that the Unified Process (Chapter 4) defines a more comprehensive “inception phase”
that encompasses the inception, elicitation, and elaboration tasks discussed in this chapter.

134

PART TWO MODELING

the people who want a solution, the nature of the solution that is desired, and
the effectiveness of preliminary communication and collaboration between the
other stakeholders and the software team.

Elicitation. It certainly seems simple enough—ask the customer, the users, and
others what the objectives for the system or product are, what is to be accom-
plished, how the system or product fits into the needs of the business, and finally,
how the system or product is to be used on a day-to-day basis. But it isn’t simple—
it’s very hard.

An important part of elicitation is to establish business goals [Cle10l. Your job
is to engage stakeholders and to encourage them to share their goals honestly.
Once the goals have been captured, a prioritization mechanism should be es-
tablished, and a design rationale for a potential architecture (that meets stake-
holder goals) can be created.

K Goal-Oriented Requirements strategic concerns to low-level technical details. Goals

Engineering should be specified precisely and serve as the basis

A goal is a long-term aim that a system or
product must achieve. Goals may deal with either func-
tional or nonfunctional (e.g., reliability, security, usability,
etc.) concerns. Goals are often a good way to explain
requirements to stakeholders and, once established, can
be used to manage conflicts among stakeholders.

Object models (Chapters 10 and 11) and require-
ments can be derived systematically from goals. A goal
graph showing links among goals can provide some
degree of traceability (Section 8.2.6) between high-level

for requirements elaboration, verification/validation,
conflict management, negotiation, explanation, and
evolution.

Conflicts detected in requirements are often a result
of conflicts present in the goals themselves. Conflict
resolution is achieved by negotiating a set of mutually
agreed-upon goals that are consistent with one another
and with stakeholder desires. A more complete discus-
sion on goals and requirements engineering can be

found in a paper by Lamsweweerde [LaMO1b]. J

Why is it
o difficult
to gain a dear
understanding
of what the
customer wants?

Christel and Kang [Cri92] identify a number of problems that are encountered
as elicitation occurs. Problems of scope occur when the boundary of the system is
ill-defined or the customers and users specify unnecessary technical detail that
may confuse, rather than clarify, overall system objectives. Problems of under-
standing are encountered when customers and users are not completely sure of
what is needed, have a poor understanding of the capabilities and limitations of
their computing environment, don’t have a full understanding of the problem
domain, have trouble communicating needs, omit information that is believed to
be “obvious,” specify requirements that conflict with the needs of other custom-
ers and users, or specify requirements that are ambiguous or untestable. Prob-
lems of volatility occur when the requirements change over time. To help

ﬁpwcss

Flaboration is a good
thing, but you have fo
know when fo stop.
The key is to describe
the problem in a way
that establishes a firm
base for design. If you
work beyond that point,
you're doing design.

ﬁpwcse

There should be no
winner and no loser in
an effective negotia-
tion. Both sides win,
because a “deal” that

both can live with is
solidified.

POINT

The formality and for-
mat of a specification
varies with the size
and the complexity
of the software to be
built.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 135
overcome these problems, you must approach the requirements-gathering activ-
ity in an organized manner.

Elaboration. The information obtained from the customer during inception and
elicitation is expanded and refined during elaboration. This task focuses on de-
veloping a refined requirements model (Chapters 9 through 11) that identifies
various aspects of software function, behavior, and information.

Elaboration is driven by the creation and refinement of user scenarios that
describe how the end user (and other actors) will interact with the system. Each
user scenario is parsed to extract analysis classes—business domain entities that
are visible to the end user. The attributes of each analysis class are defined, and
the services? that are required by each class are identified. The relationships
and collaboration between classes are identified, and a variety of supplementary
diagrams are produced.

Negotiation. It isn’t unusual for customers and users to ask for more than can
be achieved, given limited business resources. It’s also relatively common for
different customers or users to propose conflicting requirements, arguing that
their version is “essential for our special needs.”

You have to reconcile these conflicts through a process of negotiation. Cus-
tomers, users, and other stakeholders are asked to rank requirements and then
discuss conflicts in priority. Using an iterative approach that prioritizes require-
ments, assesses their cost and risk, and addresses internal conflicts, require-
ments are eliminated, combined, and/or modified so that each party achieves

some measure of satisfaction.

Specification. In the context of computer-based systems (and software), the
term specification means different things to different people. A specification can
be a written document, a set of graphical models, a formal mathematical model,
a collection of usage scenarios, a prototype, or any combination of these.

Some suggest that a “standard template” [Som97] should be developed and
used for a specification, arguing that this leads to requirements that are pre-
sented in a consistent and therefore more understandable manner. However, it is
sometimes necessary to remain flexible when a specification is to be developed.
For large systems, a written document, combining natural language descrip-
tions and graphical models may be the best approach. However, usage scenarios
may be all that are required for smaller products or systems that reside within

well-understood technical environments.

4 A service manipulates the data encapsulated by the class. The terms operation and method are
also used. If you are unfamiliar with object-oriented concepts, a basic introduction is presented
in Appendix 2.

136 PART TWO MODELING

>

Software Requirements
Specification Template

A software requirements specification (SRS)
is a work product that is created when a detailed de-
scription of all aspects of the software to be built must
be specified before the project is fo commence. It is im-
portant to note that a formal SRS is not always written. In
fact, there are many instances in which effort expended
on an SRS might be better spent in other software en-
gineering activities. However, when software is to be
developed by a third party, when a lack of specification
would create severe business issues, or when a system is
extremely complex or business critical, an SRS may be

Overall Description

2.1 Product Perspective

2.2 Product Features

2.3 User Classes and Characteristics
2.4 Operating Environment

2.5 Design and Implementation Constraints
2.6 User Documentation

2.7 Assumptions and Dependencies
System Features

3.1 System Feature 1

3.2 System Feature 2 (and so on)

External Interface Requirements
4.1 User Inferfaces

@

justified.

follows:

1.1 Purpose

Karl Wiegers [Wie03] of Process Impact Inc. has
developed a worthwhile template (available at
www.processimpact.com/process_assets/ 5
srs_template.doc) that can serve as a guideline for
those who must create a complete SRS. A topic outline

Table of Contents
Revision History

1. Introduction

1.2 Document Conventions
1.3 Intended Audience and Reading Suggestions
1.4 Project Scope

K 1.5 References

4.2 Hardware Inferfaces
4.3 Software Interfaces
4.4 Communications Inferfaces

Other Nonfunctional Requirements
5.1 Performance Requirements

5.2 Safety Requirements

5.3 Security Requirements

5.4 Software Quality Attributes

6. Other Requirements
Appendix A: Glossary
Appendix B: Analysis Models
Appendix C: Issues List

A detailed description of each SRS topic can be ob-
tained by downloading the SRS template at the URL
noted in this sidebar.

J

&DVICE‘

Akey concern during
requirements validation
is consistency. Use the
analysis model to en-
sure that requirements
have been consistently
stated.

Validation. The work products produced as a consequence of requirements en-
gineering are assessed for quality during a validation step. Requirements valida-
tion examines the specification® to ensure that all software requirements have
been stated unambiguously; that inconsistencies, omissions, and errors have
been detected and corrected; and that the work products conform to the stan-
dards established for the process, the project, and the product.

The primary requirements validation mechanism is the technical review
(Chapter 20). The review team that validates requirements includes software
engineers, customers, users, and other stakeholders who examine the specifi-
cation looking for errors in content or interpretation, areas where clarification
may be required, missing information, inconsistencies (a major problem when

5 Recall that the nature of the specification will vary with each project. In some cases, the “spec-
ification” is a collection of user scenarios and little else. In others, the specification may be a

document that contains scenarios, models, and written descriptions.

>

CHAPTER 8 UNDERSTANDING REQUIREMENTS 137

large products or systems are engineered), conflicting requirements, or unreal-
istic (unachievable) requirements.

To illustrate some of the problems that occur during requirements validation,
consider two seemingly innocuous requirements:

o The software should be user friendly.

e The probability of a successful unauthorized database intrusion should be
less than 0.0001.

The first requirement is too vague for developers to test or assess. What ex-
actly does “user friendly” mean? To validate it, it must be quantified or qualified
in some manner.

The second requirement has a quantitative element (“less than 0.00017), but
intrusion testing will be difficult and time consuming. Is this level of security even
warranted for the application? Can other complementary requirements associ-
ated with security (e.g., password protection, specialized handshaking) replace
the quantitative requirement noted?

Glinz [Gli09] writes that quality requirements need to be represented in a
manner that delivers optimal value. This means assessing the risk (Chapter 35) of
delivering a system that fails to meet the stakeholders’ quality requirements and
attempting to mitigate this risk at minimum cost. The more critical the quality
requirement is, the greater the need to state it in quantifiable terms. Less-critical
quality requirements can be stated in general terms. In some cases, a general
quality requirement can be verified using a qualitative technique (e.g., user sur-
vey or check list). In other situations, quality requirements can be verified using
a combination of qualitative and quantitative assessment.

Checklist

It is often useful to examine each requirement
against a set of checklist questions. Here is a small sub-
set of those that might be asked:

o Are requirements stated clearly? Can they be
misinterpreted?

o s the source (e.g., a person, a regulation, a
document) of the requirement identified2 Has the final
statement of the requirement been examined by or
against the original source?

o s the requirement bounded in quantitative terms?

o What other requirements relate to this requirement?
Are they clearly noted via a cross-reference matrix or
other mechanism?

Requirements Validation o Does the requirement violate any system domain

constraints?

Is the requirement testable? If so, can we specify tests
(sometimes called validation criteria) to exercise the
requirement?

Is the requirement traceable to any system model that
has been created?

Is the requirement traceable to overall system/
product objectives@

Is the specification structured in a way that leads

to easy understanding, easy reference, and easy
translation info more technical work products@

Has an index for the specification been created?
Have requirements associated with performance,
behavior, and operational characteristics been clearly

stated? What requirements appear to be implicite J

138 PART TWO MODELING

Requirements management. Requirements for computer-based systems change,
and the desire to change requirements persists throughout the life of the system.
Requirements management is a set of activities that help the project team identify,
control, and track requirements and changes to requirements at any time as the
project proceeds.® Many of these activities are identical to the software configura-
tion management (SCM) techniques discussed in Chapter 29.

K SorTWARE TooLs
Requirements Engineering discussed in Chapters 9 and 10. Tools noted below

P
" i focus on requirement management.
\J Objective: Requirements engineering tools
EasyRM, developed by Cybernetic Intelligence GmbH

(http://www.visuresolutions.com/visure-
requirements-software), Visure Requirements
is a flexible and complete requirements engineering
life-cycle solution, supporting requirements capture,
analysis, specification, validation and verification,
management, and reuse.

assist in requirements gathering, requirements
modeling, requirements management, and requirements
validation.

Mechanics: Tool mechanics vary. In general,
requirements engineering tools build a variety
of graphical (e.g., UML) models that depict the

informational, functional, and behavioral aspects of) .)
Rational RequisitePro, developed by Rational Software

(www-03.ibm.com/software/products/us/
en/reqpro), allows users to build a requirements
database; represent relationships among requirements;
and organize, prioritize, and trace requirements.

a system. These models form the basis for all other
activities in the software process.

Representative Tools:”

A reasonably comprehensive (and up-to-date) listing
of requirements engineering tools can be found at the
Volvere Requirements resources site at www.volere.
co.uk/tools.htm. Requirements modeling tools are

Many additional requirements management tools can
be found at the Volvere site noted earlier and at www
.jiludwig.com/Requirements_Management_

\ Tools.himl. J

.2 ESTABLISHING THE ROUNDWORK

In an ideal setting, stakeholders and software engineers work together on the
same team.? In such cases, requirements engineering is simply a matter of con-
ducting meaningful conversations with colleagues who are well-known members
of the team. But reality is often quite different.

Customer(s) or end users may be located in a different city or country, may
have only a vague idea of what is required, may have conflicting opinions about
the system to be built, may have limited technical knowledge, and may have

6 Formal requirements management is initiated only for large projects that have hundreds of
identifiable requirements. For small projects, this requirements engineering function is con-
siderably less formal.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-
gory. In most cases, tool names are trademarked by their respective developers.

8 This approach is strongly recommended for projects that adopt an agile software development
philosophy.

(>
5.
POINT

A stakeholder is

anyone who has a

direct interest in

or henefits from
the system that is
to be developed.

Qoote:

“Put three
stakeholders in

a room and ask
them what kind of
system they want.
You're likely to

get four or more
different opinions.”

Avuthor unknown

CHAPTER 8 UNDERSTANDING REQUIREMENTS 139

limited time to interact with the requirements engineer. None of these things are
desirable, but all are fairly common, and you are often forced to work within the
constraints imposed by this situation.

In the sections that follow, we discuss the steps required to establish the
groundwork for an understanding of software requirements—to get the project
started in a way that will keep it moving forward toward a successful solution.

8.2.1 Identifying Stakeholders

Sommerville and Sawyer [Som97] define a stakeholder as “anyone who benefits
in a direct or indirect way from the system which is being developed.” We have
already identified the usual suspects: business operations managers, product
managers, marketing people, internal and external customers, end users, con-
sultants, product engineers, software engineers, support and maintenance engi-
neers, and others. Each stakeholder has a different view of the system, achieves
different benefits when the system is successfully developed, and is open to dif-
ferent risks if the development effort should fail.

At inception, you should create a list of people who will contribute input as
requirements are elicited (Section 8.3). The initial list will grow as stakeholders
are contacted because every stakeholder will be asked: “Whom else do you think
I should talk to?”

8.2.2 Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will
be explored from many different points of view. For example, the marketing
group is interested in functions and features that will excite the potential mar-
ket, making the new system easy to sell. Business managers are interested in a
feature set that can be built within budget and that will be ready to meet defined
market windows. End users may want features that are familiar to them and that
are easy to learn and use. Software engineers may be concerned with functions
that are invisible to nontechnical stakeholders but that enable an infrastructure
that supports more marketable functions and features. Support engineers may
focus on the maintainability of the software.

Each of these constituencies (and others) will contribute information to the
requirements engineering process. As information from multiple viewpoints is
collected, emerging requirements may be inconsistent or may conflict with one
another. You should categorize all stakeholder information (including inconsis-
tent and conflicting requirements) in a way that will allow decision makers to
choose an internally consistent set of requirements for the system.

There are several things that can make it hard to elicit requirements for soft-
ware that satisfies its users: project goals are unclear, stakeholders’ priorities
differ, people have unspoken assumptions, stakeholders interpret meanings
differently, and requirements are stated in a way that makes them difficult to

140

PART TWO MODELING

verify [Alel1]. The goal of effective requirements engineering is to eliminate or
at least reduce these problems.

8.2.3 Working toward Collaboration

If five stakeholders are involved in a software project, you may have five (or
more) different opinions about the proper set of requirements. Throughout ear-
lier chapters, we have noted that customers (and other stakeholders) should
collaborate among themselves (avoiding petty turf battles) and with software en-
gineering practitioners if a successful system is to result. But how is this collab-
oration accomplished?

The job of a requirements engineer is to identify areas of commonality (i.e.,
requirements on which all stakeholders agree) and areas of conflict or inconsis-
tency (i.e., requirements that are desired by one stakeholder but conflict with the
needs of another stakeholder). It is, of course, the latter category that presents
a challenge.

K Using “Priority Points” stakeholder indicates the relative importance of each

One way of resolving conflicting require-
ments and at the same time better under-

standing the relative importance of all requirements is a stakeholder’s priority points are exhausted, no further
to use a “voting” scheme based on priority points. All action on requirements can be taken by that person.
stakeholders are provided with some number of priority ~ Overall points spent on each requirement by all stake-

points that can be “spent” on any number of require-
Qnrs. A list of requirements is presented, and each of each requirement. J

(from his or her viewpoint) by spending one or more
priority points on it. Points spent cannot be reused. Once

holders provide an indication of the overall importance

“It is better to
know some of the
questions than all
of the answers.”

James Thurber

Collaboration does not necessarily mean that requirements are defined by
committee. In many cases, stakeholders collaborate by providing their view of
requirements, but a strong “project champion” (e.g., a business manager or a se-
nior technologist) may make the final decision about which requirements make
the cut.

8.2.4 Asking the First Questions
Questions asked at the inception of the project should be “context free” [Gau89l.
The first set of context-free questions focuses on the customer and other stake-
holders, the overall project goals and benefits. For example, you might ask:

e Who is behind the request for this work?

e Who will use the solution?

e What will be the economic benefit of a successful solution?

e [s there another source for the solution that you need?

A What

® questions
will help you gain
a preliminary
understanding of
the problem?

Quole:

“He who asks a
question is a fool
for five minutes;
he who does not
ask a question is a
fool forever.”

Chinese proverb

CHAPTER 8 UNDERSTANDING REQUIREMENTS 141

These questions help to identify all stakeholders who will have interest in the
software to be built. In addition, the questions identify the measurable benefit
of a successful implementation and possible alternatives to custom software
development.

The next set of questions enables you to gain a better understanding of the prob-
lem and allows the customer to voice his or her perceptions about a solution:

e How would you characterize “good” output that would be generated by a
successful solution?

e What problem(s) will this solution address?

e Can you show me (or describe) the business environment in which the
solution will be used?

o Will special performance issues or constraints affect the way the solution
is approached?

The final set of questions focuses on the effectiveness of the communication
activity itself. Gause and Weinberg [Gau89] call these “meta-questions” and pro-
pose the following (abbreviated) list:

e Are you the right person to answer these questions? Are your answers
“official”?

e Are my questions relevant to the problem that you have?
o Am I asking too many questions?
e Can anyone else provide additional information?

e Should I be asking you anything else?

These questions (and others) will help to “break the ice” and initiate the com-
munication that is essential to successful elicitation. But a question-and-answer
meeting format is not an approach that has been overwhelmingly successful. In
fact, the Q&A session should be used for the first encounter only and then re-
placed by a requirements elicitation format that combines elements of problem
solving, negotiation, and specification. An approach of this type is presented in
Section 8.3.

8.2.5 Nonfunctional Requirements

A nonfunctional requirement (NFR) can be described as a quality attribute, a
performance attribute, a security attribute, or a general constraint on a system.
These are often not easy for stakeholders to articulate. Chung [Chu09] suggests
that there is a lopsided emphasis on functionality of the software, yet the software
may not be useful or usable without the necessary non-functional characteristics.

In Section 8.3.2, we discuss a technique called quality function deployment
(QFD). Quality function deployment attempts to translate unspoken customer

142 PART TWO MODELING

needs or goals into system requirements. Nonfunctional requirements are often
listed separately in a software requirements specification.

As an adjunct to QFD, it is possible to define a two-phase approach [Hnel1l
that can assist a software team and other stakeholders in identifying nonfunc-
tional requirements. During the first phase, a set of software engineering guide-
lines is established for the system to be built. These include guidelines for best
practice, but also address architectural style (Chapter 13) and the use of design
patterns (Chapter 16). A list of NFRs (e.g., requirements that address usability,
testability, security or maintainability) is then developed. A simple table lists
NFRs as column labels and software engineering guidelines as row labels. A rela-
tionship matrix compares each guideline to all others, helping the team to assess
whether each pair of guidelines is complementary, overlapping, conflicting, or
independent.

In the second phase, the team prioritizes each nonfunctional requirement by
creating a homogeneous set of nonfunctional requirements using a set of decision
rules [Hnel1l that establish which guidelines to implement and which to reject.

8.2.6 Traceability

Traceability is a software engineering term that refers to documented links be-
tween software engineering work products (e.g., requirements and test cases). A
traceability matrix allows a requirements engineer to represent the relationship
between requirements and other software engineering work products. Rows of
the traceability matrix are labeled using requirement names and columns can
be labeled with the name of a software engineering work product (e.g., a design
element or a test case). A matrix cell is marked to indicate the presence of a link
between the two.

The traceability matrices can support a variety of engineering development
activities. They can provide continuity for developers as a project moves from
one project phase to another, regardless of the process model being used. Trace-
ability matrices often can be used to ensure the engineering work products have
taken all requirements into account.

As the number of requirements and the number of work products grows, it be-
comes increasingly difficult to keep the traceability matrix up to date. Nonethe-
less, it is important to create some means for tracking the impact and evolution
of the product requirements [Got11].

&.3 ELIQI“NE REQQIREMENTS

Requirements elicitation (also called requirements gathering) combines ele-

ments of problem solving, elaboration, negotiation, and specification. In order to
encourage a collaborative, team-oriented approach to requirements gathering,

What are
® the basic
guidelines for
conducting a
collaborative
requirements
gathering meeting?

Joint Application
Development (JAD) is
a popular technique for
requirements gather-
ing. A good description
can be found at
www.carolla.com/
wp-jad.htm.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 143
stakeholders work together to identify the problem, propose elements of the
solution, negotiate different approaches, and specify a preliminary set of solu-
tion requirements [Zah901.°

8.3.1 Collaborative Requirements Gathering

Many different approaches to collaborative requirements gathering have been
proposed. Each makes use of a slightly different scenario, but all apply some
variation on the following basic guidelines:

e Meetings (either real or virtual) are conducted and attended by both soft-
ware engineers and other stakeholders.

e Rules for preparation and participation are established.

e An agenda is suggested that is formal enough to cover all important
points but informal enough to encourage the free flow of ideas.

o A “facilitator” (can be a customer, a developer, or an outsider) controls the
meeting.

e A “definition mechanism” (can be work sheets, flip charts, or wall stickers
or an electronic bulletin board, chat room, or virtual forum) is used.

The goal is to identify the problem, propose elements of the solution, negotiate
different approaches, and specify a preliminary set of solution requirements.

A one- or two-page “product request” is generated during inception (Section 8.2).
A meeting place, time, and date are selected; a facilitator is chosen; and attendees
from the software team and other stakeholder organizations are invited to partic-
ipate. The product request is distributed to all attendees before the meeting date.

As an example,'° consider an excerpt from a product request written by a
marketing person involved in the SafeHome project. This person writes the fol-
lowing narrative about the home security function that is to be part of SafeHome:

Our research indicates that the market for home management systems is growing at
a rate of 40 percent per year. The first SafeHome function we bring to market should
be the home security function. Most people are familiar with “alarm systems” so this
would be an easy sell.

The home security function would protect against and/or recognize a variety of
undesirable “situations” such as illegal entry, fire, flooding, carbon monoxide levels,
and others. It'll use our wireless sensors to detect each situation, can be programmed
by the homeowner, and will automatically telephone a monitoring agency when a
situation is detected.

9 This approach is sometimes called a facilitated application specification technique (FAST).

10 This example (with extensions and variations) is used to illustrate important software engi-
neering methods in many of the chapters that follow. As an exercise, it would be worthwhile to

conduct your own requirements-gathering meeting and develop a set of lists for it.

144

&pwcss

If a system or product
will serve many users,
be absolutely certain
that requirements are
elicited from a repre-
sentative cross section
of users. If only one
user defines all require-
ments, acceptance risk
is high.

Quote:

“Facts do not cease
to exist because
they are ignored.”

Aldous Huxley

Gpwcs‘

Avoid the impulse fo
shoot down a cus-
tomer’s idea as “foo
costly” or “impracti
cal.” The idea here is
to negotiate a list that
is acceptable to all. To
do this, you must keep
an open mind.

PART TWO MODELING

to this the
requirements-gathering meeting and considerably more information would be

In reality, others would contribute narrative during
available. But even with additional information, ambiguity is present, omissions
are likely to exist, and errors might occur. For now, the preceding “functional
description” will suffice.

While reviewing the product request in the days before the meeting, each at-
tendee is asked to make a list of objects that are part of the environment that
surrounds the system, other objects that are to be produced by the system, and
objects that are used by the system to perform its functions. In addition, each
attendee is asked to make another list of services (processes or functions) that
manipulate or interact with the objects. Finally, lists of constraints (e.g., cost, size,
business rules) and performance criteria (e.g., speed, accuracy) are also devel-
oped. The attendees are informed that the lists are not expected to be exhaustive
but are expected to reflect each person’s perception of the system.

Objects described for SafeHome might include the control panel, smoke de-
tectors, window and door sensors, motion detectors, an alarm, an event (a sen-
sor has been activated), a display, a PC, telephone numbers, a telephone call,
and so on. The list of services might include configuring the system, setting the
alarm, monitoring the sensors, dialing the phone, programming the control
panel, and reading the display (note that services act on objects). In a similar
fashion, each attendee will develop lists of constraints (e.g., the system must
recognize when sensors are not operating, must be user friendly, must interface
directly to a standard phone line) and performance criteria (e.g., a sensor event
should be recognized within one second, and an event priority scheme should
be implemented).

The lists of objects can be pinned to the walls of the room using large sheets
of paper, stuck to the walls using adhesive-backed sheets, or written on a wall
board. Alternatively, the lists may have been posted on a group forum, at an in-
ternal website, or posed in a social networking environment for review prior to
the meeting. Ideally, each listed entry should be capable of being manipulated
separately so that lists can be combined, entries can be deleted, and additions
can be made. At this stage, critique and debate are strictly prohibited.

After individual lists are presented in one topic area, the group creates a com-
bined list by eliminating redundant entries, adding any new ideas that come up
during the discussion, but not deleting anything. After you create combined lists
for all topic areas, discussion—coordinated by the facilitator—ensues. The com-
bined list is shortened, lengthened, or reworded to properly reflect the product
or system to be developed. The objective is to develop a consensus list of objects,
services, constraints, and performance for the system to be built.

In many cases, an object or service described on a list will require further
explanation. To accomplish this, stakeholders develop mini-specifications for

CHAPTER 8 UNDERSTANDING REQUIREMENTS

145

entries on the lists or by creating a use case (Section 8.4) that involves the object

or service. For example, the mini-spec for the SafeHome object Control Panel

might be:

The control panel is a wall-mounted unit that is approximately 230 x 130 mm in size.

The control panel has wireless connectivity to sensors and a PC. User interaction oc-

curs through a keypad containing 12 keys. A 75 x 75 mm OLED color display provides

user feedback. Software provides interactive prompts, echo, and similar functions.

The mini-specs are presented to all stakeholders for discussion. Additions,

deletions, and further elaboration are made. In some cases, the development of

mini-specs will uncover new objects, services, constraints, or performance re-

quirements that will be added to the original lists. During all discussions, the

team may raise an issue that cannot be resolved during the meeting. An issues

list is maintained so that these ideas will be acted on later.

The scene: A meeting room. The
first requirements-gathering meeting is

in progress.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering
manager; three members of marketing; a product engi-
neering representative; and a facilitator.

The conversation:

Facilitator (pointing at whiteboard): So that's the
current list of objects and services for the home security
function.

Marketing person: That about covers it from our
point of view.

Vinod: Didn’t someone mention that they wanted all
SafeHome functionality to be accessible via the Internet?
That would include the home security function, no?

Marketing person: Yes, that's right . . . we'll have to
add that functionality and the appropriate objects.

Conducting a Requirements-Gathering Meeting

Facilitator: Does that also add some constraints2
Jamie: It does, both technical and legal.
Production rep: Meaning?

Jamie: We better make sure an outsider can’t hack
into the system, disarm it, and rob the place or worse.
Heavy liability on our part.

Doug: Very true.

Marketing: But we still need that . . . just be sure to
stop an outsider from getting in.

Ed: That's easier said than done and . . .

Facilitator (interrupting): | don't want to debate this
issue now. Let’s note it as an action item and proceed.
(Doug, serving as the recorder for the meeting, makes
an appropriate note.)

Facilitator: | have a feeling there’s still more to con-

sider here.

(The group spends the next 20 minutes refining and ex-
panding the details of the home security function.)

Many stakeholder concerns (e.g., accuracy, data accessibility, security) are the

basis for nonfunctional system requirements (Section 8.2). As stakeholders enun-

ciate these concerns, software engineers must consider them within the context

146

%
POINT

QFD defines require-
ments in a way that
maximizes customer
satisfaction.

ﬂpwcss

Everyone wants fo
implement lots of
exciting requirements,
but be careful. That's
how “requirements
creep” sets in. On the
other hand, exciting
requirements lead fo a
breakthrough product!

Useful information on
QFD can be obtained af
www.qfdi.org.

PART TWO MODELING

of the system to be built. Among the questions that must be answered [Lag10l] are
as follows:

e Can we build the system?
o Will this development process allow us to beat our competitors to market?
e Do adequate resources exist to build and maintain the proposed system?

e Will the system performance meet the needs of our customers?

The answers to these and other questions will evolve over time.

8.3.2 Quuality Function Deployment

Quality function deployment (QFD) is a quality management technique that
translates the needs of the customer into technical requirements for software.
QFD “concentrates on maximizing customer satisfaction from the software engi-
neering process” [Zul92]. To accomplish this, QFD emphasizes an understanding
of what is valuable to the customer and then deploys these values throughout the
engineering process.

Within the context of QFD, normal requirements identify the objectives and
goals that are stated for a product or system during meetings with the customer.
If these requirements are present, the customer is satisfied. Expected require-
ments are implicit to the product or system and may be so fundamental that the
customer does not explicitly state them. Their absence will be a cause for signif-
icant dissatisfaction. Exciting requirements go beyond the customer’s expecta-
tions and prove to be very satisfying when present.

Although QFD concepts can be applied across the entire software process
[Par96al; specific QFD techniques are applicable to the requirements elicitation
activity. QFD uses customer interviews and observation, surveys, and examination
of historical data (e.g., problem reports) as raw data for the requirements gather-
ing activity. These data are then translated into a table of requirements—called the
customer voice table—that is reviewed with the customer and other stakeholders.
A variety of diagrams, matrices, and evaluation methods are then used to extract
expected requirements and to attempt to derive exciting requirements [Aka04l.

8.3.3 Usage Scenarios

As requirements are gathered, an overall vision of system functions and features
begin to materialize. However, it is difficult to move into more technical software
engineering activities until you understand how these functions and features will
be used by different classes of end users. To accomplish this, developers and
users can create a set of scenarios that identify a thread of usage for the sys-
tem to be constructed. The scenarios, often called use cases [Jac92l], provide a
description of how the system will be used. Use cases are discussed in greater
detail in Section 8.4.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 147

SAreHoME

continuing the first requirements
gathering meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins, soft-
ware tfeam member; Doug Miller, software engineering
manager; three members of marketing; a product engi-
neering representative; and a facilitator.

The conversation:

Facilitator: We've been talking about security for ac-
cess to SafeHome functionality that will be accessible
via the Internet. I'd like to try something. Let's develop
a usage scenario for access to the home security
function.

Jamie: How?

Facilitator: We can do it a couple of different ways,
but for now, I'd like to keep things really informal. Tell
us (he points at a marketing person) how you envision
accessing the system.

Marketing person: Um . . . well, this is the kind of
thing I'd do if | was away from home and | had to let
someone into the house, say a housekeeper or repair
guy, who didn’t have the security code.

Facilitator (smiling): That's the reason you'd do
it . . . tell me how you'd actually do this.

Marketing person: Um . . . the first thing I'd need is
a PC. I'd log on to a website we'd maintain for all users
of SafeHome. I'd provide my user ID and . . .

Vinod (interrupting): The Web page would have to be
secure, encrypted, fo guarantee that we're safe and . . .

Facilitator (interrupting): That's good information,
Vinod, but it’s technical. Let’s just focus on how the end
user will use this capability. OK2

Vinod: No problem.

Marketing person: So as | was saying, I'd log on
to a website and provide my user ID and two levels of
passwords.

Jamie: What if | forget my password?

Facilitator (interrupting): Good point, Jamie, but
let’s not address that now. We'll make a note of that
and call it an exception. I'm sure there'll be others.

Marketing person: After | enter the passwords, a
screen representing all SafeHome functions will appear.
I'd select the home security function. The system might
request that | verify who | am, say, by asking for my ad-
dress or phone number or something. It would then dis-
play a picture of the security system control panel along
with a list of functions that | can perform—arm the
system, disarm the system, disarm one or more sensors.
| suppose it might also allow me to reconfigure security
zones and other things like that, but I'm not sure.

(As the marketing person continues talking, Doug takes
copious notes; these form the basis for the first informal
usage scenario. Alternatively, the marketing person
could have been asked to write the scenario, but this
would be done outside the meeting.)

8.3.4 Elicitation Work Products

What
® information
is produced as
a consequence
of requirements
gathering?

The work products produced as a consequence of requirements elicitation will
vary depending on the size of the system or product to be built. For most systems,
the work products include: (1) a statement of need and feasibility, (2) a bounded
statement of scope for the system or product, (3) a list of customers, users, and
other stakeholders who participated in requirements elicitation, (4) a descrip-
tion of the system’s technical environment, (5) a list of requirements (prefera-

bly organized by function) and the domain constraints that applies to each, (6) a

set of usage scenarios that provide insight into the use of the system or product

under different operating conditions, and (7) any prototypes developed to better

148

%
POINT

User stories are the
way fo document
requirements elicited
from customers in agile
process models.

', What is a
® servicein
the context of
service-oriented
methods?

Requirements elicita-
tion for service-oriented
methods fines services
render by an app. A
touchpoint represents
an opportunity for the
user to inferact with
the system to receive a
desired service.

PART TWO MODELING

define requirements. Each of these work products is reviewed by all people who
have participated in requirements elicitation.

8.3.5 Agile Requirements Elicitation

Within the context of an agile process, requirements are elicited by asking all
stakeholders to create user stories. Each user story describes a simple system
requirement written from the user’s perspective. User stories can be written on
small note cards, making it easy for developers to select and manage a subset of
requirements to implement for the next product increment. Proponents claim
that using note cards written in the user’s own language allows developers to
shift their focus to communication with stakeholders on the selected require-
ments rather than their own agenda [Mail0al.

Although the agile approach to requirements elicitation is attractive for many
software teams, critics argue that a consideration of overall business goals and
nonfunctional requirements is often lacking. In some cases, rework is required
to accommodate performance and security issues. In addition, user stories may
not provide a sufficient basis for system evolution over time

8.3.6 Service-Oriented Methods

Service-oriented development views a system as an aggregation of services. A
service can be “as simple as providing a single function, for example, a request/
response-based mechanism that provides a series of random numbers, or can be
an aggregation of complex elements, such as the Web service API” [Mic12l.

Requirements elicitation in service-oriented development focuses on the
definition of services to be rendered by an application. As a metaphor, consider
the service provided when you visit a fine hotel. A doorperson greets guests. A
valet parks their cars. The desk clerk checks the guests in. A bellhop manages
the bags. The concierge assists guest with local arrangements. Each contact or
touchpoint between a guest and a hotel employee is designed to enhance the
hotel visit and represents a service offered.

Most service design methods emphasize understanding the customer, think-
ing creatively, and building solutions quickly [Mai10bl. To achieve these goals,
requirements elicitation can include ethnographic studies,!' innovation work-
shops, and early low-fidelity prototypes. Techniques for eliciting requirements
must also acquire information about the brand and the stakeholders’ percep-
tions of it. In addition to studying how the brand is used by customers, analysts
need strategies to discover and document requirements about the desired quali-
ties of new user experiences. User stories are helpful in this regard.

11 Studying user behavior in the environment where the proposed software product will be used.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 149

The requirements for touchpoints should be characterized in a manner that
indicates achievement of the overall service requirements. This suggests that
each requirement should be traceable to a specific service.

8.4 DEvELOPING Use CASES
'4! In a book that discusses how to write effective use cases, Alistair Cockburn
¢ ‘). [Coc01bl notes that “a use case captures a contract . . . [that]l describes the sys-
POINT tem’s behavior under various conditions as the system responds to a request
Use cases are defined

from an actor’s point
of view. An actor is
arole that people
(users) or devices play
as they interact with
the software.

An excellent paper

on use cases can be
downloaded from
www.ibm.com/
developerworks/
webservices/
library /co-
design7.html.

from one of its stakeholders . ..” In essence, a use case tells a stylized story about
how an end user (playing one of a number of possible roles) interacts with the
system under a specific set of circumstances. The story may be narrative text, an
outline of tasks or interactions, a template-based description, or a diagrammatic
representation. Regardless of its form, a use case depicts the software or system
from the end user’s point of view.

The first step in writing a use case is to define the set of “actors” that will be
involved in the story. Actors are the different people (or devices) that use the
system or product within the context of the function and behavior that is to be
described. Actors represent the roles that people (or devices) play as the system
operates. Defined somewhat more formally, an actor is anything that communi-
cates with the system or product and that is external to the system itself. Every
actor has one or more goals when using the system.

It is important to note that an actor and an end user are not necessarily the
same thing. A typical user may play a number of different roles when using a
system, whereas an actor represents a class of external entities (often, but not
always, people) that play just one role in the context of the use case. As an ex-
ample, consider a machine operator (a user) who interacts with the control com-
puter for a manufacturing cell that contains a number of robots and numerically
controlled machines. After careful review of requirements, the software for the
control computer requires four different modes (roles) for interaction: program-
ming mode, test mode, monitoring mode, and troubleshooting mode. Therefore,
four actors can be defined: programmer, tester, monitor, and troubleshooter. In
some cases, the machine operator can play all of these roles. In others, different
people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors
are identified during the first iteration. It is possible to identify primary actors
[Jac92] during the first iteration and secondary actors as more is learned about
the system. Primary actors interact to achieve required system function and de-
rive the intended benefit from the system. They work directly and frequently
with the software. Secondary actors support the system so that primary actors
can do their work.

150

? What do

® | need to
know in order
to develop an
effective use
case?

PART TWO MODELING

Once actors have been identified, use cases can be developed. Jacobson
[Jac92] suggests a number of questions'? that should be answered by a use

case:

e Who is the primary actor, the secondary actor(s)?

e What are the actor’s goals?

e What preconditions should exist before the story begins?

e What main tasks or functions are performed by the actor?

o What exceptions might be considered as the story is described?

e What variations in the actor’s interaction are possible?

e What system information will the actor acquire, produce, or change?

e Will the actor have to inform the system about changes in the external
environment?

e What information does the actor desire from the system?

e Does the actor wish to be informed about unexpected changes?

Recalling basic SafeHome requirements, we define four actors: homeowner
(a user), setup manager (likely the same person as homeowner, but playing a
different role), sensors (devices attached to the system), and the monitoring and
response subsystem (the central station that monitors the SafeHome home se-
curity function). For the purposes of this example, we consider only the home-
owner actor. The homeowner actor interacts with the home security function in
a number of different ways using either the alarm control panel or a PC. The
homeowner (1) enters a password to allow all other interactions, (2) inquires
about the status of a security zone, (3) inquires about the status of a sensor,
(4) presses the panic button in an emergency, and (5) activates/deactivates the
security system.

Considering the situation in which the homeowner uses the control panel, the

basic use case for system activation follows:'?

1. The homeowner observes the SafeHome control panel (Figure 8.1) to determine
if the system is ready for input. If the system is not ready, a not ready message is
displayed on the LCD display, and the homeowner must physically close windows
or doors so that the not ready message disappears. [A not ready message implies
that a sensor is open; i.e., that a door or window is open.]

12 Jacobson’s questions have been extended to provide a more complete view of use case content.
13 Note that this use case differs from the situation in which the system is accessed via the Inter-
net. In this case, interaction occurs via the control panel, not the GUI provided when a PC or

mobile device is used.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 151

SafeHome
control panel

eA'pwcss

Use cases are offen
written informally.
However, use the
template shown here
to ensure that you've
addressed all key
ssues.

SAFEHOME ;
[e) away stay

m1 away @

Ui stay max test bypass

alarm instant a a @
check . .

bypass instant code chime

Fire not ready @

ready

armed power
c o PUY
panic

2. The homeowner uses the keypad to key in a four-digit password. The password is
compared with the valid password stored in the system. If the password is incor-
rect, the control panel will beep once and reset itself for additional input. If the
password is correct, the control panel awaits further action.

3. The homeowner selects and keys in stay or away (see Figure 8.1) to activate the
system. Stay activates only perimeter sensors (inside motion detecting sensors are

deactivated). Away activates all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

The basic use case presents a high-level story that describes the interaction
between the actor and the system.

In many instances, uses cases are further elaborated to provide considerably
more detail about the interaction. For example, Cockburn [Coc01bl suggests the
following template for detailed descriptions of use cases:

Use case: InitiateMonitoring
Primary actor: Homeowner.
Goal in context: To set the system to monitor sensors when the homeowner

leaves the house or remains inside.

Preconditions: System has been programmed for a password and to

recognize various sensors.

Trigger: The homeowner decides to “set” the system, that is, to turn

on the alarm functions.

152 PART TWO MODELING

Scenario:

1. Homeowner: observes control panel
2. Homeowner: enters password

3. Homeowner: selects “stay” or “away”

4. Homeowner: observes read alarm light to indicate that SafeHome has been armed

Exceptions:

1. Control panel is not ready: homeowner checks all sensors to determine which are
open; closes them.

2. Password is incorrect (control panel beeps once): homeowner reenters correct
password.

3. Password not recognized: monitoring and response subsystem must be contacted
to reprogram password.

4. Stay is selected: control panel beeps twice and a stay light is lit; perimeter sensors

are activated.

5. Away is selected: control panel beeps three times and an away light is lit; all
sensors are activated.

Priority: Essential, must be implemented
When available: First increment

Frequency of use: Many times per day

Channel to actor: Via control panel interface
Secondary actors: Support technician, sensors

Channels to secondary actors:
Support technician: phone line

Sensors: hardwired and radio frequency interfaces

Open issues:

1. Should there be a way to activate the system without the use of a password or with
an abbreviated password?

2. Should the control panel display additional text messages?

3. How much time does the homeowner have to enter the password from the time the

first key is pressed?

4. Is there a way to deactivate the system before it actually activates?

Use cases for other homeowner interactions would be developed in a similar
manner. It is important to review each use case with care. If some element of the
interaction is ambiguous, it is likely that a review of the use case will indicate a
problem.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 153

SareHoME

TP Developing a High-Level Use Case Diagram
[0]

lr—l' The scene: A meeting room, continu- system as described by the use case . . . oh, | use the
ing the requirements-gathering meeting labeled square to represent an actor that's not a per-

The players: Jamie Lazar, software team member; son .. . in this case, sensors.
Vinod Raman, software team member; Ed Robbins, sof- Dougs Is that legal in UML2
ware team member; Doug Miller, software engineering
manager; three members of marketing; a product engi-
neering representative; and a facilitator.

Facilitator: Legality isn't the issue. The point is to com-
municate information. | view the use of a humanlike stick
figure for representing a device to be misleading. So I've

The conversation: adapted things a bit. | don't think it creates a problem.
Facilitator: We've spent a fair amount of time talking Vinod: Okay, so we have use case narratives for each
about SafeHome home security functionality. During the of the ovals. Do we need to develop the more detailed

break | sketched a use case diagram to summarize the im- template-based narratives I've read about?

portant scenarios that are part of this function. Take a look. Eqecilitator: Probably, but that can wait until we've

(All attendees look at Figure 8.2.) considered other SafeHome functions.

Jamie: I'm just beginning to learn UML notation.’* So Marketing person: Wait, |'ve been looking at
the home security function is represented by the big box this diagram and all of a sudden | realize we missed
with the ovals inside it2 And the ovals represent use something.

cases that we've writfen in text? Facilitator: Oh really. Tell me what we've missed.

Facilitator: Yep. And the stick figures represent
actors—the people or things that interact with the

UML use case
diagram for
SafeHome
home security
function

(The meeting continues.)

Accesses
system
via Internet

Sensorsl

Homeowner

Responds to
alarm event

Encounters
an error
condition
System
administrator

Reconfigures
sensors and
related
system features

14 Abrief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

154 PART TWO MODELING

K Use Case Development
Objective: Assist in the development of use

QL
cases by providing automated templates and

mechanisms for assessing clarity and consistency.

Mechanics: Tool mechanics vary. In general, use case
tools provide fill-in-the-blank templates for creating effec-

SorTwARrE TooLs
Representative Tools:'>

The vast majority of UMLbased analysis modeling tools

provide both text and graphical support for use case

development and modeling.

Objects by Design
(www.objectsbydesign.com/tools/umltools_
byCompany.html) provides comprehensive links to

tive use cases. Most use case functionality is embedded tools of this type.
Q} a set of broader requirements engineering functions. J
16

The intent of the analysis model is to provide a description of the required infor-

mational, functional, and behavioral domains for a computer-based system. The

model changes dynamically as you learn more about the system to be built, and

other stakeholders understand more about what they really require. For that

reason, the analysis model is a snapshot of requirements at any given time. You

should expect it to change.

As the analysis model evolves, certain elements will become relatively stable,

providing a solid foundation for the design tasks that follow. However, other el-

ements of the model may be more volatile, indicating that stakeholders do not

yet fully understand requirements for the system. The analysis model and the

methods that are used to build it are presented in detail in Chapters 9 to 11. We

present a brief overview in the sections that follow.

Gpwcss

It is always a good
idea to get stakehold-
ers involved. One of
the best ways to do
this is to have each
stakeholder wrife use
cases that describe
how the software will
be used.

8.5.1 Elements of the Analysis Model

There are many different ways to look at the requirements for a computer-based
system. Some software people argue that it’s best to select one mode of represen-
tation (e.g., the use case) and apply it to the exclusion of all other modes. Other
practitioners believe that it’'s worthwhile to use a number of different modes of
representation to depict the analysis model. Different modes of representation
force you to consider requirements from different viewpoints—an approach that
has a higher probability of uncovering omissions, inconsistencies, and ambiguity.

A set of generic elements is common to most analysis models.

15 Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers.

16 Throughout this book, we use the terms analysis model and requirements model synonymously.

Both refer to representations of the information, functional, and behavioral domains that

describe problem requirements.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 155

UML activity
diagrams

for eliciting
requirements

&pwcss

One way to isolote
classes is to look for
descriptive nouns in a
use case script. Af least
some of the nouns

will be candidate
classes. More on this
in Chapter 12.

g

Conduct
meetings

Make lists of
functions, classes

g
.
.

., Use QFD to Informally e
* prioritize prioritize R
@ . \Urequirements requirements 4.

K Draw use-case Write

‘ diagram scenario
Complete
template

Scenario-based elements. The system is described from the user’s point of view
using a scenario-based approach. For example, basic use cases (Section 8.4) and
their corresponding use case diagrams (Figure 8.2) evolve into more elaborate
template-based use cases. Scenario-based elements of the requirements model
are often the first part of the model that is developed. As such, they serve as input
for the creation of other modeling elements. Figure 8.3 depicts a UML activity di-
agram!” for eliciting requirements and representing them using use cases. Three
levels of elaboration are shown, culminating in a scenario-based representation.

Class-based elements. Each usage scenario implies a set of objects that are ma-
nipulated as an actor interacts with the system. These objects are categorized
into classes—a collection of things that have similar attributes and common be-
haviors. For example, a UML class diagram can be used to depict a Sensor class
for the SafeHome security function (Figure 8.4). Note that the diagram lists the
attributes of sensors (e.g., name, type) and the operations (e.g., identify, enable)
that can be applied to modify these attributes. In addition to class diagrams, other
analysis modeling elements depict the manner in which classes collaborate with

17 A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

156

PART TWO MODELING

Class diagram
for sensor

Astate is an
exterally observable
mode of behavior.
External stimuli cause
transitions between
states.

4 Sensor)

Name

Type

Location

Area
Characteristics

Identify()
Enable()

Disable()
Reconfigure()

y

one another and the relationships and interactions between classes. These are
discussed in more detail in Chapter 10.

Behavioral elements. The behavior of a computer-based system can have a pro-
found effect on the design that is chosen and the implementation approach that
is applied. Therefore, the requirements model must provide modeling elements
that depict behavior.

The state diagram is one method for representing the behavior of a system by
depicting its states and the events that cause the system to change state. A state
is any observable mode of behavior. In addition, the state diagram indicates what
actions (e.g., process activation) are taken as a consequence of a particular event.

To illustrate the use of a state diagram, consider software embedded within
the SafeHome control panel that is responsible for reading user input. A simpli-
fied UML state diagram is shown in Figure 8.5.

In addition to behavioral representations of the system as a whole, the behav-
ior of individual classes can also be modeled. Further discussion of behavioral
modeling is presented in Chapter 11.

UML state
diagram
notation

(" Reading)
commands ™
State name

System status = "Ready"
Display msg = "enter cmd" W™\ Siqte variables
Display status = steady

Entry/subsystems ready ~_|
Do: poll user input panel ™~ State activities
Do: read user input

Do: interpret user input

y

CHAPTER 8 UNDERSTANDING REQUIREMENTS 157

SAreHoOME

Preliminary Behavioral Modeling

. The scene: A meeting room, con- Marketing person: This seems a little technical. I'm
tinuing the requirements meeting. not sure | can help here.
The players: Jamie Lazar, software team member; Facilitator: Sure you can. What behavior do you ob-

Vinod Raman, software team member; Ed Robbins, soft serve from the user’s point of view?
ware team member; Doug Miller, software engineering
manager; three members of marketing; a product engi-
neering representative; and a facilitator.

Marketing person: Uh . . . well, the system will be
monitoring the sensors. It'll be reading commands from
the homeowner. It'll be displaying its status.

The conversation: Facilitator: See, you can do it.

Facilitator: We've just about finished talking about
SafeHome home security functionality. But before we
do, | want to discuss the behavior of the function.

Jamie: It'll also be polling the PC to determine if there
is any input from it, for example, Internetbased access
or configuration information.

Marketing person: | don't understand what you

Vinod: Yeah, in fact, configuring the system is a state
mean by behavior.

in its own right.
Ed (smiling): That's when you give the product a

Doug: You guys are rolling. Let's give this a bit more
“timeout” if it misbehaves.

thought . . . is there a way to diagram this stuffe

Facilitator: Not exactly. Let me explain. Facilitator: There is, but let's postpone that until after

(The facilitator explains the basics of behavioral model- the meeting.
ing to the requirements gathering team.)

8.5.2 Analysis Patterns

GDVICEs Anyone who has done requirements engineering on more than a few software
projects begins to notice that certain problems reoccur across all projects within

Ify ou wanf fo obtain specific application domain.® These analysis patterns [Fow97] suggest solutions
solutions to customer . . s L. .

. (e.g., a class, a function, a behavior) within the application domain that can be
requirements more
rapidly and provide reused when modeling many applications.
your feam with proven Geyer-Schulz and Hahsler [Gey01l suggest two benefits that can be associated
approaches, use analy yith the use of analysis patterns:
sis pafferns.

First, analysis patterns speed up the development of abstract analysis models that
capture the main requirements of the concrete problem by providing reusable analy-
sis models with examples as well as a description of advantages and limitations. Sec-
ond, analysis patterns facilitate the transformation of the analysis model into a design

model by suggesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to
the pattern name. They are also stored in a repository so that requirements

18 In some cases, problems reoccur regardless of the application domain. For example, the fea-
tures and functions used to solve user interface problems are common regardless of the appli-
cation domain under consideration.

158

What are the
® character-
istics of a self-
adaptive system?

PART TWO MODELING

engineers can use search facilities to find and reuse them. Information about an
analysis pattern (and other types of patterns) is presented in a standard template
[Gey011" that is discussed in more detail in Chapter 16. Examples of analysis pat-
terns and further discussion of this topic are presented in Chapter 11.

8.5.3 Agile Requirements Engineering

The intent of agile requirements engineering is to transfer ideas from stakehold-
ers to the software team rather than create extensive analysis work products.
In many situations, requirements are not predefined but emerge as each iter-
ation of product development begins. As the agile team acquires a high-level
understanding of a product’s critical features use stories (Chapter 5) relevant to
the next product increment are refined. The agile process encourages the early
identification and implementation of the highest priority product features. This
allows the early creation and testing of working prototypes.

Agile requirements engineering addresses important issues that are common
in software projects: high requirements volatility, incomplete knowledge of de-
velopment technology, and customers not able to articulate their visions until
they see a working prototype. The agile process interleaves requirements engi-
neering and design activities.

8.5.4 Requirements for Self-Adaptive Systems

Self-adaptive systems?® can reconfigure themselves, augment their functionality,
protect themselves, recover from failure, and accomplish all of this while hid-
ing most of their internal complexity from their users [Quro09l. Adaptive require-
ments document the variability needed for self-adaptive systems. This means
that a requirement must encompass the notion of variability or flexibility while
at the same time specifying either a functional or quality aspect of the software
product. Variability might include timing uncertainty, user profile differences
(e.g., end users versus systems administrators), behavior changes based on prob-
lem domain (e.g., commercial or educational), or predefined behaviors exploit-
ing system assets.

Capturing adaptive requirements focuses on the same questions that are
used for requirements engineering of more conventional systems. However, sig-
nificant variability can be present when answering each of these questions. The
more variable the answers, the more complex the resulting system will need to
be to accommodate the requirements.

19 A variety of patterns templates have been proposed in the literature. If you have interest, see
[Fow97], [Gam95], [Yac03], and [Bus07] among many sources.
20 An example of a self-adaptive system is a “location aware” app that adapts its behavior to the

location of the mobile platform on which it resides.

Quole:

“A compromise is
the art of dividing
a cake in such a
way that everyone
helieves he has the
higgest piece.”

Ludwig Erhard

A brief paper on ne-
gotiation for software
requirements can be
downloaded from
www.alexander-
egyed.com/
publications/
Software_
Requirements_
Negotiation-
Some_Lessons_
Learned.html.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 159

ENTS

In anideal requirements engineering context, the inception, elicitation, and elab-
oration tasks determine customer requirements in sufficient detail to proceed to
subsequent software engineering activities. Unfortunately, this rarely happens.
In reality, you may have to enter into a negotiation with one or more stakehold-
ers. In most cases, stakeholders are asked to balance functionality, performance,
and other product or system characteristics against cost and time-to-market.
The intent of this negotiation is to develop a project plan that meets stakeholder
needs while at the same time reflecting the real-world constraints (e.g., time,
people, budget) that have been placed on the software team.

The best negotiations strive for a “win-win” result.?! That is, stakeholders win
by getting the system or product that satisfies the majority of their needs and you
(as a member of the software team) win by working to realistic and achievable
budgets and deadlines.

Boehm [Boe98] defines a set of negotiation activities at the beginning of each
software process iteration. Rather than a single customer communication activ-
ity, the following activities are defined:

1. Identification of the system or subsystem’s key stakeholders.
2. Determination of the stakeholders’ “win conditions.”
3. Negotiation of the stakeholders’ win conditions to reconcile them into a

set of win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which be-
comes the key criterion for proceeding to subsequent software engineering activities.

>

life. The following guidelines are well worth considering: 4. Focus on the other party’s interests. Don't take hard
e that it . b positions if you want fo avoid conflict.
1. Recognize that ”‘.s not a competition. To be suc- 5. Don't let it get personal. Focus on the problem that
cessful, both parties have to feel they’ve won or needs fo be solved
achieved something. Both will have to compromise. 6. Be creative. Don't be afraid to think out of the box
2. Map out a strategy. Decide what you'd like to if you're at an impasse
achieve, what the other party wants to achieve, 7. Be ready to commit. Once an agreement has been

and how you'll go about making both happen.
3. Llisten actively. Don't work on formulating your
response while the other party is talking. Listen to

The Art of Negotiation

Learning how to negotiate effectively can serve
you well throughout your personal and technical

@

her. It's likely you'll gain knowledge that will help
you to befter negotiate your position.

reached, don’t waffle; commit to it and move on.

J

21 Dozens of books have been written on negotiating skills (e.g., [Fis11], [Lew09], [Rai06]). It is one
of the more important skills that you can learn. Read one.

160

PART TWO MODELING

Fricker [Fri10l and his colleagues suggest replacing the traditional handoff of
requirements specifications to software teams with a bidirectional communica-
tion process called handshaking. In handshaking, the software team proposes
solutions to requirements, describes their impact, and communicates their in-
tentions to customer representatives. The customer representatives review the
proposed solutions, focusing on missing features and seeking clarification of
novel requirements. Requirements are determined to be good enough if the cus-
tomers accept the proposed solution.

Handshaking allows detailed requirements to be delegated to software teams.
The teams need to elicit requirements from customers (e.g., product users and
domain experts), thereby improving product acceptance. Handshaking tends to
improve identification, analysis, and selection of variants and promotes win-win

negotiation.

8 = The Start of a Negotiation
E lr—l. The scene: Lisa Perez’s office, after

the first requirements gathering meeting.

The players: Doug Miller, software engineering man-

ager and Lisa Perez, marketing manager.
The conversation:
Lisa: So, | hear the first meeting went really well.

Doug: Actually, it did. You sent some good people to
the meeting . . . they really contributed.

Lisa (smiling): Yeah, they actually told me they got
into it and it wasn't a “propeller head activity.”

Doug (laughing): I'll be sure to take off my techie
beanie the next time | visit . . . Look, Lisa, | think we
may have a problem with getting all of the functional-
ity for the home security system out by the dates your
management is falking about. It's early, | know, but I've
already been doing a little back-of-the-envelope plan-
ning and . . .

Lisa (frowning): We've got to have it by that date,
Doug. What functionality are you talking aboute

8.7

Doug: | figure we can get full home security function-
ality out by the drop-dead date, but we'll have to delay
Internet access ‘til the second release.

Lisa: Doug, it's the Internet access that gives SafeHome
“gee whiz" appeal. We're going to build our entire
marketing campaign around it. We've gotta have it!

Doug: | understand your situation, | really do. The
problem is that in order fo give you Internet access,
we'll have to have a fully secure website up and
running. That takes time and people. We'll also have
to build a lot of additional functionality into the first
release . . . | don't think we can do it with the resources
we've gof.

Lisa (still frowning): | see, but you've got to figure
out a way to get it done. It's pivotal to home security
functions and to other functions as well . . . those can
wait until the next releases . . . I'll agree to that.

Lisa and Doug appear fo be at an impasse, and yet
they must negotiate a solution to this problem. Can they
both “win” here? Playing the role of a mediator, what
would you suggest?

REQUIREMENTS MONITORING

Today, incremental development is commonplace. This means that use cases
evolve, new test cases are developed for each new software increment, and con-
tinuous integration of source code occurs throughout a project. Requirements

CHAPTER 8 UNDERSTANDING REQUIREMENTS 161

monitoring can be extremely useful when incremental development is used. It
encompasses five tasks: (1) distributed debugging uncovers errors and deter-
mines their cause, (2) run-time verification determines whether software matches
its specification, (3) run-time validation assesses whether the evolving software
meets user goals, (4) business activity monitoring evaluates whether a system
satisfies business goals, and (5) evolution and codesign provides information to
stakeholders as the system evolves.

Incremental development implies the need for incremental validation. Re-
quirements monitoring supports continuous validation by analyzing user goal
models against the system in use. For example, a monitoring system might con-
tinuously assess user satisfaction and use feedback to guide incremental im-
provements [Rob10l.

&,& VALIQAI]NG REQQIREMENTS

€ When|
® review
requirements,

what questions
should I ask?

As each element of the requirements model is created, it is examined for incon-
sistency, omissions, and ambiguity. The requirements represented by the model
are prioritized by stakeholders and grouped within requirements packages that
will be implemented as software increments. A review of the requirements model

addresses the following questions:
e [s each requirement consistent with the overall objectives for the system
or product?

e Have all requirements been specified at the proper level of abstraction?
That is, do some requirements provide a level of technical detail that is
inappropriate at this stage?

e Is the requirement really necessary or does it represent an add-on feature
that may not be essential to the objective of the system?

o Is each requirement bounded and unambiguous?

e Does each requirement have attribution? That is, is a source (generally, a
specific individual) noted for each requirement?

e Do any requirements conflict with other requirements?

e Is each requirement achievable in the technical environment that will
house the system or product?

e Is each requirement testable, once implemented?
e Does the requirements model properly reflect the information, function,
and behavior of the system to be built?

e Has the requirements model been “partitioned” in a way that exposes pro-
gressively more detailed information about the system?

162 PART TWO MODELING

e Have requirements patterns been used to simplify the requirements
model? Have all patterns been properly validated? Are all patterns con-
sistent with customer requirements?

These and other questions should be asked and answered to ensure that the
requirements model is an accurate reflection of stakeholder needs and that it
provides a solid foundation for design.

8.9 AvoIDING CoMMON MISTAKES

Buschmann [Bus10] describes three related mistakes that must be avoided as

a software team performs requirements engineering. He calls them: featuritis,
flexibilitis, and performitis.

Fearturitis describes the practice of trading functional coverage for overall
system quality. There is a tendency in some organizations to equate the quan-
tity of functions delivered at the earliest possible time with the overall quality
of the end product. This is driven in part by business stakeholders who think
more is better. There is also a tendency of software developers to want to imple-
ment easy functions quickly without thought to their quality. The reality is that
one of the most common causes of software project failure is lack of operational
quality—not missing functionality. To avoid this trap, you should initiate a discus-
sion (with other stakeholders) about the key functions the system requires and
ensure that each delivered function exhibits all necessary quality attributes.

Flexibilitis happens when software engineers overload product with adapta-
tion and configuration facilities. Overly flexible systems are hard to configure
and exhibit poor operational performance. This can be a symptom of poorly de-
fined system scope. The root cause, however, may be developers who use flexibil-
ity as a cover for uncertainty. Rather than making tough design decisions early,
they provide design “hooks” to allow the addition of unplanned features. The
result is a “flexible” system that is unnecessarily complex, more difficult to test,
and more challenging to manage.

Performitis occurs when software developers become overly focused on sys-
tem performance at the expense of quality attributes like maintainability, reli-
ability, or security. System performance characteristics should be determined
as part of an evaluation of nonfunctional software requirements. Performance
should conform to the business need for a product and must be compatible with
the other system characteristics.

ﬁ, 1Q SUMMARY

Requirements engineering tasks are conducted to establish a solid foundation for

design and construction. Requirements engineering occurs during the commu-
nication and modeling activities that have been defined for the generic software

CHAPTER 8 UNDERSTANDING REQUIREMENTS 163

process. Seven distinct requirements engineering functions—inception, elicita-
tion, elaboration, negotiation, specification, validation, and management—are
conducted by members of the software team.

At project inception, stakeholders establish basic problem requirements, de-
fine overriding project constraints, and address major features and functions
that must be present for the system to meet its objectives. This information is
refined and expanded during elicitation—a requirements gathering activity that
makes use of facilitated meetings, QFD, and the development of usage scenarios.

Elaboration further expands requirements in a model—a collection of scenar-
io-based, activity-based, class-based, behavioral, and flow-oriented elements.
The model may reference analysis patterns, characteristics of the problem do-
main that have been seen to reoccur across different applications.

As requirements are identified and the requirements model is being created,
the software team and other project stakeholders negotiate the priority, avail-
ability, and relative cost of each requirement. The intent of this negotiation is to
develop a realistic project plan. In addition, each requirement and the require-
ments model as a whole are validated against customer need to ensure that the
right system is to be built.

PROBLEMS AND PoINTS TO PONDER

8.1. Why is it that many software developers don’t pay enough attention to requirements
engineering? Are there ever circumstances where you can skip it?

8.2. You have been given the responsibility to elicit requirements from a customer who tells
you he is too busy to meet with you. What should you do?

8.3. Discuss some of the problems that occur when requirements must be elicited from
three or four different customers.

8.4. Why do we say that the requirements model represents a snapshot of a system in time?

8.5. Let’s assume that you've convinced the customer (you're a very good salesperson) to
agree to every demand that you have as a developer. Does that make you a master negoti-
ator? Why?

8.6. Develop at least three additional “context-free questions” that you might ask a stake-
holder during inception.

8.7. Develop a requirements-gathering “kit.” The kit should include a set of guidelines for
conducting a requirements-gathering meeting and materials that can be used to facilitate
the creation of lists and any other items that might help in defining requirements.

8.8. Your instructor will divide the class into groups of four or six students. Half of the group
will play the role of the marketing department and half will take on the role of software en-
gineering. Your job is to define requirements for the SafeHome security function described
in this chapter. Conduct a requirements-gathering meeting using the guidelines presented
in this chapter.

8.9. Develop a complete use case for one of the following activities:

a. Making a withdrawal at an ATM.
b. Using your charge card for a meal at a restaurant.

164

PART TWO MODELING

c. Buying a stock using an online brokerage account.
d. Searching for books (on a specific topic) using an online bookstore.
e. An activity specified by your instructor.

8.10. What do use case “exceptions” represent?
8.11. Write a user story for one of the activities listed in question 8.9.

8.12. Consider the use case you created in question 8.9, write a nonfunctional requirement
for the application.

8.13. Describe what an analysis pattern is in your own words.

8.14. Using the template presented in Section 8.5.2, suggest one or more analysis pattern for
the following application domains:

. Accounting software.

E-mail software.

. Internet browsers.

Word-processing software.

. Website creation software.

. An application domain specified by your instructor.

=0 20T

8.15. What does win-win mean in the context of negotiation during the requirements engi-
neering activity?

8.16. What do you think happens when requirement validation uncovers an error? Who is
involved in correcting the error?

8.17. What five tasks make up a comprehensive requirements monitoring program?

FuRTHER READINGS AND OTHER INFORMATION SQURCES

Because it is pivotal to the successful creation of any complex computer-based system, re-
quirements engineering is discussed in a wide array of books. Chemuturi (Requirements
Engineering and Management for Software Development Projects, Springer, 2013) presents
important aspects of requirements engineering. Pohl and Rupp (Requirements Engineering
Fundamentals, Rocky Nook, 2011) present basic principles and concepts, and Pohl (Require-
ments Engineering, Springer, 2010) offers a more detailed view of the entire requirements
engineering process. Young (The Requirements Engineering Handbook, Artech House Pub-
lishers, 2003) presents an in-depth discussion of requirements engineering tasks.

Beaty and Chen (Visual Models for Software Products Best Practices, Microsoft Press,
2012), Robertson (Mastering the Requirements Process: Getting Requirements Right, 3rd ed.,
Addison-Wesley, 2012), Hull and her colleagues (Requirements Engineering, 3rd ed., Springer-
Verlag, 2010), Bray (An Introduction to Requirements Engineering, Addison-Wesley, 2002),
Arlow (Requirements Engineering, Addison-Wesley, 2001), Gilb (Requirements Engineer-
ing, Addison-Wesley, 2000), Graham (Requirements Engineering and Rapid Development,
Addison-Wesley, 1999), and Sommerville and Kotonya (Requirement Engineering: Processes
and Techniques, Wiley, 1998), are but a few of many books dedicated to the subject. Wiegers
(More About Software Requirements, Microsoft Press, 2010) provides many practical tech-
niques for requirements gathering and management.

A patterns-based view of requirements engineering is described by Withall (Software
Requirement Patterns, Microsoft Press, 2007). Ploesch (Contracts, Scenarios and Prototypes,
Springer-Verlag, 2004) discusses advanced techniques for developing software require-
ments. Windle and Abreo (Software Requirements Using the Unified Process, Prentice Hall,
2002) discuss requirements engineering within the context of the Unified Process and UML
notation. Alexander and Steven (Writing Better Requirements, Addison-Wesley, 2002) pres-
ent a brief set of guidelines for writing clear requirements, representing them as scenarios,
and reviewing the end result.

CHAPTER 8 UNDERSTANDING REQUIREMENTS 165

Use case modeling is often the driver for the creation of all other aspects of the analysis
model. The subject is discussed at length by Rosenberg and Stephens (Use Case Driven
Object Modeling with UML: Theory and Practice, Apress, 2007), Denny (Succeeding with Use
Cases: Working Smart to Deliver Quality, Addison-Wesley, 2005), Alexander and Maiden
(eds.) (Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle, Wiley,
2004), Leffingwell and his colleagues (Managing Software Requirements: A Use Case Ap-
proach, 2nd ed., Addison-Wesley, 2003) present a useful collection of requirement best
practices.

A discussion of agile requirements can be found in books by Adzic (Specification by
Example: How Successful Teams Deliver the Right Software, Manning Publications, 2011),
Leffingwell (Agile Requirements: Lean Requirements for Teams, Programs, and Enterprises,
Addison-Wesley, 2011), Cockburn (Agile Software Development: The Cooperative Game, 2nd
ed., Addison-Wesley, 2006), and Cohn (User Stories Applied: For Agile Software Development,
Addison-Wesley, 2004).

A wide variety of information sources on requirements engineering and analysis is avail-
able on the Internet. An up-to-date list of World Wide Web references that are relevant to
requirements engineering and analysis can be found at the SEPA website: www.mhhe.com/
pressman.

CHAPTER

REQUIREMENTS MODELING:
SceENARIO-BASED METHODS

KEey
CONCEPTS

t a technical level, software engineering begins with a series of mod-

eling tasks that lead to a specification of requirements and a design

representation for the software to be built. The requirements model'—
actually a set of models—is the first technical representation of a system.

In a seminal book on requirements modeling methods, Tom DeMarco

activity diagram . . 180
domain analysis . . 170
formal use case. .. 177
requirements

analysis 167 [DeM79I] describes the process in this way:

requirements

modeling 7 Looking back over the recognized problems and failings of the analysis phase,
::::I::;based 173 I suggest that we need to make the following additions to our set of analysis

swimlane diagram. 181 phase goals. The products of analysis must be highly maintainable. This applies

What is it? The written word is a
wonderful vehicle for communica-
tion, but it is not necessarily the best

errors will be found, that inconsistency will sur-
face, and that omissions will be uncovered.
What are the steps? Scenario-based model-

QUICK

Look

way to represent the requirements
for computer software. Requirements modeling
uses a combination of text and diagrammatic
forms to depict requirements in a way that is
relatively easy to understand, and more im-
portant, straightforward to review for correct-
ness, completeness, and consistency.

Who does it? A software engineer (sometimes

called an analyst) builds the model using re-
quirements elicited from the customer.

Why is it important? To validate software re-

quirements, you need to examine them from
a number of different points of view. In this
chapter you'll consider requirements modeling
from a scenario-based perspective and exam-
ine how UML can be used to supplement the
scenarios. In Chapters 10 and 11, you'll learn
about other “dimensions” of the requirements
model. By examining a number of different
dimensions, you'll increase the probability that

ing represents the system from the user’s point
of view. By building a scenario-based model,
you will be able to better understand how the
user interacts with the software, uncovering the
major functions and features that stakeholder
require of the system.

What is the work product? Scenario-based

modeling produces a text-oriented representation
call a “use case.” The use case describes a spe-
cific inferaction in @ manner that can be informal
(a simple narrative) or more structured and formal
in nature. The use case can be supplemented with
a number of different UML diagrams that overlay
a more procedural view of the inferaction.

How do | ensure that I’'ve done it right? Re-

quirements modeling work products must be
reviewed for correctness, completeness, and
consistency. They must reflect the needs of all
stakeholders and establish a foundation from
which design can be conducted.

1 In earlier editions of this book, the term analysis model was used, rather than requirements
model. In this edition, we’ve decided to use both phrases to represent the modeling activity
that defines various aspects of the problem to be solved. Analysis is the action that occurs as

requirements are derived.

166

uml models. 179
USE CSES o v v 173
use case

exception....... 177

2.1

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED METHODS 167
particularly to the Target Document [software requirements specificationl. Prob-
lems of size must be dealt with using an effective method of partitioning. The Vic-
torian novel specification is out. Graphics have to be used whenever possible. We
have to differentiate between logical [essentiall and physical [implementation] con-
siderations . . . At the very least, we need . . . Something to help us partition our re-
quirements and document that partitioning before specification . . . Some means of
keeping track of and evaluating interfaces . . . New tools to describe logic and policy,
something better than narrative text

Although DeMarco wrote about the attributes of analysis modeling more than
three decades ago, his comments still apply to modern requirements modeling
methods and notation.

REQUIREMENTS ANALYSIS

Quote:

“Any one ‘view'

of requirements

is insufficient

to understand

or describe the
desired behavior of
a complex system.”

Alan M. Davis

The analysis model
and requirements
specification provide
a means for assessing
quality once the soft-
ware is built.

Requirements analysis results in the specification of software’s operational
characteristics, indicates software’s interface with other system elements, and
establishes constraints that software must meet. Requirements analysis allows
you (regardless of whether you're called a software engineer, an analyst, or a
modeler) to elaborate on basic requirements established during the inception,
elicitation, and negotiation tasks that are part of requirements engineering
(Chapter 8).

The requirements modeling action results in one or more of the following
types of models:

e Scenario-based models of requirements from the point of view of various
system “actors.”

o Class-oriented models that represent object-oriented classes (attributes
and operations) and the manner in which classes collaborate to achieve
system requirements.

o Behavioral and patterns-based models that depict how the software be-
haves as a consequence of external “events.”

e Data models that depict the information domain for the problem.

o Flow-oriented models that represent the functional elements of the system
and how they transform data as they move through the system.

These models provide a software designer with information that can be trans-
lated to architectural-, interface-, and component-level designs. Finally, the
requirements model (and the software requirements specification) provides
the developer and the customer with the means to assess quality once software
is built.

168

Qoote:

“Requirements are
not architecture.
Requirements

are not design,
nor are they the
user interface.
Requirements are
need.”

Andrew Hunt
and David
Thomas

(ﬁ-}.“
POINT
The analysis model
should describe what
the customer wants,
establish a basis for
design, and establish a
target for validation.

PART TWO MODELING

In this chapter, we focus on scenario-based modeling—a technique that is
growing increasingly popular throughout the software engineering community.
In Chapters 10 and 11 we consider class-based models and behavioral models.
Over the past decade, flow and data modeling have become less commonly used,
while scenario and class-based methods, supplemented with behavioral ap-
proaches and pattern-based techniques have grown in popularity.2

9.1.1 Overall Objectives and Philosophy

Throughout analysis modeling, your primary focus is on what, not how. What
user interaction occurs in a particular circumstance, what objects does the sys-
tem manipulate, what functions must the system perform, what behaviors does
the system exhibit, what interfaces are defined, and what constraints apply?®

In previous chapters, we noted that complete specification of requirements
may not be possible at this stage. The customer may be unsure of precisely what
is required for certain aspects of the system. The developer may be unsure that
a specific approach will properly accomplish function and performance. These
realities mitigate in favor of an iterative approach to requirements analysis and
modeling. The analyst should model what is known and use that model as the
basis for design of the software increment.*

The requirements model must achieve three primary objectives: (1) to de-
scribe what the customer requires, (2) to establish a basis for the creation of a
software design, and (3) to define a set of requirements that can be validated
once the software is built. The analysis model bridges the gap between a sys-
tem-level description that describes overall system or business functionality as
it is achieved by applying software, hardware, data, human, and other system
elements and a software design (Chapters 12 through 18) that describes the soft-
ware’s application architecture, user interface, and component-level structure.
This relationship is illustrated in Figure 9.1.

It is important to note that all elements of the requirements model will be
directly traceable to parts of the design model. A clear division of analysis and
design tasks between these two important modeling activities is not always pos-
sible. Some design invariably occurs as part of analysis, and some analysis will be
conducted during design.

2 Our presentation of flow-oriented modeling and data modeling has been omitted from this
edition. However, copious information about these older requirements modeling methods can
be found on the Web. If you have interest, use the search phrase “structured analysis.”

3 It should be noted that as customers become more technologically sophisticated, there is a
trend toward the specification of how as well as what. However, the primary focus should re-
main on what.

4 Alternatively, the software team may choose to create a prototype (Chapter 4) in an effort to

better understand requirements for the system.

CHAPTER 9

REQUIREMENTS MODELING: SCENARIO-BASED METHODS 169

The require-
ments model
as a bridge
between

the system
description
and the design
model

) Are there

® some hasic
guidelines that can
guide us as we
do requirements
analysis work?

Quote:

“Problems worthy
of attack, prove
their worth by
hitting back.”

Piet Hein

System
description

Analysis
model

9.1.2 Analysis Rules of Thumb

Arlow and Neustadt [Arl02] suggest a number of worthwhile rules of thumb that

should be followed when creating the analysis model:

The model should focus on requirements that are visible within the prob-
lem or business domain. The level of abstraction should be relatively high.
“Don’t get bogged down in details” [Arl02] that try to explain how the

system will work.

Each element of the requirements model should add to an overall under-
standing of software requirements and provide insight into the information
domain, function, and behavior of the system.

Delay consideration of infrastructure and other nonfunctional models until
design. That is, a database may be required, but the classes necessary to
implement it, the functions required to access it,