


Software Engineering

A  P R A C T I T I O N E R ’ S  A P P R O A C H



This page intentionally left blank 



Software Engineering

A  P R A C T I T I O N E R ’ S  A P P R O A C H

EIGHTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.



SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH, EIGHTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2 015 by McGraw-Hill 

Education. All rights reserved. Printed in the United States of America. Previous editions © 201 0, 2005, and 

2001. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a 

database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not 

limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the 

United States.

This book is printed on acid-free paper. 

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 

ISBN 978-0-07-802212-8

MHID 0-07-802212-6

Senior Vice President, Products & Markets: 

 Kurt L. Strand

Vice President, General Manager: Marty Lange

Vice President, Content Production & Technology 

 Services: Kimberly Meriwether David

Managing Director: Thomas Timp

Publisher: Raghu Srinivasan 

Developmental Editor: Vincent Bradshaw

Marketing Manager: Heather Wagner

Director, Content Production: Terri Schiesl

Project Manager: Heather Ervolino

Buyer: Sandy Ludovissy

Cover Designer: Studio Montage, St. Louis, MO.

Cover Image: Farinaz Taghavi/Getty images

Compositor: MPS Limited

Typeface: 8.5/13.5 Impressum Std

Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.

  Software engineering : a practitioner’s approach / Roger S. Pressman, 

Ph.D. — Eighth edition.

      pages cm

  Includes bibliographical references and index.

  ISBN-13: 978-0-07-802212-8 (alk. paper)

  ISBN-10: 0-07-802212-6 (alk. paper)

1.  Software engineering.  I. Title.

QA76.758.P75 2015

005.1—dc23

                               2013035493

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website 

does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does 

not guarantee the accuracy of the information presented at these sites.

www.mhhe.com



To my granddaughters To my granddaughters 
Lily and Maya, who already Lily and Maya, who already 
understand the importance understand the importance 

of software, even though they’re of software, even though they’re 
still in preschool.still in preschool.

—Roger S. Pressman—Roger S. Pressman

In loving memory of In loving memory of 
my parents, who taught my parents, who taught 

me from an early age that me from an early age that 
pursuing a good education pursuing a good education 

was far more important was far more important 
than pursuing money.than pursuing money.

—Bruce R. Maxim—Bruce R. Maxim



vi

 Roger S. Pressman is an internationally recognized consultant and author in soft-

ware engineering. For more than four decades, he has worked as a software engi-

neer, a manager, a professor, an author, a consultant, and an entrepreneur. 

 Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting 

fi rm that specializes in helping companies establish effective software engineer-

ing practices. Over the years he has developed a set of techniques and tools that 

improve software engineering practice. He is also the founder of Teslaccessories, 

LLC, a start-up manufacturing company that specializes in custom products for 

the Tesla Model S electric vehicle. 

 Dr. Pressman is the author of nine books, including two novels, and many techni-

cal and management papers. He has been on the editorial boards of  IEEE Software  

and  The Cutter IT Journal  and was editor of the “Manager” column in  IEEE Software.  

 Dr. Pressman is a well-known speaker, keynoting a number of major industry 

conferences. He has presented tutorials at the International Conference on Soft-

ware Engineering and at many other industry meetings. He has been a member of 

the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma. 

             Bruce R. Maxim has worked as a software engineer, project manager, professor, 

author, and consultant for more than thirty years. His research interests include 

software engineering, human computer interaction, game design, social media, 

artifi cial intelligence, and computer science education. 

 Dr. Maxim is associate professor of computer and information science at the 

University of Michigan—Dearborn. He established the GAME Lab in the College 

of Engineering and Computer Science. He has published a number of papers on 

computer algorithm animation, game development, and engineering education. 

He is coauthor of a best-selling introductory computer science text. Dr. Maxim 

has supervised several hundred industry-based software development projects 

as part of his work at UM-Dearborn. 

 Dr. Maxim’s professional experience includes managing research informa-

tion systems at a medical school, directing instructional computing for a medical 

campus, and working as a statistical programmer. Dr. Maxim served as the chief 

technology offi cer for a game development company. 

 Dr. Maxim was the recipient of several distinguished teaching awards and a 

 distinguished community service award. He is a member of Sigma Xi, Upsilon Pi 

 Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer 

 Society, American Society for Engineering Education, Society of Women  Engineers, 

and International Game Developers Association.  

        ABOUT THE AUTHORS 



vii

CONTENTS AT A GLANCE

CHAPTER 1  The Nature of Software  1

CHAPTER 2  Software Engineering  14

PART ONE THE SOFTWARE PROCESS  29

CHAPTER 3  Software Process Structure  30

CHAPTER 4  Process Models  40

CHAPTER 5  Agile Development  66

CHAPTER 6  Human Aspects of Software Engineering  87

PART TWO MODELING  103

CHAPTER 7  Principles That Guide Practice  104

CHAPTER 8  Understanding Requirements  131

CHAPTER 9  Requirements Modeling: Scenario-Based Methods  166

CHAPTER 10  Requirements Modeling: Class-Based Methods  184

CHAPTER 11  Requirements Modeling: Behavior, Patterns, and Web/Mobile Apps  202

CHAPTER 12  Design Concepts  224

CHAPTER 13  Architectural Design  252

CHAPTER 14  Component-Level Design  285

CHAPTER 15  User Interface Design  317

CHAPTER 16  Pattern-Based Design  347

CHAPTER 17  WebApp Design  371

CHAPTER 18  MobileApp Design  391

PART THREE QUALITY MANAGEMENT  411

CHAPTER 19  Quality Concepts  412

CHAPTER 20  Review Techniques  431

CHAPTER 21  Software Quality Assurance  448

CHAPTER 22  Software Testing Strategies  466

CHAPTER 23  Testing Conventional Applications  496

CHAPTER 24  Testing Object-Oriented Applications  523

CHAPTER 25  Testing Web Applications  540

CHAPTER 26  Testing MobileApps  567



viii CONTENTS AT A GLANCE

CHAPTER 27  Security Engineering  584

CHAPTER 28  Formal Modeling and Verifi cation  601

CHAPTER 29  Software Confi guration Management  623

CHAPTER 30  Product Metrics  653

PART FOUR MANAGING SOFTWARE PROJECTS  683

CHAPTER 31  Project Management Concepts  684

CHAPTER 32  Process and Project Metrics  703

CHAPTER 33  Estimation for Software Projects  727

CHAPTER 34  Project Scheduling  754

CHAPTER 35  Risk Management  777

CHAPTER 36  Maintenance and Reengineering  795

PART FIVE ADVANCED TOPICS  817

CHAPTER 37  Software Process Improvement  818

CHAPTER 38  Emerging Trends in Software Engineering  839

CHAPTER 39  Concluding Comments  860

APPENDIX 1  An Introduction to UML  869

APPENDIX 2  Object-Oriented Concepts  891

APPENDIX 3  Formal Methods  899

REFERENCES   909

INDEX   933



ix

TABLE OF CONTENTS

  Preface  xxvii

CHAPTER 1 THE NATURE OF SOFTWARE  1

1.1 The Nature of Software  3
1.1.1 Defi ning Software  4
1.1.2 Software Application Domains  6
1.1.3 Legacy Software  7

1.2 The Changing Nature of Software  9
1.2.1 WebApps  9
1.2.2 Mobile Applications  9
1.2.3 Cloud Computing  10
1.2.4 Product Line Software  11

1.3 Summary  11
PROBLEMS AND POINTS TO PONDER  12
FURTHER READINGS AND INFORMATION SOURCES  12

CHAPTER 2 SOFTWARE ENGINEERING  14

2.1 Defi ning the Discipline  15
2.2 The Software Process  16

2.2.1 The Process Framework  17
2.2.2 Umbrella Activities  18
2.2.3 Process Adaptation  18

2.3 Software Engineering Practice  19
2.3.1 The Essence of Practice  19
2.3.2 General Principles  21

2.4 Software Development Myths  23
2.5 How It All Starts  26
2.6 Summary  27
PROBLEMS AND POINTS TO PONDER  27
FURTHER READINGS AND INFORMATION SOURCES  27

PART ONE THE SOFTWARE PROCESS  29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE  30

3.1 A Generic Process Model  31
3.2 Defi ning a Framework Activity  32
3.3 Identifying a Task Set  34
3.4 Process Patterns  35
3.5 Process Assessment and Improvement  37
3.6 Summary  38
PROBLEMS AND POINTS TO PONDER  38
FURTHER READINGS AND INFORMATION SOURCES  39



x TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS  40

4.1 Prescriptive Process Models  41
4.1.1 The Waterfall Model  41
4.1.2 Incremental Process Models  43
4.1.3 Evolutionary Process Models  45
4.1.4 Concurrent Models  49
4.1.5 A Final Word on Evolutionary Processes  51

4.2 Specialized Process Models  52
4.2.1 Component-Based Development  53
4.2.2 The Formal Methods Model  53
4.2.3 Aspect-Oriented Software Development  54

4.3 The Unifi ed Process  55
4.3.1 A Brief History  56
4.3.2 Phases of the Unifi ed Process  56

4.4 Personal and Team Process Models  59
4.4.1 Personal Software Process  59
4.4.2 Team Software Process  60

4.5 Process Technology  61
4.6 Product and Process  62
4.7 Summary  64
PROBLEMS AND POINTS TO PONDER  64
FURTHER READINGS AND INFORMATION SOURCES  65

CHAPTER 5 AGILE DEVELOPMENT  66

5.1 What Is Agility?  68
5.2 Agility and the Cost of Change  68
5.3 What Is an Agile Process?  69

5.3.1 Agility Principles  70
5.3.2 The Politics of Agile Development  71

5.4 Extreme Programming  72
5.4.1 The XP Process  72
5.4.2 Industrial XP  75

5.5 Other Agile Process Models  77
5.5.1 Scrum  78
5.5.2 Dynamic Systems Development Method  79
5.5.3 Agile Modeling  80
5.5.4 Agile Unifi ed Process  82

5.6 A Tool Set for the Agile Process  83
5.7 Summary  84
PROBLEMS AND POINTS TO PONDER  85
FURTHER READINGS AND INFORMATION SOURCES  85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING  87

6.1 Characteristics of a Software Engineer  88
6.2 The Psychology of Software Engineering  89
6.3 The Software Team  90
6.4 Team Structures  92
6.5 Agile Teams  93

6.5.1 The Generic Agile Team  93
6.5.2 The XP Team  94



TABLE OF CONTENTS  xi

6.6 The Impact of Social Media  95
6.7 Software Engineering Using the Cloud  97
6.8 Collaboration Tools  98
6.9 Global Teams  99
6.10 Summary  100
PROBLEMS AND POINTS TO PONDER  101
FURTHER READINGS AND INFORMATION SOURCES  102

PART TWO MODELING  103

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE  104

7.1 Software Engineering Knowledge  105
7.2 Core Principles  106

7.2.1 Principles That Guide Process  106
7.2.2 Principles That Guide Practice  107

7.3 Principles That Guide Each Framework Activity  109
7.3.1 Communication Principles  110
7.3.2 Planning Principles  112
7.3.3 Modeling Principles  114
7.3.4 Construction Principles  121
7.3.5 Deployment Principles  125

7.4 Work Practices  126
7.5 Summary  127
PROBLEMS AND POINTS TO PONDER  128
FURTHER READINGS AND INFORMATION SOURCES  129

CHAPTER 8 UNDERSTANDING REQUIREMENTS  131

8.1 Requirements Engineering  132
8.2 Establishing the Groundwork  138

8.2.1 Identifying Stakeholders  139
8.2.2 Recognizing Multiple Viewpoints  139
8.2.3 Working toward Collaboration  140
8.2.4 Asking the First Questions  140
8.2.5 Nonfunctional Requirements  141
8.2.6 Traceability  142

8.3 Eliciting Requirements  142
8.3.1 Collaborative Requirements Gathering  143
8.3.2 Quality Function Deployment  146
8.3.3 Usage Scenarios  146
8.3.4 Elicitation Work Products  147
8.3.5 Agile Requirements Elicitation  148
8.3.6 Service-Oriented Methods  148

8.4 Developing Use Cases  149
8.5 Building the Analysis Model  154

8.5.1 Elements of the Analysis Model  154
8.5.2 Analysis Patterns  157
8.5.3 Agile Requirements Engineering  158
8.5.4 Requirements for Self-Adaptive Systems  158

8.6 Negotiating Requirements  159



xii TABLE OF CONTENTS

8.7 Requirements Monitoring  160
8.8 Validating Requirements  161
8.9 Avoiding Common Mistakes  162
8.10 Summary  162
PROBLEMS AND POINTS TO PONDER  163
FURTHER READINGS AND OTHER INFORMATION SOURCES  164

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED 

METHODS  166

9.1 Requirements Analysis  167
9.1.1 Overall Objectives and Philosophy  168
9.1.2 Analysis Rules of Thumb  169
9.1.3 Domain Analysis  170
9.1.4 Requirements Modeling Approaches  171

9.2 Scenario-Based Modeling  173
9.2.1 Creating a Preliminary Use Case  173
9.2.2 Refi ning a Preliminary Use Case  176
9.2.3 Writing a Formal Use Case  177

9.3 UML Models That Supplement the Use Case  179
9.3.1 Developing an Activity Diagram  180
9.3.2 Swimlane Diagrams  181

9.4 Summary  182
PROBLEMS AND POINTS TO PONDER  182
FURTHER READINGS AND INFORMATION SOURCES  183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS  184

10.1 Identifying Analysis Classes  185
10.2 Specifying Attributes  188
10.3 Defi ning Operations  189
10.4 Class-Responsibility-Collaborator Modeling  192
10.5 Associations and Dependencies  198
10.6 Analysis Packages  199
10.7 Summary  200
PROBLEMS AND POINTS TO PONDER  201
FURTHER READINGS AND INFORMATION SOURCES  201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, 

AND WEB/MOBILE APPS  202

11.1 Creating a Behavioral Model  203
11.2 Identifying Events with the Use Case  203
11.3 State Representations  204
11.4 Patterns for Requirements Modeling  207

11.4.1 Discovering Analysis Patterns  208
11.4.2 A Requirements Pattern Example: Actuator-Sensor  209

11.5 Requirements Modeling for Web and Mobile Apps  213
11.5.1 How Much Analysis Is Enough?  214
11.5.2 Requirements Modeling Input  214
11.5.3 Requirements Modeling Output  215
11.5.4 Content Model  216



TABLE OF CONTENTS  xiii

11.5.5 Interaction Model for Web and Mobile Apps  217
11.5.6 Functional Model  218
11.5.7 Confi guration Models for WebApps  219
11.5.8 Navigation Modeling  220

11.6 Summary  221
PROBLEMS AND POINTS TO PONDER  222
FURTHER READINGS AND INFORMATION SOURCES  222

CHAPTER 12 DESIGN CONCEPTS  224

12.1 Design within the Context of Software Engineering  225
12.2 The Design Process  228

12.2.1 Software Quality Guidelines and Attributes  228
12.2.2 The Evolution of Software Design  230

12.3 Design Concepts  231
12.3.1 Abstraction  232
12.3.2 Architecture  232
12.3.3 Patterns  233
12.3.4 Separation of Concerns  234
12.3.5 Modularity  234
12.3.6 Information Hiding  235
12.3.7 Functional Independence  236
12.3.8 Refi nement  237
12.3.9 Aspects  237
12.3.10 Refactoring  238
12.3.11 Object-Oriented Design Concepts  238
12.3.12 Design Classes  239
12.3.13 Dependency Inversion  241
12.3.14 Design for Test  242

12.4 The Design Model  243
12.4.1 Data Design Elements  244
12.4.2 Architectural Design Elements  244
12.4.3 Interface Design Elements  245
12.4.4 Component-Level Design Elements  247
12.4.5 Deployment-Level Design Elements  248

12.5 Summary  249
PROBLEMS AND POINTS TO PONDER  250
FURTHER READINGS AND INFORMATION SOURCES  251

CHAPTER 13 ARCHITECTURAL DESIGN  252

13.1 Software Architecture  253
13.1.1 What Is Architecture?  253
13.1.2 Why Is Architecture Important?  254
13.1.3 Architectural Descriptions  255
13.1.4 Architectural Decisions  256

13.2 Architectural Genres  257
13.3 Architectural Styles  258

13.3.1 A Brief Taxonomy of Architectural Styles  258
13.3.2 Architectural Patterns  263
13.3.3 Organization and Refi nement  263

13.4 Architectural Considerations  264



xiv TABLE OF CONTENTS

13.5 Architectural Decisions  266
13.6 Architectural Design  267

13.6.1 Representing the System in Context  267
13.6.2 Defi ning Archetypes  269
13.6.3 Refi ning the Architecture into Components  270
13.6.4 Describing Instantiations of the System  272
13.6.5 Architectural Design for Web Apps  273
13.6.6 Architectural Design for Mobile Apps  274

13.7 Assessing Alternative Architectural Designs  274
13.7.1 Architectural Description Languages  276
13.7.2 Architectural Reviews  277

13.8 Lessons Learned  278
13.9 Pattern-based Architecture Review  278
13.10 Architecture Conformance Checking  279
13.11 Agility and Architecture  280
13.12 Summary  282
PROBLEMS AND POINTS TO PONDER  282
FURTHER READINGS AND INFORMATION SOURCES  283

CHAPTER 14 COMPONENT-LEVEL DESIGN  285

14.1 What Is a Component?  286
14.1.1 An Object-Oriented View  286
14.1.2 The Traditional View  288
14.1.3 A Process-Related View  291

14.2 Designing Class-Based Components  291
14.2.1 Basic Design Principles  292
14.2.2 Component-Level Design Guidelines  295
14.2.3 Cohesion  296
14.2.4 Coupling  298

14.3 Conducting Component-Level Design  299
14.4 Component-Level Design for WebApps  305

14.4.1 Content Design at the Component Level  306
14.4.2 Functional Design at the Component Level  306

14.5 Component-Level Design for Mobile Apps  306
14.6 Designing Traditional Components  307
14.7 Component-Based Development  308

14.7.1 Domain Engineering  308
14.7.2 Component Qualifi cation, Adaptation, and Composition  309
14.7.3 Architectural Mismatch  311
14.7.4 Analysis and Design for Reuse  312
14.7.5 Classifying and Retrieving Components  312

14.8 Summary  313
PROBLEMS AND POINTS TO PONDER  315
FURTHER READINGS AND INFORMATION SOURCES  315

CHAPTER 15 USER INTERFACE DESIGN  317

15.1 The Golden Rules  318
15.1.1 Place the User in Control  318
15.1.2 Reduce the User’s Memory Load  319
15.1.3 Make the Interface Consistent  321



TABLE OF CONTENTS  xv

15.2 User Interface Analysis and Design  322
15.2.1 Interface Analysis and Design Models  322
15.2.2 The Process  323

15.3 Interface Analysis  325
15.3.1 User Analysis  325
15.3.2 Task Analysis and Modeling  326
15.3.3 Analysis of Display Content  331
15.3.4 Analysis of the Work Environment  331

15.4 Interface Design Steps  332
15.4.1 Applying Interface Design Steps  332
15.4.2 User Interface Design Patterns  334
15.4.3 Design Issues  335

15.5 WebApp and Mobile Interface Design  337
15.5.1 Interface Design Principles and Guidelines  337
15.5.2 Interface Design Workfl ow for Web and Mobile Apps  341

15.6 Design Evaluation  342
15.7 Summary  344
PROBLEMS AND POINTS TO PONDER  345
FURTHER READINGS AND INFORMATION SOURCES  346

CHAPTER 16 PATTERN-BASED DESIGN  347

16.1 Design Patterns  348
16.1.1 Kinds of Patterns  349
16.1.2 Frameworks  351
16.1.3 Describing a Pattern  352
16.1.4 Pattern Languages and Repositories  353

16.2 Pattern-Based Software Design  354
16.2.1 Pattern-Based Design in Context  354
16.2.2 Thinking in Patterns  354
16.2.3 Design Tasks  356
16.2.4 Building a Pattern-Organizing Table  358
16.2.5 Common Design Mistakes  359

16.3 Architectural Patterns  359
16.4 Component-Level Design Patterns  360
16.5 User Interface Design Patterns  362
16.6 WebApp Design Patterns  364

16.6.1 Design Focus  365
16.6.2 Design Granularity  365

16.7 Patterns for Mobile Apps  366
16.8 Summary  367
PROBLEMS AND POINTS TO PONDER  368
FURTHER READINGS AND INFORMATION SOURCES  369

CHAPTER 17 WEBAPP DESIGN  371

17.1 WebApp Design Quality  372
17.2 Design Goals  374
17.3 A Design Pyramid for WebApps  375
17.4 WebApp Interface Design  376



xvi TABLE OF CONTENTS

17.5 Aesthetic Design  377
17.5.1 Layout Issues  378
17.5.2 Graphic Design Issues  378

17.6 Content Design  379
17.6.1 Content Objects  379
17.6.2 Content Design Issues  380

17.7 Architecture Design  381
17.7.1 Content Architecture  381
17.7.2 WebApp Architecture  384

17.8 Navigation Design  385
17.8.1 Navigation Semantics  385
17.8.2 Navigation Syntax  387

17.9 Component-Level Design  387
17.10 Summary  388
PROBLEMS AND POINTS TO PONDER  389
FURTHER READINGS AND INFORMATION SOURCES  389

CHAPTER 18 MOBILEAPP DESIGN  391

18.1 The Challenges  392
18.1.1 Development Considerations  392
18.1.2 Technical Considerations  393

18.2 Developing MobileApps  395
18.2.1 MobileApp Quality  397
18.2.2 User Interface Design  398
18.2.3 Context-Aware Apps  399
18.2.4 Lessons Learned  400

18.3 MobileApp Design—Best Practices  401
18.4 Mobility Environments  403
18.5 The Cloud  405
18.6 The Applicability of Conventional Software Engineering  407
18.7 Summary  408
PROBLEMS AND POINTS TO PONDER  409
FURTHER READINGS AND INFORMATION SOURCES  409

PART THREE QUALITY MANAGEMENT  411

CHAPTER 19 QUALITY CONCEPTS  412

19.1 What Is Quality?  413
19.2 Software Quality  414

19.2.1 Garvin’s Quality Dimensions  415
19.2.2 McCall’s Quality Factors  416
19.2.3 ISO 9126 Quality Factors  418
19.2.4 Targeted Quality Factors  418
19.2.5 The Transition to a Quantitative View  420

19.3 The Software Quality Dilemma  420
19.3.1 “Good Enough” Software  421
19.3.2 The Cost of Quality  422
19.3.3 Risks  424
19.3.4 Negligence and Liability  425



TABLE OF CONTENTS  xvii

19.3.5 Quality and Security  425
19.3.6 The Impact of Management Actions  426

19.4 Achieving Software Quality  427
19.4.1 Software Engineering Methods  427
19.4.2 Project Management Techniques  427
19.4.3 Quality Control  427
19.4.4 Quality Assurance  428

19.5 Summary  428
PROBLEMS AND POINTS TO PONDER  429
FURTHER READINGS AND INFORMATION SOURCES  429

CHAPTER 20 REVIEW TECHNIQUES  431

20.1 Cost Impact of Software Defects  432
20.2 Defect Amplifi cation and Removal  433
20.3 Review Metrics and Their Use  435

20.3.1 Analyzing Metrics  435
20.3.2 Cost-Effectiveness of Reviews  436

20.4 Reviews: A Formality Spectrum  438
20.5 Informal Reviews  439
20.6 Formal Technical Reviews  441

20.6.1 The Review Meeting  441
20.6.2 Review Reporting and Record Keeping  442
20.6.3 Review Guidelines  442
20.6.4 Sample-Driven Reviews  444

20.7 Post-Mortem Evaluations  445
20.8 Summary  446
PROBLEMS AND POINTS TO PONDER  446
FURTHER READINGS AND INFORMATION SOURCES  447

CHAPTER 21 SOFTWARE QUALITY ASSURANCE  448

21.1 Background Issues  449
21.2 Elements of Software Quality Assurance  450
21.3 SQA Processes and Product Characteristics  452
21.4 SQA Tasks, Goals, and Metrics  452

21.4.1 SQA Tasks  453
21.4.2 Goals, Attributes, and Metrics  454

21.5 Formal Approaches to SQA  456
21.6 Statistical Software Quality Assurance  456

21.6.1 A Generic Example  457
21.6.2 Six Sigma for Software Engineering  458

21.7 Software Reliability  459
21.7.1 Measures of Reliability and Availability  459
21.7.2 Software Safety  460

21.8 The ISO 9000 Quality Standards  461
21.9 The SQA Plan  463
21.10 Summary  463
PROBLEMS AND POINTS TO PONDER  464
FURTHER READINGS AND INFORMATION SOURCES  464



xviii TABLE OF CONTENTS

CHAPTER 22 SOFTWARE TESTING STRATEGIES  466

22.1 A Strategic Approach to Software Testing  466
22.1.1 Verifi cation and Validation  468
22.1.2 Organizing for Software Testing  468
22.1.3 Software Testing Strategy—The Big Picture  469
22.1.4 Criteria for Completion of Testing  472

22.2 Strategic Issues  472
22.3 Test Strategies for Conventional Software  473

22.3.1 Unit Testing  473
22.3.2 Integration Testing  475

22.4 Test Strategies for Object-Oriented Software  481
22.4.1 Unit Testing in the OO Context  481
22.4.2 Integration Testing in the OO Context  481

22.5 Test Strategies for WebApps  482
22.6 Test Strategies for MobileApps  483
22.7 Validation Testing  483

22.7.1 Validation-Test Criteria  484
22.7.2 Confi guration Review  484
22.7.3 Alpha and Beta Testing  484

22.8 System Testing  486
22.8.1 Recovery Testing  486
22.8.2 Security Testing  486
22.8.3 Stress Testing  487
22.8.4 Performance Testing  487
22.8.5 Deployment Testing  487

22.9 The Art of Debugging  488
22.9.1 The Debugging Process  488
22.9.2 Psychological Considerations  490
22.9.3 Debugging Strategies  491
22.9.4 Correcting the Error  492

22.10 Summary  493
PROBLEMS AND POINTS TO PONDER  493
FURTHER READINGS AND INFORMATION SOURCES  494

CHAPTER 23 TESTING CONVENTIONAL APPLICATIONS  496

23.1 Software Testing Fundamentals  497
23.2 Internal and External Views of Testing  499
23.3 White-Box Testing  500
23.4 Basis Path Testing  500

23.4.1 Flow Graph Notation  500
23.4.2 Independent Program Paths  502
23.4.3 Deriving Test Cases  504
23.4.4 Graph Matrices  506

23.5 Control Structure Testing  507
23.6 Black-Box Testing  509

23.6.1 Graph-Based Testing Methods  509
23.6.2 Equivalence Partitioning  511
23.6.3 Boundary Value Analysis  512
23.6.4 Orthogonal Array Testing  513



TABLE OF CONTENTS  xix

23.7 Model-Based Testing  516
23.8 Testing Documentation and Help Facilities  516
23.9 Testing for Real-Time Systems  517
23.10 Patterns for Software Testing  519
23.11 Summary  520
PROBLEMS AND POINTS TO PONDER  521
FURTHER READINGS AND INFORMATION SOURCES  521

CHAPTER 24 TESTING OBJECT-ORIENTED APPLICATIONS  523

24.1 Broadening the View of Testing  524
24.2 Testing OOA and OOD Models  525

24.2.1 Correctness of OOA and OOD Models  525
24.2.2 Consistency of Object-Oriented Models  526

24.3 Object-Oriented Testing Strategies  528
24.3.1 Unit Testing in the OO Context  528
24.3.2 Integration Testing in the OO Context  529
24.3.3 Validation Testing in an OO Context  529

24.4 Object-Oriented Testing Methods  529
24.4.1 The Test-Case Design Implications of OO Concepts  530
24.4.2 Applicability of Conventional Test-Case Design Methods  531
24.4.3 Fault-Based Testing  531
24.4.4 Scenario-Based Test Design  532

24.5 Testing Methods Applicable at the Class Level  532
24.5.1 Random Testing for OO Classes  532
24.5.2 Partition Testing at the Class Level  533

24.6 Interclass Test-Case Design  534
24.6.1 Multiple Class Testing  534
24.6.2 Tests Derived from Behavior Models  536

24.7 Summary  537
PROBLEMS AND POINTS TO PONDER  538
FURTHER READINGS AND INFORMATION SOURCES  538

CHAPTER 25 TESTING WEB APPLICATIONS  540

25.1 Testing Concepts for WebApps  541
25.1.1 Dimensions of Quality  541
25.1.2 Errors within a WebApp Environment  542
25.1.3 Testing Strategy  543
25.1.4 Test Planning  543

25.2 The Testing Process—An Overview  544
25.3 Content Testing  545

25.3.1 Content Testing Objectives  545
25.3.2 Database Testing  547

25.4 User Interface Testing  549
25.4.1 Interface Testing Strategy  549
25.4.2 Testing Interface Mechanisms  550
25.4.3 Testing Interface Semantics  552
25.4.4 Usability Tests  552
25.4.5 Compatibility Tests  554

25.5 Component-Level Testing  555



xx TABLE OF CONTENTS

25.6 Navigation Testing  556
25.6.1 Testing Navigation Syntax  556
25.6.2 Testing Navigation Semantics  556

25.7 Confi guration Testing  558
25.7.1 Server-Side Issues  558
25.7.2 Client-Side Issues  559

25.8 Security Testing  559
25.9 Performance Testing  560

25.9.1 Performance Testing Objectives  561
25.9.2 Load Testing  562
25.9.3 Stress Testing  562

25.10 Summary  563
PROBLEMS AND POINTS TO PONDER  564
FURTHER READINGS AND INFORMATION SOURCES  565

CHAPTER 26 TESTING MOBILEAPPS  567

26.1 Testing Guidelines  568
26.2 The Testing Strategies  569

26.2.1 Are Conventional Approaches Applicable?  570
26.2.2 The Need for Automation  571
26.2.3 Building a Test Matrix  572
26.2.4 Stress Testing  573
26.2.5 Testing in a Production Environment  573

26.3 Considering the Spectrum of User Interaction  574
26.3.1 Gesture Testing  575
26.3.2 Voice Input and Recognition  576
26.3.3 Virtual Key Board Input  577
26.3.4 Alerts and Extraordinary Conditions  577

26.4 Test Across Borders  578
26.5 Real-Time Testing Issues  578
26.6 Testing Tools and Environments  579
26.7 Summary  581
PROBLEMS AND POINTS TO PONDER  582
FURTHER READINGS AND INFORMATION SOURCES  582

CHAPTER 27 SECURITY ENGINEERING  584

27.1 Analyzing Security Requirements  585
27.2 Security and Privacy in an Online World  586

27.2.1 Social Media  587
27.2.2 Mobile Applications  587
27.2.3 Cloud Computing  587
27.2.4 The Internet of Things  588

27.3 Security Engineering Analysis  588
27.3.1 Security Requirement Elicitation  589
27.3.2 Security Modeling  590
27.3.3 Measures Design  591
27.3.4 Correctness Checks  591

27.4 Security Assurance  592
27.4.1 The Security Assurance Process  592
27.4.2 Organization and Management  593



TABLE OF CONTENTS  xxi

27.5 Security Risk Analysis  594
27.6 The Role of Conventional Software Engineering Activi t ies  595
27.7 Verifi cation of Trustworthy Systems  597
27.8 Summary  599
PROBLEMS AND POINTS TO PONDER  599
FURTHER READINGS AND INFORMATION SOURCES  600

CHAPTER 28 FORMAL MODELING AND VERIFICATION  601

28.1 The Cleanroom Strategy  602
28.2 Functional Specifi cation  604

28.2.1 Black-Box Specifi cation  605
28.2.2 State-Box Specifi cation  606
28.2.3 Clear-Box Specifi cation  607

28.3 Cleanroom Design  607
28.3.1 Design Refi nement  608
28.3.2 Design Verifi cation  608

28.4 Cleanroom Testing  610
28.4.1 Statistical Use Testing  610
28.4.2 Certifi cation  612

28.5 Rethinking Formal Methods  612
28.6 Formal Methods Concepts  615
28.7 Alternative Arguments  618
28.8 Summary  619
PROBLEMS AND POINTS TO PONDER  620
FURTHER READINGS AND INFORMATION SOURCES  621

CHAPTER 29 SOFTWARE CONFIGURATION MANAGEMENT  623

29.1 Software Confi guration Management  624
29.1.1 An SCM Scenario  625
29.1.2 Elements of a Confi guration Management System  626
29.1.3 Baselines  626
29.1.4 Software Confi guration Items  628
29.1.5 Management of Dependencies and Changes  628

29.2 The SCM Repository  630
29.2.1 General Features and Content  630
29.2.2 SCM Features  631

29.3 The SCM Process  632
29.3.1 Identifi cation of Objects in the Software Confi guration  633
29.3.2 Version Control  634
29.3.3 Change Control  635
29.3.4 Impact Management  638
29.3.5 Confi guration Audit  639
29.3.6 Status Reporting  639

29.4 Confi guration Management for Web and MobileApps  640
29.4.1 Dominant Issues  641
29.4.2 Confi guration Objects  642
29.4.3 Content Management  643
29.4.4 Change Management  646
29.4.5 Version Control  648
29.4.6 Auditing and Reporting  649



xxii TABLE OF CONTENTS

29.5 Summary  650
PROBLEMS AND POINTS TO PONDER  651
FURTHER READINGS AND INFORMATION SOURCES  651

CHAPTER 30 PRODUCT METRICS  653

30.1 A Framework for Product Metrics  654
30.1.1 Measures, Metrics, and Indicators  654
30.1.2 The Challenge of Product Metrics  655
30.1.3 Measurement Principles  656
30.1.4 Goal-Oriented Software Measurement  656
30.1.5 The Attributes of Effective Software Metrics  657

30.2 Metrics for the Requirements Model  659
30.2.1 Function-Based Metrics  659
30.2.2 Metrics for Specifi cation Quality  662

30.3 Metrics for the Design Model  663
30.3.1 Architectural Design Metrics  663
30.3.2 Metrics for Object-Oriented Design  666
30.3.3 Class-Oriented Metrics—The CK Metrics Suite  667
30.3.4 Class-Oriented Metrics—The MOOD Metrics Suite  670
30.3.5 OO Metrics Proposed by Lorenz and Kidd  671
30.3.6 Component-Level Design Metrics  671
30.3.7 Operation-Oriented Metrics  671
30.3.8 User Interface Design Metrics  672

30.4 Design Metrics for Web and Mobile Apps  672
30.5 Metrics for Source Code  675
30.6 Metrics for Testing  676

30.6.1 Halstead Metrics Applied to Testing  676
30.6.2 Metrics for Object-Oriented Testing  677

30.7 Metrics for Maintenance  678
30.8 Summary  679
PROBLEMS AND POINTS TO PONDER  679
FURTHER READINGS AND INFORMATION SOURCES  680

PART FOUR MANAGING SOFTWARE PROJECTS  683

CHAPTER 31 PROJECT MANAGEMENT CONCEPTS  684

31.1 The Management Spectrum  685
31.1.1 The People  685
31.1.2 The Product  686
31.1.3 The Process  686
31.1.4 The Project  686

31.2 People  687
31.2.1 The Stakeholders  687
31.2.2 Team Leaders  688
31.2.3 The Software Team  689
31.2.4 Agile Teams  691
31.2.5 Coordination and Communication Issues  692

31.3 The Product  693
31.3.1 Software Scope  694
31.3.2 Problem Decomposition  694



TABLE OF CONTENTS  xxiii

31.4 The Process  694
31.4.1 Melding the Product and the Process  695
31.4.2 Process Decomposition  696

31.5 The Project  697
31.6 The W5HH Principle  698
31.7 Critical Practices  699
31.8 Summary  700
PROBLEMS AND POINTS TO PONDER  700
FURTHER READINGS AND INFORMATION SOURCES  701

CHAPTER 32 PROCESS AND PROJECT METRICS  703

32.1 Metrics in the Process and Project Domains  704
32.1.1 Process Metrics and Software Process Improvement  704
32.1.2 Project Metrics  707

32.2 Software Measurement  708
32.2.1 Size-Oriented Metrics  709
32.2.2 Function-Oriented Metrics  710
32.2.3 Reconciling LOC and FP Metrics  711
32.2.4 Object-Oriented Metrics  713
32.2.5 Use Case-Oriented Metrics  714
32.2.6 WebApp Project Metrics  714

32.3 Metrics for Software Quality  716
32.3.1 Measuring Quality  717
32.3.2 Defect Removal Effi ciency  718

32.4 Integrating Metrics within the Software Process  719
32.4.1 Arguments for Software Metrics  720
32.4.2 Establishing a Baseline  720
32.4.3 Metrics Collection, Computation, and Evaluation  721

32.5 Metrics for Small Organizations  721
32.6 Establishing a Software Metrics Program  722
32.7 Summary  724
PROBLEMS AND POINTS TO PONDER  724
FURTHER READINGS AND INFORMATION SOURCES  725

CHAPTER 33 ESTIMATION FOR SOFTWARE PROJECTS  727

33.1 Observations on Estimation  728
33.2 The Project Planning Process  729
33.3 Software Scope and Feasibility  730
33.4 Resources  731

33.4.1 Human Resources  731
33.4.2 Reusable Software Resources  732
33.4.3 Environmental Resources  732

33.5 Software Project Estimation  733
33.6 Decomposition Techniques  734

33.6.1 Software Sizing  734
33.6.2 Problem-Based Estimation  735
33.6.3 An Example of LOC-Based Estimation  736
33.6.4 An Example of FP-Based Estimation  738
33.6.5 Process-Based Estimation  739
33.6.6 An Example of Process-Based Estimation  740
33.6.7 Estimation with Use Cases  740



xxiv TABLE OF CONTENTS

33.6.8 An Example of Estimation Using Use Case Points  742
33.6.9 Reconciling Estimates  742

33.7 Empirical Estimation Models  743
33.7.1 The Structure of Estimation Models  744
33.7.2 The COCOMO II Model  744
33.7.3 The Software Equation  744

33.8 Estimation for Object-Oriented Projects  746
33.9 Specialized Estimation Techniques  746

33.9.1 Estimation for Agile Development  746
33.9.2 Estimation for WebApp Projects  747

33.10 The Make/Buy Decision  748
33.10.1 Creating a Decision Tree  749
33.10.2 Outsourcing  750

33.11 Summary  752
PROBLEMS AND POINTS TO PONDER  752
FURTHER READINGS AND INFORMATION SOURCES  753

CHAPTER 34 PROJECT SCHEDULING  754

34.1 Basic Concepts  755
34.2 Project Scheduling  757

34.2.1 Basic Principles  758
34.2.2 The Relationship between People and Effort  759
34.2.3 Effort Distribution  760

34.3 Defi ning a Task Set for the Software Project  761
34.3.1 A Task Set Example  762
34.3.2  Refi nement of Major Tasks  763

34.4 Defi ning a Task Network  764
34.5 Scheduling  765

34.5.1 Time-Line Charts  766
34.5.2 Tracking the Schedule  767
34.5.3 Tracking Progress for an OO Project  768
34.5.4 Scheduling for WebApp and Mobile Projects  769

34.6 Earned Value Analysis  772
34.7 Summary  774
PROBLEMS AND POINTS TO PONDER  774
FURTHER READINGS AND INFORMATION SOURCES  776

CHAPTER 35 RISK MANAGEMENT  777

35.1 Reactive versus Proactive Risk Strategies  778
35.2 Software Risks  778
35.3 Risk Identifi cation  780

35.3.1 Assessing Overall Project Risk  781
35.3.2 Risk Components and Drivers  782

35.4 Risk Projection  782
35.4.1 Developing a Risk Table  783
35.4.2 Assessing Risk Impact  785

35.5 Risk Refi nement  787
35.6 Risk Mitigation, Monitoring, and Management  788
35.7 The RMMM Plan  790
35.8 Summary  792



TABLE OF CONTENTS  xxv

PROBLEMS AND POINTS TO PONDER  792
FURTHER READINGS AND INFORMATION SOURCES  793

CHAPTER 36 MAINTENANCE AND REENGINEERING  795

36.1 Software Maintenance  796
36.2 Software Supportability  798
36.3 Reengineering  798
36.4 Business Process Reengineering  799

36.4.1 Business Processes  799
36.4.2 A BPR Model  800

36.5 Software Reengineering  802
36.5.1 A Software Reengineering Process Model  802
36.5.2 Software Reengineering Activities  803

36.6 Reverse Engineering  805
36.6.1 Reverse Engineering to Understand Data  807
36.6.2 Reverse Engineering to Understand Processing  807
36.6.3 Reverse Engineering User Interfaces  808

36.7 Restructuring  809
36.7.1 Code Restructuring  809
36.7.2 Data Restructuring  810

36.8 Forward Engineering  811
36.8.1 Forward Engineering for Client-Server Architectures  812
36.8.2 Forward Engineering for Object-Oriented Architectures  813

36.9 The Economics of Reengineering  813
36.10 Summary  814
PROBLEMS AND POINTS TO PONDER  815
FURTHER READINGS AND INFORMATION SOURCES  816

PART FIVE ADVANCED TOPICS  817

CHAPTER 37 SOFTWARE PROCESS IMPROVEMENT  818

37.1 What Is SPI?  819
37.1.1 Approaches to SPI  819
37.1.2 Maturity Models  821
37.1.3 Is SPI for Everyone? 822

37.2 The SPI Process  823
37.2.1 Assessment and Gap Analysis  823
37.2.2 Education and Training  825
37.2.3 Selection and Justifi cation  825
37.2.4 Installation/Migration  826
37.2.5 Evaluation  827
37.2.6 Risk Management for SPI  827

37.3 The CMMI  828
37.4 The People CMM  832
37.5 Other SPI Frameworks  832
37.6 SPI Return on Investment  834
37.7 SPI Trends  835
37.8 Summary  836
PROBLEMS AND POINTS TO PONDER  837
FURTHER READINGS AND INFORMATION SOURCES  837



xxvi TABLE OF CONTENTS

CHAPTER 38 EMERGING TRENDS IN SOFTWARE ENGINEERING  839

38.1 Technology Evolution  840
38.2 Prospects for a True Engineering Discipline  841
38.3 Observing Software Engineering Trends  842
38.4 Identifying “Soft Trends”  843

38.4.1 Managing Complexity  845
38.4.2 Open-World Software  846
38.4.3 Emergent Requirements  846
38.4.4 The Talent Mix  847
38.4.5 Software Building Blocks  847
38.4.6 Changing Perceptions of “Value”  848
38.4.7 Open Source  848

38.5 Technology Directions  849
38.5.1 Process Trends  849
38.5.2 The Grand Challenge  851
38.5.3 Collaborative Development  852
38.5.4 Requirements Engineering  852
38.5.5 Model-Driven Software Development  853
38.5.6 Postmodern Design  854
38.5.7 Test-Driven Development  854

38.6 Tools-Related Trends  855
38.7 Summary  857
PROBLEMS AND POINTS TO PONDER  857
FURTHER READINGS AND INFORMATION SOURCES  858

CHAPTER 39 CONCLUDING COMMENTS  860

39.1 The Importance of Software—Revisited  861
39.2 People and the Way They Build Systems  861
39.3 New Modes for Representing Information  862
39.4 The Long View  864
39.5 The Software Engineer’s Responsibility  865
39.6 A Final Comment from RSP  867

APPENDIX 1 AN INTRODUCTION TO UML  869
APPENDIX 2 OBJECT-ORIENTED CONCEPTS  891
APPENDIX 3 FORMAL METHODS  899
REFERENCES  909
INDEX  933



xxvii

 When computer software succeeds—when it meets the needs of the people who 

use it, when it performs fl awlessly over a long period of time, when it is easy 

to modify and even easier to use—it can and does change things for the better. But 

when software fails—when its users are dissatisfi ed, when it is error prone, when it 

is diffi cult to change and even harder to use—bad things can and do happen. We all 

want to build software that makes things better, avoiding the bad things that lurk in 

the shadow of failed efforts. To succeed, we need discipline when software is designed 

and built. We need an engineering approach. 

 It has been almost three and a half decades since the fi rst edition of this book 

was written. During that time, software engineering has evolved from an obscure idea 

practiced by a relatively small number of zealots to a legitimate engineering disci-

pline. Today, it is recognized as a subject worthy of serious research, conscientious 

study, and tumultuous debate. Throughout the industry, software engineer has re-

placed programmer as the job title of preference. Software process models, software 

engineering methods, and software tools have been adopted successfully across a 

broad spectrum of industry segments. 

 Although managers and practitioners alike recognize the need for a more disci-

plined approach to software, they continue to debate the manner in which discipline 

is to be applied. Many individuals and companies still develop software haphazardly, 

even as they build systems to service today’s most advanced technologies. Many pro-

fessionals and students are unaware of modern methods. And as a result, the quality 

of the software that we produce suffers, and bad things happen. In addition, debate 

and controversy about the true nature of the software engineering approach continue. 

The status of software engineering is a study in contrasts. Attitudes have changed, 

progress has been made, but much remains to be done before the discipline reaches 

full maturity. 

 The eighth edition of  Software Engineering: A Practitioner’s Approach  is intended 

to serve as a guide to a maturing engineering discipline. The eighth edition, like the 

seven editions that preceded it, is intended for both students and practitioners, re-

taining its appeal as a guide to the industry professional and a comprehensive intro-

duction to the student at the upper-level undergraduate or fi rst-year graduate level. 

 The eighth edition is considerably more than a simple update. The book has been 

revised and restructured to improve pedagogical fl ow and emphasize new and im-

portant software engineering processes and practices. In addition, we have further 

enhanced the popular “support system” for the book, providing a comprehensive set 

of student, instructor, and professional resources to complement the content of the 

book. These resources are presented as part of a website (www.mhhe.com/pressman) 

specifi cally designed for  Software Engineering: A Practitioner’s Approach.  

         The Eighth Edition.   The 39 chapters of the eighth edition are organized into fi ve 

parts. This organization better compartmentalizes topics and assists instructors who 

may not have the time to complete the entire book in one term. 

  PREFACE 



xxviii PREFACE

 Part 1,  The Process,  presents a variety of different views of software process, consid-

ering all important process models and addressing the debate between prescriptive 

and agile process philosophies. Part 2,  Modeling,  presents analysis and design meth-

ods with an emphasis on object-oriented techniques and UML modeling. Pattern-

based design and design for Web and mobile applications are also considered. Part 3, 

 Quality Management,  presents the concepts, procedures, techniques, and methods 

that enable a software team to assess software quality, review software engineering 

work products, conduct SQA procedures, and apply an effective testing strategy and 

tactics. In addition, formal modeling and verifi cation methods are also considered. 

Part 4,  Managing Software Projects,  presents topics that are relevant to those who 

plan, manage, and control a software development project. Part 5,  Advanced Topics,  

considers software process improvement and software engineering trends. Continu-

ing in the tradition of past editions, a series of sidebars is used throughout the book to 

present the trials and tribulations of a (fi ctional) software team and to provide supple-

mentary materials about methods and tools that are relevant to chapter topics. 

 The fi ve-part organization of the eighth edition enables an instructor to “cluster” 

topics based on available time and student need. An entire one-term course can be 

built around one or more of the fi ve parts. A software engineering survey course 

would select chapters from all fi ve parts. A software engineering course that empha-

sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented 

software engineering course would select topics from Parts 1 and 3, with a brief foray 

into Part 2. A “management course” would stress Parts 1 and 4. By organizing the 

eighth edition in this way, we have attempted to provide an instructor with a number 

of teaching options. In every case the content of the eighth edition is complemented 

by the following elements of the  SEPA, 8/e Support System.  

   Student Resources.   A wide variety of student resources includes an extensive on-

line learning center encompassing chapter-by-chapter study guides, practice quizzes, 

problem solutions, and a variety of Web-based resources including software engineer-

ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work 

product templates, and many other resources. In addition, over 1,000 categorized  Web 

References  allow a student to explore software engineering in greater detail and a 

 Reference Library  with links to more than 500 downloadable papers provides an in-

depth source of advanced software engineering information.  

  Instructor Resources.   A broad array of instructor resources has been developed to 

supplement the eighth edition. These include a complete online  Instructor’s Guide  

(also downloadable) and supplementary teaching materials including a complete set 

of more than 700  PowerPoint Slides  that may be used for lectures, and a test bank. Of 

course, all resources available for students (e.g, tiny tools, the Web References, the 

downloadable Reference Library) and professionals are also available. 

 The  Instructor’s Guide for Software Engineering: A Practitioner’s Approach  pres-

ents suggestions for conducting various types of software engineering courses, rec-

ommendations for a variety of software projects to be conducted in conjunction with a 

course, solutions to selected problems, and a number of useful teaching aids.  

  Professional Resources.   A collection of resources available to industry practitioners 

(as well as students and faculty) includes outlines and samples of software engineering 

documents and other work products, a useful set of software engineering checklists, 



PREFACE  xxix

a catalog of software engineering tools, a comprehensive collection of Web-based re-

sources, and an “adaptable process model” that provides a detailed task breakdown 

of the software engineering process. 

McGraw-Hill Connect® Computer Science provides 

online presentation, assignment, and assessment solu-

tions. It connects your students with the tools and 

resources they’ll need to achieve success. With Connect Computer Science you can 

deliver assignments, quizzes, and tests online. A robust set of questions and activi-

ties are presented and aligned with the textbook’s learning outcomes. As an instruc-

tor, you can edit existing questions and author entirely new problems. Integrate 

grade reports easily with Learning Management Systems (LMS), such as WebCT and 

 Blackboard—and much more. ConnectPlus® Computer Science provides students 

with all the advantages of Connect Computer Science, plus 24/7 online access to a 

media-rich eBook, allowing seamless integration of text, media, and assessments. To 

learn more, visit www.mcgrawhillconnect.com

McGraw-Hill LearnSmart® is avail-

able as a standalone product or 

an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive 

learning system designed to help students learn faster, study more effi ciently, and 

retain more knowledge for greater success. LearnSmart assesses a student’s knowl-

edge of course content through a series of adaptive questions. It pinpoints concepts 

the student does not understand and maps out a personalized study plan for success. 

This innovative study tool also has features that allow instructors to see exactly what 

students have accomplished and a built-in assessment tool for graded assignments. 

Visit the following site for a demonstration. www.mhlearnsmart.com

Powered by the intelligent and adap-

tive LearnSmart engine, SmartBook™ 

is the fi rst and only continuously adaptive reading experience available today. Distin-

guishing what students know from what they don’t, and honing in on concepts they 

are most likely to forget, SmartBook personalizes content for each student. Reading 

is no longer a passive and linear experience but an engaging and dynamic one, where 

students are more likely to master and retain important concepts, coming to class 

better prepared. SmartBook includes powerful reports that identify specifi c topics 

and learning objectives students need to study.

 When coupled with its online support system, the eighth edition of  Software 

 Engineering: A Practitioner’s Approach,  provides fl exibility and depth of content that 

cannot be achieved by a textbook alone. 

 With this edition of  Software Engineering: A Practitioner’s Approach,  Bruce Maxim 

joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software 

engineering knowledge to the project and has added new content and insight that will 

be invaluable to readers of this edition.  

  Acknowledgments.   Special thanks go to Tim Lethbridge of the University of Ottawa 

who assisted us in the development of UML and OCL examples, and developed the 

case study that accompanies this book, and Dale Skrien of Colby College, who devel-

oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable. 



xxx PREFACE

In addition, we’d like to thank Austin Krauss, Senior Software Engineer at Treyarch, 

for providing insight into software development in the video game industry. We also 

wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of 

Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University; 

and Dean Mathias, Utah State University. Their in-depth comments and thoughtful 

criticism have helped us make this a much better book.  

  Special Thanks.   BRM: I am grateful to have had the opportunity to work with Roger 

on the eighth edition of this book. During the time I have been working on this book 

my son Benjamin shipped his fi rst MobileApp and my daughter Katherine launched 

her interior design career. I am quite pleased to see the adults they have become. 

I am very grateful to my wife, Norma, for the enthusiastic support she has given me as 

I fi lled my free time with working on this book. 

 RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have 

grown from boys to men. Their maturity, character, and success in the real world 

have been an inspiration to me. Nothing has fi lled me with more pride. They now have 

children of their own, Maya and Lily, who start still another generation. Both girls are 

already wizards on mobile computing devices. Finally, to my wife Barbara, my love 

and thanks for tolerating the many, many hours in the offi ce and encouraging still 

another edition of “the book.”      

   Roger   S.   Pressman   

   Bruce   R.   Maxim     



1

  A s he fi nished showing me the latest build of one of the world’s 

most popular fi rst-person shooter video games, the young developer 

laughed. 

  “You’re not a gamer, are you?” he asked. 

 I smiled. “How’d you guess?” 

  The young man was dressed in shorts and a tee shirt. His leg bounced up 

and down like a piston, burning the nervous energy that seemed to be com-

monplace among his co-workers. 

  “Because if you were,” he said, “you’d be a lot more excited. You’ve gotten a 

peek at our next generation product and that’s something that our customers 

would kill for  . . .  no pun intended.” 

  We sat in a development area at one of the most successful game develop-

ers on the planet. Over the years, earlier generations of the game he demoed 

sold over 50 million copies and generated billions of dollars in revenue. 

  “So, when will this version be on the market?” I asked. 

 He shrugged. “In about fi ve months, and we’ve still got a lot of work to do.” 

  He had responsibility for game play and artifi cial intelligence functionality 

in an application that encompassed more than three million lines of code. 

  “Do you guys use any software engineering techniques?” I asked, half-

expecting that he’d laugh and shake his head. 

   K E Y 
C O N C E P T S 
    application 
domains . . . . . . . . . . 6  
    cloud computing  . . . 10  
    failure curves  . . . . . . 5  
    legacy software  . . . . 8  
    mobile apps  . . . . . . 10  
    product line. . . . . . . 11  
    software, 
defi nition  . . . . . . . . . 4  
    software, questions 
about . . . . . . . . . . . . 4  
    software, 
nature of  . . . . . . . . . 3  
    wear  . . . . . . . . . . . . 5  
    Webapps  . . . . . . . . . 9         

 THE NATURE 
OF SOFTWARE 1 

   C H A P T E R

  What is it?   Computer software is 
the product that software profession-
als build and then support over the 
long term. It encompasses programs 

that execute within a computer of any size and 
architecture, content that is presented as the 
computer programs execute, and descriptive 
information in both hard copy and virtual forms 
that encompass virtually any electronic media. 

   Who does it?   Software engineers build and 
support software, and virtually everyone in 
the industrialized world uses it either directly 
or indirectly. 

   Why is it important?   Software is important 
because it affects nearly every aspect of our 
lives and has become pervasive in our com-
merce, our culture, and our everyday activities. 

   What are the steps?   Customers and other 
stakeholders express the need for computer 
software, engineers build the software prod-
uct, and end users apply the software to solve 
a specifi c problem or to address a specifi c 
need. 

   What is the work product?   A computer pro-
gram that runs in one or more specifi c environ-
ments and services the needs of one or more 
end users. 

   How do I ensure that I’ve done it 
right?   If you’re a software engineer, apply 
the ideas contained in the remainder of this 
book. If you’re an end user, be sure you un-
derstand your need and your environment 
and then select an application that best 
meets them both.  

 Q U I C K 
L O O K 

pre22126_ch01_001-013.indd   1pre22126_ch01_001-013.indd   1 13/12/13   10:00 PM13/12/13   10:00 PM



2 CHAPTER 1  THE NATURE OF SOFTWARE

  He paused and thought for a moment. Then he slowly nodded. “We adapt them 

to our needs, but sure, we use them.” 

  “Where?” I asked, probing. 

 “Our problem is often translating the requirements the creatives give us.” 

 “The creatives?” I interrupted. 

 “You know, the guys who design the story, the characters, all the stuff that 

make the game a hit. We have to take what they give us and produce a set of 

technical requirements that allow us to build the game.” 

 “And after the requirements are established?” 

 He shrugged. “We have to extend and adapt the architecture of the previous 

version of the game and create a new product. We have to create code from the 

requirements, test the code with daily builds, and do lots of things that your book 

recommends.” 

 “You know my book?” I was honestly surprised. 

 “Sure, used it in school. There’s a lot there.” 

 “I’ve talked to some of your buddies here, and they’re more skeptical about 

the stuff in my book.” 

 He frowned. “Look, we’re not an IT department or an aerospace company, so we 

have to customize what you advocate. But the bottom line is the same—we need 

to produce a high-quality product, and the only way we can accomplish that in a 

repeatable fashion is to adapt our own subset of software engineering techniques.” 

 “And how will your subset change as the years pass?” 

 He paused as if to ponder the future. “Games will become bigger and more 

complex, that’s for sure. And our development timelines will shrink as more 

competition emerges. Slowly, the games themselves will force us to apply a bit 

more development discipline. If we don’t, we’re dead.” 

    Computer software continues to be the single most important technology on 

the world stage. And it’s also a prime example of the law of unintended conse-

quences. Sixty years ago no one could have predicted that software would be-

come an indispensable technology for business, science, and engineering; that 

software would enable the creation of new technologies (e.g., genetic engineer-

ing and nanotechnology), the extension of existing technologies (e.g., telecom-

munications), and the radical change in older technologies (e.g., the media); 

that software would be the driving force behind the personal computer revolu-

tion; that software applications would be purchased by consumers using their 

smart phones; that software would slowly evolve from a product to a service as 

“on-demand” software companies deliver just-in-time functionality via a Web 

browser; that a software company would become larger and more infl uential 

than all industrial-era companies; that a vast software-driven network would 

evolve and change everything from library research to consumer shopping to 

political discourse to the dating habits of young (and not so young) adults. 

  No one could foresee that software would become embedded in systems of 

all kinds: transportation, medical, telecommunications, military, industrial, 

  uote: 

 “Ideas and 
technological 
discoveries are the 
driving engines of 
economic growth.” 

   Wall Street 
Journal  

pre22126_ch01_001-013.indd   2pre22126_ch01_001-013.indd   2 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  3

entertainment, offi ce machines, . . . the list is almost endless. And if you believe the 

law of unintended consequences, there are many effects that we cannot yet predict. 

 No one could predict that millions of computer programs would have to be 

corrected, adapted, and enhanced as time passed. The burden of performing 

these “maintenance” activities would absorb more people and more resources 

than all work applied to the creation of new software. 

 As software’s importance has grown, the software community has continually 

attempted to develop technologies that will make it easier, faster, and less ex-

pensive to build and maintain high-quality computer programs. Some of these 

technologies are targeted at a specifi c application domain (e.g., website design 

and implementation); others focus on a technology domain (e.g., object-oriented 

systems or aspect-oriented programming); and still others are broad-based (e.g., 

operating systems such as Linux). However, we have yet to develop a software 

technology that does it all, and the likelihood of one arising in the future is small. 

And yet, people bet their jobs, their comforts, their safety, their entertainment, 

their decisions, and their very lives on computer software. It better be right. 

 This book presents a framework that can be used by those who build computer 

software—people who must get it right. The framework encompasses a process, 

a set of methods, and an array of tools that we call  software engineering.  

   1.1 THE   NATURE OF SOFTWARE   

  Today, software takes on a dual role. It is a product, and at the same time, the 

vehicle for delivering a product. As a product, it delivers the computing potential 

embodied by computer hardware or more broadly, by a network of computers 

that are accessible by local hardware. Whether it resides within a mobile phone, 

a hand-held tablet, on the desktop, or within a mainframe computer, software 

is an information transformer—producing, managing, acquiring, modifying, dis-

playing, or transmitting information that can be as simple as a single bit or as 

complex as a multimedia presentation derived from data acquired from dozens 

of independent sources. As the vehicle used to deliver the product, software acts 

as the basis for the control of the computer (operating systems), the communica-

tion of information (networks), and the creation and control of other programs 

(software tools and environments). 

    Software delivers the most important product of our time— information.  It 

transforms personal data (e.g., an individual’s fi nancial transactions) so that the 

data can be more useful in a local context; it manages business information to 

enhance competitiveness; it provides a gateway to worldwide information net-

works (e.g., the Internet), and provides the means for acquiring information in 

all of its forms. It also provides a vehicle that can threaten personal privacy and a 

gateway that enables those with malicious intent to commit criminal acts. 

   Software is both a 
product and a vehicle 
that delivers a product. 

pre22126_ch01_001-013.indd   3pre22126_ch01_001-013.indd   3 13/12/13   10:00 PM13/12/13   10:00 PM



4 CHAPTER 1  THE NATURE OF SOFTWARE

 The role of computer software has undergone signifi cant change over the 

last half-century. Dramatic improvements in hardware performance, profound 

changes in computing architectures, vast increases in memory and storage ca-

pacity, and a wide variety of exotic input and output options have all precipitated 

more sophisticated and complex computer-based systems. Sophistication and 

complexity can produce dazzling results when a system succeeds, but they can 

also pose huge problems for those who must build and protect complex systems. 

  Today, a huge software industry has become a dominant factor in the econ-

omies of the industrialized world. Teams of software specialists, each focusing 

on one part of the technology required to deliver a complex application, have 

replaced the lone programmer of an earlier era. And yet, the questions that were 

asked of the lone programmer are the same questions that are asked when mod-

ern computer-based systems are built:  1   

     •  Why does it take so long to get software fi nished?  

   •  Why are development costs so high?  

   •  Why can’t we fi nd all errors before we give the software to our customers?  

   •  Why do we spend so much time and effort maintaining existing programs?  

   •  Why do we continue to have diffi culty in measuring progress as software is 

being developed and maintained?  

  These, and many other questions, are a manifestation of the concern about 

software and the manner in which it is developed—a concern that has led to the 

adoption of software engineering practice. 

  1.1.1  Defi ning Software 

 Today, most professionals and many members of the public at large feel that they 

understand software. But do they? 

 A textbook description of software might take the following form:

  Software is: (1) instructions (computer programs) that when executed provide de-

sired features, function, and performance; (2) data structures that enable the pro-

grams to adequately manipulate information, and (3) descriptive information in both 

hard copy and virtual forms that describes the operation and use of the programs.   

    There is no question that other more complete defi nitions could be offered. But a 

more formal defi nition probably won’t measurably improve your understanding. 

  uote: 

 “Software is 
a place where 
dreams are planted 
and nightmares 
harvested, an 
abstract, mystical 
swamp where 
terrible demons 
compete with 
magical panaceas, 
a world of 
werewolves and 
silver bullets.” 

 Brad J. Cox 

  1  In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the 

counterpoint. He states: “Instead of asking why software costs so much, we need to begin ask-

ing ‘What have we done to make it possible for today’s software to cost so little?’ The answer 

to that question will help us continue the extraordinary level of achievement that has always 

distinguished the software industry.” 

 How should 
we defi ne 

 software ? 
?

pre22126_ch01_001-013.indd   4pre22126_ch01_001-013.indd   4 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  5

To accomplish that, it’s important to examine the characteristics of software that 

make it different from other things that human beings build. Software is a logical 

rather than a physical system element. Therefore, software has one fundamen-

tal characteristic that makes it considerably different from hardware:  Software 

doesn’t “wear out.”  

     Figure 1.1  depicts failure rate as a function of time for hardware. The relation-

ship, often called the “bathtub curve,” indicates that hardware exhibits relatively 

high failure rates early in its life (these failures are often attributable to design 

or manufacturing defects); defects are corrected and the failure rate drops to a 

steady-state level (hopefully, quite low) for some period of time. As time passes, 

however, the failure rate rises again as hardware components suffer from the 

cumulative effects of dust, vibration, abuse, temperature extremes, and many 

other environmental maladies. Stated simply, the hardware begins to  wear out.   

 Software is not susceptible to the environmental maladies that cause hard-

ware to wear out. In theory, therefore, the failure rate curve for software should 

take the form of the “idealized curve” shown in  Figure 1.2 . Undiscovered defects 

will cause high failure rates early in the life of a program. However, these are 

corrected and the curve fl attens as shown. The idealized curve is a gross over-

simplifi cation of actual failure models for software. However, the implication is 

clear—software doesn’t wear out. But it does  deteriorate!   

 This seeming contradiction can best be explained by considering the actual 

curve in  Figure 1.2 . During its life,  2   software will undergo change. As changes are 

   If you want to reduce 
software deterioration, 
you’ll have to do 
better software design 
( Chapters 12  to  18 ). 

“Wear out”“Infant
mortality”

Time

Fa
ilu

re
 r

a
te

  FIGURE 1.1

 Failure curve 
for hardware   

  2  In fact, from the moment that development begins and long before the fi rst version is delivered, 

changes may be requested by a variety of different stakeholders. 

pre22126_ch01_001-013.indd   5pre22126_ch01_001-013.indd   5 13/12/13   10:00 PM13/12/13   10:00 PM



6 CHAPTER 1  THE NATURE OF SOFTWARE

made, it is likely that errors will be introduced, causing the failure rate curve to 

spike as shown in the “actual curve” ( Figure 1.2 ). Before the curve can return to 

the original steady-state failure rate, another change is requested, causing the 

curve to spike again. Slowly, the minimum failure rate level begins to rise—the 

software is deteriorating due to change. 

     Another aspect of wear illustrates the difference between hardware and soft-

ware. When a hardware component wears out, it is replaced by a spare part. There 

are no software spare parts. Every software failure indicates an error in design 

or in the process through which design was translated into machine executable 

code. Therefore, the software maintenance tasks that accommodate requests for 

change involve considerably more complexity than hardware maintenance. 

   1.1.2  Software   Application Domains   

 Today, seven broad categories of computer software present continuing chal-

lenges for software engineers: 

        System software— a collection of programs written to service other 

programs. Some system software (e.g., compilers, editors, and fi le man-

agement utilities) processes complex, but determinate,  3   information struc-

tures. Other systems applications (e.g., operating system components, 

drivers, networking software, telecommunications processors) process 

largely indeterminate data.  

Increased failure
rate due to side

effects

Time

Fa
ilu

re
 r

a
te

Change

Actual curve

Idealized curve

  FIGURE 1.2

 Failure curves 
for software   

   Software engineering 
methods strive to 
reduce the magnitude 
of the spikes and the 
slope of the actual 
curve in  Figure 1.2 . 

  3  Software is  determinate  if the order and timing of inputs, processing, and outputs is predict-

able. Software is  indeterminate  if the order and timing of inputs, processing, and outputs can-

not be predicted in advance. 

pre22126_ch01_001-013.indd   6pre22126_ch01_001-013.indd   6 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  7

     Application software —stand-alone programs that solve a specifi c business 

need. Applications in this area process business or technical data in a way 

that facilitates business operations or management/technical decision 

making.  

     Engineering/scientific software —a broad array of “number-crunching 

programs that range from astronomy to volcanology, from automotive 

stress analysis to orbital dynamics, and from computer-aided design to 

molecular biology, from genetic analysis to meteorology.  

    Embedded software— resides within a product or system and is used to 

implement and control features and functions for the end user and for the 

system itself. Embedded software can perform limited and esoteric func-

tions (e.g., key pad control for a microwave oven) or provide signifi cant 

function and control capability (e.g., digital functions in an automobile 

such as fuel control, dashboard displays, and braking systems).  

    Product-line software —designed to provide a specifi c capability for use 

by many different customers. Product-line software can focus on a limited 

and esoteric marketplace (e.g., inventory control products) or address 

mass consumer.  

    Web/Mobile applications —this network-centric software category spans a 

wide array of applications and encompasses both browser-based apps and 

software that resides on mobile devices.  

    Artificial intelligence software— makes use of nonnumerical algorithms to 

solve complex problems that are not amenable to computation or straight-

forward analysis. Applications within this area include robotics, expert 

systems, pattern recognition (image and voice), artifi cial neural networks, 

theorem proving, and game playing.       

 Millions of software engineers worldwide are hard at work on software proj-

ects in one or more of these categories. In some cases, new systems are being 

built, but in many others, existing applications are being corrected, adapted, 

and enhanced. It is not uncommon for a young software engineer to work on 

a program that is older than she is! Past generations of software people have 

left a legacy in each of the categories we have discussed. Hopefully, the legacy 

to be left behind by this generation will ease the burden on future software 

engineers. 

   1.1.3  Legacy Software 

 Hundreds of thousands of computer programs fall into one of the seven broad 

application domains discussed in the preceding subsection. Some of these are 

state-of-the-art software—just released to individuals, industry, and government. 

But other programs are older, in some cases  much  older. 

 WebRef 
 One of the most 
comprehensive libraries 
of shareware/freeware 
can be found at 
  shareware.cnet.com   

  uote: 

 “What a computer 
is to me is the most 
remarkable tool 
that we have ever 
come up with. It’s 
the equivalent of 
a bicycle for our 
minds.” 

 Steve Jobs 

pre22126_ch01_001-013.indd   7pre22126_ch01_001-013.indd   7 13/12/13   10:00 PM13/12/13   10:00 PM



8 CHAPTER 1  THE NATURE OF SOFTWARE

 These older programs—often referred to as  legacy software —have been the 

focus of continuous attention and concern since the 1960s. Dayani-Fard and his 

colleagues [Day99] describe legacy software in the following way:

  Legacy software systems  . . .  were developed decades ago and have been continually 

modifi ed to meet changes in business requirements and computing platforms. The 

proliferation of such systems is causing headaches for large organizations who fi nd 

them costly to maintain and risky to evolve.   

 Liu and his colleagues [Liu98] extend this description by noting that “many 

legacy systems remain supportive to core business functions and are ‘indispens-

able’ to the business.” Hence, legacy software is characterized by longevity and 

business criticality. 

    Unfortunately, there is sometimes one additional characteristic that is pres-

ent in legacy software— poor quality .  4   Legacy systems sometimes have inextensi-

ble designs, convoluted code, poor or nonexistent documentation, test cases and 

results that were never archived, a poorly managed change history—the list can 

be quite long. And yet, these systems support “core business functions and are 

indispensable to the business.” What to do? 

     The only reasonable answer may be:  Do nothing,  at least until the legacy sys-

tem must undergo some signifi cant change. If the legacy software meets the 

needs of its users and runs reliably, it isn’t broken and does not need to be fi xed. 

However, as time passes, legacy systems often evolve for one or more of the fol-

lowing reasons:

    •    The software must be adapted to meet the needs of new computing envi-

ronments or technology.  

   •    The software must be enhanced to implement new business requirements.  

   •    The software must be extended to make it interoperable with other more 

modern systems or databases.  

   •    The software must be re-architected to make it viable within a evolving 

computing environment.  

      When these modes of evolution occur, a legacy system must be reengineered 

( Chapter 36 ) so that it remains viable into the future. The goal of modern soft-

ware engineering is to “devise methodologies that are founded on the notion 

of evolution;” that is, the notion that software systems continually change, new 

software systems are built from the old ones, and  . . .  all must interoperate and 

cooperate with each other.” [Day99] 

 What do I do 
if I encounter 

a legacy system 
that exhibits poor 
quality? 

?

  4  In this case, quality is judged based on modern software engineering thinking—a somewhat 

unfair criterion since some modern software engineering concepts and principles may not 

have been well understood at the time that the legacy software was developed. 

   Every software engi-
neer must recognize 
that change is natural. 
Don’t try to fi ght it. 

 What types 
of changes 

are made to 
legacy systems? 

?

pre22126_ch01_001-013.indd   8pre22126_ch01_001-013.indd   8 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  9

      1.2 THE CHANGING NATURE OF SOFTWARE 

  Four broad categories of software are evolving to dominate the industry. And yet, 

these categories were in their infancy little more than a decade ago. 

  1.2.1  WebApps 

 In the early days of the World Wide Web (circa 1990 to 1995),  websites  consisted of 

little more than a set of linked hypertext fi les that presented information using 

text and limited graphics. As time passed, the augmentation of HTML by devel-

opment tools (e.g., XML, Java) enabled Web engineers to provide computing ca-

pability along with informational content.  Web-based systems and applications   5   

(we refer to these collectively as  WebApps ) were born. 

  Today, WebApps have evolved into sophisticated computing tools that not only 

provide stand-alone function to the end user, but also have been integrated with 

corporate databases and business applications. 

 A decade ago, WebApps “involve[d] a mixture between print publishing and 

software development, between marketing and computing, between inter-

nal communications and external relations, and between art and technology.” 

[Pow98] But today, they provide full computing potential in many of the applica-

tion categories noted in Section 1.1.2.  

 Over the past decade, Semantic Web technologies (often referred to as Web 

3.0) have evolved into sophisticated corporate and consumer applications that 

encompass “semantic databases [that] provide new functionality that requires 

Web linking, fl exible [data] representation, and external access APIs.” [Hen10] 

Sophisticated relational data structures will lead to entirely new WebApps that 

allow access to disparate information in ways never before possible. 

   1.2.2  Mobile Applications 

 The term  app  has evolved to connote software that has been specifi cally de-

signed to reside on a mobile platform (e.g., iOS, Android, or Windows Mobile). In 

most instances, mobile applications encompass a user interface that takes ad-

vantage of the unique interaction mechanisms provided by the mobile platform, 

interoperability with Web-based resources that provide access to a wide array 

of information that is relevant to the app, and local processing capabilities that 

collect, analyze, and format information in a manner that is best suited to the 

mobile platform. In addition, a mobile app provides persistent storage capabili-

ties within the platform. 

  5  In the context of this book, the term  Web application  (WebApp) encompasses everything from a 

simple Web page that might help a consumer compute an automobile lease payment to a com-

prehensive website that provides complete travel services for businesspeople and vacationers. 

Included within this category are complete websites, specialized functionality within websites, 

and information processing applications that reside on the Internet or on an intranet or extranet. 

  uote:

“By the time 
we see any sort 
of stabilization, 
the Web will 
have turned 
into something 
completely 
different.” 

 Louis Monier 

pre22126_ch01_001-013.indd   9pre22126_ch01_001-013.indd   9 13/12/13   10:00 PM13/12/13   10:00 PM



10 CHAPTER 1  THE NATURE OF SOFTWARE

    It is important to recognize that there is a subtle distinction between mobile 

web applications and mobile apps. A  mobile web application  (WebApp) allows a 

mobile device to gain access to web-based content via a browser that has been 

specifi cally designed to accommodate the strengths and weaknesses of the mo-

bile platform. A  mobile app  can gain direct access to the hardware characteris-

tics of the device (e.g., accelerometer or GPS location) and then provide the local 

processing and storage capabilities noted earlier. As time passes, the distinction 

between mobile WebApps and mobile apps will blur as mobile browsers become 

more sophisticated and gain access to device level hardware and information. 

   1.2.3  Cloud Computing 

  Cloud computing  encompasses an infrastructure or “ecosystem” that enables 

any user, anywhere, to use a computing device to share computing resources on 

a broad scale. The overall logical architecture of cloud computing is represented 

in  Figure 1.3 .  

 What is the 
difference 

between a 
WebApp and a 
mobile app? 

?

Phones Tablets

Object Storage

Compute Block Storage

Runtime
Queue

Database

NEWS

Content Communication

Collaboration

0

10

20

30

40
50 60

70
80

90

100

110

1202
1

123450

3
4
56 7 8

EF

Monitoring
Finance

Servers

Application

Platform

Infrastructure

Cloud Computing

Laptops
Desktops

Network

Identity

John Doe 

3245  0557  5106 5406  5465 7065  76799

  FIGURE 1.3  Cloud computing logical architecture [Wik13]   

pre22126_ch01_001-013.indd   10pre22126_ch01_001-013.indd   10 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  11

 Referring to the fi gure, computing devices reside outside the cloud and have 

access to a variety of resources within the cloud. These resources encompass ap-

plications, platforms, and infrastructure. In its simplest form, an external com-

puting device accesses the cloud via a Web browser or analogous software. The 

cloud provides access to data that resides with databases and other data struc-

tures. In addition, devices can access executable applications that can be used in 

lieu of apps that reside on the computing device. 

 The implementation of cloud computing requires the development of an ar-

chitecture that encompasses front-end and back-end services. The  front-end  in-

cludes the client (user) device and the application software (e.g., a browser) that 

allows the back-end to be accessed. The  back-end  includes servers and related 

computing resources, data storage systems (e.g., databases), server-resident ap-

plications, and administrative servers that use middleware to coordinate and 

monitor traffi c by establishing a set of protocols for access to the cloud and its 

resident resources. [Str08] 

 The cloud architecture can be segmented to provide access at a variety of 

different levels from full public access to private cloud architectures accessible 

only to those with authorization. 

   1.2.4  Product Line Software 

 The Software Engineering Institute defi nes a  software product line  as “a set of 

software-intensive systems that share a common, managed set of features sat-

isfying the specifi c needs of a particular market segment or mission and that 

are developed from a common set of core assets in a prescribed way.” [SEI13] 

The concept of a line of software products that are related in some way is not 

new. But the idea that a line of software products, all developed using the same 

underlying application and data architectures, and all implemented using a set 

of reusable software components that can be reused across the product line pro-

vides signifi cant engineering leverage. 

 A software product line shares a set of assets that include requirements 

( Chapter 8 ), architecture ( Chapter 13 ), design patterns ( Chapter 16 ), reusable 

components ( Chapter 14 ), test cases ( Chapters 22 and 23 ), and other software 

engineering work products. In essence, a software product line results in the 

development of many products that are engineered by capitalizing on the com-

monality among all the products within the product line. 

        1.3 SUMMARY 

 Software is the key element in the evolution of computer-based systems and 

products and one of the most important technologies on the world stage. Over 

the past 50 years, software has evolved from a specialized problem solving and 

information analysis tool to an industry in itself. Yet we still have trouble devel-

oping high-quality software on time and within budget. 

pre22126_ch01_001-013.indd   11pre22126_ch01_001-013.indd   11 13/12/13   10:00 PM13/12/13   10:00 PM



12 CHAPTER 1  THE NATURE OF SOFTWARE

 Software—programs, data, and descriptive information—addresses a wide 

array of technology and application areas. Legacy software continues to present 

special challenges to those who must maintain it. 

 The nature of software is changing. Web-based systems and applications have 

evolved from simple collections of information content to sophisticated systems 

that present complex functionality and multimedia content. Although these 

WebApps have unique features and requirements, they are software nonethe-

less. Mobile applications present new challenges as apps migrate to a wide array 

of platforms. Cloud computing will transform the way in which software is deliv-

ered and the environment in which it exists. Product line software offers poten-

tial effi ciencies in the manner in which software is built. 

     PROBLEMS AND POINTS TO PONDER 
    1.1.  Provide at least fi ve additional examples of how the law of unintended consequences 
applies to computer software.  

   1.2.  Provide a number of examples (both positive and negative) that indicate the impact of 
software on our society.  

   1.3.  Develop your own answers to the fi ve questions asked at the beginning of Section 1.1. 
Discuss them with your fellow students.  

   1.4.  Many modern applications change frequently—before they are presented to the end 
user and then after the fi rst version has been put into use. Suggest a few ways to build soft-
ware to stop deterioration due to change.  

   1.5.  Consider the seven software categories presented in Section 1.1.2. Do you think that 
the same approach to software engineering can be applied for each? Explain your answer.  

      FUR THER READINGS AND INFORMATION SOURCES  6    
  Literally thousands of books are written about computer software. The vast majority dis-
cuss programming languages or software applications, but a few discuss software itself. 
Pressman and Herron ( Software Shock,  Dorset House, 1991) presented an early discussion 
(directed at the layperson) of software and the way professionals build it. Negroponte’s 
best-selling book ( Being Digital , Alfred A. Knopf, 1995) provides a view of computing and 
its overall impact in the twenty-fi rst century. DeMarco ( Why Does Software Cost So Much?  
Dorset House, 1995) has produced a collection of amusing and insightful essays on software 

  6  The  Further Reading and Information Sources  section presented at the conclusion of each 

chapter presents a brief overview of print sources that can help to expand your understanding 

of the major topics presented in the chapter. We have created a comprehensive website to 

support  Software Engineering: A Practitioner’s Approach  at  www.mhhe.com/pressman . Among 

the many topics addressed within the website are chapter-by-chapter software engineering 

resources to Web-based information that can complement the material presented in each 

chapter. An Amazon.com link to every book noted in this section is contained within these 

resources. 

pre22126_ch01_001-013.indd   12pre22126_ch01_001-013.indd   12 13/12/13   10:00 PM13/12/13   10:00 PM



CHAPTER 1  THE NATURE OF SOFTWARE  13

and the process through which it is developed. Ray Kurzweil ( How to Create a Mind,  Viking, 
2013) discusses how software will soon mimic human thought and lead to a “singularity” in 
the evolution of humans and machines. 

   Keeves ( Catching Digital,  Business Infomedia Online, 2012) discusses how business lead-
ers must adapt as software evolves at an ever-increasing pace. Minasi ( The Software Con-

spiracy: Why Software Companies Put out Faulty Products, How They Can Hurt You, and 

What You Can Do,  McGraw-Hill, 2000) argues that the “modern scourge” of software bugs 
can be eliminated and suggests ways to accomplish this. Books by Eubanks ( Digital Dead 

End: Fighting for Social Justice in the Information Age,  MIT Press, 2011 )  and   Compaine 
( Digital Divide: Facing a Crisis or Creating a Myth,  MIT Press, 2001) argue that the “divide” 
between those who have access to information resources (e.g., the Web) and those that do 
not is narrowing as we move into the fi rst decade of this century. Books by Kuniavsky ( Smart 

Things: Ubiquitous Computing User Experience Design,  Morgan Kaufman, 2010), Greenfi eld 
( Everyware: The Dawning Age of Ubiquitous Computing,  New Riders Publishing, 2006), and 
Loke ( Context-Aware Pervasive Systems: Architectures for a New Breed of Applications,  
Auerbach, 2006) introduce the concept of “open-world” software and predict a wireless en-
vironment in which software must adapt to requirements that emerge in real time. 

   A wide variety of information sources that discuss the nature of software are available 
on the Internet. An up-to-date list of World Wide Web references that are relevant to the 
software process can be found at the SEPA website:  www.mhhe.com/pressman      

pre22126_ch01_001-013.indd   13pre22126_ch01_001-013.indd   13 13/12/13   10:00 PM13/12/13   10:00 PM



14

     C H A P T E R

   K E Y 
C O N C E P T S 
    framework 
activities  . . . . . . . . 17  
    general principles  . . 21  
    principles  . . . . . . . . 21  
    problem solving  . . . 19  
    SafeHome      . . . . . . . . 26  
    software engineering, 
  defi nition  . . . . . . . 15  
       layers  . . . . . . . . . 15  
       practice . . . . . . . . 19  
    software 
myths      . . . . . . . . . . . 23  
    software process  . . 16  
    umbrella activities. . 17  

               In order to build software that is ready to meet the challenges of the 

twenty-fi rst century, you must recognize a few simple realities:

    •    Software has become deeply embedded in virtually every aspect of our 

lives, and as a consequence, the number of people who have an inter-

est in the features and functions provided by a specifi c application  1   has 

grown dramatically.  It follows that a concerted effort should be made to 

understand the problem before a software solution is developed.   

   •    The information technology requirements demanded by individuals, 

businesses, and governments grow increasing complex with each pass-

ing year. Large teams of people now create computer programs that 

were once built by a single individual. Sophisticated software that was 

once implemented in a predictable, self-contained, computing environ-

ment is now embedded inside everything from consumer electronics to 

medical devices to weapons systems.  It follows that design becomes a 

pivotal activity.   

  SOFTWARE 
ENGINEERING 2

 Q U I C K 
L O O K 

  What is it?   Software engineering 
encompasses a process, a collec-
tion of methods (practice) and an 
array of tools that allow profession-

als to build high-quality computer software. 
   Who does it?   Software engineers apply the 

software engineering process. 
   Why is it important?   Software engineering is 

important because it enables us to build com-
plex systems in a timely manner and with high 
quality. It imposes discipline to work that can be-
come quite chaotic, but it also allows the people 
who build computer software to adapt their ap-
proach in a manner that best suits their needs. 

   What are the steps?   You build computer soft-
ware like you build any successful product, 

by applying an agile, adaptable process that 
leads to a high-quality result that meets the 
needs of the people who will use the product. 
You apply a software engineering approach. 

   What is the work product?   From the point 
of view of a software engineer, the work prod-
uct is the set of programs, content (data), and 
other work products that are computer soft-
ware. But from the user’s viewpoint, the work 
product is the resultant information that some-
how makes the user’s world better. 

   How do I ensure that I’ve done it 
right?   Read the remainder of this book, se-
lect those ideas that are applicable to the soft-
ware that you build, and apply them to your 
work.  

  1  We will call these people “stakeholders” later in this book. 

pre22126_ch02_014-028.indd   14pre22126_ch02_014-028.indd   14 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  15

   •    Individuals, businesses, and governments increasingly rely on software for 

strategic and tactical decision making as well as day-to-day operations and 

control. If the software fails, people and major enterprises can experience 

anything from minor inconvenience to catastrophic failures.  It follows that 

software should exhibit high quality.   

   •    As the perceived value of a specifi c application grows, the likelihood is that 

its user base and longevity will also grow. As its user base and time-in-use 

increase, demands for adaptation and enhancement will also grow.  It fol-

lows that software should be maintainable.             

  These simple realities lead to one conclusion:  software in all of its forms and 

across all of its application domains should be engineered.  And that leads us to 

the topic of this book— software engineering.  

   Understand the prob-
lem before you build a 
solution. 

   Both quality and 
maintainability are 
an outgrowth of good 
design. 

     2.1 DEFINING THE DISCIPL INE 

  The IEEE [IEE93a] has developed the following defi nition for software engineering:

    Software Engineering   : (1) The application of a systematic, disciplined, quantifi able 

approach to the development, operation, and maintenance of software; that is, the 

application of engineering to software. (2) The study of approaches as in (1).       

  And yet, a “systematic, disciplined, and quantifi able” approach applied by one 

software team may be burdensome to another. We need discipline, but we also 

need adaptability and agility. 

 Software engineering is a layered technology. Referring to  Figure 2.1 , any en-

gineering approach (including software engineering) must rest on an organiza-

tional commitment to quality. Total quality management, Six Sigma, and similar 

philosophies  2   foster a continuous process improvement culture, and it is this 

culture that ultimately leads to the development of increasingly more effective 

approaches to software engineering. The bedrock that supports software engi-

neering is a quality focus.   

 The foundation for software engineering is the  process  layer. The software 

engineering process is the glue that holds the technology layers together and 

enables rational and timely development of computer software. Process defi nes 

a framework that must be established for effective delivery of software engineer-

ing technology. The software process forms the basis for management control 

of software projects and establishes the context in which technical methods are 

 How do 
we defi ne 

software 
engineering? 

?

  2  Quality management and related approaches are discussed throughout Part 3 of this book. 

   Software engineering 
encompasses a pro-
cess, methods for man-
aging and engineering 
software, and tools. 

pre22126_ch02_014-028.indd   15pre22126_ch02_014-028.indd   15 13/12/13   6:10 PM13/12/13   6:10 PM



16 CHAPTER 2  SOFTWARE ENGINEERING

applied, work products (models, documents, data, reports, forms, etc.) are pro-

duced, milestones are established, quality is ensured, and change is properly 

managed.     

  Software engineering  methods  provide the technical how-to’s for building 

software. Methods encompass a broad array of tasks that include communica-

tion, requirements analysis, design modeling, program construction, testing, 

and support. Software engineering methods rely on a set of basic principles that 

govern each area of the technology and include modeling activities and other 

descriptive techniques.     

  Software engineering  tools  provide automated or semi-automated support 

for the process and the methods. When tools are integrated so that information 

created by one tool can be used by another, a system for the support of software 

development, called  computer-aided software engineering , is established.     

      2.2 THE SOFTWARE PROCESS 

  A  process  is a collection of activities, actions, and tasks that are performed when 

some work product is to be created. An  activity  strives to achieve a broad objec-

tive (e.g., communication with stakeholders) and is applied regardless of the ap-

plication domain, size of the project, complexity of the effort, or degree of rigor 

with which software engineering is to be applied. An  action  (e.g., architectural 

design) encompasses a set of tasks that produce a major work product (e.g., an 

architectural model). A  task  focuses on a small, but well-defi ned objective (e.g., 

conducting a unit test) that produces a tangible outcome.  

 In the context of software engineering, a process is  not  a rigid prescription for 

how to build computer software. Rather, it is an adaptable approach that enables 

the people doing the work (the software team) to pick and choose the appropri-

ate set of work actions and tasks. The intent is always to deliver software in a 

timely manner and with suffi cient quality to satisfy those who have sponsored its 

creation and those who will use it.     

Tools

A quality focus

Methods

Process

  FIGURE 2.1

 Software engi-
neering layers 

  

 WebRef 
   CrossTalk  is a journal 
that provides pragmatic 
information on process, 
methods, and tools. It 
can be found at: 
  www.stsc.hill.af.mil  , 

 What are 
the elements 

of a software 
process? 

?

  uote: 

 “A process defi nes 
who is doing  what 
when  and  how  to 
reach a certain 
goal.” 

 Ivar Jacobson, 
Grady Booch, 

and James 
Rumbaugh 

pre22126_ch02_014-028.indd   16pre22126_ch02_014-028.indd   16 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  17

   2.2.1  The Process Framework 

 A  process framework  establishes the foundation for a complete software engi-

neering process by identifying a small number of  framework activities  that are 

applicable to all software projects, regardless of their size or complexity. In ad-

dition, the process framework encompasses a set of  umbrella activities  that are 

applicable across the entire software process. A generic process framework for 

software engineering encompasses fi ve activities:     

    Communication.   Before any technical work can commence, it is critically im-

portant to communicate and collaborate with the customer (and other stake-

holders).  3   The intent is to understand stakeholders’ objectives for the project and 

to gather requirements that help defi ne software features and functions.   

   Planning.   Any complicated journey can be simplifi ed if a map exists. A software 

project is a complicated journey, and the planning activity creates a “map” that 

helps guide the team as it makes the journey. The map—called a software project 

plan—defi nes the software engineering work by describing the technical tasks to 

be conducted, the risks that are likely, the resources that will be required, the 

work products to be produced, and a work schedule. 

   Modeling.   Whether you’re a landscaper, a bridge builder, an aeronautical engi-

neer, a carpenter, or an architect, you work with models every day. You create a 

“sketch” of the thing so that you’ll understand the big picture—what it will look 

like architecturally, how the constituent parts fi t together, and many other char-

acteristics. If required, you refi ne the sketch into greater and greater detail in 

an effort to better understand the problem and how you’re going to solve it. A 

software engineer does the same thing by creating models to better understand 

software requirements and the design that will achieve those requirements. 

   Construction.   What you design must be built. This activity combines code gen-

eration (either manual or automated) and the testing that is required to uncover 

errors in the code. 

   Deployment.   The software (as a complete entity or as a partially completed in-

crement) is delivered to the customer who evaluates the delivered product and 

provides feedback based on the evaluation. 

 These fi ve generic   framework activities   can be used during the development of 

small, simple programs, the creation of Web applications, and for the engineering 

   What are 
the fi ve 

generic process 
framework 
activities? 

?

  3  A  stakeholder  is anyone who has a stake in the successful outcome of the project—business 

managers, end users, software engineers, support people, etc. Rob Thomsett jokes that, “a 

stakeholder is a person holding a large and sharp stake  . . .  If you don’t look after your stake-

holders, you know where the stake will end up.” 

  uote: 

 “Einstein argued 
that there must 
be a simplifi ed 
explanation of 
nature, because 
God is not 
capricious or 
arbitrary. No such 
faith comforts 
the software 
engineer. Much 
of the complexity 
that he must 
master is arbitrary 
complexity.” 

 Fred Brooks 

pre22126_ch02_014-028.indd   17pre22126_ch02_014-028.indd   17 13/12/13   6:10 PM13/12/13   6:10 PM



18 CHAPTER 2  SOFTWARE ENGINEERING

of large, complex computer-based systems. The details of the software process will 

be quite different in each case, but the framework activities remain the same. 

 For many software projects, framework activities are applied iteratively as a 

project progresses. That is, communication, planning, modeling, construction, 

and deployment are applied repeatedly through a number of project iterations. 

Each iteration produces a  software increment  that provides stakeholders with a 

subset of overall software features and functionality. As each increment is pro-

duced, the software becomes more and more complete. 

    2.2.2  Umbrella Activities 

 Software engineering process framework activities are complemented by a num-

ber of    umbrella activities.    In general, umbrella activities are applied throughout 

a software project and help a software team manage and control progress, qual-

ity, change, and risk. Typical umbrella activities include:     

         Software project tracking and control —allows the software team to assess 

progress against the project plan and take any necessary action to maintain the 

schedule.  

       Risk management —assesses risks that may affect the outcome of the project 

or the quality of the product.  

       Software quality assurance —defi nes and conducts the activities required to 

ensure software quality.  

       Technical reviews —assess software engineering work products in an effort to 

uncover and remove errors before they are propagated to the next activity.  

       Measurement —defi nes and collects process, project, and product measures 

that assist the team in delivering software that meets stakeholders’ needs; can 

be used in conjunction with all other framework and umbrella activities.  

       Software confi guration management —manages the effects of change 

throughout the software process.  

       Reusability management —defi nes criteria for work product reuse (includ-

ing software components) and establishes mechanisms to achieve reusable 

components.  

       Work product preparation and production —encompass the activities re-

quired to create work products such as models, documents, logs, forms, and 

lists.  

  Each of these umbrella activities is discussed in detail later in this book.     

    2.2.3  Process Adaptation 

 Previously in this section, we noted that the software engineering process is not a 

rigid prescription that must be followed dogmatically by a software team. Rather, 

it should be agile and adaptable (to the problem, to the project, to the team, 

   Umbrella activities 
occur throughout the 
software process and 
focus primarily on 
project management, 
tracking, and control. 

   Software process 
adaptation is essential 
for project success. 

pre22126_ch02_014-028.indd   18pre22126_ch02_014-028.indd   18 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  19

and to the organizational culture). Therefore, a process adopted for one proj-

ect might be signifi cantly different than a process adopted for another project. 

Among the differences are 

    •    Overall fl ow of activities, actions, and tasks and the interdependencies 

among them.  

   •    Degree to which actions and tasks are defi ned within each framework 

activity.  

   •    Degree to which work products are identifi ed and required.  

   •    Manner in which quality assurance activities are applied.  

   •    Manner in which project tracking and control activities are applied.  

   •    Overall degree of detail and rigor with which the process is described.  

   •    Degree to which the customer and other stakeholders are involved with 

the project.  

   •    Level of autonomy given to the software team.  

   •    Degree to which team organization and roles are prescribed.    

 In Part 1 of this book, we examine software process in considerable detail.     

       2.3 SOFTWARE ENGINEERING PRACTICE 

  In Section 2.2, we introduced a generic software process model composed of a 

set of activities that establish a framework for software engineering practice. Ge-

neric framework activities— communication, planning, modeling, construction,  

and  deployment —and umbrella activities establish a skeleton architecture for 

software engineering work. But how does the practice of software engineering 

fi t in? In the sections that follow, you’ll gain a basic understanding of the generic 

concepts and principles that apply to framework activities.  4   

   2.3.1  The Essence of Practice     

  In the classic book,  How to Solve It,  written before modern computers existed, 

George Polya [Pol45] outlined the essence of   problem solving  , and consequently, 

the essence of software engineering practice: 

     1.   Understand the problem  (communication and analysis).  

    2.   Plan a solution  (modeling and software design).  

    3.   Carry out the plan  (code generation).  

    4.   Examine the result for accuracy  (testing and quality assurance).  

  uote: 

 “I feel a recipe is 
only a theme which 
an intelligent cook 
can play each time 
with a variation.” 

 Madame Benoit 

 WebRef 
 A variety of thought- 
provoking quotes on 
the practice of software 
engineering can be 
found at   www.literate-
programming.com  . 

  4  You should revisit relevant sections within this chapter as we discuss specifi c software engi-

neering methods and umbrella activities later in this book. 

   You might argue that 
Polya’s approach is 
simply common sense. 
True. But it’s amazing 
how often common 
sense is uncommon in 
the software world. 

pre22126_ch02_014-028.indd   19pre22126_ch02_014-028.indd   19 13/12/13   6:10 PM13/12/13   6:10 PM



20 CHAPTER 2  SOFTWARE ENGINEERING

  In the context of software engineering, these commonsense steps lead to a 

series of essential questions [adapted from Pol45]: 

  Understand the problem.   It’s sometimes diffi cult to admit, but most of us suffer 

from hubris when we’re presented with a problem. We listen for a few seconds 

and then think,  Oh yeah, I understand, let’s get on with solving this thing.  Unfor-

tunately, understanding isn’t always that easy. It’s worth spending a little time 

answering a few simple questions:

    •     Who has a stake in the solution to the problem?  That is, who are the 

stakeholders?  

   •     What are the unknowns?  What data, functions, and features are required 

to properly solve the problem?  

   •     Can the problem be compartmentalized?  Is it possible to represent smaller 

problems that may be easier to understand?  

   •     Can the problem be represented graphically?  Can an analysis model be 

created?    

   Plan the solution.   Now you understand the problem (or so you think), and you 

can’t wait to begin coding. Before you do, slow down just a bit and do a little 

design:

    •     Have you seen similar problems before?  Are there patterns that are recog-

nizable in a potential solution? Is there existing software that implements 

the data, functions, and features that are required?  

   •     Has a similar problem been solved?  If so, are elements of the solution 

reusable?  

   •     Can subproblems be defi ned?  If so, are solutions readily apparent for the 

subproblems?  

   •     Can you represent a solution in a manner that leads to effective implemen-

tation?  Can a design model be created?     

   Carry out the plan.   The design you’ve created serves as a road map for the sys-

tem you want to build. There may be unexpected detours, and it’s possible that 

you’ll discover an even better route as you go, but the “plan” will allow you to 

proceed without getting lost. 

    •     Does the solution conform to the plan?  Is source code traceable to the de-

sign model?  

   •     Is each component part of the solution provably correct?  Has the design 

and code been reviewed, or better, have correctness proofs been applied 

to the algorithm?  

  uote: 

 “There is a grain 
of discovery in the 
solution of any 
problem.” 

  George Polya 

   The most important 
element of problem 
understanding is 
listening. 

pre22126_ch02_014-028.indd   20pre22126_ch02_014-028.indd   20 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  21

    Examine the result.   You can’t be sure that your solution is perfect, but you can 

be sure that you’ve designed a suffi cient number of tests to uncover as many 

errors as possible. 

    •     Is it possible to test each component part of the solution?  Has a reasonable 

testing strategy been implemented?  

   •     Does the solution produce results that conform to the data, functions, and 

features that are required?  Has the software been validated against all 

stakeholder requirements?  

  It shouldn’t surprise you that much of this approach is common sense. In fact, 

it’s reasonable to state that a commonsense approach to software engineering 

will never lead you astray. 

     2.3.2  General Principles 

 The dictionary defi nes the word  principle  as “an important underlying law or 

assumption required in a system of thought.” Throughout this book we’ll dis-

cuss principles at many different levels of abstraction. Some focus on software 

engineering as a whole, others consider a specifi c generic framework activity 

(e.g.,  communication ), and still others focus on software engineering actions (e.g., 

architectural design) or technical tasks (e.g., write a usage scenario). Regardless 

of their level of focus, principles help you establish a mind-set for solid software 

engineering practice. They are important for that reason. 

 David Hooker [Hoo96] has proposed seven principles that focus on software en-

gineering practice as a whole. They are reproduced in the following paragraphs:  5        

         The First Principle:    The Reason It All Exists   The Reason It All Exists   

      A software system exists for one reason:  to provide value to its users . All 

decisions should be made with this in mind. Before specifying a system re-

quirement, before noting a piece of system functionality, before determining 

the hardware platforms or development processes, ask yourself questions such 

as: “Does this add real value to the system?” If the answer is no, don’t do it. All 

other principles support this one.    

        The Second Principle:   KISS (Keep It Simple, Stupid!)KISS (Keep It Simple, Stupid!)  

   Software design is not a haphazard process. There are many factors to con-

sider in any design effort.  All design should be as simple as possible, but no 

simpler . This facilitates having a more easily understood and easily maintained 

system. This is not to say that features, even internal features, should be dis-

carded in the name of simplicity. Indeed, the more elegant designs are usually 

the more simple ones. Simple also does not mean “quick and dirty.” In fact, it 

  5  Reproduced with permission of the author [Hoo96]. Hooker defi nes patterns for these princi-

ples at  http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment . 

   Before beginning a 
software project, be 
sure the software has 
a business purpose 
and that users perceive 
value in it. 

  uote: 

 “There is a 
certain majesty in 
simplicity which is 
far above all the 
quaintness of wit.” 

 Alexander Pope 
(1688–1744) 

pre22126_ch02_014-028.indd   21pre22126_ch02_014-028.indd   21 13/12/13   6:10 PM13/12/13   6:10 PM



22 CHAPTER 2  SOFTWARE ENGINEERING

often takes a lot of thought and work over multiple iterations to simplify. The 

payoff is software that is more maintainable and less error-prone.       

          The Third Principle:   Maintain the Vision  Maintain the Vision  

    A clear vision is essential to the success of a software project . Without one, a 

project almost unfailingly ends up being “of two [or more] minds” about itself. 

Without conceptual integrity, a system threatens to become a patchwork of incom-

patible designs, held together by the wrong kind of screws  . . .  Compromising the 

architectural vision of a software system weakens and will eventually break even 

the well-designed systems. Having an empowered architect who can hold the vi-

sion and enforce compliance helps ensure a very successful software project.       

          The Fourth Principle:   What You Produce, Others Will Consume  What You Produce, Others Will Consume  

   Seldom is an industrial-strength software system constructed and used in a 

vacuum. In some way or other, someone else will use, maintain, document, or 

otherwise depend on being able to understand your system. So,  always specify, 

design, and implement knowing someone else will have to understand what you 

are doing . The audience for any product of software development is potentially 

large. Specify with an eye to the users. Design, keeping the implementers in 

mind. Code with concern for those that must maintain and extend the system. 

Someone may have to debug the code you write, and that makes them a user of 

your code. Making their job easier adds value to the system.            

          The Fifth Principle:   Be Open to the FutureBe Open to the Future  

   A system with a long lifetime has more value. In today's computing envi-

ronments, where specifi cations change on a moment’s notice and hardware 

platforms are obsolete just a few months old, software lifetimes are typically 

measured in months instead of years. However, true “industrial-strength” 

software systems must endure far longer. To do this successfully, these sys-

tems must be ready to adapt to these and other changes. Systems that do this 

successfully are those that have been designed this way from the start.  Never 

design yourself into a corner . Always ask “what if,” and prepare for all possible 

answers by creating systems that solve the general problem, not just the spe-

cifi c one.  6   This could very possibly lead to the reuse of an entire system.        

          The Sixth Principle:   Plan Ahead for Reuse  Plan Ahead for Reuse  

   Reuse saves time and effort.  7   Achieving a high level of reuse is arguably the 

hardest goal to accomplish in developing a software system. The reuse of code 

   If software has value, 
it will change over 
its useful life. For 
that reason, software 
must be built to be 
maintainable. 

  6  This advice can be dangerous if it is taken to extremes. Designing for the “general problem” 

sometimes requires performance compromises and can make specifi c solutions ineffi cient. 

  7  Although this is true for those who reuse the software on future projects, reuse can be expen-

sive for those who must design and build reusable components. Studies indicate that designing 

and building reusable components can cost between 25 to 200 percent more than targeted 

software. In some cases, the cost differential cannot be justifi ed. 

pre22126_ch02_014-028.indd   22pre22126_ch02_014-028.indd   22 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  23

and designs has been proclaimed as a major benefi t of using object-oriented 

technologies. However, the return on this investment is not automatic. To lever-

age the reuse possibilities that object-oriented [or conventional] programming 

provides requires forethought and planning. There are many techniques to re-

alize reuse at every level of the system development process  . . .   Planning ahead 

for reuse reduces the cost and increases the value of both the reusable compo-

nents and the systems into which they are incorporated .       

          The Seventh Principle:   Think!Think!  

   This last Principle is probably the most overlooked.  Placing clear, complete 

thought before action almost always produces better results . When you think about 

something, you are more likely to do it right. You also gain knowledge about how to 

do it right again. If you do think about something and still do it wrong, it becomes 

a valuable experience. A side effect of thinking is learning to recognize when you 

don’t know something, at which point you can research the answer. When clear 

thought has gone into a system, value comes out. Applying the fi rst six principles 

requires intense thought, for which the potential rewards are enormous.  

  If every software engineer and every software team simply followed Hooker’s 

seven principles, many of the diffi culties we experience in building complex 

computer-based systems would be eliminated. 

      2.4 SOFTWARE DEVELOPMENT MYTHS 

  Software development myths—erroneous beliefs about software and the process 

that is used to build it—can be traced to the earliest days of computing. Myths 

have a number of attributes that make them insidious. For instance, they appear 

to be reasonable statements of fact (sometimes containing elements of truth), 

they have an intuitive feel, and they are often promulgated by experienced prac-

titioners who “know the score.” 

 Today, most knowledgeable software engineering professionals recognize 

myths for what they are—misleading attitudes that have caused serious prob-

lems for managers and practitioners alike. However, old attitudes and habits are 

diffi cult to modify, and remnants of software myths remain.     

   Management myths.   Managers with software responsibility, like managers in 

most disciplines, are often under pressure to maintain budgets, keep sched-

ules from slipping, and improve quality. Like a drowning person who grasps at a 

straw, a software manager often grasps at belief in a software myth, if that belief 

will lessen the pressure (even temporarily). 

        Myth:     We already have a book that's full of standards and procedures for 

building software. Won't that provide my people with everything 

they need to know?   

 WebRef 
 The Software Project 
Managers Network at 
 www.spmn.com  can 
help you dispel these 
and other myths. 

pre22126_ch02_014-028.indd   23pre22126_ch02_014-028.indd   23 13/12/13   6:10 PM13/12/13   6:10 PM



24 CHAPTER 2  SOFTWARE ENGINEERING

       Reality:   The book of standards may very well exist, but is it used? Are soft-

ware practitioners aware of its existence? Does it refl ect modern 

software engineering practice? Is it complete? Is it adaptable? Is 

it streamlined to improve time-to-delivery while still maintaining 

a focus on quality? In many cases, the answer to all of these ques-

tions is no.  

       Myth:    If we get behind schedule, we can add more programmers and 

catch up (sometimes called the “Mongolian horde” concept).   

       Reality:   Software development is not a mechanistic process like man-

ufacturing. In the words of Brooks [Bro95]: “adding people to a 

late software project makes it later.” At fi rst, this statement may 

seem counterintuitive. However, as new people are added, people 

who were working must spend time educating the newcomers, 

thereby reducing the amount of time spent on productive devel-

opment effort. People can be added but only in a planned and 

well-coordinated manner.  

       Myth:    If I decide to outsource the software project to a third party, I can 

just relax and let that fi rm build it.   

       Reality:   If an organization does not understand how to manage and control 

software projects internally, it will invariably struggle when it out-

sources software projects.  

    Customer myths.   A customer who requests computer software may be a per-

son at the next desk, a technical group down the hall, the marketing/sales de-

partment, or an outside company that has requested software under contract. 

In many cases, the customer believes myths about software because software 

managers and practitioners do little to correct misinformation. Myths lead to 

false expectations (by the customer) and, ultimately, dissatisfaction with the 

developer.     

         Myth:    A general statement of objectives is suffi cient to begin writing 

programs—we can fi ll in the details later.   

       Reality:   Although a comprehensive and stable statement of requirements 

is not always possible, an ambiguous “statement of objectives” is a 

recipe for disaster. Unambiguous requirements (usually derived 

iteratively) are developed only through effective and continuous 

communication between customer and developer.  

       Myth:    Software requirements continually change, but change can be eas-

ily accommodated because software is fl exible.   

       Reality:   It is true that software requirements change, but the impact of 

change varies with the time at which it is introduced. When re-

quirements changes are requested early (before design or code 

   Work very hard to 
understand what you 
have to do before you 
start. You may not be 
able to develop every 
detail, but the more 
you know, the less risk 
you take. 

pre22126_ch02_014-028.indd   24pre22126_ch02_014-028.indd   24 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  25

has been started), the cost impact is relatively small.  8   However, as 

time passes, the cost impact grows rapidly— resources have been 

committed, a design framework has been established, and change 

can cause upheaval that requires additional resources and major 

design modifi cation.  

     Practitioner’s myths.   Myths that are still believed by software practitioners 

have been fostered by over 60 years of programming culture. During the early 

days, programming was viewed as an art form. Old ways and attitudes die hard.     

         Myth:    Once we write the program and get it to work, our job is done.   

       Reality:   Someone once said that “the sooner you begin ‘writing code,’ 

the longer it’ll take you to get done.” Industry data indicate that 

between 60 and 80 percent of all effort expended on software 

will be expended after it is delivered to the customer for the fi rst 

time.  

       Myth:    Until I get the program “running” I have no way of assessing its 

quality.   

       Reality:   One of the most effective software quality assurance mechanisms 

can be applied from the inception of a project— the technical 

review.  Software reviews (described in Chapter 20) are a “quality 

fi lter” that have been found to be more effective than testing for 

fi nding certain classes of software defects.  

       Myth:    The only deliverable work product for a successful project is the 

working program.   

       Reality:   A working program is only one part of a software confi guration 

that includes many elements. A variety of work products (e.g., 

models, documents, plans) provide a foundation for successful en-

gineering and, more important, guidance for software support.  

       Myth:    Software engineering will make us create voluminous and unnec-

essary documentation and will invariably slow us down.   

       Reality:   Software engineering is not about creating documents. It is about 

creating a quality product. Better quality leads to reduced rework. 

And reduced rework results in faster delivery times.  

  Today, most software professionals recognize the fallacy of the myths just de-

scribed. Recognition of software realities is the fi rst step toward formulation of 

practical solutions for software engineering. 

  8  Many software engineers have adopted an “agile” approach that accommodates change incre-

mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 5. 

   Whenever you think, 
we don’t have time for 
software engineering, 
ask yourself, “Will we 
have time to do it over 
again?” 

pre22126_ch02_014-028.indd   25pre22126_ch02_014-028.indd   25 13/12/13   6:10 PM13/12/13   6:10 PM



26 CHAPTER 2  SOFTWARE ENGINEERING

      2.5 HOW IT ALL STAR TS 

  Every software project is precipitated by some business need—the need to cor-

rect a defect in an existing application; the need to adapt a “legacy system” to a 

changing business environment; the need to extend the functions and features of 

an existing application; or the need to create a new product, service, or system. 

 At the beginning of a software project, the business need is often expressed 

informally as part of a simple conversation. The conversation presented in the 

sidebar is typical.      

  9  The  SafeHome  project will be used throughout this book to illustrate the inner workings of 

a project team as it builds a software product. The company, the project, and the people are 

fi ctitious, but the situations and problems are real. 

   How a Project Starts     How a Project Starts  

        The scene:  Meeting room at CPI 
Corporation, a (fi ctional) company that 

makes consumer products for home and commercial use.  

       The players:  Mal Golden, senior manager, product 
development; Lisa Perez, marketing manager; Lee 
Warren, engineering manager; Joe Camalleri, execu-
tive vice president, business development  

       The conversation:   

       Joe:  Okay, Lee, what’s this I hear about your folks de-
veloping a what? A generic universal wireless box?  

       Lee:  It’s pretty cool  . . .  about the size of a small match-
book  . . .  we can attach it to sensors of all kinds, a 
digital camera, just about anything. Using the 802.11n 
wireless protocol. It allows us to access the device’s 
output without wires. We think it’ll lead to a whole new 
generation of products.  

       Joe:  You agree, Mal?  

       Mal:  I do. In fact, with sales as fl at as they’ve been 
this year, we need something new. Lisa and I have been 
doing a little market research, and we think we’ve got a 
line of products that could be big.  

       Joe:  How big  . . .  bottom line big?  

       Mal   (avoiding a direct commitment):  Tell him 
about our idea, Lisa.  

       Lisa:  It’s a whole new generation of what we call 
“home management products.” We call ‘em  SafeHome.  
They use the new wireless interface, provide homeown-
ers or small-businesspeople with a system that’s con-
trolled by their PC—home security, home surveillance, 
appliance and device control—you know, turn down the 
home air conditioner while you’re driving home, that 
sort of thing.  

       Lee (jumping in):  Engineering’s done a technical 
feasibility study of this idea, Joe. It’s doable at low man-
ufacturing cost. Most hardware is off the shelf. Software 
is an issue, but it’s nothing that we can’t do.  

       Joe:  Interesting. Now, I asked about the bottom line.  

       Mal:  PCs and tablets have penetrated over 70 percent 
of all households in the USA. If we could price this thing 
right, it could be a killer app. Nobody else has our 
wireless box  . . .  it’s proprietary. We’ll have a 2-year 
jump on the competition. Revenue? Maybe as much as 
$30 to $40 million in the second year.  

       Joe (smiling):  Let’s take this to the next level. I’m 
interested.    

 SAFEHOME  9   

  With the exception of a passing reference, software was hardly mentioned as 

part of the conversation. And yet, software will make or break the  SafeHome  prod-

uct line. The engineering effort will succeed only if  SafeHome  software succeeds. 

pre22126_ch02_014-028.indd   26pre22126_ch02_014-028.indd   26 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 2  SOFTWARE ENGINEERING  27

The market will accept the product only if the software embedded within it prop-

erly meets the customer’s (as yet unstated) needs. We’ll follow the progression of 

 SafeHome  software engineering in many of the chapters that follow. 

       2.6 SUMMARY 

 Software engineering encompasses process, methods, and tools that enable 

complex computer-based systems to be built in a timely manner with quality. The 

software process incorporates fi ve framework activities—communication, plan-

ning, modeling, construction, and deployment—that are applicable to all soft-

ware projects. Software engineering practice is a problem-solving activity that 

follows a set of core principles. 

 A wide array of software myths continue to lead managers and practitioners 

astray, even as our collective knowledge of software and the technologies re-

quired to build it grows. As you learn more about software engineering, you’ll 

begin to understand why these myths should be debunked whenever they are 

encountered. 

     PROBLEMS AND POINTS TO PONDER 
    2.1.   Figure 2.1  places the three software engineering layers on top of a layer entitled “A 
quality focus.” This implies an organizational quality program such as total quality man-
agement. Do a bit of research and develop an outline of the key tenets of a total quality 
management program.  

   2.2.  Is software engineering applicable when WebApps are built? If so, how might it be mod-
ifi ed to accommodate the unique characteristics of WebApps?  

   2.3.  As software becomes more pervasive, risks to the public (due to faulty programs) be-
come an increasingly signifi cant concern. Develop a doomsday but realistic scenario in 
which the failure of a computer program could do great harm, either economic or human.  

   2.4.  Describe a process framework in your own words. When we say that framework activ-
ities are applicable to all projects, does this mean that the same work tasks are applied for 
all projects, regardless of size and complexity? Explain.  

   2.5.  Umbrella activities occur throughout the software process. Do you think they are 
applied evenly across the process, or are some concentrated in one or more framework 
activities?  

   2.6.  Add two additional myths to the list presented in Section 2.4. Also state the reality that 
accompanies the myth.  

      FUR THER READINGS AND INFORMATION SOURCES 
  The current state of the software engineering and the software process can best be de-
termined from publications such as  IEEE Software, IEEE Computer,   CrossTalk,  and  IEEE 

Transactions on Software Engineering.  Industry periodicals such as  Application Develop-

ment Trends  and  Cutter IT Journal  often contain articles on software engineering topics. 
The discipline is “summarized” every year in the  Proceeding of the International Conference 

pre22126_ch02_014-028.indd   27pre22126_ch02_014-028.indd   27 13/12/13   6:10 PM13/12/13   6:10 PM



28 CHAPTER 2  SOFTWARE ENGINEERING

on Software Engineering,  sponsored by the IEEE and ACM, and is discussed in depth in jour-
nals such as  ACM Transactions on Software Engineering and Methodology, ACM Software 

Engineering Notes,  and  Annals of Software Engineering.  Tens of thousands of Web pages are 
dedicated to software engineering and the software process. 

   Many books addressing the software process and software engineering have been pub-
lished in recent years. Some present an overview of the entire process, while others delve 
into a few important topics to the exclusion of others. Among the more popular offerings (in 
addition to this book!) are

        SWEBOK: Guide to the Software Engineering Body of Knowledge,   10   IEEE, 2013, see: http://
www.computer.org/portal/web/swebok    

       Andersson, E., et al.,  Software Engineering for Internet Applications,  MIT Press, 2006.  

      Braude, E., and M. Bernstein,  Software Engineering: Modern Approaches,  2nd ed., Wiley, 
2010.  

      Christensen, M., and R. Thayer,  A Project Manager’s Guide to Software Engineering Best 

Practices,  IEEE-CS Press (Wiley), 2002.  

      Glass, R.,  Fact and Fallacies of Software Engineering,  Addison-Wesley, 2002.  

      Hussain, S.,  Software Engineering,  I K International Publishing House, 2013.  

      Jacobson, I.,  Object-Oriented Software Engineering: A Use Case Driven Approach,  2nd 
ed., Addison-Wesley, 2008.  

      Jalote, P.,  An Integrated Approach to Software Engineering,  3rd ed., Springer, 2010.  

      Pfl eeger, S.,  Software Engineering: Theory and Practice,  4th ed., Prentice Hall, 2009.  

      Schach, S.,  Object-Oriented and Classical Software Engineering,  8th ed., McGraw-Hill, 
2010.  

      Sommerville, I.,  Software Engineering,  9th ed., Addison-Wesley, 2010.  

      Stober, T., and U. Hansmann,  Agile Software Development: Best Practices for Large Devel-

opment Projects,  Springer, 2009.  

      Tsui, F., and O. Karam,  Essentials of Software Engineering,  2nd ed.,   Jones & Bartlett 
Publishers, 2009.    

   Nygard ( Release It!: Design and Deploy Production-Ready Software,  Pragmatic Bookshelf, 
2007), Richardson and Gwaltney ( Ship it! A Practical Guide to Successful Software Projects,  
Pragmatic Bookshelf, 2005), and Humble and Farley ( Continuous Delivery: Reliable Software 

Releases through Build, Test, and Deployment Automation , Addison-Wesley, 2010) present a 
broad collection of useful guidelines that are applicable to the deployment activity. 

   Many software engineering standards have been published by the IEEE, ISO, and their 
standards organizations over the past few decades. Moore ( The Road Map to Software En-

gineering: A Standards-Based Guide,  IEEE Computer Society Press [Wiley], 2006) provides a 
useful survey of relevant standards and how they apply to real projects. 

   A wide variety of information sources on software engineering and the software process 
are available on the Internet. An up-to-date list of World Wide Web references that are rel-
evant to the software process can be found at the SEPA website:  www.mhhe.com/pressman      

  10  Available free of charge at  <http://www.computer.org/portal/web/swebok/htmlformat>  

pre22126_ch02_014-028.indd   28pre22126_ch02_014-028.indd   28 13/12/13   6:10 PM13/12/13   6:10 PM



29

One 
    P A R T

 In this part of  Software Engineering: A Practitioner’s Ap-

proach  you’ll learn about the process that provides a frame-

work for software engineering practice. These questions are 

addressed in the chapters that follow:

    •  What is a software process?  

   •  What are the generic framework activities that are present 

in every software process?  

   •  How are processes modeled and what are process patterns?  

   •  What are the prescriptive process models and what are 

their strengths and weaknesses?  

   •  Why is  agility  a watchword in modern software engineering 

work?  

   •  What is agile software development and how does it differ 

from more traditional process models?    

 Once these questions are answered you’ll be better prepared to 

understand the context in which software engineering practice 

is applied. 

 THE SOFTWARE 
PROCESS 

pre22126_ch03_029-039.indd   29pre22126_ch03_029-039.indd   29 13/12/13   6:10 PM13/12/13   6:10 PM



30

  C H A P T E R

   K E Y 
C O N C E P T S 
    generic process 
model. . . . . . . . . . . 31  
    process 
assessment. . . . . . . 37  
    process fl ow. . . . . . 31  
    process 
improvement  . . . . . 38  
    process 
patterns . . . . . . . . . 35  
    task set  . . . . . . . . . 34         

 SOFTWARE PROCESS 
STRUCTURE 3 

  Q U I C K 
L O O K 

  What is it?   When you work to 
build a product or system, it’s im-
portant to go through a series of 
predictable steps—a road map that 

helps you create a timely, high-quality result. 
The road map that you follow is called a “soft-
ware process.” 

   Who does it?   Software engineers and their 
managers adapt the process to their needs and 
then follow it. In addition, the people who have 
requested the software have a role to play in 
the process of defi ning, building, and testing it. 

   Why is it important?   Because it provides sta-
bility, control, and organization to an activity 
that can, if left uncontrolled, become quite cha-
otic. However, a modern software engineering 
approach must be “agile.” It must demand 
only those activities, controls, and work prod-
ucts that are appropriate for the project team 
and the product that is to be produced. 

   What are the steps?   At a detailed level, the 
process that you adopt depends on the soft-
ware that you’re building. One process might 
be appropriate for creating software for an air-
craft avionics system, while an entirely differ-
ent process would be indicated for the creation 
of a website. 

   What is the work product?   From the point 
of view of a software engineer, the work prod-
ucts are the programs, documents, and data 
that are produced as a consequence of the ac-
tivities and tasks defi ned by the process. 

   How do I ensure that I’ve done it right?   
 There are a number of software process assess-
ment mechanisms that enable organizations 
to determine the “maturity” of their software 
process. However, the quality, timeliness, and 
long-term viability of the product you build are 
the best indicators of the effi cacy of the pro-
cess that you use. 

     In a fascinating book that provides an economist’s view of software and soft-

ware engineering, Howard Baetjer Jr. [Bae98] comments on the software 

process: 

  Because software, like all capital, is embodied knowledge, and because that 

knowledge is initially dispersed, tacit, latent, and incomplete in large measure, 

software development is a social learning process. The process is a dialogue in 

which the knowledge that must become the software is brought together and 

embodied in the software. The process provides interaction between users and 

 designers, between users and evolving tools, and between designers and evolving 

tools [technology]. It is an iterative process in which the evolving tool itself serves 

as the medium for communication, with each new round of the dialogue eliciting 

more useful knowledge from the people involved. 

  Indeed, building computer software is an iterative social learning process, 

and the outcome, something that Baetjer would call “software capital,” is an 

embodiment of knowledge collected, distilled, and organized as the process 

is conducted. 

pre22126_ch03_029-039.indd   30pre22126_ch03_029-039.indd   30 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 3  SOFTWARE PROCESS STRUCTURE  31

 But what exactly is a software process from a technical point of view? Within 

the context of this book, we defi ne a  software process  as a framework for the 

activities, actions, and tasks that are required to build high-quality software. Is 

“process” synonymous with “software engineering”? The answer is yes and no. A 

software process defi nes the approach that is taken as software is engineered. 

But software engineering also encompasses technologies that populate the 

 process—technical methods and automated tools. 

 More important, software engineering is performed by creative, knowledge-

able people who should adapt a mature software process so that it is appropriate 

for the products that they build and the demands of their marketplace. 

   3.1 A GENERIC PROCESS MODEL 

  In Chapter 2, a process was defi ned as a collection of work activities, actions, and 

tasks that are performed when some work product is to be created. Each of these 

activities, actions, and tasks resides within a framework or model that defi nes 

their relationship with the process and with one another. 

    The software process is represented schematically in  Figure 3.1 . Referring to 

the fi gure, each framework activity is populated by a set of software engineering 

actions. Each software engineering action is defi ned by a  task set  that identifi es 

the work tasks that are to be completed, the work products that will be pro-

duced, the quality assurance points that will be required, and the milestones that 

will be used to indicate progress.  

 As we discussed in Chapter 2, a generic process framework for software engi-

neering defi nes fi ve framework activities— communication, planning, modeling, 

construction,  and  deployment . In addition, a set of umbrella activities—project 

tracking and control, risk management, quality assurance, confi guration man-

agement, technical reviews, and others—are applied throughout the process. 

    You should note that one important aspect of the software process has not 

yet been discussed. This aspect—called  process fl ow —describes how the frame-

work activities and the actions and tasks that occur within each framework ac-

tivity are organized with respect to sequence and time and is illustrated in 

 Figure 3.2 . 

 A  linear process fl ow  executes each of the fi ve framework activities in se-

quence, beginning with communication and culminating with deployment ( Fig-

ure 3.2a) . An  iterative process fl ow  repeats one or more of the activities before 

proceeding to the next ( Figure 3.2b) . An  evolutionary process fl ow  executes the 

activities in a “circular” manner. Each circuit through the fi ve activities leads 

to a more complete version of the software ( Figure 3.2c) . A  parallel process fl ow  

( Figure 3.2d)  executes one or more activities in parallel with other activities (e.g., 

modeling for one aspect of the software might be executed in parallel with con-

struction of another aspect of the software).  

   The hierarchy of 
technical work within 
the software process is 
activities, encompass-
ing actions, populated 
by tasks. 

 What is 
process 

fl ow? 
?

pre22126_ch03_029-039.indd   31pre22126_ch03_029-039.indd   31 13/12/13   6:10 PM13/12/13   6:10 PM



32 PART ONE  THE SOFTWARE PROCESS

     3.2 DEFINING A FRAMEWORK ACTIVITY 

     Although we have described fi ve framework activities and provided a basic defi -

nition of each in Chapter 2, a software team would need signifi cantly more infor-

mation before it could properly execute any one of these activities as part of the 

software process. Therefore, you are faced with a key question:  What actions are 

appropriate for a framework activity, given the nature of the problem to be solved, 

the characteristics of the people doing the work, and the stakeholders who are 

sponsoring the project?  

  uote: 

 “If the process is 
right, the results 
will take care of 
themselves.” 

 Takashi Osada 

  FIGURE 3.1

 A software 
process 
framework   Process framework

Umbrella activities

framework activity # 1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.k

framework activity # n

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.m

Software process

pre22126_ch03_029-039.indd   32pre22126_ch03_029-039.indd   32 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 3  SOFTWARE PROCESS STRUCTURE  33

(d) Parallel process flow

(c) Evolutionary process flow

Communication Planning Modeling

(a) Linear process flow

Construction Deployment

Communication Planning Modeling Construction Deployment

Construction Deployment

Communication Planning

Modeling Time

(b) Iterative process flow

Planning
Modeling

ConstructionDeploymentIncrement
released

Communication

  FIGURE 3.2  Process fl ow   

    For a small software project requested by one person (at a remote location) 

with simple, straightforward requirements, the  communication  activity might 

encompass little more than a phone call or email with the appropriate stake-

holder. Therefore, the only necessary action is  phone conversation,  and the work 

tasks (the  task set ) that this action encompasses are:

     1.  Make contact with stakeholder via telephone.  

    2.  Discuss requirements and develop notes.  

 How does a 
framework 

activity change as 
the nature of the 
project changes? 

?

pre22126_ch03_029-039.indd   33pre22126_ch03_029-039.indd   33 13/12/13   6:10 PM13/12/13   6:10 PM



34 PART ONE  THE SOFTWARE PROCESS

    3.  Organize notes into a brief written statement of requirements.  

    4.  Email to stakeholder for review and approval.    

 If the project was considerably more complex with many stakeholders, each 

with a different set of (sometime confl icting) requirements, the communication 

activity might have six distinct actions (described in Chapter 8):  inception, elici-

tation, elaboration, negotiation, specifi cation,  and  validation.  Each of these soft-

ware engineering actions would have many work tasks and a number of distinct 

work products. 

        3.3 IDENTIFY ING A TASK SET 

  Referring again to  Figure 3.1 , each software engineering action (e.g.,  elicitation,  

an action associated with the  communication  activity) can be represented by a 

number of different  task sets —each a collection of software engineering work 

tasks, related work products, quality assurance points, and project milestones. 

   Different projects 
demand different task 
sets. The software 
team chooses the 
task set based on 
problem and project 
characteristics. 

Task Set 
 A task set defi nes the actual work to be done 
to accomplish the objectives of a software 

engineering action. For example,  elicitation  (more com-
monly called “requirements gathering”) is an important 
software engineering action that occurs during the 
  communication  activity. The goal of requirements 
gathering is to understand what various stakeholders 
want from the software that is to be built. 

 For a small, relatively simple project, the task set for 
requirements gathering might look like this:

     1.  Make a list of stakeholders for the project.  
    2.  Invite all stakeholders to an informal meeting.  
    3.  Ask each stakeholder to make a list of features and 

functions required.  
    4.  Discuss requirements and build a fi nal list.  
    5.  Prioritize requirements.  
    6.  Note areas of uncertainty.    

 For a larger, more complex software project, a differ-
ent task set would be required. It might encompass the 
following work tasks:

     1.  Make a list of stakeholders for the project.  
    2.  Interview each stakeholder separately to determine 

overall wants and needs.  

    3.  Build a preliminary list of functions and features 
based on stakeholder input.  

    4.  Schedule a series of facilitated application specifi -
cation meetings.  

    5.  Conduct meetings.  
    6.  Produce informal user scenarios as part of each 

meeting.  
    7.  Refi ne user scenarios based on stakeholder 

feedback.  
    8.  Build a revised list of stakeholder requirements.  
    9.  Use quality function deployment techniques to 

 prioritize requirements.  
    10.  Package requirements so that they can be deliv-

ered incrementally.  
   11.  Note constraints and restrictions that will be placed 

on the system.  
   12.  Discuss methods for validating the system.    

 Both of these task sets achieve “requirements gath-
ering,” but they are quite different in their depth and 
formality. The software team chooses the task set that will 
allow it to achieve the goal of each action and still main-
tain quality and agility. 

INFO 

pre22126_ch03_029-039.indd   34pre22126_ch03_029-039.indd   34 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 3  SOFTWARE PROCESS STRUCTURE  35

You should choose a task set that best accommodates the needs of the project 

and the characteristics of your team. This implies that a software engineering 

action can be adapted to the specifi c needs of the software project and the char-

acteristics of the project team. 

        3.4 PROCESS PATTERNS 

  Every software team encounters problems as it moves through the software pro-

cess. It would be useful if proven solutions to these problems were readily avail-

able to the team so that the problems could be addressed and resolved quickly. A 

 process pattern   1   describes a process-related problem that is encountered during 

software engineering work, identifi es the environment in which the problem has 

been encountered, and suggests one or more proven solutions to the problem. 

Stated in more general terms, a process pattern provides you with a template 

[Amb98]—a consistent method for describing problem solutions within the con-

text of the software process. By combining patterns, a software team can solve 

problems and construct a process that best meets the needs of a project. 

        Patterns can be defi ned at any level of abstraction.  2   In some cases, a pattern 

might be used to describe a problem (and solution) associated with a complete 

process model (e.g., prototyping). In other situations, patterns can be used to 

describe a problem (and solution) associated with a framework activity (e.g., 

  planning ) or an action within a framework activity (e.g., project estimating). 

  Ambler [Amb98] has proposed a template for describing a process pattern: 

      Pattern Name.  The pattern is given a meaningful name describing it 

within the context of the software process (e.g.,  TechnicalReviews ). 

  Forces.  The environment in which the pattern is encountered and the 

 issues that make the problem visible and may affect its solution. 

  Type.  The pattern type is specifi ed. Ambler [Amb98] suggests three types:

     1.   Stage pattern —defi nes a problem associated with a framework 

 activity for the process. Since a framework activity encompasses 

 multiple actions and work tasks, a stage pattern incorporates mul-

tiple task patterns (see the following) that are relevant to the stage 

(framework activity). An example of a stage pattern might be 

 EstablishingCommunication . This pattern would incorporate the 

task pattern  RequirementsGathering  and others.  

  uote: 

 “The repetition of 
patterns is quite a 
different thing than 
the repetition of 
parts. Indeed, the 
different parts will 
be unique because 
the patterns are 
the same.” 

 Christopher 
Alexander 

 What is 
a process 

pattern? 
?

   A pattern template 
provides a consistent 
means for describing a 
pattern. 

  1  A detailed discussion of patterns is presented in Chapter 11 

  2  Patterns are applicable to many software engineering activities. Analysis, design, and testing 

patterns are discussed in Chapters 11, 13, 15, 16, and 20. Patterns and “antipatterns” for project 

management activities are discussed in Part 4 of this book. 

pre22126_ch03_029-039.indd   35pre22126_ch03_029-039.indd   35 13/12/13   6:10 PM13/12/13   6:10 PM



36 PART ONE  THE SOFTWARE PROCESS

    2.   Task pattern —defi nes a problem associated with a software engineer-

ing action or work task and relevant to successful software engineering 

practice (e.g.,  RequirementsGathering  is a task pattern).  

    3.   Phase pattern —defi ne the sequence of framework activities that occurs 

within the process, even when the overall fl ow of activities is iterative 

in nature. An example of a phase pattern might be  SpiralModel  or 

 Prototyping .  3       

     Initial Context.  Describes the conditions under which the pattern applies. 

Prior to the initiation of the pattern: (1) What organizational or team-related 

activities have already occurred? (2) What is the entry state for the process? 

(3) What software engineering information or project information already exists? 

 For example, the  Planning  pattern (a stage pattern) requires that (1) custom-

ers and software engineers have established a collaborative communication; 

(2) successful completion of a number of task patterns [specifi ed] for the 

 Communication  pattern has occurred; and (3) the project scope, basic business 

requirements, and project constraints are known. 

  Problem.  The specifi c problem to be solved by the pattern. 

  Solution.  Describes how to implement the pattern successfully. This section 

describes how the initial state of the process (that exists before the pattern 

is implemented) is modifi ed as a consequence of the initiation of the pattern. 

It also describes how software engineering information or project informa-

tion that is available before the initiation of the pattern is transformed as a 

 consequence of the successful execution of the pattern. 

  Resulting Context.  Describes the conditions that will result once the pattern 

has been successfully implemented. Upon completion of the pattern: (1) What 

organizational or team-related activities must have occurred? (2) What is the 

exit state for the process? (3) What software engineering information or project 

information has been developed? 

  Related Patterns.  Provide a list of all process patterns that are directly 

 related to this one. This may be represented as a hierarchy or in some other 

 diagrammatic form. For example, the stage pattern  Communication  encom-

passes the task patterns:  ProjectTeam ,  CollaborativeGuidelines ,  ScopeIsolation , 

 RequirementsGathering, ConstraintDescription,  and  ScenarioCreation.  

  Known Uses and Examples.  Indicate the specifi c instances in which the 

 pattern is applicable. For example,  Communication  is mandatory at the 

 beginning of every software project, is recommended throughout the software 

project, and is mandatory once the  Deployment  activity is under way. 

  uote: 

 “We think 
that software 
developers are 
missing a vital 
truth: most 
organizations don't 
know what they 
do. They think they 
know, but they 
don't know.” 

 Tom DeMarco 

      3  These phase patterns are discussed in Chapter 4. 

pre22126_ch03_029-039.indd   36pre22126_ch03_029-039.indd   36 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 3  SOFTWARE PROCESS STRUCTURE  37

    Process patterns provide an effective mechanism for addressing problems 

 associated with any software process. The patterns enable you to develop a hier-

archical process description that begins at a high level of abstraction (a phase 

pattern). The description is then refi ned into a set of stage patterns that describe 

framework activities and are further refi ned in a hierarchical fashion into more 

detailed task patterns for each stage pattern. Once process patterns have been 

developed, they can be reused for the defi nition of process variants—that is, a 

customized process model can be defi ned by a software team using the patterns 

as building blocks for the process model. 

 WebRef 
 Comprehensive 
resources on process 
patterns can be 
found at 
  www.ambysoft.com/ 
processPatternsPage 
.html  . 

  An Example Process Pattern 
 The following abbreviated process pattern de-
scribes an approach that may be applicable 

when stakeholders have a general idea of what must be 
done but are unsure of specifi c software requirements.    

  Pattern Name.    RequirementsUnclear  

   Intent.   This pattern describes an approach for building 
a model (a prototype) that can be assessed iteratively by 
stakeholders in an effort to identify or solidify software 
requirements. 

   Type.   Phase pattern. 

   Initial Context.   The following conditions must be met 
prior to the initiation of this pattern: (1) stakeholders have 
been identifi ed; (2) a mode of communication between 
stakeholders and the software team has been established; 
(3) the overriding software problem to be solved has been 
identifi ed by stakeholders; (4) an initial understanding of 
project scope, basic business requirements, and project 
constraints has been developed. 

   Problem.   Requirements are hazy or nonexistent, yet 
there is clear recognition that there is a problem to be 

solved, and the problem must be addressed with a 
software solution. Stakeholders are unsure of what they 
want; that is, they cannot describe software requirements 
in any detail. 

   Solution.   A description of the prototyping process 
would be presented here and is described later in 
Section 4.1.3. 

   Resulting Context.   A software prototype that 
identifi es basic requirements (e.g., modes of interaction, 
computational features, processing functions) is 
approved by stakeholders. Following this, (1) the 
prototype may evolve through a series of increments to 
become the production software or (2) the prototype 
may be discarded and the production software built 
using some other process pattern. 

   Related Patterns.   The following patterns are 
related to this pattern:  CustomerCommunication , 
 IterativeDesign,   IterativeDevelopment,  
 CustomerAssessment, RequirementExtraction.  

   Known Uses and Examples.   Prototyping is 
recommended when requirements are uncertain.    

 INFO 

           3.5 PROCESS ASSESSMENT AND IMPROVEMENT 

  The existence of a software process is no guarantee that software will be de-

livered on time, that it will meet the customer’s needs, or that it will exhibit 

the technical characteristics that will lead to long-term quality characteristics 

(Chapter 19). Process patterns must be coupled with solid software engineering 

practice (Part 2 of this book). In addition, the process itself can be assessed to 

pre22126_ch03_029-039.indd   37pre22126_ch03_029-039.indd   37 13/12/13   6:10 PM13/12/13   6:10 PM



38 PART ONE  THE SOFTWARE PROCESS

ensure that it meets a set of basic process criteria that have been shown to be 

essential for a successful software engineering.  4    

     A number of different approaches to software process assessment and im-

provement have been proposed over the past few decades:

      Standard CMMI Assessment Method for Process Improvement (SCAMPI) —

provides a fi ve-step process assessment model that incorporates fi ve phases: 

initiating, diagnosing, establishing, acting, and learning. The SCAMPI method 

uses the SEI CMMI as the basis for assessment [SEI00].  

     CMM-Based Appraisal for Internal Process Improvement (CBA IPI) —

provides a diagnostic technique for assessing the relative maturity of a software 

organization; uses the SEI CMM as the basis for the assessment [Dun01].  

     SPICE (ISO/IEC15504) —a standard that defi nes a set of requirements for 

software process assessment. The intent of the standard is to assist organi-

zations in developing an objective evaluation of the effi cacy of any defi ned 

 software process [ISO08].  

     ISO 9001:2000 for Software— a generic standard that applies to any organiza-

tion that wants to improve the overall quality of the products, systems, or ser-

vices that it provides. Therefore, the standard is directly applicable to software 

organizations and companies [Ant06].    

    A more detailed discussion of software assessment and process improvement 

methods is presented in Chapter 37. 

       3.6 SUMMARY 

 A generic process model for software engineering encompasses a set of frame-

work and umbrella activities, actions, and work tasks. Each of a variety of pro-

cess models can be described by a different process fl ow—a description of how 

the framework activities, actions, and tasks are organized sequentially and 

chronologically. Process patterns can be used to solve common problems that 

are encountered as part of the software process. 

     PROBLEMS AND POINTS TO PONDER 
    3.1.  In the introduction to this chapter Baetjer notes: “The process provides interaction be-
tween users and designers, between users and evolving tools, and between designers and 
evolving tools [technology].” List fi ve questions that (1) designers should ask users, (2) users 
should ask designers, (3) users should ask themselves about the software product that is to 
be built, (4) designers should ask themselves about the software product that is to be built 
and the process that will be used to build it.  

   Assessment attempts to 
understand the current 
state of the software 
process with the intent 
of  improving it. 

  uote: 

 “Software 
organizations have 
exhibited signifi cant 
shortcomings in 
their ability to 
capitalize on the 
experiences gained 
from completed 
projects.” 

 NASA 

  4  The SEI’s CMMI [CMM07] describes the characteristics of a software process and the criteria 

for a successful process in voluminous detail. 

pre22126_ch03_029-039.indd   38pre22126_ch03_029-039.indd   38 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 3  SOFTWARE PROCESS STRUCTURE  39

   3.2.  Discuss the differences among the various process fl ows described in Section 3.1. 
Can you identify types of problems that might be applicable to each of the generic fl ows 
described?  

   3.3.  Try to develop a set of actions for the communication activity. Select one action and 
defi ne a task set for it.  

   3.4.  A common problem during  communication    occurs when you encounter two stakehold-
ers who have confl icting ideas about what the software should be. That is, you have mutually 
confl icting requirements .  Develop a process pattern (this would be a stage pattern) using 
the template presented in Section 3.4 that addresses this problem and suggest an effective 
approach to it.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Most software engineering textbooks consider process models in some detail. Books 
by Sommerville ( Software Engineering,  9th ed., Addison-Wesley, 2010), Schach ( Object-

Oriented and Classical Software Engineering,  8th ed., McGraw-Hill, 2010) and Pfl eeger and 
Atlee ( Software Engineering: Theory and Practice,  4th ed., Prentice Hall, 2009) consider 
traditional paradigms and discuss their strengths and weaknesses. Munch and his col-
leagues ( Software Process Defi nition and Management,  Springer, 2012) present a software 
and systems engineering view of the process and the product. Glass ( Facts and Fallacies of 

Software Engineering,  Prentice Hall, 2002) provides an unvarnished, pragmatic view of the 
software engineering process. Although not specifi cally dedicated to process, Brooks ( The 

Mythical Man-Month,  2nd ed., Addison-Wesley, 1995) presents age-old project wisdom that 
has everything to do with process. 

   Firesmith and Henderson-Sellers ( The OPEN Process Framework: An Introduction,  
 Addison-Wesley, 2001) present a general template for creating “fl exible, yet discipline 
software processes” and discuss process attributes and objectives. Madachy ( Software 

Process Dynamics,  Wiley-IEEE, 2008) discusses modeling techniques that allow the inter-
related technical and social elements of the software process to be analyzed. Sharpe and 
McDermott ( Workfl ow Modeling: Tools for Process Improvement and Application Develop-

ment,  2nd ed., Artech House, 2008) present tools for modeling both software and business 
processes. 

   A wide variety of information sources on software engineering and the software pro-
cess are available on the Internet. An up-to-date list of World Wide Web references that 
are relevant to the software process can be found at the SEPA website:  www.mhhe.com/
pressman      

pre22126_ch03_029-039.indd   39pre22126_ch03_029-039.indd   39 13/12/13   6:10 PM13/12/13   6:10 PM



40

     Process models were originally proposed to bring order to the chaos of 

software development. History has indicated that these models have 

brought a certain amount of useful structure to software engineering 

work and have provided a reasonably effective road map for software teams. 

However, software engineering work and the products that are produced re-

main on “the edge of chaos.” 

  In an intriguing paper on the strange relationship between order and chaos 

in the software world, Nogueira and his colleagues [Nog00] state

  The edge of chaos is defi ned as “a natural state between order and chaos, a grand 

compromise between structure and surprise.” [Kau95] The edge of chaos can be 

visualized as an unstable, partially structured state . . . It is unstable because it is 

constantly attracted to chaos or to absolute order. 

  We have the tendency to think that order is the ideal state of nature. This 

could be a mistake. Research . . . supports the theory that operation away from 

equilibrium generates creativity, self-organized processes, and increasing re-

turns [Roo96]. Absolute order means the absence of variability, which could be an 

   K E Y 
C O N C E P T S 
    aspect-oriented software 
development. . . . . . 54  
    component-based 
development. . . . . . 53  
    concurrent models…49  
    evolutionary process 
model. . . . . . . . . . . 45  
    formal methods 
model. . . . . . . . . . . 53  
    incremental process 
models . . . . . . . . . . 43  
    Personal Software 
Process  . . . . . . . . . 59  
    process modeling 
tools  . . . . . . . . . . . 62  
    process technology  . 61  
    prototyping  . . . . . . 45  
    spiral model  . . . . . . 47  
    Team Software 
Process  . . . . . . . . . 60  
    unifi ed process  . . . . 55  
    V-model . . . . . . . . . 42  
    waterfall model  . . . 41  

 PROCESS 
MODELS 4 

    C H A P T E R

     Q U I C K 
L O O K 

  What is it?   A process model pro-
vides a specifi c roadmap for soft-
ware engineering work. It defi nes 
the fl ow of all activities, actions and 

tasks, the degree of iteration, the work prod-
ucts, and the organization of the work that 
must be done. 

   Who does it?   Software engineers and their 
managers adapt a process model to their 
needs and then follow it. In addition, the peo-
ple who have requested the software have a 
role to play in the process of defi ning, build-
ing, and testing it. 

   Why is it important?   Because process pro-
vides stability, control, and organization to an 
activity that can, if left uncontrolled, become 
quite chaotic. However, a modern software 
engineering approach must be “agile.” It must 

demand only those activities, controls, and 
work products that are appropriate for the proj-
ect team and the product that is to be produced. 

   What are the steps?   The process model pro-
vides you with the “steps” you’ll need to per-
form disciplined software engineering work. 

   What is the work product?   From the point 
of view of a software engineer, the work prod-
uct is a customized description of the activities 
and tasks defi ned by the process. 

   How do I ensure that I’ve done it right?  
  There are a number of software process assess-
ment mechanisms that enable organizations 
to determine the “maturity” of their software 
process. However, the quality, timeliness, and 
long-term viability of the product you build are 
the best indicators of the effi cacy of the pro-
cess that you use. 

pre22126_ch04_040-065.indd   40pre22126_ch04_040-065.indd   40 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  41

advantage under unpredictable environments. Change occurs when there is some 

structure so that the change can be organized, but not so rigid that it cannot occur. 

Too much chaos, on the other hand, can make coordination and coherence impossi-

ble. Lack of structure does not always mean disorder.   

 The philosophical implications of this argument are signifi cant for software 

engineering. Each process model described in this chapter tries to strike a bal-

ance between the need to impart order in a chaotic world and the need to be 

adaptable when things change constantly. 

   The purpose of process 
models is to try to 
reduce the chaos pres-
ent in developing new 
software products. 

    4.1 PRESCRIPT IVE PROCESS MODELS 

  A prescriptive process model  1   strives for structure and order in software devel-

opment. Activities and tasks occur sequentially with defi ned guidelines for prog-

ress. But are prescriptive models appropriate for a software world that thrives 

on change? If we reject traditional process models (and the order they imply) 

and replace them with something less structured, do we make it impossible to 

achieve coordination and coherence in software work? 

  There are no easy answers to these questions, but there are alternatives 

available to software engineers. In the sections that follow, we examine the pre-

scriptive process approach in which order and project consistency are domi-

nant issues. We call them “prescriptive” because they prescribe a set of process 

 elements—framework activities, software engineering actions, tasks, work prod-

ucts, quality assurance, and change control mechanisms for each project. Each 

process model also prescribes a process fl ow (also called a  work fl ow )—that is, 

the manner in which the process elements are interrelated to one another. 

 All software process models can accommodate the generic framework activi-

ties described in Chapters 2 and 3, but each applies a different emphasis to these 

activities and defi nes a process fl ow that invokes each framework activity (as 

well as software engineering actions and tasks) in a different manner. 

   4.1.1 The   Waterfall Model   

 There are times when the requirements for a problem are well understood—

when work fl ows from communication through deployment in a reasonably linear 

fashion. This situation is sometimes encountered when well-defi ned adaptations 

or enhancements to an existing system must be made (e.g., an adaptation to ac-

counting software that has been mandated because of changes to government 

regulations). It may also occur in a limited number of new development efforts, 

but only when requirements are well defi ned and reasonably stable. 

 WebRef 
 An award-winning “pro-
cess simulation game” 
that includes most 
important prescriptive 
process models can be 
found at: 
  http://www.ics
.uci.edu/˜emilyo/
SimSE/
downloads.html  . 

   Prescriptive process 
models defi ne a 
prescribed set of 
process elements and 
a predictable process 
work fl ow. 

  1  Prescriptive process models are sometimes referred to as “traditional” process models. 

pre22126_ch04_040-065.indd   41pre22126_ch04_040-065.indd   41 13/12/13   6:10 PM13/12/13   6:10 PM



42 PART ONE  THE SOFTWARE PROCESS

 The  waterfall model,  sometimes called the  classic life cycle , suggests a system-

atic, sequential approach  2   to software development that begins with customer 

specifi cation of requirements and progresses through planning, modeling, con-

struction, and deployment, culminating in ongoing support of the completed 

software ( Figure 4.1 ).        

 A variation in the representation of the waterfall model is called the    V-model.    

Represented in  Figure 4.2 , the V-model [Buc99] depicts the relationship of quality 

assurance actions to the actions associated with communication, modeling, and 

early construction activities. As a software team moves down the left side of the 

V, basic problem requirements are refi ned into progressively more detailed and 

technical representations of the problem and its solution. Once code has been 

generated, the team moves up the right side of the V, essentially performing a 

series of tests (quality assurance actions) that validate each of the models cre-

ated as the team moves down the left side.  3   In reality, there is no fundamental 

difference between the classic life cycle and the V-model. The V-model provides 

a way of visualizing how verifi cation and validation actions are applied to earlier 

engineering work.       

  The waterfall model is the oldest paradigm for software engineering. How-

ever, over the past four decades, criticism of this process model has caused even 

ardent supporters to question its effi cacy [Han95]. Among the problems that are 

sometimes encountered when the waterfall model is applied are:

     1.  Real projects rarely follow the sequential fl ow that the model proposes. 

Although the linear model can accommodate iteration, it does so indi-

rectly. As a result, changes can cause confusion as the project team 

proceeds.  

    2.  It is often diffi cult for the customer to state all requirements explicitly. The 

waterfall model requires this and has diffi culty accommodating the natu-

ral uncertainty that exists at the beginning of many projects.  

 Why does 
the waterfall 

model sometimes 
fail? 

?

  2  Although the original waterfall model proposed by Winston Royce [Roy70] made provision for 

“feedback loops,” the vast majority of organizations that apply this process model treat it as if 

it were strictly linear. 

  3  A detailed discussion of quality assurance actions is presented in Part 3 of this book. 

Communication
 project initiation
 requirements gathering

Planning
 estimating
 scheduling
 tracking

Modeling
 analysis
 design

Deployment
 delivery
 support
 feedback

Construction
 code
 test

 FIGURE 4.1  The waterfall model

 The V-model illustrates 
how verifi cation and 
validation actions are 
associated with earlier 
engineering actions. 

pre22126_ch04_040-065.indd   42pre22126_ch04_040-065.indd   42 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  43

    3.  The customer must have patience. A working version of the program(s) 

will not be available until late in the project time span. A major blunder, if 

undetected until the working program is reviewed, can be disastrous.     

 In an interesting analysis of actual projects, Bradac [Bra94] found that the 

linear nature of the classic life cycle leads to “blocking states” in which some 

project team members must wait for other members of the team to complete 

dependent tasks. In fact, the time spent waiting can exceed the time spent on 

productive work! The blocking state tends to be more prevalent at the beginning 

and end of a linear sequential process. 

 Today, software work is fast paced and subject to a never-ending stream of 

changes (to features, functions, and information content). The waterfall model 

is often inappropriate for such work. However, it can serve as a useful process 

model in situations where requirements are fi xed and work is to proceed to com-

pletion in a linear manner. 

     4.1.2 Incremental Process Models   

 There are many situations in which initial software requirements are reasonably 

well defi ned, but the overall scope of the development effort precludes a purely 

Code
generation

Architectural
design

Component
design

Requirements
modeling

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Executable
software

 FIGURE 4.2

 The V-model

  uote: 

 “Too often, 
software work 
follows the fi rst 
law of bicycling: 
No matter where 
you’re going, it’s 
uphill and against 
the wind.” 

 Author unknown 

pre22126_ch04_040-065.indd   43pre22126_ch04_040-065.indd   43 13/12/13   6:10 PM13/12/13   6:10 PM



44 PART ONE  THE SOFTWARE PROCESS

linear process. In addition, there may be a compelling need to provide a limited 

set of software functionality to users quickly and then refi ne and expand on that 

functionality in later software releases. In such cases, you can choose a process 

model that is designed to produce the software in increments. 

  The incremental model combines the elements’ linear and parallel process 

fl ows discussed in Chapter 3. Referring to  Figure 4.3 , the incremental model 

applies linear sequences in a staggered fashion as calendar time progresses. 

Each linear sequence produces deliverable “increments” of the software 

[McD93]. 

 For example, word-processing software developed using the incremental par-

adigm might deliver basic fi le management, editing, and document production 

functions in the fi rst increment; more sophisticated editing and document pro-

duction capabilities in the second increment; spelling and grammar checking 

in the third increment; and advanced page layout capability in the fourth incre-

ment. It should be noted that the process fl ow for any increment can incorporate 

the prototyping paradigm discussed in the next subsection.       

 When an incremental model is used, the fi rst increment is often a  core prod-

uct.  That is, basic requirements are addressed but many supplementary fea-

tures (some known, others unknown) remain undelivered. The core product is 

used by the customer (or undergoes detailed evaluation). As a result of use and/

or evaluation, a plan is developed for the next increment. The plan addresses 

the modifi cation of the core product to better meet the needs of the customer 

and the delivery of additional features and functionality. This process is re-

peated following the delivery of each increment, until the complete product is 

produced. 

   The incremental 
model delivers a 
series of releases, 
called increments, that 
provide progressively 
more functionality for 
the customer as each 
 increment is delivered. 

increment # 1

increment # 2

delivery of
1st increment

delivery of
2nd increment

delivery of 
nth increment

increment # n

Project Calendar Time

So
ft

w
a
re

 F
u
n
ct

io
n
a
lit

y
 a

n
d
 F

ea
tu

re
s

Communication

Planning

Modeling (analysis, design)

Construction (code, test)

Deployment (delivery, feedback)

 FIGURE 4.3

 The incremen-
tal model

   Your customer de-
mands delivery by a 
date that is impossible 
to meet. Suggest deliv-
ering one or more in-
crements by that date 
and the rest of the 
software (additional 
increments) later. 

pre22126_ch04_040-065.indd   44pre22126_ch04_040-065.indd   44 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  45

      4.1.3 Evolutionary Process Models   

 Software, like all complex systems, evolves over a period of time. Business and 

product requirements often change as development proceeds, making a straight 

line path to an end product unrealistic; tight market deadlines make completion 

of a comprehensive software product impossible, but a limited version must be 

introduced to meet competitive or business pressure; a set of core product or 

system requirements is well understood, but the details of product or system 

extensions have yet to be defi ned. In these and similar situations, you need a 

process model that has been explicitly designed to accommodate a product that 

grows and changes.  

 Evolutionary models are iterative. They are characterized in a manner that 

enables you to develop increasingly more complete versions of the software. 

In the paragraphs that follow, we present two common evolutionary process 

models. 

    Prototyping  .   Often, a customer defi nes a set of general objectives for software, 

but does not identify detailed requirements for functions and features. In other 

cases, the developer may be unsure of the effi ciency of an algorithm, the adapt-

ability of an operating system, or the form that human-machine interaction 

should take. In these, and many other situations, a  prototyping paradigm  may 

offer the best approach. 

 Although prototyping can be used as a stand-alone process model, it is more 

commonly used as a technique that can be implemented within the context of 

any one of the process models noted in this chapter. Regardless of the manner in 

which it is applied, the prototyping paradigm assists you and other stakeholders 

to better understand what is to be built when requirements are fuzzy. 

  The prototyping paradigm ( Figure 4.4 ) begins with communication. You 

meet with other stakeholders to defi ne the overall objectives for the software, 

identify whatever requirements are known, and outline areas where further 

defi nition is mandatory. A prototyping iteration is planned quickly, and mod-

eling (in the form of a “quick design”) occurs. A quick design focuses on a rep-

resentation of those aspects of the software that will be visible to end users 

(e.g., human interface layout or output display formats). The quick design leads 

to the construction of a prototype. The prototype is deployed and evaluated 

by stakeholders, who provide feedback that is used to further refi ne require-

ments. Iteration occurs as the prototype is tuned to satisfy the needs of various 

stakeholders, while at the same time enabling you to better understand what 

needs to be done.      

 Ideally, the prototype serves as a mechanism for identifying software require-

ments. If a working prototype is to be built, you can make use of existing pro-

gram fragments or apply tools that enable working programs to be generated 

quickly. 

   Evolutionary process 
models produce an 
increasingly more 
complete version of 
the software with each 
iteration. 

  uote: 

 “Plan to throw 
one away. You will 
do that, anyway. 
Your only choice is 
whether to try to 
sell the throwaway 
to customers.” 

 Frederick P. 
Brooks 

   When your customer 
has a legitimate need, 
but is clueless about 
the details, develop 
a prototype as a fi rst 
step. 

pre22126_ch04_040-065.indd   45pre22126_ch04_040-065.indd   45 13/12/13   6:10 PM13/12/13   6:10 PM



46 PART ONE  THE SOFTWARE PROCESS

 But what do you do with the prototype when it has served the purpose de-

scribed earlier? Brooks [Bro95] provides one answer:

  In most projects, the fi rst system built is barely usable. It may be too slow, too big, 

awkward in use or all three. There is no alternative but to start again, smarting but 

smarter, and build a redesigned version in which these problems are solved.   

 The prototype can serve as “the fi rst system.” The one that Brooks recom-

mends you throw away. But this may be an idealized view. Although some pro-

totypes are built as “throwaways,” others are evolutionary in the sense that the 

prototype slowly evolves into the actual system. 

  Both stakeholders and software engineers like the prototyping paradigm. 

Users get a feel for the actual system, and developers get to build something im-

mediately. Yet, prototyping can be problematic for the following reasons:

     1.  Stakeholders see what appears to be a working version of the software, 

unaware that the prototype is held together haphazardly, unaware that in 

the rush to get it working you haven't considered overall software quality 

or long-term maintainability. When informed that the product must be re-

built so that high levels of quality can be maintained, stakeholders cry foul 

and demand that “a few fi xes” be applied to make the prototype a working 

product. Too often, software development management relents.  

    2.  As a software engineer, you often make implementation compromises 

in order to get a prototype working quickly. An inappropriate operat-

ing system or programming language may be used simply because it is 

 FIGURE 4.4

 The prototyp-
ing paradigm

Communication

Quick plan

Construction
of
prototype

Modeling
 Quick design  

Deployment
  Delivery 
  & Feedback

   Resist pressure to 
extend a rough proto-
type into a production 
product. Quality almost 
always suffers as a 
result. 

pre22126_ch04_040-065.indd   46pre22126_ch04_040-065.indd   46 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  47

available and known; an ineffi cient algorithm may be implemented simply 

to demonstrate capability. After a time, you may become comfortable with 

these choices and forget all the reasons why they were inappropriate. The 

less-than-ideal choice has now become an integral part of the system.    

 Although problems can occur, prototyping can be an effective paradigm for 

software engineering. The key is to defi ne the rules of the game at the beginning; 

that is, all stakeholders should agree that the prototype is built to serve as a 

mechanism for defi ning requirements. It is then discarded (at least in part), and 

the actual software is engineered with an eye toward quality. 

     The   Spiral Model.     Originally proposed by Barry Boehm [Boe88], the  spiral 

model  is an evolutionary software process model that couples the iterative na-

ture of prototyping with the controlled and systematic aspects of the waterfall 

model. It provides the potential for rapid development of increasingly more 

  Selecting a Process Model, Part 1   Selecting a Process Model, Part 1 

      The scene:  Meeting room for the 
software engineering group at CPI 

Corporation, a (fi ctional) company that makes consumer 
products for home and commercial use.  

     The players:  Lee Warren, engineering manager; 
Doug Miller, software engineering manager; Jamie 
Lazar, software team member; Vinod Raman, software 
team member; and Ed Robbins, software team member.  

   The conversation: 

      Lee:  So let’s recapitulate. I’ve spent some time dis-
cussing the  SafeHome  product line as we see it at the 
 moment. No doubt, we’ve got a lot of work to do to 
simply defi ne the thing, but I’d like you guys to begin 
thinking about how you’re going to approach the 
 software part of this project.  

     Doug:  Seems like we’ve been pretty disorganized in 
our approach to software in the past.  

     Ed:  I don’t know, Doug, we always got product out 
the door.  

     Doug:  True, but not without a lot of grief, and this 
project looks like it’s bigger and more complex than 
anything we’ve done in the past.  

     Jamie:  Doesn’t look that hard, but I agree . . . our ad 
hoc approach to past projects won’t work here, particu-
larly if we have a very tight time line.  

     Doug   (smiling):  I want to be a bit more professional 
in our approach. I went to a short course last week and 
learned a lot about software engineering . . . good 
stuff. We need a process here.  

     Jamie (with a frown):  My job is to build computer 
programs, not push paper around.  

     Doug:  Give it a chance before you go negative on 
me. Here’s what I mean. (Doug proceeds to describe 
the process framework described in Chapter 3 and the 
prescriptive process models presented to this point.)  

     Doug:  So anyway, it seems to me that a linear model 
is not for us . . . assumes we have all requirements up 
front and, knowing this place, that’s not likely.  

     Vinod:  Yeah, and it sounds way too IT-oriented . . . 
probably good for building an inventory control system 
or something, but it’s just not right for  SafeHome .  

     Doug:  I agree.  

     Ed:  That prototyping approach seems okay. A lot like 
what we do here anyway.  

     Vinod:  That’s a problem. I’m worried that it doesn’t 
provide us with enough structure.  

     Doug:  Not to worry. We’ve got plenty of other 
 options, and I want you guys to pick what’s best for the 
team and best for the project.     

 SAFEHOME 

pre22126_ch04_040-065.indd   47pre22126_ch04_040-065.indd   47 13/12/13   6:10 PM13/12/13   6:10 PM



48 PART ONE  THE SOFTWARE PROCESS

complete versions of the software. Boehm [Boe01a] describes the model in the 

following manner: 

  The spiral development model is a  risk -driven  process model  generator that is used 

to guide multi-stakeholder concurrent engineering of software intensive systems. 

It has two main distinguishing features. One is a  cyclic  approach for incrementally 

growing a system’s degree of defi nition and implementation while decreasing its de-

gree of risk. The other is a set of  anchor point milestones  for ensuring stakeholder 

commitment to feasible and mutually satisfactory system solutions.  

 Using the spiral model, software is developed in a series of evolutionary re-

leases. During early iterations, the release might be a model or prototype. During 

later iterations, increasingly more complete versions of the engineered system 

are produced.      

 A spiral model is divided into a set of framework activities defi ned by the soft-

ware engineering team. For illustrative purposes, we use the generic framework 

activities discussed earlier.  4   Each of the framework activities represent one seg-

ment of the spiral path illustrated in  Figure 4.5 . As this evolutionary process be-

gins, the software team performs activities that are implied by a circuit around 

the spiral in a clockwise direction, beginning at the center. Risk (Chapter 35) is 

considered as each revolution is made.  Anchor point milestones —a combination 

of work products and conditions that are attained along the path of the spiral—

are noted for each evolutionary pass. 

   The spiral model 
can be adapted to 
apply throughout the 
entire life cycle of 
an application, from 
concept development 
to maintenance. 

  4  The spiral model discussed in this section is a variation on the model proposed by Boehm. 

For further information on the original spiral model, see [Boe88]. More recent discussion of 

Boehm’s spiral model can be found in [Boe98]. 

Communication

Planning 

Modeling

Construction
Deployment 

delivery 
feedback

Start

analysis 
design

code 
test

estimation 
scheduling 
risk analysis

 FIGURE 4.5

 A typical 
 spiral model 

pre22126_ch04_040-065.indd   48pre22126_ch04_040-065.indd   48 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  49

   The fi rst circuit around the spiral might result in the development of a prod-

uct specifi cation; subsequent passes around the spiral might be used to develop 

a prototype and then progressively more sophisticated versions of the software. 

Each pass through the planning region results in adjustments to the project plan. 

Cost and schedule are adjusted based on feedback derived from the customer 

after delivery. In addition, the project manager adjusts the planned number of 

iterations required to complete the software. 

 Unlike other process models that end when software is delivered, the spiral 

model can be adapted to apply throughout the life of the computer software. 

Therefore, the fi rst circuit around the spiral might represent a “concept develop-

ment project” that starts at the core of the spiral and continues for multiple iter-

ations  5   until concept development is complete. If the concept is to be developed 

into an actual product, the process proceeds outward on the spiral and a “new 

product development project” commences. The new product will evolve through 

a number of iterations around the spiral. Later, a circuit around the spiral might 

be used to represent a “product enhancement project.” In essence, the spiral, 

when characterized in this way, remains operative until the software is retired. 

There are times when the process is dormant, but whenever a change is initiated, 

the process starts at the appropriate entry point (e.g., product enhancement). 

   The spiral model is a realistic approach to the development of large-scale 

systems and software. Because software evolves as the process progresses, the 

developer and customer better understand and react to risks at each evolution-

ary level. The spiral model uses prototyping as a risk reduction mechanism but, 

more important, enables you to apply the prototyping approach at any stage in 

the evolution of the product. It maintains the systematic stepwise approach sug-

gested by the classic life cycle but incorporates it into an iterative framework 

that more realistically refl ects the real world. The spiral model demands a direct 

consideration of technical risks at all stages of the project and, if properly ap-

plied, should reduce risks before they become problematic.  

 But like other paradigms, the spiral model is not a panacea. It may be diffi cult 

to convince customers (particularly in contract situations) that the evolutionary 

approach is controllable. It demands considerable risk assessment expertise 

and relies on this expertise for success. If a major risk is not uncovered and man-

aged, problems will undoubtedly occur. 

        4.1.4 Concurrent Models   

 The  concurrent development model,  sometimes called  concurrent engineering,  

allows a software team to represent iterative and concurrent elements of any of 

the process models described in this chapter. For example, the modeling activity 

 WebRef 
 Useful information 
about the spiral model 
can be obtained at: 
  www.sei.cmu.
edu/publications/
documents/00.
reports/00sr008.
html  . 

  5  The arrows pointing inward along the axis separating the  deployment  region from the  commu-

nication  region indicate a potential for local iteration along the same spiral path. 

   If your management 
demands fi xed-budget 
development (gen-
erally a bad idea), 
the spiral can be a 
problem. As each 
circuit is completed, 
project cost is revisited 
and revised. 

  uote: 

 “I’m only this far 
and only tomorrow 
leads my way.” 

 Dave 
Matthews Band 

pre22126_ch04_040-065.indd   49pre22126_ch04_040-065.indd   49 13/12/13   6:10 PM13/12/13   6:10 PM



50 PART ONE  THE SOFTWARE PROCESS

defi ned for the spiral model is accomplished by invoking one or more of the fol-

lowing software engineering actions: prototyping, analysis, and design.  6         

   Figure 4.6  provides an example of the concurrent modeling approach. An 

 activity— modeling —may be in any one of the states  7   noted at any given time. 

Similarly, other activities, actions, or tasks (e.g.,  communication  or  construction ) 

can be represented in an analogous manner. All software engineering activities 

exist concurrently but reside in different states. 

  For example, early in a project the communication activity (not shown in the 

fi gure) has completed its fi rst iteration and exists in the  awaiting changes  state. 

The modeling activity (which existed in the  none  state while initial communica-

tion was completed) now makes a transition into the  under development  state. 

If, however, the customer indicates that changes in requirements must be made, 

the modeling activity moves from the  under development  state into the  awaiting 

changes  state. 

 Concurrent modeling defi nes a series of events that will trigger transitions 

from state to state for each of the software engineering activities, actions, or tasks. 

For example, during early stages of design (a major software engineering action 

that occurs during the modeling activity), an inconsistency in the requirements 

   Project plans must 
be viewed as living 
documents; progress 
must be assessed often 
and revised to take 
changes into account. 

  Selecting a Process Model, Part 2   Selecting a Process Model, Part 2 

      The scene:  Meeting room for the 
software engineering group at CPI 

Corporation, a company that makes consumer products 
for home and commercial use.  

     The players:  Lee Warren, engineering manager; 
Doug Miller, software engineering manager; Vinod and 
Jamie, members of the software engineering team.  

    The conversation:   (Doug describes evolutionary 
process options.) 

      Jamie:  Now I see something I like. An incremental 
approach makes sense, and I really like the fl ow of that 
spiral model thing. That’s keepin’ it real.  

     Vinod:  I agree. We deliver an increment, learn from 
customer feedback, re-plan, and then deliver another 
increment. It also fi ts into the nature of the product. We 

can have something on the market fast and then add 
functionality with each version, er, increment.  

     Lee:  Wait a minute. Did you say that we regenerate 
the plan with each tour around the spiral, Doug? That’s 
not so great; we need one plan, one schedule, and 
we’ve got to stick to it.  

     Doug:  That’s old-school thinking, Lee. Like the guys 
said, we’ve got to keep it real. I submit that it’s better to 
tweak the plan as we learn more and as changes are 
requested. It’s way more realistic. What’s the point of a 
plan if it doesn’t refl ect reality?  

     Lee   (frowning): I suppose so, but . . . senior manage-
ment’s not going to like this . . . they want a fi xed plan.  

     Doug   (smiling): Then you’ll have to reeducate them, 
buddy.    

 SAFEHOME 

   The concurrent model 
is often more appro-
priate for product engi-
neering projects where 
different engineering 
teams are involved. 

  6  It should be noted that analysis and design are complex tasks that require substantial discus-

sion. Part 2 of this book considers these topics in detail. 

  7  A  state  is some externally observable mode of behavior. 

  uote: 

 “Every process in 
your organization 
has a customer, 
and without a 
customer a process 
has no purpose.” 

 V. Daniel Hunt 

pre22126_ch04_040-065.indd   50pre22126_ch04_040-065.indd   50 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  51

model is uncovered. This generates the event  analysis model correction , which 

will trigger the requirements analysis action from the  done  state into the  await-

ing changes  state.  

 Concurrent modeling is applicable to all types of software development and 

provides an accurate picture of the current state of a project. Rather than con-

fi ning software engineering activities, actions, and tasks to a sequence of events, 

it defi nes a process network. Each activity, action, or task on the network exists 

simultaneously with other activities, actions, or tasks. Events generated at one 

point in the process network trigger transitions among the states associated with 

each activity. 

   4.1.5 A Final Word on Evolutionary Processes 

 We have already noted that modern computer software is characterized by con-

tinual change, by very tight time lines, and by an emphatic need for  customer–user 

satisfaction. In many cases, time-to-market is the most important management 

Under review

Baselined

Under
revision

Awaiting
changes

Under
development

Inactive

Modeling activity

Represents the state 
of a software engineering 
activity or task 

Done

 FIGURE 4.6

 One element of 
the concurrent 
process model

pre22126_ch04_040-065.indd   51pre22126_ch04_040-065.indd   51 13/12/13   6:10 PM13/12/13   6:10 PM



52 PART ONE  THE SOFTWARE PROCESS

requirement. If a market window is missed, the software project itself may be 

meaningless.  8   

  Evolutionary process models were conceived to address these issues, and yet, 

as a general class of process models, they too have weaknesses. These are sum-

marized by Nogueira and his colleagues [Nog00]: 

  Despite the unquestionable benefi ts of evolutionary software processes, we have 

some concerns. The fi rst concern is that prototyping [and other more sophisticated 

evolutionary processes] poses a problem to project planning because of the uncertain 

number of cycles required to construct the product . . .  

 Second, evolutionary software processes do not establish the maximum speed of 

the evolution. If the evolutions occur too fast, without a period of relaxation, it is cer-

tain that the process will fall into chaos. On the other hand if the speed is too slow 

then productivity could be affected . . . 

 Third, [evolutionary] software processes should be focused on fl exibility and 

 extensibility rather than on high quality. This assertion sounds scary. 

 Indeed, a software process that focuses on fl exibility, extensibility, and speed of 

development over high quality does sound scary. And yet, this idea has been pro-

posed by a number of well-respected software engineering experts (e.g., [You95], 

[Bac97]).  

 The intent of evolutionary models is to develop high-quality software  9   in an 

iterative or incremental manner. However, it is possible to use an evolutionary 

process to emphasize fl exibility, extensibility, and speed of development. The 

challenge for software teams and their managers is to establish a proper balance 

between these critical project and product parameters and customer satisfac-

tion (the ultimate arbiter of software quality). 

       4.2 SPECIAL IZED PROCESS MODELS 

  Specialized process models take on many of the characteristics of one or more 

of the traditional models presented in the preceding sections. However, these 

models tend to be applied when a specialized or narrowly defi ned software engi-

neering approach is chosen.  10   

  8  It is important to note, however, that being the fi rst to reach a market is no guarantee of suc-

cess. In fact, many very successful software products have been second or even third to reach 

the market (learning from the mistakes of their predecessors). 

  9  In this context software quality is defi ned quite broadly to encompass not only customer satis-

faction, but also a variety of technical criteria discussed in Part 2 of this book. 

  10  In some cases, these specialized process models might better be characterized as a collec-

tion of techniques or a “methodology” for accomplishing a specifi c software development goal. 

However, they do imply a process. 

What are 
the potential 

weaknesses of 
evolutionary 
process models?

?

pre22126_ch04_040-065.indd   52pre22126_ch04_040-065.indd   52 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  53

      4.2.1 Component-Based Development   

 Commercial off-the-shelf (COTS) software components, developed by vendors 

who offer them as products, provide targeted functionality with well-defi ned in-

terfaces that enable the component to be integrated into the software that is 

to be built. The  component-based development model  incorporates many of the 

characteristics of the spiral model. It is evolutionary in nature [Nie92], demand-

ing an iterative approach to the creation of software. However, the  component-

based development model comprises applications from prepackaged software 

components. 

 Modeling and construction activities begin with the identifi cation of candidate 

components. These components can be designed as either conventional software 

modules or object-oriented classes or packages  11   of classes. Regardless of the 

technology that is used to create the components, the component-based devel-

opment model incorporates the following steps (implemented using an evolu-

tionary approach):

      1.  Available component-based products are researched and evaluated for 

the application domain in question.  

    2.  Component integration issues are considered.  

    3.  A software architecture is designed to accommodate the components.  

    4.  Components are integrated into the architecture.  

    5.  Comprehensive testing is conducted to ensure proper functionality.    

 The component-based development model leads to software reuse, and re-

usability provides software engineers with a number of measurable benefi ts in-

cluding a reduction in development cycle time and a reduction in project cost if 

component reuse becomes part of your organization’s culture. Component-based 

development is discussed in more detail in Chapter 14. 

   4.2.2 The   Formal Methods Model   

 The  formal methods model  encompasses a set of activities that leads to formal 

mathematical specifi cation of computer software. Formal methods enable you 

to specify, develop, and verify a computer-based system by applying a rigorous, 

mathematical notation. A variation on this approach, called  cleanroom software 

engineering  [Mil87, Dye92], is currently applied by some software development 

organizations. 

 WebRef 
 Useful information 
on component-based 
development can be 
obtained at: 
 www.cbd-hq.com . 

  11  Object-oriented concepts are discussed in Appendix 2 and are used throughout Part 2 of this 

book. In this context, a class encompasses a set of data and the procedures that process the 

data. A package of classes is a collection of related classes that work together to achieve some 

end result. 

pre22126_ch04_040-065.indd   53pre22126_ch04_040-065.indd   53 13/12/13   6:10 PM13/12/13   6:10 PM



54 PART ONE  THE SOFTWARE PROCESS

 When formal methods (Appendix 3) are used during development, they pro-

vide a mechanism for eliminating many of the problems that are diffi cult to over-

come using other software engineering paradigms. Ambiguity, incompleteness, 

and inconsistency can be discovered and corrected more easily—not through ad 

hoc review, but through the application of mathematical analysis. When formal 

methods are used during design, they serve as a basis for program verifi cation 

and therefore enable you to discover and correct errors that might otherwise go 

undetected. 

  Although not a mainstream approach, the formal methods model offers the 

promise of defect-free software. Yet, concern about its applicability in a business 

environment has been voiced:

    •  The development of formal models is currently quite time consuming and 

expensive.  

   •  Because few software developers have the necessary background to apply 

formal methods, extensive training is required.  

   •  It is diffi cult to use the models as a communication mechanism for techni-

cally unsophisticated customers.    

  These concerns notwithstanding, the formal methods approach has gained 

adherents among software developers who must build safety-critical software 

(e.g., developers of aircraft avionics and medical devices) and among developers 

that would suffer severe economic hardship should software errors occur. 

      4.2.3 Aspect-Oriented Software Development   

 Regardless of the software process that is chosen, the builders of complex soft-

ware invariably implement a set of localized features, functions, and information 

content. These localized software characteristics are modeled as components 

(e.g., object-oriented classes) and then constructed within the context of a sys-

tem architecture. As modern computer-based systems become more sophisti-

cated (and complex), certain  concerns —customer required properties or areas 

of technical interest—span the entire architecture. Some concerns are high-level 

properties of a system (e.g., security, fault tolerance). Other concerns affect func-

tions (e.g., the application of business rules), while others are systemic (e.g., task 

synchronization or memory management). 

 When concerns cut across multiple system functions, features, and informa-

tion, they are often referred to as  crosscutting concerns. Aspectual requirement s 

defi ne those crosscutting concerns that have an impact across the software ar-

chitecture.  Aspect-oriented software development  (AOSD), often referred to as 

 aspect-oriented programming  (AOP) or  aspect-oriented component engineering  

(AOCE) [Gru02], is a relatively new software engineering paradigm that provides 

a process and methodological approach for defi ning, specifying, designing, and 

 If formal 
methods 

can demonstrate 
software 
correctness, why 
is it they are not 
widely used? 

?

 WebRef 
 A wide array of 
resources and infor-
mation on AOP can be 
found at:   aosd.net  . 

   AOSD defi nes 
 “aspects” that express 
customer concerns that 
cut across multiple 
system functions, 
 features, and 
information. 

pre22126_ch04_040-065.indd   54pre22126_ch04_040-065.indd   54 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  55

constructing  aspects —“mechanisms beyond subroutines and inheritance for 

 localizing the expression of a crosscutting concern” [Elr01]. 

 A distinct aspect-oriented process has not yet matured. However, it is likely 

that such a process will adopt characteristics of both evolutionary and concurrent 

process models. The evolutionary model is appropriate as aspects are identifi ed 

and then constructed. The parallel nature of concurrent development is essential 

because aspects are engineered independently of localized software components 

and yet, aspects have a direct impact on these components. Hence, it is essential 

to instantiate asynchronous communication between the software process activi-

ties applied to the engineering and construction of aspects and components. 

 A detailed discussion of aspect-oriented software development is best left to 

books dedicated to the subject. If you have further interest, see [Ras11], [Saf08], 

[Cla05], [Fil05], [Jac04], and [Gra03]. 

  Process Management    

  Objective:   To assist in the defi nition, 
execution, and management of prescriptive 

process models. 

   Mechanics:   Process management tools allow a 
software organization or team to defi ne a complete 
software process model (framework activities, actions, 
tasks, QA checkpoints, milestones, and work products). 
In addition, the tools provide a road map as software 
engineers do technical work and a template for 
managers who must track and control the software 
process. 

    Representative tools:  12   
       GDPA, a research process defi nition tool suite,  

developed at Bremen University in Germany 

(  www.informatik.uni-bremen.de/uniform/
gdpa/home.htm  ), provides a wide array of 
process modeling and management functions.  

     ALM Studio,  developed by Kovair Corporation ( http://
www.kovair.com/ ) encompasses a suite of tools 
for process defi nition, requirements management, 
issue resolution, project planning, and tracking.  

     ProVision BPMx,  developed by OpenText (  http://
bps.opentext.com/  ), is representative of many 
tools that assist in process defi nition and workfl ow 
automation.  

  A worthwhile listing of many different tools associ-
ated with the software process can be found at   www
.computer.org/portal/web/swebok/html/ch10  .   

 SOFTWARE TOOLS 

  12  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

       4.3 THE   UNIF IED PROCESS   

  In their seminal book on the  Unifi ed Process (UP),  Ivar Jacobson, Grady Booch, and 

James Rumbaugh [Jac99] discuss the need for a “use case driven, architecture-

centric, iterative and incremental” software process when they state:

  Today, the trend in software is toward bigger, more complex systems. That is due in 

part to the fact that computers become more powerful every year, leading users to 

expect more from them. This trend has also been infl uenced by the expanding use of 

pre22126_ch04_040-065.indd   55pre22126_ch04_040-065.indd   55 13/12/13   6:10 PM13/12/13   6:10 PM



56 PART ONE  THE SOFTWARE PROCESS

the Internet for exchanging all kinds of information . . . Our appetite for ever-more 

sophisticated software grows as we learn from one product release to the next how 

the product could be improved. We want software that is better adapted to our needs, 

but that, in turn, merely makes the software more complex. In short, we want more.   

 In some ways the Unifi ed Process is an attempt to draw on the best features 

and characteristics of traditional software process models, but characterize them 

in a way that implements many of the best principles of agile software develop-

ment (Chapter 5). The Unifi ed Process recognizes the importance of customer 

communication and streamlined methods for describing the customer’s view of 

a system (the use case).  13   It emphasizes the important role of software architec-

ture and “helps the architect focus on the right goals, such as understandability, 

reliance to future changes, and reuse” [Jac99]. It suggests a process fl ow that 

is iterative and incremental, providing the evolutionary feel that is essential in 

modern software development. 

   4.3.1 A Brief History 

 During the early 1990s James Rumbaugh [Rum91], Grady Booch [Boo94], and 

Ivar Jacobson [Jac92] began working on a “unifi ed method” that would com-

bine the best features of each of their individual object-oriented analysis and 

design methods and adopt additional features proposed by other experts (e.g., 

[Wir90]) in object-oriented modeling. The result was UML—a  unifi ed modeling 

language  that contains a robust notation for the modeling and development of 

object- oriented systems. By 1997, UML became a de facto industry standard for 

object-oriented software development. 

 UML is used throughout Part 2 of this book to represent both requirements 

and design models. Appendix 1 presents an introductory tutorial for those who 

are unfamiliar with basic UML notation and modeling rules. A comprehensive 

presentation of UML is best left to textbooks dedicated to the subject. Recom-

mended books are listed in Appendix 1. 

   4.3.2 Phases of the Unifi ed Process  14   

  In Chapter 3, we discussed fi ve generic framework activities and argued that 

they may be used to describe any software process model. The Unifi ed Process 

  13  A  use case  (Chapter 8) is a text narrative or template that describes a system function or fea-

ture from the user’s point of view. A use case is written by the user and serves as a basis for the 

creation of a more comprehensive analysis model. 

  14  The Unifi ed Process is sometimes called the  Rational Unifi ed Process  (RUP) after the Rational 

Corporation (subsequently acquired by IBM), an early contributor to the development and re-

fi nement of the UP and a builder of complete environments (tools and technology) that support 

the process. 

pre22126_ch04_040-065.indd   56pre22126_ch04_040-065.indd   56 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  57

is no exception.  Figure 4.7  depicts the “phases” of the UP and relates them to 

the generic activities that have been discussed in Chapter 1 and earlier in this 

chapter.      

  The  inception phase  of the UP encompasses both customer communication 

and planning activities. By collaborating with stakeholders, business require-

ments for the software are identifi ed; a rough architecture for the system is pro-

posed; and a plan for the iterative, incremental nature of the ensuing project is 

developed. Fundamental business requirements are described through a set of 

preliminary use cases (Chapter 8) that describe which features and functions 

each major class of users desires. Architecture at this point is nothing more 

than a tentative outline of major subsystems and the functions and features that 

populate them. Later, the architecture will be refi ned and expanded into a set 

of models that will represent different views of the system. Planning identifi es 

 resources, assesses major risks, defi nes a schedule, and establishes a basis for 

the phases that are to be applied as the software increment is developed. 

 The  elaboration phase  encompasses the communication and modeling activ-

ities of the generic process model ( Figure 4.7 ). Elaboration refi nes and expands 

the preliminary use cases that were developed as part of the inception phase 

and expands the architectural representation to include fi ve different views of 

the software—the use case model, the analysis model, the design model, the im-

plementation model, and the deployment model. In some cases, elaboration cre-

ates an “executable architectural baseline” [Arl02] that represents a “fi rst cut” 

executable system.  15   The architectural baseline demonstrates the viability of the 

   UP  phases  are similar 
in intent to the generic 
framework activities 
defi ned in this book. 

Transition

Production

software increment

Release

modeling

construction

planning

communication

deployment Construction

Inception

Elaboration

 FIGURE 4.7

 The Unifi ed 
Process

  15  It is important to note that the architectural baseline is not a prototype in that it is not thrown 

away. Rather, the baseline is fl eshed out during the next UP phase. 

pre22126_ch04_040-065.indd   57pre22126_ch04_040-065.indd   57 13/12/13   6:10 PM13/12/13   6:10 PM



58 PART ONE  THE SOFTWARE PROCESS

architecture but does not provide all features and functions required to use the 

system. In addition, the plan is carefully reviewed at the culmination of the elab-

oration phase to ensure that scope, risks, and delivery dates remain reasonable. 

Modifi cations to the plan are often made at this time. 

   The  construction phase  of the UP is identical to the construction activity de-

fi ned for the generic software process. Using the architectural model as input, 

the construction phase develops or acquires the software components that will 

make each use case operational for end users. To accomplish this, analysis and 

design models that were started during the elaboration phase are completed to 

refl ect the fi nal version of the software increment. All necessary and required 

features and functions for the software increment (i.e., the release) are then im-

plemented in source code. As components are being implemented, unit tests  16   

are designed and executed for each. In addition, integration activities (compo-

nent assembly and integration testing) are conducted. Use cases are used to de-

rive a suite of acceptance tests that are executed prior to the initiation of the 

next UP phase. 

  The  transition phase  of the UP encompasses the latter stages of the generic 

construction activity and the fi rst part of the generic deployment (delivery and 

feedback) activity. Software is given to end users for beta testing, and user feed-

back reports both defects and necessary changes. In addition, the software team 

creates the necessary support information (e.g., user manuals, troubleshooting 

guides, installation procedures) that is required for the release. At the conclu-

sion of the transition phase, the software increment becomes a usable software 

release. 

 The  production phase  of the UP coincides with the deployment activity of the 

generic process. During this phase, the ongoing use of the software is monitored, 

support for the operating environment (infrastructure) is provided, and defect 

reports and requests for changes are submitted and evaluated. 

 It is likely that at the same time the construction, transition, and production 

phases are being conducted, work may have already begun on the next software 

increment. This means that the fi ve UP phases do not occur in a sequence, but 

rather with staggered concurrency. 

 A software engineering workfl ow is distributed across all UP phases. In the 

context of UP, a  workfl ow  is analogous to a task set (described in Chapter 3). That 

is, a workfl ow identifi es the tasks required to accomplish an important software 

engineering action and the work products that are produced as a consequence 

of successfully completing the tasks. It should be noted that not every task iden-

tifi ed for a UP workfl ow is conducted for every software project. The team adapts 

the process (actions, tasks, subtasks, and work products) to meet its needs.  

 WebRef 
 An interesting dis-
cussion of the UP in 
the context of agile 
development can be 
found at   www.
ambysoft.com/
unifi edprocess/
agileUP.html  . 

  16  A comprehensive discussion of software testing (including  unit tests ) is presented in  Chapters 22 

through 26). 

pre22126_ch04_040-065.indd   58pre22126_ch04_040-065.indd   58 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  59

      4.4 PERSONAL AND TEAM PROCESS MODELS 

  The best software process is one that is close to the people who will be doing 

the work. If a software process model has been developed at a corporate or 

organizational level, it can be effective only if it is amenable to signifi cant ad-

aptation to meet the needs of the project team that is actually doing software 

engineering work. In an ideal setting, you would create a process that best fi ts 

your needs, and at the same time, meets the broader needs of the team and the 

organization. Alternatively, the team itself can create its own process, and at 

the same time meet the narrower needs of individuals and the broader needs 

of the organization. Watts Humphrey ([Hum05] and [Hum00]) argues that it is 

possible to create a ”personal software process” and/or a “team software 

process.” Both require hard work, training, and coordination, but both are 

achievable.  17      

    4.4.1 Personal Software Process   

 Every developer uses some process to build computer software. The process 

may be haphazard or ad hoc; may change on a daily basis; may not be effi cient, 

 effective, or even successful; but a “process” does exist. Watts Humphrey [Hum05] 

suggests that in order to change an ineffective personal process, an individual 

must move through four phases, each requiring training and careful instrumen-

tation. The  Personal Software Process  (PSP) emphasizes personal measurement 

of both the work product that is produced and the resultant quality of the work 

product. In addition PSP makes the practitioner responsible for project planning 

(e.g., estimating and scheduling) and empowers the practitioner to control the 

quality of all software work products that are developed. The PSP model defi nes 

fi ve framework activities:

      Planning.  This activity isolates requirements and develops both size and 

resource estimates. In addition, a defect estimate (the number of defects 

projected for the work) is made. All metrics are recorded on worksheets 

or templates. Finally, development tasks are identifi ed and a project 

schedule is created.  

     High-level design.  External specifi cations for each component to be 

constructed are developed and a component design is created. Proto-

types are built when uncertainty exists. All issues are recorded and 

tracked.  

 WebRef 
 A wide array of 
resources for PSP can 
be found at 
  http://www.sei
.cmu.edu/tsp/
tools/academic/  . 

 What 
framework 

activities are used 
during PSP? 

?

  17  It’s worth noting the proponents of agile software development (Chapter 5) also argue that the 

process should remain close to the team. They propose an alternative method for achieving this. 

  uote: 

 “A person who 
is successful has 
simply formed 
the habit of 
doing things that 
unsuccessful people 
will not do.” 

 Dexter Yager 

pre22126_ch04_040-065.indd   59pre22126_ch04_040-065.indd   59 13/12/13   6:10 PM13/12/13   6:10 PM



60 PART ONE  THE SOFTWARE PROCESS

     High-level design review.  Formal verifi cation methods (Appendix 3) are 

applied to uncover errors in the design. Metrics are maintained for im-

portant tasks and work results.  

     Development.  The component-level design is refi ned and reviewed. 

Code is generated, reviewed, compiled, and tested. Metrics are main-

tained for important tasks and work results.  

     Postmortem.  Using the measures and metrics collected (this is a 

substantial amount of data that should be analyzed statistically), the 

 effectiveness of the process is determined. Measures and metrics should 

provide guidance for modifying the process to improve its effectiveness.    

  PSP stresses the need for you to identify errors early and, just as important, to 

understand the types of errors that you are likely to make. This is accomplished 

through a rigorous assessment activity performed on all work products you produce. 

 PSP represents a disciplined, metrics-based approach to software engineer-

ing that may lead to culture shock for many practitioners. However, when PSP is 

properly introduced to software engineers [Hum96], the resulting improvement 

in software engineering productivity and software quality are signifi cant [Fer97]. 

However, PSP has not been widely adopted throughout the industry. The reasons, 

sadly, have more to do with human nature and organizational inertia than they 

do with the strengths and weaknesses of the PSP approach. PSP is intellectu-

ally challenging and demands a level of commitment (by practitioners and their 

managers) that is not always possible to obtain. Training is relatively lengthy, and 

training costs are high. The required level of measurement is culturally diffi cult 

for many software people. 

 Can PSP be used as an effective software process at a personal level? The an-

swer is an unequivocal “yes.” But even if PSP is not adopted in its entirely, many 

of the personal process improvement concepts that it introduces are well worth 

learning. 

      4.4.2 Team Software Process   

 Because many industry-grade software projects are addressed by a team of prac-

titioners, Watts Humphrey extended the lessons learned from the  introduction 

of PSP and proposed a  Team Software Process  (TSP). The goal of TSP is to build 

a “self-directed” project team that organizes itself to produce high-quality soft-

ware. Humphrey [Hum98] defi nes the following objectives for TSP:

    •  Build self-directed teams that plan and track their work, establish goals, 

and own their processes and plans. These can be pure software teams or 

integrated product teams (IPTs) of 3 to about 20 engineers.  

   •  Show managers how to coach and motivate their teams and how to help 

them sustain peak performance.  

   PSP emphasizes the 
need to record and 
analyze the types of 
errors you make, so 
that you can develop 
strategies to eliminate 
them. 

 WebRef 
 Information on building 
high-performance 
teams using TSP and 
PSP can be obtained 
at  www.sei.cmu
.edu/tsp/ . 

pre22126_ch04_040-065.indd   60pre22126_ch04_040-065.indd   60 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  61

   •  Accelerate software process improvement by making CMM  18   level 5 

 behavior normal and expected.  

   •  Provide improvement guidance to high-maturity organizations.  

   •  Facilitate university teaching of industrial-grade team skills.    

   A self-directed team has a consistent understanding of its overall goals and ob-

jectives; defi nes roles and responsibilities for each team member; tracks quantita-

tive project data (about productivity and quality); identifi es a team process that is 

appropriate for the project and a strategy for implementing the process; defi nes 

local standards that are applicable to the team’s software engineering work; contin-

ually assesses risk and reacts to it; and tracks, manages, and reports project status. 

 TSP defi nes the following framework activities:  project launch, high-level 

design, implementation, integration and test,  and  postmortem.  Like their coun-

terparts in PSP (note that terminology is somewhat different), these activities 

enable the team to plan, design, and construct software in a disciplined manner 

while at the same time quantitatively measuring the process and the product. 

The postmortem sets the stage for process improvements. 

  TSP makes use of a wide variety of scripts, forms, and standards that serve 

to guide team members in their work. “Scripts” defi ne specifi c process activi-

ties (i.e., project launch, design, implementation, integration and system testing, 

postmortem) and other more detailed work functions (e.g., development plan-

ning, requirements development, software confi guration management, unit test) 

that are part of the team process. 

 TSP recognizes that the best software teams are self-directed.  19   Team members 

set project objectives, adapt the process to meet their needs, control the project 

schedule, and through measurement and analysis of the metrics collected, work 

continually to improve the team’s approach to software engineering. 

  Like PSP, TSP is a rigorous approach to software engineering that provides 

distinct and quantifi able benefi ts in productivity and quality. The team must 

make a full commitment to the process and must undergo thorough training to 

ensure that the approach is properly applied. 

   TSP scripts defi ne 
elements of the team 
process and activities 
that occur within the 
process. 

  18  The Capability Maturity Model (CMM), a measure of the effectiveness of a software process, is 

discussed in Chapter 37. 

  19  In Chapter 5 we discuss the importance of “self-organizing” teams as a key element in agile 

software development. 

   To form a self-directed 
team, you must col-
laborate well internally 
and communicate well 
externally. 

        4.5 PROCESS TECHNOLOGY   

  One or more of the process models discussed in the preceding sections must be 

adapted for use by a software team. To accomplish this,  process technology tools  

have been developed to help software organizations analyze their current process, 

organize work tasks, control and monitor progress, and manage technical quality. 

pre22126_ch04_040-065.indd   61pre22126_ch04_040-065.indd   61 13/12/13   6:10 PM13/12/13   6:10 PM



62 PART ONE  THE SOFTWARE PROCESS

 Process technology tools allow a software organization to build an automated 

model of the process framework, task sets, and umbrella activities discussed in 

Chapter 3. The model, normally represented as a network, can then be analyzed 

to determine typical workfl ow and examine alternative process structures that 

might lead to reduced development time or cost. 

 Once an acceptable process has been created, other process technology tools 

can be used to allocate, monitor, and even control all software engineering ac-

tivities, actions, and tasks defi ned as part of the process model. Each member 

of a software team can use such tools to develop a checklist of work tasks to be 

performed, work products to be produced, and quality assurance activities to be 

conducted. The process technology tool can also be used to coordinate the use of 

other software engineering tools that are appropriate for a particular work task. 

    Process Modeling Tools      

  Objective:   If an organization works to 
improve a business (or software) process, 

it must fi rst understand it. Process modeling tools (also 
called  process technology  or  process management  tools) 
are used to represent the key elements of a process so 
that it can be better understood. Such tools can also 
provide links to process descriptions that help those 
involved in the process to understand the actions and 
work tasks that are required to perform it. Process 
modeling tools provide links to other tools that provide 
support to defi ned process activities. 

   Mechanics:   Tools in this category allow a team 
to defi ne the elements of a unique process model 
(actions, tasks, work products, QA points), provide 

detailed guidance on the content or description of each 
process element, and then manage the process as it is 
conducted. In some cases, the process technology tools 
incorporate standard project management tasks such as 
estimating, scheduling, tracking, and control. 

    Representative tools:20 
       Igrafx Process Tools —tools that enable a team to map, 

measure, and model the software process ( http://
www.igrafx.com/ )  

     Adeptia BPM Server —designed to manage, automate, 
and optimize business processes ( www.adeptia
.com )  

     ALM Studio Suite —a collection of tools with a heavy 
emphasis on the management of communication and 
modeling activities ( http://www.kovair.com/ )     

 SOFTWARE TOOLS 

  20  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

      4.6 PRODUCT AND PROCESS 

  If the process is weak, the end product will undoubtedly suffer. But an obsessive 

overreliance on process is also dangerous. In a brief essay written many years 

ago, Margaret Davis [Dav95a] makes timeless comments on the duality of prod-

uct and process:

  About every ten years give or take fi ve, the software community redefi nes “the 

problem” by shifting its focus from product issues to process issues. Thus, we have 

pre22126_ch04_040-065.indd   62pre22126_ch04_040-065.indd   62 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  63

embraced structured programming languages (product) followed by structured 

analysis methods (process) followed by data encapsulation (product) followed by the 

current emphasis on the Software Engineering Institute’s Software Development Ca-

pability Maturity Model (process) [followed by object-oriented methods, followed by 

agile software development]. 

 While the natural tendency of a pendulum is to come to rest at a point midway 

between two extremes, the software community’s focus constantly shifts because new 

force is applied when the last swing fails. These swings are harmful in and of them-

selves because they confuse the average software practitioner by radically changing 

what it means to perform the job let alone perform it well. The swings also do not 

solve “the problem” for they are doomed to fail as long as product and process are 

treated as forming a dichotomy instead of a duality. 

 There is precedence in the scientifi c community to advance notions of duality 

when contradictions in observations cannot be fully explained by one competing the-

ory or another. The dual nature of light, which seems to be simultaneously particle 

and wave, has been accepted since the 1920s when Louis de Broglie proposed it. I 

believe that the observations we can make on the artifacts of software and its devel-

opment demonstrate a fundamental duality between product and process. You can 

never derive or understand the full artifact, its context, use, meaning, and worth if 

you view it as only a process or only a product. 

 All of human activity may be a process, but each of us derives a sense of self-worth 

from those activities that result in a representation or instance that can be used or 

appreciated either by more than one person, used over and over, or used in some 

other context not considered. That is, we derive feelings of satisfaction from reuse of 

our products by ourselves or others. 

 Thus, while the rapid assimilation of reuse goals into software development 

 potentially increases the satisfaction software practitioners derive from their work, 

it also increases the urgency for acceptance of the duality of product and process. 

Thinking of a reusable artifact as only product or only process either obscures the 

context and ways to use it or obscures the fact that each use results in product that 

will, in turn, be used as input to some other software development activity. Taking 

one view over the other dramatically reduces the opportunities for reuse and, hence, 

loses the opportunity for increasing job satisfaction.   

 People derive as much (or more) satisfaction from the creative process as 

they do from the end product. An artist enjoys the brush strokes as much as the 

framed result. A writer enjoys the search for the proper metaphor as much as 

the fi nished book. As creative software professional, you should also derive as 

much satisfaction from the process as the end product. The duality of product 

and process is one important element in keeping creative people engaged as 

software engineering continues to evolve. 

pre22126_ch04_040-065.indd   63pre22126_ch04_040-065.indd   63 13/12/13   6:10 PM13/12/13   6:10 PM



64 PART ONE  THE SOFTWARE PROCESS

       4.7 SUMMARY 

 Prescriptive process models have been applied for many years in an effort to 

bring order and structure to software development. Each of these models sug-

gests a somewhat different process fl ow, but all perform the same set of generic 

framework activities: communication, planning, modeling, construction, and 

deployment. 

 Sequential process models, such as the waterfall and V-models, are the oldest 

software engineering paradigms. They suggest a linear process fl ow that is often 

inconsistent with modern realities (e.g., continuous change, evolving systems, 

tight time lines) in the software world. They do, however, have applicability in 

situations where requirements are well defi ned and stable. 

 Incremental process models are iterative in nature and produce working ver-

sions of software quite rapidly. Evolutionary process models recognize the itera-

tive, incremental nature of most software engineering projects and are designed 

to accommodate change. Evolutionary models, such as prototyping and the spiral 

model, produce incremental work products (or working versions of the software) 

quickly. These models can be adopted to apply across all software engineering 

activities—from concept development to long-term system maintenance. 

 The concurrent process model allows a software team to represent iterative 

and concurrent elements of any process model. Specialized models include the 

component-based model that emphasizes component reuse and assembly; the 

formal methods model that encourages a mathematically based approach to 

software development and verifi cation; and the aspect-oriented model that ac-

commodates crosscutting concerns spanning the entire system architecture. The 

Unifi ed Process is a “use case driven, architecture-centric, iterative and incre-

mental” software process designed as a framework for UML methods and tools. 

 Personal and team models for the software process have been proposed. Both 

emphasize measurement, planning, and self-direction as key ingredients for a 

successful software process. 

     PROBLEMS AND POINTS TO PONDER 
    4.1.  Provide three examples of software projects that would be amenable to the waterfall 
model. Be specifi c.  

   4.2.  Provide three examples of software projects that would be amenable to the prototyping 
model. Be specifi c.  

   4.3.  What process adaptations are required if the prototype will evolve into a delivery sys-
tem or product?  

   4.4.  Provide three examples of software projects that would be amenable to the incremen-
tal model. Be specifi c.  

   4.5.  As you move outward along the spiral process fl ow, what can you say about the software 
that is being developed or maintained?  

pre22126_ch04_040-065.indd   64pre22126_ch04_040-065.indd   64 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 4  PROCESS MODELS  65

   4.6.  Is it possible to combine process models? If so, provide an example.  

   4.7.  The concurrent process model defi nes a set of “states.” Describe what these states rep-
resent in your own words, and then indicate how they come into play within the concurrent 
process model.  

   4.8.  What are the advantages and disadvantages of developing software in which quality is 
“good enough”? That is, what happens when we emphasize development speed over prod-
uct quality?  

   4.9.  Provide three examples of software projects that would be amenable to the 
 component-based model. Be specifi c.  

   4.10.  It is possible to prove that a software component and even an entire program is 
 correct. So why doesn’t everyone do this?  

   4.11.  Are the Unifi ed Process and UML the same thing? Explain your answer.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Most of the software engineering books discussed in the  Further Readings  section of Chap-
ter 2 address prescriptive process models in some detail. 

   Cynkovic and Larsson ( Building Reliable Component-Based Systems,  Addison-Wesley, 
2002) and Heineman and Council ( Component-Based Software Engineering,  Addison- Wesley, 
2001) describe the process required to implement component-based systems. Jacobson 
and Ng ( Aspect-Oriented Software Development with Use Cases,  Addison-Wesley, 2005) and 
Filman and his colleagues ( Aspect-Oriented Software Development,  Addison-Wesley, 2004) 
discuss the unique nature of the aspect-oriented process. Monin and Hinchey ( Understand-

ing Formal Methods,  Springer, 2003) present a worthwhile introduction, and Boca and his 
colleagues ( Formal Methods,  Springer, 2009) discuss the state of the art and new directions. 

   Books by Kenett and Baker ( Software Process Quality: Management and Control,   Marcel 
Dekker, 1999) and Chrissis, Konrad, and Shrum ( CMMI for Development: Guidelines for Pro-

cess Integration and Product Improvement,  3rd ed., Addison-Wesley, 2011) consider how 
quality management and process design are intimately connected to one another. 

   In addition to Jacobson, Rumbaugh, and Booch’s seminal book on the Unifi ed Process 
[Jac99], books by Shuja and Krebs ( IBM Rational Unifi ed Process Reference and Certifi cation 

Guide,  IBM Press, 2008), Arlow and Neustadt ( UML 2 and the Unifi ed Process,  Addison-Wesley, 
2005), Kroll and Kruchten ( The Rational Unifi ed Process Made Easy,  Addison- Wesley, 
2003), and Farve ( UML and the Unifi ed Process,  IRM Press, 2003) provide excellent com-
plementary information. Gibbs ( Project Management with the IBM Rational Unifi ed 

Process,  IBM Press, 2006) discusses project management within the context of the UP. 
 Dennis, Wixom, and Tegarden ( Systems Analysis and Design with UML,  4th ed., Wiley, 2012) 
tackles programming and business process modeling as it relates to UP. 

   A wide variety of information sources on software process models are available on the 
Internet. An up-to-date list of World Wide Web references that are relevant to the software 
process can be found at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch04_040-065.indd   65pre22126_ch04_040-065.indd   65 13/12/13   6:10 PM13/12/13   6:10 PM



66

   In 2001, Kent Beck and 16 other noted software developers, writers, and con-

sultants [Bec01] (referred to as the “  Agile Alliance  ”) signed the  “Manifesto 

for Agile Software Development.” It stated:

  We are uncovering better ways of developing software by doing it and helping 

others do it. Through this work we have come to value: 

  Individuals and interactions  over processes and tools 

  Working software  over comprehensive documentation 

  Customer collaboration  over contract negotiation 

  Responding to change  over following a plan 

 That is, while there is value in the items on the right, we value the items on the 

left more. 

   K E Y 
C O N C E P T S 
    acceptance tests  . . . 75  
    agile alliance. . . . . . 70  
    agile process. . . . . . 69  
    Agile Unifi ed 
Process  . . . . . . . . . 82  
    agility  . . . . . . . . . . 68  
    agility principles  . . . 70  
    cost of change. . . . . 68  
    Dynamic Systems 
Development Method 
(DSDM}  . . . . . . . . . 79  

 AGILE 
DEVELOPMENT 5 

     C H A P T E R

         Q U I C K 
L O O K 

  What is it?   Agile software engi-
neering combines a philosophy and 
a set of development guidelines. 
The philosophy encourages cus-

tomer satisfaction and early incremental deliv-
ery of software; small, highly motivated project 
teams; informal methods; minimal software 
engineering work products; and overall de-
velopment simplicity. The development guide-
lines stress delivery over analysis and design 
(although these activities are not discouraged), 
and active and continuous communication 
 between developers and customers. 

   Who does it?   Software engineers and other 
project stakeholders (managers, customers, 
end users) work together on an agile team—a 
team that is self-organizing and in control of its 
own destiny. An agile team fosters communi-
cation and collaboration among all who serve 
on it. 

   Why is it important?   The modern business 
environment that spawns computer-based 
systems and software products is fast-paced 
and ever-changing. Agile software engineer-
ing represents a reasonable alternative to 

conventional software engineering for cer-
tain classes of software and certain types of 
 software projects. It has been demonstrated to 
deliver successful systems quickly. 

   What are the steps?   Agile development might 
best be termed “software engineering lite.” The 
basic framework activities— communication, 
planning, modeling, construction, and 
 deployment—remain. But they morph into a 
minimal task set that pushes the project team 
toward construction and delivery (some would 
argue that this is done at the expense of prob-
lem analysis and solution design). 

   What is the work product?   Both the cus-
tomer and the software engineer have the 
same view—the only really important work 
product is an operational “software increment” 
that is delivered to the customer on the appro-
priate commitment date. 

   How do I ensure that I’ve done it right?   If 
the agile team agrees that the process works, 
and the team produces deliverable software 
 increments that satisfy the customer, you’ve 
done it right. 

pre22126_ch05_066-086.indd   66pre22126_ch05_066-086.indd   66 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  67

    Extreme Programming 
(XP). . . . . . . . . . . . 72  
    Industrial XP. . . . . . 72  
    pair 
programming  . . . . . 75  
    politics of agile 
development. . . . . . 71  
    project velocity . . . . 73  
    refactoring  . . . . . . . 74  
    Scrum. . . . . . . . . . . 78  
    spike solution . . . . . 74  
    XP story. . . . . . . . . 72  

   A manifesto is normally associated with an emerging political movement—

one that attacks the old guard and suggests revolutionary change (hopefully for 

the better). In some ways, that’s exactly what agile development is all about.     

  Although the underlying ideas that guide agile development have been with 

us for many years, it has been less than two decades since these ideas have crys-

tallized into a “movement.” In essence, agile  1   methods were developed in an 

effort to overcome perceived and actual weaknesses in conventional software 

engineering. Agile development can provide important benefi ts, but it is not ap-

plicable to all projects, all products, all people, and all situations. It is also  not  

antithetical to solid software engineering practice and can be applied as an over-

riding philosophy for all software work. 

  In the modern economy, it is often diffi cult or impossible to predict how a 

 computer-based system (e.g., a mobile application) will evolve as time passes. 

Market conditions change rapidly, end-user needs evolve, and new competi-

tive threats emerge without warning. In many situations, you won’t be able to 

 defi ne requirements fully before the project begins. You must be agile enough to 

 respond to a fl uid business environment. 

 Fluidity implies change, and change is expensive—particularly if it is uncon-

trolled or poorly managed. One of the most compelling characteristics of the agile 

approach is its ability to reduce the costs of change through the software process.  

 Does this mean that a recognition of challenges posed by modern realities 

causes you to discard valuable software engineering principles, concepts, meth-

ods, and tools? Absolutely not! Like all engineering disciplines, software en-

gineering continues to evolve. It can be adapted easily to meet the challenges 

posed by a demand for agility. 

 In a thought-provoking book on agile software development, Alistair  Cockburn 

[Coc02] argues that the prescriptive process models introduced in Chapter  4 

have a major failing:  they forget the frailties of the people who build computer 

software.  Software engineers are not robots. They exhibit great variation in 

working styles; signifi cant differences in skill level, creativity, orderliness, con-

sistency, and spontaneity. Some communicate well in written form, others do not. 

 Cockburn argues that process models can “deal with people’s common weak-

nesses with [either] discipline or tolerance” and that most prescriptive process 

models choose discipline. He states: “Because consistency in action is a human 

weakness, high discipline methodologies are fragile.” 

 If process models are to work, they must provide a realistic mechanism for 

encouraging the discipline that is necessary, or they must be characterized in 

a manner that shows “tolerance” for the people who do software engineering 

work. Invariably, tolerant practices are easier for software people to adopt and 

sustain, but (as Cockburn admits) they may be less productive. Like most things 

in life, trade-offs must be considered. 

  uote: 

 "Agility: 1, 
everything else: 0." 

 Tom DeMarco 

  1  Agile methods are sometimes referred to as  light methods  or  lean methods.  

   Agile development 
does not mean no 
documents are created, 
it means only creating 
documents that will be 
referred to later in the 
development process. 

pre22126_ch05_066-086.indd   67pre22126_ch05_066-086.indd   67 13/12/13   6:10 PM13/12/13   6:10 PM



68 PART ONE  THE SOFTWARE PROCESS

     5.1 WHAT IS   AGIL ITY  ? 

  Just what is agility in the context of software engineering work? Ivar Jacobson 

[Jac02a] provides a useful discussion:

   Agility  has become today’s buzzword when describing a modern software process. 

Everyone is agile. An agile team is a nimble team able to appropriately respond to 

changes. Change is what software development is very much about. Changes in the 

software being built, changes to the team members, changes because of new technol-

ogy, changes of all kinds that may have an impact on the product they build or the 

project that creates the product. Support for changes should be built-in everything 

we do in software, something we embrace because it is the heart and soul of software. 

An agile team recognizes that software is developed by individuals working in teams 

and that the skills of these people, their ability to collaborate is at the core for the 

success of the project.       

  In Jacobson’s view, the pervasiveness of change is the primary driver for agil-

ity. Software engineers must be quick on their feet if they are to accommodate 

the rapid changes that Jacobson describes. 

 But agility is more than an effective response to change. It also encompasses 

the philosophy espoused in the manifesto noted at the beginning of this chapter. 

It encourages team structures and attitudes that make communication (among 

team members, between technologists and business people, between software 

engineers and their managers) more facile. It emphasizes rapid delivery of 

operational software and deemphasizes the importance of intermediate work 

products (not always a good thing); it adopts the customer as a part of the devel-

opment team and works to eliminate the “us and them” attitude that continues 

to pervade many software projects; it recognizes that planning in an uncertain 

world has its limits and that a project plan must be fl exible. 

 Agility can be applied to any software process. However, to accomplish this, it 

is essential that the process be designed in a way that allows the project team to 

adapt tasks and to streamline them, conduct planning in a way that understands 

the fl uidity of an agile development approach, eliminate all but the most essen-

tial work products and keep them lean, and emphasize an incremental delivery 

strategy that gets working software to the customer as rapidly as feasible for the 

product type and operational environment. 

     5.2 AGIL ITY AND THE   COST OF CHANGE     

 The conventional wisdom in software development (supported by decades of ex-

perience) is that the cost of change increases nonlinearly as a project progresses 

( Figure 5.1 , solid black curve). It is relatively easy to accommodate a change 

when a software team is gathering requirements (early in a project). A usage sce-

nario might have to be modifi ed, a list of functions may be extended, or a written 

   Don’t make the 
mistake of assuming 
that agility gives you 
license to hack out 
solutions. A process is 
required and discipline 
is essential. 

pre22126_ch05_066-086.indd   68pre22126_ch05_066-086.indd   68 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  69

specifi cation can be edited. The costs of doing this work are minimal, and the 

time required will not adversely affect the outcome of the project. But what if we 

fast-forward a number of months? The team is in the middle of validation testing 

(something that occurs relatively late in the project), and an important stake-

holder is requesting a major functional change. The change requires a modifi -

cation to the architectural design of the software, the design and construction 

of three new components, modifi cations to another fi ve components, the design 

of new tests, and so on. Costs escalate quickly, and the time and cost required 

to ensure that the change is made without unintended side effects is nontrivial.  

      Proponents of agility (e.g., [Bec00], [Amb04]) argue that a well-designed agile 

process “fl attens” the cost of change curve ( Figure 5.1 , shaded, solid curve), allowing 

a software team to accommodate changes late in a software project without dra-

matic cost and time impact. You’ve already learned that the agile process encom-

passes incremental delivery. When incremental delivery is coupled with other agile 

practices such as continuous unit testing and pair programming (discussed later 

in this chapter), the cost of making a change is attenuated. Although debate about 

the degree to which the cost curve fl attens is ongoing, there is evidence [Coc01a] to 

suggest that a signifi cant reduction in the cost of change can be achieved. 

     5.3 WHAT IS AN   AGILE PROCESS  ? 

       Any agile software process is characterized in a manner that addresses a num-

ber of key assumptions [Fow02] about the majority of software projects:

     1.  It is diffi cult to predict in advance which software requirements will per-

sist and which will change. It is equally diffi cult to predict how customer 

priorities will change as the project proceeds.  

   An agile process 
reduces the cost 
of change because 
software is released in 
increments and change 
can be better controlled 
within an increment. 

  uote: 

 “Agility is dynamic, 
content specifi c, 
aggressively 
change embracing, 
and growth 
oriented.” 

 Steven Goldman 
et al. 

Cost of change
using conventional
software processes

Cost of change
using agile processes

Idealized cost of change
using agile process

Development schedule progress

D
ev

el
o
p
m

en
t 

co
st

  FIGURE 5.1

 Change costs 
as a function 
of time in 
development   

pre22126_ch05_066-086.indd   69pre22126_ch05_066-086.indd   69 13/12/13   6:10 PM13/12/13   6:10 PM



70 PART ONE  THE SOFTWARE PROCESS

    2.  For many types of software, design and construction are interleaved. That 

is, both activities should be performed in tandem so that design models 

are proven as they are created. It is diffi cult to predict how much design is 

necessary before construction is used to prove the design.  

    3.  Analysis, design, construction, and testing are not as predictable (from a 

planning point of view) as we might like.    

 Given these three assumptions, an important question arises: How do we cre-

ate a process that can manage  unpredictability ? The answer, as we have already 

noted, lies in process adaptability (to rapidly changing project and technical con-

ditions). An agile process, therefore, must be  adaptable.  

 But continual adaptation without forward progress accomplishes little. 

Therefore, an agile software process must adapt  incrementally.  To accom-

plish incremental adaptation, an agile team requires customer feedback 

(so that the appropriate adaptations can be made). An effective catalyst for 

customer feedback is an operational prototype or a portion of an operational 

system. Hence, an  incremental development strategy  should be instituted. 

 Software  increments  (executable prototypes or portions of an operational 

system) must be delivered in short time periods so that adaptation keeps 

pace with change (unpredictability). This iterative approach enables the cus-

tomer to evaluate the software increment regularly, provide necessary feed-

back to the software team, and influence the process adaptations that are 

made to accommodate the feedback. 

  5.3.1 Agility   Principles 

   The Agile Alliance (see [Agi03], [Fow01]) defi nes 12 agility principles for those 

who want to achieve agility: 

                1.  Our highest priority is to satisfy the customer through early and continu-

ous delivery of valuable software.  

    2.  Welcome changing requirements, even late in development. Agile pro-

cesses harness change for the customer's competitive advantage.  

    3.  Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference to the shorter timescale.  

    4.  Business people and developers must work together daily throughout the 

project.  

    5.  Build projects around motivated individuals. Give them the environment 

and support they need, and trust them to get the job done.  

    6.  The most effi cient and effective method of conveying information to and 

within a development team is face-to-face conversation.  

    7.  Working software is the primary measure of progress.  

   Working software 
is important, but 
don’t forget that it 
must also exhibit 
a variety of quality 
attributes including 
reliability, usability, and 
maintainability. 

   Although agile 
processes embrace 
change, it is still 
 important to examine 
the reasons for change. 

 WebRef 
 A comprehensive 
collection of articles 
on the agile process 
can be found at 
  http://www
.agilemodeling
.com/  . 

pre22126_ch05_066-086.indd   70pre22126_ch05_066-086.indd   70 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  71

    8.  Agile processes promote sustainable development. The sponsors, devel-

opers, and users should be able to maintain a constant pace indefi nitely.  

    9.  Continuous attention to technical excellence and good design enhances 

agility.  

    10.  Simplicity—the art of maximizing the amount of work not done—is essential.  

    11.  The best architectures, requirements, and designs emerge from self- 

organizing teams.  

    12.  At regular intervals, the team refl ects on how to become more effective, 

then tunes and adjusts its behavior accordingly.  

   Not every agile process model applies these 12 principles with equal weight, 

and some models choose to ignore (or at least downplay) the importance of one 

or more of the principles. However, the principles defi ne an  agile spirit  that is 

maintained in each of the process models presented in this chapter. 

   5.3.2 The   Politics   of Agile Development     

  There has been considerable debate (sometimes strident) about the benefi ts and 

applicability of agile software development as opposed to more conventional 

software engineering processes. Jim Highsmith [Hig02a] (facetiously) states the 

extremes when he characterizes the feeling of the pro-agility camp (“agilists”). 

“Traditional methodologists are a bunch of stick-in-the-muds who’d rather pro-

duce fl awless documentation than a working system that meets business needs.” 

As a counterpoint, he states (again, facetiously) the position of the traditional 

software engineering camp: “Lightweight, er, ‘agile’ methodologists are a bunch 

of glorifi ed hackers who are going to be in for a heck of a surprise when they try 

to scale up their toys into enterprise-wide software.” 

 Like all software technology arguments, this methodology debate risks degen-

erating into a religious war. If warfare breaks out, rational thought disappears 

and beliefs rather than facts guide decision making. 

 No one is against agility. The real question is: What is the best way to achieve 

it? As important, how do you build software that meets customers’ needs today 

and exhibits the quality characteristics that will enable it to be extended and 

scaled to meet customers’ needs over the long term? 

 There are no absolute answers to either of these questions. Even within the 

agile school itself, there are many proposed process models (Section 5.4), each 

with a subtly different approach to the agility problem. Within each model there 

is a set of “ideas” (agilists are loath to call them “work tasks”) that represent a 

signifi cant departure from traditional software engineering. And yet, many agile 

concepts are simply adaptations of good software engineering concepts. Bottom 

line: there is much that can be gained by considering the best of both schools and 

virtually nothing to be gained by denigrating either approach. 

   You don’t have to 
choose between agility 
and software engineer-
ing. Rather, defi ne a 
software engineering 
approach that is agile. 

pre22126_ch05_066-086.indd   71pre22126_ch05_066-086.indd   71 13/12/13   6:10 PM13/12/13   6:10 PM



72 PART ONE  THE SOFTWARE PROCESS

 If you have further interest, see [Hig01], [Hig02a], and [DeM02] for an enter-

taining summary of other important technical and political issues. 

        5.4 EXTREME PROGRAMMING        

  In order to illustrate an agile process in a bit more detail, we’ll provide you with 

an overview of  Extreme Programming  (XP), the most widely used approach to 

agile software development. Although early work on the ideas and methods as-

sociated with XP   occurred during the late 1980s, the seminal work on the subject 

has been written by Kent Beck [Bec04a]. A variant of XP, called  Industrial XP  

(IXP), refi nes XP and targets the agile process specifi cally for use within large 

organizations [Ker05]. 

  5.4.1 The XP Process 

 Extreme Programming uses an object-oriented approach (Appendix 2) as its pre-

ferred development paradigm and encompasses a set of rules and practices that 

occur within the context of four framework activities: planning, design, coding, 

and testing.  Figure 5.2  illustrates the XP process and notes some of the key ideas 

and tasks that are associated with each framework activity. Key XP activities are 

summarized in the paragraphs that follow. 

        Planning.   The planning activity (also called  the planning game ) begins with 

  listening —a requirements gathering activity that enables the technical members 

 WebRef 
 An award-winnng 
 “process simulation 
game” that includes 
an XP process module 
can be found at 
  http://www.ics
.uci.edu/~emilyo/
SimSE/downloads
.html  . 

 What is an 
XP “story”? ?

user stories
 values
 acceptance test criteria
iteration plan

simple design
 CRC cards

unit test
 continuous integration

software increment
 project velocity computed

spike solutions
 prototypes

refactoring

pair programming

acceptance testing

Release

design

codingplanning

test

  FIGURE 5.2

 The Extreme 
Programming 
process   

pre22126_ch05_066-086.indd   72pre22126_ch05_066-086.indd   72 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  73

of the XP team to understand the business context for the software and to get a 

broad feel for required output and major features and functionality. Listening 

leads to the creation of a set of “  stories  ” (also called  user stories ) that describe 

required output, features, and functionality for software to be built. Each  story  

(similar to use cases described in Chapter 8) is written by the customer and is 

placed on an index card. The customer assigns a  value  (i.e., a priority) to the 

story based on the overall business value of the feature or function.  2   Members of 

the XP team then assess each story and assign a  cost —measured in development 

weeks—to it. If the story is estimated to require more than three development 

weeks, the customer is asked to split the story into smaller stories and the as-

signment of value and cost occurs again. It is important to note that new stories 

can be written at any time. 

       Customers and developers work together to decide how to group stories into 

the next release (the next software increment) to be developed by the XP team. 

Once a basic  commitment  (agreement on stories to be included, delivery date, 

and other project matters) is made for a release, the XP team orders the stories 

that will be developed in one of three ways: (1) all stories will be implemented 

immediately (within a few weeks), (2) the stories with highest value will be moved 

up in the schedule and implemented fi rst, or (3) the riskiest stories will be moved 

up in the schedule and implemented fi rst. 

      After the fi rst project release (also called a software increment) has been de-

livered, the XP team computes   project velocity  . Stated simply,  project velocity  is 

the number of customer stories implemented during the fi rst release. Project 

velocity can then be used to (1) help estimate delivery dates and schedule for 

subsequent releases and (2) determine whether an overcommitment has been 

made for all stories across the entire development project. If an overcommitment 

occurs, the content of releases is modifi ed or end delivery dates are changed. 

      As development work proceeds, the customer can add stories, change the 

value of an existing story, split stories, or eliminate them. The XP team then re-

considers all remaining releases and modifi es its plans accordingly. 

   Design.   XP design rigorously follows the KIS (keep it simple) principle. A sim-

ple design is always preferred over a more complex representation. In addition, 

the design provides implementation guidance for a story as it is written—nothing 

less, nothing more. The design of extra functionality (because the developer as-

sumes it will be required later) is discouraged.  3   

  XP encourages the use of CRC cards (Chapter 10) as an effective mech-

anism for thinking about the software in an object-oriented context. CRC 

   XP deemphasizes the 
importance of design. 
Not everyone agrees. 
In fact, there are times 
when design should be 
emphasized. 

 WebRef 
 A worthwhile XP 
“planning game” 
can be found at: 
  http://csis.pace.
edu/~bergin/xp/
planninggame
.html  . 

   Project velocity is a 
subtle measure of 
team productivity. 

  2  The value of a story may also be dependent on the presence of another story. 

  3  These design guidelines should be followed in every software engineering method, although 

there are times when sophisticated design notation and terminology may get in the way of 

simplicity. 

pre22126_ch05_066-086.indd   73pre22126_ch05_066-086.indd   73 13/12/13   6:10 PM13/12/13   6:10 PM



74 PART ONE  THE SOFTWARE PROCESS

(class-responsibility-collaborator) cards identify and organize the object- 

oriented classes  4   that are relevant to the current software increment. The XP 

team conducts the design exercise using a process similar to the one described 

in Chapter 10. The CRC cards are the only design work product produced as part 

of the XP process. 

  If a diffi cult design problem is encountered as part of the design of a story, XP 

recommends the immediate creation of an operational prototype of that portion 

of the design. Called a    spike solution   , the design prototype is implemented and 

evaluated. The intent is to lower risk when true implementation starts and to 

validate the original estimates for the story containing the design problem.     

  XP encourages    refactoring   —a construction technique that is also a design 

technique. Fowler [Fow00] describes refactoring in the following manner:

  Refactoring is the process of changing a software system in such a way that it does 

not alter the external behavior of the code yet improves the internal structure. It 

is a disciplined way to clean up code [and modify/simplify the internal design] that 

minimizes the chances of introducing bugs. In essence, when you refactor you are 

improving the design of the code after it has been written. 

        Because XP design uses virtually no notation and produces few, if any, work 

products other than CRC cards and spike solutions, design is viewed as a tran-

sient artifact that can and should be continually modifi ed as construction pro-

ceeds. The intent of refactoring is to control these modifi cations by suggesting 

small design changes that “can radically improve the design” [Fow00]. It should 

be noted, however, that the effort required for refactoring can grow dramatically 

as the size of an application grows. 

 A central notion in XP is that design occurs both before  and after  coding com-

mences. Refactoring means that design occurs continuously as the system is con-

structed. In fact, the construction activity itself will provide the XP team with 

guidance on how to improve the design.     

    Coding.   After stories are developed and preliminary design work is done, the 

team does  not  move to code, but rather develops a series of unit tests that will 

exercise each of the stories that is to be included in the current release (software 

increment).  5   Once the unit test  6   has been created, the developer is better able to 

focus on what must be implemented to pass the test. Nothing extraneous is added 

  4  Object-oriented classes are discussed in Appendix 2, in Chapter10, and throughout Part 2 of 

this book. 

 WebRef 
 Useful information on 
XP can be obtained at 
  www.xprogram-
ming.com  . 

  5  This approach is analogous to knowing the exam questions before you begin to study. It makes 

studying much easier by focusing attention only on the questions that will be asked. 

  6  Unit testing, discussed in detail in Chapter 22, focuses on an individual software component, 

exercising the component’s interface, data structures, and functionality in an effort to uncover 

errors that are local to the component. 

 WebRef 
 Refactoring techniques 
and tools can be 
found at:   www.
refactoring.com  . 

   Refactoring improves 
the internal structure 
of a design (or source 
code) without changing 
its external functionality 
or behavior. 

pre22126_ch05_066-086.indd   74pre22126_ch05_066-086.indd   74 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  75

(KIS). Once the code is complete, it can be unit-tested immediately, thereby pro-

viding instantaneous feedback to the developers. 

        A key concept during the coding activity (and one of the most talked-about as-

pects of XP) is    pair programming   . XP recommends that two people work together 

at one computer workstation to create code for a story. This provides a mechanism 

for real-time problem solving (two heads are often better than one) and real-time 

quality assurance (the code is reviewed as it is created). It also keeps the develop-

ers focused on the problem at hand. In practice, each person takes on a slightly 

different role. For example, one person might think about the coding details of a 

particular portion of the design while the other ensures that coding standards (a 

required part of XP) are being followed or that the code for the story will satisfy the 

unit test that has been developed to validate the code against the story.  7   

       As pair programmers complete their work, the code they develop is inte-

grated with the work of others. In some cases this is performed on a daily basis 

by an integration team. In other cases, the pair programmers have integration 

responsibility. This “continuous integration” strategy helps to avoid compatibility 

and interfacing problems and provides a “smoke testing” environment (Chap-

ter 22) that helps to uncover errors early.     

    Testing.   The unit tests that are created should be implemented using a frame-

work that enables them to be automated (hence, they can be executed easily and 

repeatedly). This encourages a regression testing strategy (Chapter 22) when-

ever code is modifi ed (which is often, given the XP refactoring philosophy). 

 As the individual unit tests are organized into a “universal testing suite” 

[Wel99], integration and validation testing of the system can occur on a daily 

basis. This provides the XP team with a continual indication of progress and also 

can raise warning fl ags early if things go awry. Wells [Wel99] states: “Fixing small 

problems every few hours takes less time than fi xing huge problems just before 

the deadline.” 

      XP    acceptance tests   , also called  customer tests,  are specifi ed by the customer 

and focus on overall system features and functionality that are visible and re-

viewable by the customer. Acceptance tests are derived from user stories that 

have been implemented as part of a software release. 

      5.4.2 Industrial XP 

   Joshua Kerievsky [Ker05] describes  Industrial Extreme Programming  (IXP) in 

the following manner: “IXP is an organic evolution of XP. It is imbued with XP’s 

minimalist, customer-centric, test-driven spirit. IXP differs most from the origi-

nal XP in its greater inclusion of management, its expanded role for customers, 

and its upgraded technical practices.” IXP incorporates six new practices that 

   XP acceptance tests 
are derived from user 
stories. 

 What new 
practices are 

appended to XP to 
create IXP? 

?

   Many software teams 
are populated by 
individualists. You’ll 
have to work to 
change that culture if 
pair programming is to 
work effectively. 

 How are unit 
tests used 

in XP? 
?

 What is 
pair 

programming? 
?

  7  Pair programming has become so widespread throughout the software community that 

 The Wall Street Journal  [Wal12] ran a front-page story about the subject. 

pre22126_ch05_066-086.indd   75pre22126_ch05_066-086.indd   75 13/12/13   6:10 PM13/12/13   6:10 PM



76 PART ONE  THE SOFTWARE PROCESS

are designed to help ensure that an XP project works successfully for signifi cant 

projects within a large organization:       

        Readiness assessment.  The IXP team ascertains whether all members of 

the project community (e.g., stakeholders, developers, management) are 

on board, have the proper environment established, and understand the 

skill levels involved.  

       Project community.  The IXP team determines whether the right people, 

with the right skills and training have been staged for the project. The 

“community” encompasses technologists and other stakeholders.  

       Project chartering.  The IXP team assesses the project itself to determine 

whether an appropriate business justifi cation for the project exists and 

whether the project will further the overall goals and objectives of the 

organization.  

       Test-driven management.  An IXP team establishes a series of measurable 

“destinations” [Ker05] that assess progress to date and then defi nes mecha-

nisms for determining whether or not these destinations have been reached.  

       Retrospectives.  An IXP team conducts a specialized technical review 

(Chapter 20) after a software increment is delivered. Called a  retrospec-

tive,  the review examines “issues, events, and lessons-learned” [Ker05] 

across a software increment and/or the entire software release.  

       Continuous learning.    The IXP team is encouraged (and possibly, incented) 

to learn new methods and techniques that can lead to a higher-quality 

product.  

  In addition to the six new practices discussed, IXP modifi es a number of exist-

ing XP practices and redefi nes certain roles and responsibilities to make them 

more amenable to signifi cant projects for large organizations. For further discus-

sion of IXP, visit   http://industrialxp.org  .     

  uote: 

 “Ability is what 
you're capable of 
doing. Motivation 
determines what 
you do. Attitude 
determines how 
well you do it.” 

 Lou Holtz 

  Considering Agile Software Development   Considering Agile Software Development 

        The scene:  Doug Miller’s offi ce.  

       The Players:  Doug Miller, software engineering 
manager; Jamie Lazar, software team member; Vinod 
Raman, software team member.  

       The conversation:    
      (A knock on the door, Jamie and Vinod enter Doug’s 
offi ce.)  

       Jamie:  Doug, you got a minute?  

       Doug:  Sure Jamie, what’s up?  

       Jamie:  We’ve been thinking about our process discus-
sion yesterday . . . you know, what process we’re going 
to choose for this new  SafeHome  project.  

       Doug:  And?  

       Vinod:  I was talking to a friend at another company, 
and he was telling me about Extreme Programming. It’s 
an agile process model . . . heard of it?  

  SAFEHOME 

pre22126_ch05_066-086.indd   76pre22126_ch05_066-086.indd   76 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  77

      5.5 OTHER AGILE PROCESS MODELS 

  The history of software engineering is littered with dozens of obsolete process 

descriptions and methodologies, modeling methods and notations, tools, and 

technology. Each fl ared in notoriety and was then eclipsed by something new 

and (purportedly) better. With the introduction of a wide array of agile process 

models—each contending for acceptance within the software development 

 community—the agile movement is following the same historical path.  8   

  As we noted in the last section, the most widely used of all agile process mod-

els is Extreme Programming (XP). But many other agile process models have 

been proposed and are in use across the industry. In this section, we present 

a brief overview of four common agile methods: Scrum, DSSD, Agile Modeling 

(AM), and Agile Unifi ed Process (AUP). 

       Doug:  Yeah, some good, some bad.  

       Jamie:  Well, it sounds pretty good to us. Lets you 
develop software really fast, uses something called pair 
programming to do real-time quality checks . . . it’s 
pretty cool, I think.  

       Doug:  It does have a lot of really good ideas. I like the 
pair-programming concept, for instance, and the idea 
that stakeholders should be part of the team.  

       Jamie:  Huh? You mean that marketing will work on 
the project team with us?  

       Doug (nodding):  They’re a stakeholder, aren’t they?  

       Jamie:  Jeez . . . they’ll be requesting changes every 
fi ve minutes.  

       Vinod:  Not necessarily. My friend said that there are 
ways to “embrace” changes during an XP project.  

       Doug:  So you guys think we should use XP?  

       Jamie:  It’s defi nitely worth considering.  

       Doug:  I agree. And even if we choose an incremental 
model as our approach, there’s no reason why we can’t 
incorporate much of what XP has to offer.  

       Vinod:  Doug, before you said “some good, some 
bad.” What was the bad?  

       Doug:  The thing I don’t like is the way XP downplays 
analysis and design . . . sort of says that writing code is 
where the action is . . .  

       (The team members look at one another and smile.)  

       Doug:  So you agree with the XP approach?  

       Jamie (speaking for both):  Writing code is what 
we do, Boss!  

       Doug (laughing):  True, but I’d like to see you spend 
a little less time coding and then recoding and a little 
more time analyzing what has to be done and design-
ing a solution that works.  

       Vinod:  Maybe we can have it both ways, agility with 
a little discipline.  

       Doug:  I think we can, Vinod. In fact, I’m sure of it.      

  uote: 

 “Our profession 
goes through 
methodologies like 
a 14-year-old goes 
through clothing.” 

 Stephen 
Hawrysh and 
Jim Ruprecht 

  8  This is not a bad thing. Before one or more models or methods are accepted as a de facto 

 standard, all must contend for the hearts and minds of software engineers. The “winners” 

evolve into best practice, while the “losers” either disappear or merge with the winning models. 

pre22126_ch05_066-086.indd   77pre22126_ch05_066-086.indd   77 13/12/13   6:10 PM13/12/13   6:10 PM



78 PART ONE  THE SOFTWARE PROCESS

    5.5.1 Scrum 

    Scrum  (the name is derived from an activity that occurs during a rugby match)  9   

is an agile software development method that was conceived by Jeff Sutherland 

and his development team in the early 1990s. In recent years, further devel-

opment on the Scrum methods has been performed by Schwaber and Beedle 

[Sch01b]. 

       Scrum principles are consistent with the agile manifesto and are used to guide 

development activities within a process that incorporates the following frame-

work activities: requirements, analysis, design, evolution, and delivery. Within 

each framework activity, work tasks occur within a process pattern (discussed in 

the following paragraph) called a  sprint.  The work conducted within a sprint (the 

number of sprints required for each framework activity will vary depending on 

product complexity and size) is adapted to the problem at hand and is defi ned 

and often modifi ed in real time by the Scrum team. The overall fl ow of the Scrum 

process is illustrated in  Figure 5.3 . 

 WebRef 
 Useful Scrum informa-
tion and resources can 
be found at   www.
controlchaos.com  . 

  9  A group of players forms around the ball and the teammates work together (sometimes 

 violently!) to move the ball downfi eld. 

every 24
hours

30 days

Scrum: 15 minute daily meeting.
Team members respond to basics:
1) What did you do since last Scrum
 meeting?
2) Do you have any obstacles?
3) What will you do before next
 meeting?

Sprint Backlog:
Feature(s)
assigned
to sprint

Product Backlog:
Prioritized product features desired by the customer

Backlog
items

expanded
by team

New functionality
is demonstrated
at end of sprint

  FIGURE 5.3  Scrum process fl ow   

pre22126_ch05_066-086.indd   78pre22126_ch05_066-086.indd   78 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  79

       Scrum emphasizes the use of a set of software process patterns [Noy02] that 

have proven effective for projects with tight timelines, changing requirements, 

and business criticality. Each of these process patterns defi nes a set of develop-

ment activities: 

        Backlog —a prioritized list of project requirements or features that provide 

business value for the customer. Items can be added to the backlog at any time 

(this is how changes are introduced). The product manager assesses the back-

log and updates priorities as required.  

      Sprints —consist of work units that are required to achieve a requirement 

defi ned in the backlog that must be fi t into a predefi ned time-box  10   (typically 

30 days). Changes (e.g., backlog work items) are not introduced during the 

sprint. Hence, the sprint allows team members to work in a short-term, but 

 stable environment.

        Scrum meetings —are short (typically 15-minute) meetings held daily by the 

Scrum team. Three key questions are asked and answered by all team mem-

bers [Noy02]: 

    •    What did you do since the last team meeting?  

   •    What obstacles are you encountering?  

   •    What do you plan to accomplish by the next team meeting?    

      A team leader, called a  Scrum master,  leads the meeting and assesses the re-

sponses from each person. The Scrum meeting helps the team to uncover poten-

tial problems as early as possible. Also, these daily meetings lead to “knowledge 

socialization” [Bee99] and thereby promote a self-organizing team structure.  

       Demos —deliver the software increment to the customer so that functionality 

that has been implemented can be demonstrated and evaluated by the cus-

tomer. It is important to note that the demo may not contain all planned func-

tionality, but rather those functions that can be delivered within the time-box 

that was established.  

  Beedle and his colleagues [Bee99] present a comprehensive discussion of 

these patterns in which they state: “Scrum assumes up-front the existence of 

chaos . . .” The Scrum process patterns enable a software team to work success-

fully in a world where the elimination of uncertainty is impossible. 

   5.5.2 Dynamic Systems Development Method 

      The  Dynamic Systems Development Method  (  DSDM  ) [Sta97] is an agile software 

development approach that “provides a framework for building and maintain-

ing systems which meet tight time constraints through the use of incremental 

 WebRef 
 Useful resources for 
DSDM can be found at 
  www.dsdm.org  . 

      10  A  time-box  is a project management term (see Part 4 of this book) that indicates a period of 

time that has been allocated to accomplish some task. 

   Scrum incorporates a 
set of process patterns 
that emphasize project 
priorities, compart-
mentalized work units, 
communication, and 
frequent customer 
feedback. 

pre22126_ch05_066-086.indd   79pre22126_ch05_066-086.indd   79 13/12/13   6:10 PM13/12/13   6:10 PM



80 PART ONE  THE SOFTWARE PROCESS

prototyping in a controlled project environment” [CCS02]. The DSDM philosophy 

is borrowed from a modifi ed version of the Pareto principle—80 percent of an 

application can be delivered in 20 percent of the time it would take to deliver the 

complete (100 percent) application. 

 DSDM is an iterative software process in which each iteration follows the 

80  percent rule. That is, only enough work is required for each increment to 

 facilitate movement to the next increment. The remaining detail can be com-

pleted later when more business requirements are known or changes have been 

requested and accommodated.     

  The DSDM Consortium (  www.dsdm.org  ) is a worldwide group of member 

companies that collectively take on the role of “keeper” of the method. The con-

sortium has defi ned an agile process model, called the  DSDM life cycle,  that 

begins with a  feasibility study  that establishes basic business requirements and 

constraints and is followed by a  business study  that identifi es functional and in-

formation requirements. DSDM then defi nes three different iterative cycles: 

        Functional model iteration— produces a set of incremental prototypes that 

demonstrate functionality for the customer. (Note: All DSDM prototypes are 

intended to evolve into the deliverable application.) The intent during this iter-

ative cycle is to gather additional requirements by eliciting feedback from users 

as they exercise the prototype.  

       Design and build iteration— revisits prototypes built during the functional 

model iteration to ensure that each has been engineered in a manner that 

will enable it to provide operational business value for end users. In some 

cases, the functional model iteration and the design and build iteration occur 

concurrently.  

       Implementation— places the latest software increment (an “operationalized” 

prototype) into the operational environment. It should be noted that (1) the in-

crement may not be 100 percent complete or (2) changes may be requested as 

the increment is put into place. In either case, DSDM development work contin-

ues by returning to the functional model iteration activity.       

  DSDM can be combined with XP (Section 5.4) to provide a combination ap-

proach that defi nes a solid process model (the DSDM life cycle) with the nuts and 

bolts practices (XP) that are required to build software increments. 

   5.5.3 Agile Modeling 

 There are many situations in which software engineers must build large, 

 business-critical systems. The scope and complexity of such systems must be 

modeled so that (1) all constituencies can better understand what needs to be ac-

complished, (2) the problem can be partitioned effectively among the people who 

must solve it, and (3) quality can be assessed as the system is being engineered 

and built. But in some cases, it can be daunting to manage the volume of notation 

   DSDM is a process 
framework that can 
adopt the tactics of 
another agile approach 
such as XP. 

 WebRef 
 Comprehensive infor-
mation on agile model-
ing can be found at: 
  www.agilemodel-
ing.com  . 

pre22126_ch05_066-086.indd   80pre22126_ch05_066-086.indd   80 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  81

required, the degree of formalism suggested, the sheer size of the models for 

large projects, and the diffi culty in maintaining the model(s) as changes occur. 

Is there an agile approach to software engineering modeling that might provide 

some relief? 

  At “The Offi cial Agile Modeling Site,” Scott Ambler [Amb02a] describes  agile 

modeling  (AM) in the following manner:

  Agile Modeling (AM) is a practice-based methodology for effective modeling and doc-

umentation of software-based systems. Simply put, Agile Modeling (AM) is a collec-

tion of values, principles, and practices for modeling software that can be applied 

on a software development project in an effective and light-weight manner. Agile 

models are more effective than traditional models because they are just barely good, 

they don’t have to be perfect.   

 Agile modeling adopts all of the values that are consistent with the agile man-

ifesto. The agile modeling philosophy recognizes that an agile team must have 

the courage to make decisions that may cause it to reject a design and refactor. 

The team must also have the humility to recognize that technologists do not have 

all the answers and that business experts and other stakeholders should be re-

spected and embraced. 

 Although AM suggests a wide array of “core” and “supplementary” modeling 

principles, those that make AM unique are [Amb02a]: 

         Model with a purpose.   A developer who uses AM should have a specifi c goal 

(e.g., to communicate information to the customer or to help better understand 

some aspect of the software) in mind before creating the model. Once the goal 

for the model is identifi ed, the type of notation to be used and level of detail 

 required will be more obvious.  

       Use multiple models.  There are many different models and notations that 

can be used to describe software. Only a small subset is essential for most proj-

ects. AM suggests that to provide needed insight, each model should present a 

different aspect of the system and only those models that provide value to their 

intended audience should be used.  

       Travel light.    As software engineering work proceeds, keep only those models 

that will provide long-term value and jettison the rest. Every work product that 

is kept must be maintained as changes occur. This represents work that slows 

the team down. Ambler [Amb02a] notes that “Every time you decide to keep a 

model you trade off agility for the convenience of having that information avail-

able to your team in an abstract manner (hence potentially enhancing commu-

nication within your team as well as with project stakeholders).”  

       Content is more important than representation.  Modeling should impart in-

formation to its intended audience. A syntactically perfect model that imparts 

little useful content is not as valuable as a model with fl awed notation that 

 nevertheless provides valuable content for its audience.  

   “Traveling light” is an 
appropriate philosophy 
for all software engi-
neering work. Build 
only those models that 
provide value . . . no 
more, no less. 

  uote: 

 “I was in the 
drugstore the other 
day trying to get a 
cold medication . . . 
Not easy. There’s 
an entire wall of 
products you need. 
You stand there 
going, Well, this 
one is quick acting 
but this is long 
lasting ... Which is 
more important, 
the present or the 
future?” 

 Jerry Seinfeld 

pre22126_ch05_066-086.indd   81pre22126_ch05_066-086.indd   81 13/12/13   6:10 PM13/12/13   6:10 PM



82 PART ONE  THE SOFTWARE PROCESS

       Know the models and the tools you use to create them.    Understand the 

strengths and weaknesses of each model and the tools that are used to create it.  

       Adapt locally.    The modeling approach should be adapted to the needs of the 

agile team.  

       A major segment of the software engineering community has adopted the 

Unifi ed Modeling Language (UML)  11   as the preferred method for representing 

analysis and design models. The Unifi ed Process (Chapter 4) has been devel-

oped to provide a framework for the application of UML. Scott Ambler [Amb06] 

has developed a simplifi ed version of the UP that integrates his agile modeling 

philosophy. 

      5.5.4 Agile Unifi ed Process 

   The  Agile Unifi ed Process  (AUP) adopts a “serial in the large” and “iterative in 

the small” [Amb06] philosophy for building computer-based systems. By adopt-

ing the classic UP phased activities—inception, elaboration, construction, and 

transition—AUP provides a serial overlay (i.e., a linear sequence of software 

engineering activities) that enables a team to visualize the overall process fl ow 

for a software project. However, within each of the activities, the team iterates 

to achieve agility and to deliver meaningful software increments to end users 

as rapidly as possible. Each AUP iteration addresses the following activities 

[Amb06]:

    •     Modeling.  UML representations of the business and problem domains are 

created. However, to stay agile, these models should be “just barely good 

enough” [Amb06] to allow the team to proceed.  

   •     Implementation.  Models are translated into source code.  

   •     Testing.  Like XP, the team designs and executes a series of tests to un-

cover errors and ensure that the source code meets its requirements.  

   •     Deployment.  Like the generic process activity discussed in Chapters 3, 

deployment in this context focuses on the delivery of a software increment 

and the acquisition of feedback from end users.  

   •     Confi guration and project management.  In the context of AUP, confi gu-

ration management (Chapter 29) addresses change management, risk 

management, and the control of any persistent work products  12   that are 

produced by the team. Project management tracks and controls the prog-

ress of the team and coordinates team activities.  

  11  A brief tutorial on UML is presented in Appendix 1. 

  12  A  persistent work product  is a model or document or test case produced by the team that will be 

kept for an indeterminate period of time. It will  not  be discarded once the software increment 

is delivered. 

pre22126_ch05_066-086.indd   82pre22126_ch05_066-086.indd   82 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  83

   •     Environment management.  Environmental management coordinates a 

process infrastructure that includes standards, tools, and other support 

technology available to the team.  

    Although the AUP has historical and technical connections to the Unifi ed 

Modeling Language, it is important to note that UML modeling can be used in 

conjunction with any of the agile process models described in this chapter. 

   The “tool set” that 
supports agile pro-
cesses focuses more 
on people issues than 
it does on technology 
issues. 

  Agile Development 
  Objective:   The objective of agile 
development tools is to assist in one or more 

aspects of agile development with an emphasis on 
facilitating the rapid generation of operational software. 
These tools can also be used when prescriptive process 
models (Chapter 4) are applied. 

   Mechanics:   Tool mechanics vary. In general, agile tool 
sets encompass automated support for project planning, 
use case development and requirements gathering, rapid 
design, code generation, and testing. 

    Representative tools:  13   
   Note:  Because agile development is a hot topic, most 

software tools vendors purport to sell tools that 

support the agile approach. The tools noted here 
have characteristics that make them particularly 
useful for agile projects. 

  OnTime,  developed by Axosoft (  www.axosoft.com  ), 
provides agile process management support for 
various technical activities within the process. 

  Ideogramic UML,  developed by Ideogramic ( http://
ideogramic-uml.software.informer.com/ ) is a 
UML tool set specifi cally developed for use within an 
agile process. 

  Together Tool Set,  distributed by Borland (  www.
borland.com  ), provides a tools suite that supports 
many technical activities within XP and other agile 
processes.       

      SOFTWARE TOOLS 

       5.6 A TOOL SET FOR THE AGILE PROCESS 

  Some proponents of the agile philosophy argue that automated software tools 

(e.g., design tools) should be viewed as a minor supplement to the team’s activi-

ties, and not at all pivotal to the success of the team. However, Alistair Cockburn 

[Coc04] suggests that tools can have a benefi t and that “agile teams stress using 

tools that permit the rapid fl ow of understanding. Some of those tools are social, 

starting even at the hiring stage. Some tools are technological, helping distrib-

uted teams simulate being physically present. Many tools are physical, allowing 

people to manipulate them in workshops.” 

 Collaborative and communication “tools” are generally low tech and incor-

porate any mechanism (“physical proximity, whiteboards, poster sheets, index 

cards, and sticky notes” [Coc04] or modern social networking techniques) that 

provides information and coordination among agile developers. Active com-

munication is achieved via the team dynamics (e.g., pair programming), while 

  13  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch05_066-086.indd   83pre22126_ch05_066-086.indd   83 13/12/13   6:10 PM13/12/13   6:10 PM



84 PART ONE  THE SOFTWARE PROCESS

passive communication is achieved by “information radiators” (e.g., a fl at panel 

display that presents the overall status of different components of an increment). 

Project management tools deemphasize the Gantt chart and replace it with 

earned value charts or “graphs of tests created versus passed . . . other agile tools 

are using to optimize the environment in which the agile team works (e.g., more 

effi cient meeting areas), improve the team culture by nurturing social interac-

tions (e.g., collocated teams), physical devices (e.g., electronic whiteboards), and 

process enhancement (e.g., pair programming or time-boxing)” [Coc04]. 

 Are any of these things really tools? They are, if they facilitate the work per-

formed by an agile team member and enhance the quality of the end product. 

       5.7 SUMMARY 

 In a modern economy, market conditions change rapidly, customer and end-

user needs evolve, and new competitive threats emerge without warning. Prac-

titioners must approach software engineering in a manner that allows them to 

remain agile—to defi ne maneuverable, adaptive, lean processes that can accom-

modate the needs of modern business. 

 An agile philosophy for software engineering stresses four key issues: the im-

portance of self-organizing teams that have control over the work they perform, 

communication and collaboration between team members and between practi-

tioners and their customers, a recognition that change represents an opportu-

nity, and an emphasis on rapid delivery of software that satisfi es the customer. 

Agile process models have been designed to address each of these issues. 

 Extreme programming (XP) is the most widely used agile process. Organized 

as four framework activities—planning, design, coding, and testing—XP suggests 

a number of innovative and powerful techniques that allow an agile team to cre-

ate frequent software releases that deliver features and functionality that have 

been described and then prioritized by stakeholders. 

 Other agile process models also stress human collaboration and team self- 

organization, but defi ne their own framework activities and select different 

points of emphasis. For example, Scrum emphasizes the use of a set of software 

process patterns that have proven effective for projects with tight time lines, 

changing requirements, and business criticality. Each process pattern defi nes 

a set of development tasks and allows the Scrum team to construct a process 

that is adapted to the needs of the project. The Dynamic Systems Development 

Method (DSDM) advocates the use of time-box scheduling and suggests that only 

enough work is required for each software increment to facilitate movement to 

the next increment. Agile modeling (AM) suggests that modeling is essential for 

all systems, but that the complexity, type, and size of the model must be tuned to 

the software to be built. The Agile Unifi ed Process (AUP) adopts a “serial in the 

large” and “iterative in the small” philosophy for building software. 

pre22126_ch05_066-086.indd   84pre22126_ch05_066-086.indd   84 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 5  AGILE DEVELOPMENT  85

     PROBLEMS AND POINTS TO PONDER 
    5.1.  Reread the “Manifesto for Agile Software Development” at the beginning of this chap-
ter. Can you think of a situation in which one or more of the four “values” could get a soft-
ware team into trouble?  

   5.2.  Describe agility (for software projects) in your own words.  

   5.3.  Why does an iterative process make it easier to manage change? Is every agile process 
discussed in this chapter iterative? Is it possible to complete a project in just one iteration 
and still be agile? Explain your answers.  

   5.4.  Could each of the agile processes be described using the generic framework activities 
noted in Chapter 3? Build a table that maps the generic activities into the activities defi ned 
for each agile process.  

   5.5.  Try to come up with one more “agility principle” that would help a software engineering 
team become even more maneuverable.  

   5.6.  Select one agility principle noted in Section 5.3.1 and try to determine whether each 
of the process models presented in this chapter exhibits the principle. [Note: We have pre-
sented an overview of these process models only, so it may not be possible to determine 
whether a principle has been addressed by one or more of the models, unless you do addi-
tional research (which is not required for this problem).]  

   5.7.  Why do requirements change so much? After all, don’t people know what they want?  

   5.8.  Most agile process models recommend face-to-face communication. Yet today, mem-
bers of a software team and their customers may be geographically separated from one 
another. Do you think this implies that geographical separation is something to avoid? Can 
you think of ways to overcome this problem?  

   5.9.  Write an XP user story that describes the “favorite places” or “favorites” feature avail-
able on most Web browsers.  

   5.10.  What is a spike solution in XP?  

   5.11.  Describe the XP concepts of refactoring and pair programming in your own words.  

   5.12.  Using the process pattern template presented in Chapter 3, develop a process pattern 
for any one of the Scrum patterns presented in Section 5.5.1.  

   5.13.  Visit the Offi cial Agile Modeling site and make a complete list of all core and supple-
mentary AM principles.  

   5.14.  The tool set proposed in Section 5.6 supports many of the “soft” aspects of agile meth-
ods. Since communication is so important, recommend an actual tool set that might be used 
to enhance communication among stakeholders on an agile team.  

      FUR THER READINGS AND INFORMATION SOURCES 
  The overall philosophy and underlying principles of agile software development are consid-
ered in-depth in many of the books referenced in the body of this chapter. In addition, books 
by Pichler ( Agile Project Management with Scrum: Creating Products that Customers Love,  
Addison-Wesley, 2010), Highsmith ( Agile Project Management: Creating Innovative Products,  
2nd ed. Addison-Wesley, 2009), Shore and Chromatic ( The Art of Agile Development,  O’Reilly 
Media, 2008), Hunt ( Agile Software Construction,  Springer, 2005), and Carmichael and Hay-
wood ( Better Software Faster,  Prentice Hall, 2002) present useful discussions of the subject. 
Aguanno ( Managing Agile Projects,  Multi-Media Publications, 2005), and Larman ( Agile and 

pre22126_ch05_066-086.indd   85pre22126_ch05_066-086.indd   85 13/12/13   6:10 PM13/12/13   6:10 PM



86 PART ONE  THE SOFTWARE PROCESS

Iterative Development: A Manager's Guide,  Addison-Wesley, 2003) present a management 
overview and consider project management issues. Highsmith ( Agile Software Development 

Ecosystems,  Addison-Wesley, 2002) presents a survey of agile principles, processes, and 
practices. A worthwhile discussion of the delicate balance between agility and discipline is 
presented by Booch and his colleagues ( Balancing Agility and Discipline,  Addison-Wesley, 
2004). 

   Martin ( Clean Code: A Handbook of Agile Software Craftsmanship,  Prentice Hall, 2009) 
presents the principles, patterns, and practices required to develop “clean code” in an 
agile software engineering environment. Leffi ngwell ( Agile Software Requirements: Lean 

Requirements Practices for Teams, Programs, and the Enterprise , Addison-Wesley, 2011) and 
( Scaling Software Agility: Best Practices for Large Enterprises,  Addison-Wesley, 2007) dis-
cusses strategies for scaling up agile practices for large projects. Lippert and Rook ( Refac-

toring in Large Software Projects: Performing Complex Restructurings Successfully,  Wiley, 
2006) discuss the use of refactoring when applied in large, complex systems. Stamelos and 
Sfetsos ( Agile Software Development Quality Assurance,  IGI Global, 2007) discuss SQA tech-
niques that conform to the agile philosophy. 

   Dozens of books have been written about Extreme Programming over the past decade. 
Beck ( Extreme Programming Explained: Embrace Change,  2nd ed., Addison-Wesley, 2004) 
remains the defi nitive treatment of the subject. In addition, Jeffries and his colleagues 
( Extreme Programming Installed,  Addison-Wesley, 2000), Succi and Marchesi ( Extreme 

Programming Examined,  Addison-Wesley, 2001), Newkirk and Martin ( Extreme Program-

ming in Practice,  Addison-Wesley, 2001), and Auer and his colleagues ( Extreme Program-

ming Applied: Play to Win,  Addison-Wesley, 2001) provide a nuts-and-bolts discussion of XP 
along with guidance on how best to apply it. McBreen ( Questioning Extreme Programming,  
 Addison-Wesley, 2003) takes a critical look at XP, defi ning when and where it is appropriate. 
An in-depth consideration of pair programming is presented by McBreen ( Pair Program-

ming Illuminated,  Addison-Wesley, 2003). 
   Kohut ( Professional Agile Development Process: Real World Development Using SCRUM,  

Wrox, 2013), Rubin ( Essential Scrum: A Practical Guide to the Most Popular Agile Process , 
Addison-Wesley, 2012), Larman and Vodde ( Scaling Lean and Agile Development: Thinking 

and Organizational Tools for Large Scale Scrum,  Addison-Wesley, 2008), and Schwaber ( The 

Enterprise and Scrum,  Microsoft Press, 2007) discuss the use of Scrum for projects that have 
a major business impact. The nuts and bolts of Scrum are discussed by Cohn ( Succeeding 

with Agile , Addison-Wesley, 2009), and Schwaber and Beedle ( Agile Software Development 

with SCRUM,  Prentice-Hall, 2001). Worthwhile treatments of DSDM have been written by 
the DSDM Consortium ( DSDM: Business Focused Development,  2nd ed., Pearson Education, 
2003) and Stapleton ( DSDM: The Method in Practice,  Addison-Wesley, 1997). 

   Books by Ambler and Lines ( Disciplined Agile Delivery: A Practitioner’s Guide to Agile 

 Delivery in the Enterprise , IBM Press, 2012) and Poppendieck and Poppendieck ( Lean 

 Development: An Agile Toolkit for Software Development Managers,  Addison-Wesley, 2003) 
provide guidelines for managing and controlling agile projects. Ambler and Jeffries ( Agile 

Modeling,  Wiley, 2002) discuss AM in some depth. 
   A wide variety of information sources on agile software development are available on 

the Internet. An up-to-date list of World Wide Web references that are relevant to the agile 
process can be found at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch05_066-086.indd   86pre22126_ch05_066-086.indd   86 13/12/13   6:10 PM13/12/13   6:10 PM



87

   K E Y 
C O N C E P T S 
    agile teams. . . . . . . 93  
    cloud computing  . . . 97  
    collaborative develop-
ment environments 
(CDEs)  . . . . . . . . . . 98  
    global teams. . . . . . 99  
    jelled team . . . . . . . 90  
    psychology . . . . . . . 89  
    roles  . . . . . . . . . . . 89  
    social media  . . . . . . 95  
    team attributes. . . . 90  
    team structures. . . . 92  
    team toxicity  . . . . . 91  
    traits  . . . . . . . . . . . 88  
    XP team. . . . . . . . . 94  

 HUMAN ASPECTS OF SOFTWARE 
ENGINEERING 

   In a special issue of  IEEE Software , the guest editors [deS09] make the 

following observation:

  Software engineering has an abundance of techniques, tools, and methods de-

signed to improve both the software development process and the fi nal product. 

Technical improvements continue to emerge and yield encouraging results. How-

ever, software isn’t simply a product of the appropriate technical solutions applied 

inappropriate technical ways. Software is developed by people, used by people, 

and supports interaction among people. As such, human characteristics, behavior, 

and cooperation are central to practical software development. 

   Throughout the chapters that follow this one, we’ll discuss the “techniques, 

tools, and methods” that will result in the creation of a successful software 

product. But before we do, it is essential to understand that without skilled 

and motivated people, success is unlikely. 

6 
     C H A P T E R

  What is it?   We all tend to get 
caught up in the latest program-
ming language, the best new de-
sign methods, the most fashionable 

agile process, or a just released whiz-bang 
software tool. But at the end of the day,  people  
build computer software. And for that reason, 
the human aspects of software engineering 
often have as much to do with the success of a 
project as the latest and greatest technology. 

   Who does it?   Individuals and teams do soft-
ware engineering work. In some cases, one 
person has much of the responsibility, but in 
most industry-grade software efforts, a team of 
people does the work. 

   Why is it important?   A software team will 
be successful only if the dynamics of the team 
are right. Software engineers sometimes have 
a reputation of not playing well with others. In 
reality, it is essential for software engineers on a 
team to play well with their colleagues and with 
other stakeholders in the product to be built. 

   What are the steps?   First, you have to un-
derstand the personal characteristics of a 
successful software engineer and then try to 
emulate them. Next, you should appreciate 
the complex psychology of software engineer-
ing work, so that you can navigate your way 
through a project without peril. Then, you have 
to understand the structure and dynamics of a 
software team, because team-based software 
engineering is common in an industry setting. 
Finally, you should appreciate the impact of 
social media, the cloud, and other collabora-
tive tools. 

   What is the work product?   Better insight 
into the people, the process, and the end 
product. 

   How do I ensure that I’ve done it right? 
  Spend the time to observe how successful soft-
ware engineers do their work and tune your 
approach to take advantage of the strengths 
they project. 

         Q U I C K 
L O O K 

pre22126_ch06_087-102.indd   87pre22126_ch06_087-102.indd   87 13/12/13   6:10 PM13/12/13   6:10 PM



88 PART ONE  THE SOFTWARE PROCESS

     6.1 CHARACTERIST ICS OF A SOFTWARE ENGINEER   

 So you want to be a software engineer? Obviously, you have to master the tech-

nical stuff, learn and apply the skills required to understand the problem, design 

an effective solution, build the software, and test it in an effort to develop the 

highest quality possible. You have to manage change, communicate with stake-

holders, and use appropriate tools in the appropriate situations. All of these 

things are discussed at length later in this book. 

 But there are other things that are equally important—the human aspects 

that will make you an effective software engineer. Erdogmus [Erd09] identifi es 

seven   traits   that are present when an individual software engineer exhibits 

“superprofessional” behavior. 

 An effective software engineer has a sense of  individual responsibility . This 

implies a drive to deliver on her promises to peers, stakeholders, and her man-

agement. It implies that she will do what needs to be done, when it needs to be 

done in an overriding effort to achieve a successful outcome. 

 An effective software engineer has an  acute awareness  of the needs of other 

members of his team, of the stakeholders that have requested a software solu-

tion to an existing problem, and the managers who have overall control over the 

project that will achieve that solution. He is able to observe the environment in 

which people work and adapt his behavior to both the environment and the peo-

ple themselves.     

  An effective software engineer is  brutally honest . If she sees a fl awed design, 

she points out the fl aws in a constructive but honest manner. If asked to distort 

facts about schedule, features, performance, or other product or project charac-

teristics she opts to be realistic and truthful. 

 An effective software engineer exhibits  resilience under pressure.  As we noted 

previously in this book, software engineering is always on the edge of chaos. 

Pressure (and the chaos that can result) comes in many forms—changes in re-

quirements and priorities, demanding stakeholders or peers, an unrealistic or 

overbearing manager. But an effective software engineer is able to manage the 

pressure so that his performance does not suffer. 

 An effective software engineer has a  heightened sense of fairness.  She gladly 

shares credit with her colleagues. She tries to avoid confl icts of interest and 

never acts to sabotage the work of others. 

 An effective software engineer exhibits  attention to detail.  This does not imply 

an obsession with perfection, but it does suggest that he carefully considers the 

technical decisions he makes on a daily basis against broader criteria (e.g., per-

formance, cost, quality) that have been established for the product and the project. 

 Finally, an effective software engineer is pragmatic. She recognizes that soft-

ware engineering is not a religion in which dogmatic rules must be followed, but 

rather a discipline that can be adapted based on the circumstances at hand. 

 What are 
the personal 

characteristics 
of an effective 
software 
engineer? 

?

  uote: 

 Most good 
programmers do 
programming 
not because they 
expect to get paid 
or get adulation 
by the public, but 
because it is fun to 
program. 

 Linus Torvalds 

pre22126_ch06_087-102.indd   88pre22126_ch06_087-102.indd   88 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  89

     6.2 THE   PSYCHOLOGY   OF SOFTWARE ENGINEERING 

  In a seminal paper on the psychology of software engineering, Bill Curtis and 

Diane Walz [Cur90] suggest a layered behavioral model for software development 

( Figure 6.1 ). At an individual level, software engineering psychology focuses on rec-

ognition of the problem to be solved, the problem-solving skills required to solve it, 

and the motivation to complete the solution within the constraints established by 

outer layers in the model. At the team and project levels, group dynamics becomes 

the dominating factor. Here, team structure and social factors govern success. 

Group communication, collaboration, and coordination are as important as the 

skills of an individual team member. At the outer layers, organizational behavior 

governs the actions of the company and its response to the business milieu.  

 At the team level, Sawyer and his colleagues [Saw08] suggest that teams often 

establish artifi cial boundaries that reduce communication and, as a consequence, 

reduce the team effectiveness. They suggest a set of “boundaries spanning roles” 

that allow members of a software team to effectively move across team boundar-

ies. The following   roles   may be assigned explicitly or can evolve naturally. 

    •   Ambassador —represents the team to outside constituencies with the 

intent of negotiating time and resources and gaining feedback from 

stakeholders.  

   •   Scout —crosses the team’s boundary to collect organizational information. 

“Scouting can include scanning about external markets, searching for new 

 What roles 
do members 

of a software 
team play? 

?

Business milieu

Company

Project

Team

Individual

Software

Problem

Organizational
behavior

Group
dynamics

Cognition
and

motivation

  FIGURE 6.1

 A layers 
behavioral 
model for 
software 
engineering 
(adapted from 
[Cur90])   

pre22126_ch06_087-102.indd   89pre22126_ch06_087-102.indd   89 13/12/13   6:10 PM13/12/13   6:10 PM



90 PART ONE  THE SOFTWARE PROCESS

technologies, identifying relevant activities outside of the team and uncov-

ering pockets of potential competition.” [Saw08]  

   •   Guard —protects access to the team’s work products and other informa-

tion artifacts.  

   •   Sentry —controls the fl ow of information that stakeholders and others send 

to the team.  

   •   Coordinator —focuses on communicating horizontally across the team and 

within the organization (e.g., discussing a specifi c design problem with a 

group of specialists within the organization).  

           6.3 THE SOFTWARE TEAM      

  In their classic book  Peopleware,  Tom DeMarco and Tim Lister [DeM98] discuss 

the cohesiveness of a software team:

  We tend to use the word  team  fairly loosely in the business world, calling any group of 

people assigned to work together a “team.” But many of these groups just don’t seem 

like teams. They don’t have a common defi nition of success or any identifi able team 

spirit. What is missing is a phenomenon that we call  jell.  

 A   jelled team   is a group of people so strongly knit that the whole is greater than 

the sum of the parts . . . . 

 Once a team begins to jell, the probability of success goes way up. The team can 

become unstoppable, a juggernaut for success . . . . They don’t need to be managed 

in the traditional way, and they certainly don’t need to be motivated. They’ve got 

momentum.   

 DeMarco and Lister contend that members of jelled teams are signifi cantly 

more productive and more motivated than average. They share a common goal, 

a common culture, and in many cases, a “sense of eliteness” that makes them 

unique. 

 There is no foolproof method for creating a jelled team. But there are   attri-

butes   that are normally found in effective software teams.  1   Miguel Carrasco 

[Car08] suggests that an effective software team must establish a  sense of 

purpose . For example, if all team members agree that the goal of the team is to 

develop software that will transform a product category, and as a consequence, 

vault their company into an industry leader, they have a strong sense of purpose. 

An effective team must also inculcate a  sense of involvement  that allows every 

member to feel that his skill set and contributions are valued.      

   What is a 
“jelled“ 

team? 
?

  1  Bruce Tuckman observes that successful teams go through four phases (Forming, Storming, 

Norming, and Performing) on their way to becoming productive (  http://www.realsoftware

development.com/7-key-attributes-of-high-performance-software-development-teams/  ) 

pre22126_ch06_087-102.indd   90pre22126_ch06_087-102.indd   90 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  91

  An effective team should foster a  sense of trust.  Software engineers on the 

team should trust the skills and competence of their peers and their managers. 

The team should encourage a  sense of improvement,  by periodically refl ecting on 

its approach to software engineering and looking for ways to improve their work. 

 The most effective software teams are diverse in the sense that they combine 

a variety of different skill sets. Highly skilled technologists are complemented by 

members who may have less technical background but are more empathetic to 

the needs of stakeholders. 

 But not all teams are effective and not all teams jell. In fact, many teams suffer 

from what Jackman [Jac98] calls “  team toxicity  .” She defi nes fi ve factors that 

“foster a potentially toxic team environment”: (1) a frenzied work atmosphere, 

(2) high frustration that causes friction among team members, (3) a “fragmented 

or poorly coordinated” software process, (4) an unclear defi nition of roles on the 

software team, and (5) “continuous and repeated exposure to failure.”     

  To avoid a frenzied work environment, the team should have access to all 

information required to do the job. Major goals and objectives, once defi ned, 

should not be modifi ed unless absolutely necessary. A software team can avoid 

frustration if it is given as much responsibility for decision making as possible. 

An inappropriate process (e.g., unnecessary or burdensome work tasks or poorly 

chosen work products) can be avoided by understanding the product to be built, 

the people doing the work, and by allowing the team to select the process model. 

The team itself should establish its own mechanisms for accountability (technical 

reviews  2   are an excellent way to accomplish this) and defi ne a series of corrective 

approaches when a member of the team fails to perform. And fi nally, the key to 

avoiding an atmosphere of failure is to establish team-based techniques for feed-

back and problem solving.   

 In addition to the fi ve toxins described by Jackman, a software team often 

struggles with the differing human traits of its members. Some team members 

are extroverts; others are introverts. Some people gather information intuitively, 

distilling broad concepts from disparate facts. Others process information lin-

early, collecting and organizing minute details from the data provided. Some 

team members are comfortable making decisions only when a logical, orderly 

argument is presented. Others are intuitive, willing to make a decision based on 

“feel.” Some practitioners want a detailed schedule populated by organized tasks 

that enable them to achieve closure for some element of a project. Others prefer 

a more spontaneous environment in which open issues are okay. Some work hard 

to get things done long before a milestone date, thereby avoiding stress as the 

date approaches, while others are energized by the rush to make a last- minute 

deadline. Recognition of human differences, along with other guidelines pre-

sented in this section, provide a higher likelihood of creating teams that jell. 

   An effective software 
team is diverse, 
populated by people 
who have a sense 
of purpose, involve-
ment, trust, and 
improvement. 

   Why is it 
that teams 

fail to jell? 
?

  2  Technical reviews are discussed in detail in Chapter 20. 

  uote: 

 “Not every group 
is a team, and 
not every team is 
effective.” 

 Glenn Parker 

pre22126_ch06_087-102.indd   91pre22126_ch06_087-102.indd   91 13/12/13   6:10 PM13/12/13   6:10 PM



92 PART ONE  THE SOFTWARE PROCESS

       6.4 TEAM STRUCTURES        

  The “best” team structure depends on the management style of your organiza-

tion, the number of people who will populate the team and their skill levels, and 

the overall problem diffi culty. Mantei [Man81] describes a number of project fac-

tors that should be considered when planning the structure of software engi-

neering teams: (1) diffi culty of the problem to be solved, (2) “size” of the resultant 

program(s) in lines of code or function points,  3   (3) time that the team will stay 

together (team lifetime), (4) degree to which the problem can be modularized, 

(5) required quality and reliability of the system to be built, (6) rigidity of the deliv-

ery date, and (7) degree of sociability (communication) required for the project.      

  Constantine [Con93] suggests four “organizational paradigms” for software 

engineering teams:

     1.  A  closed paradigm  structures a team along a traditional hierarchy of au-

thority. Such teams can work well when producing software that is quite 

similar to past efforts, but they will be less likely to be innovative when 

working within the closed paradigm.  

    2.  A  random paradigm  structures a team loosely and depends on individual 

initiative of the team members. When innovation or technological break-

through is required, teams following the random paradigm will excel. But 

such teams may struggle when “orderly performance” is required.  

    3.  An  open paradigm  attempts to structure a team in a manner that achieves 

some of the controls associated with the closed paradigm but also much of 

the innovation that occurs when using the random paradigm. Work is per-

formed collaboratively, with heavy communication and consensus-based 

decision making the trademarks of open paradigm teams. Open paradigm 

team structures are well suited to the solution of complex problems but 

may not perform as effi ciently as other teams.  

    4.  A  synchronous paradigm  relies on the natural compartmentalization of a 

problem and organizes team members to work on pieces of the problem 

with little active communication among themselves.     

 As a historical footnote, one of the earliest software team organizations was 

a closed paradigm structure originally called the  chief programmer team.  This 

structure was fi rst proposed by Harlan Mills and described by Baker [Bak72]. The 

nucleus of the team was composed of a  senior engineer  (the chief programmer), 

who plans, coordinates, and reviews all technical activities of the team;  technical 

staff  (normally two to fi ve people), who conduct analysis and development 

 What 
options do 

we have when 
defi ning the 
structure of a 
software team? 

?

 What factors 
should be 

considered when 
the structure of a 
software team is 
chosen? 

?

  3  Lines of code (LOC) and function points are measures of the size of a computer program and 

are discussed in Chapter 33. 

  uote: 

 “If you want to 
be incrementally 
better: Be 
competitive. If 
you want to be 
exponentially 
better: Be 
cooperative.” 

 Author unknown 

pre22126_ch06_087-102.indd   92pre22126_ch06_087-102.indd   92 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  93

activities; and a  backup engineer,  who supports the senior engineer in her activi-

ties and can replace the senior engineer with minimum loss in project continuity. 

The chief programmer may be served by one or more specialists (e.g., telecom-

munications expert, database designer), support staff (e.g., technical writers, 

clerical personnel), and a software librarian. 

 As a counterpoint to the chief programmer team structure, Constantine’s random 

paradigm [Con93] suggests a software team with creative independence whose ap-

proach to work might best be termed  innovative anarchy.  Although the free- spirited 

approach to software work has appeal, channeling creative energy into a high-

performance team must be a central goal of a software engineering organization.     

  Team Structure   Team Structure 

        The scene:  Doug Miller’s offi ce 
prior to the initiation of the  SafeHome  

software project.  

       The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software 
engineering team.  

       The conversation:   

       Doug:  Have you guys had a chance to look over 
the preliminary info on  SafeHome  that marketing has 
prepared?  

       Vinod (nodding and looking at his team-
mates):  Yes. But we have a bunch of questions.  

       Doug:  Let’s hold onto that for a moment. I’d like to 
talk about how we’re going to structure the team, who’s 
responsible for what . . .  

       Jamie:  I’m really into the agile philosophy, Doug. I 
think we should be a self-organizing team.  

       Vinod:  I agree. Given the tight time line and some of 
the uncertainty, and that fact that we’re all really compe-
tent [laughs], that seems like the right way to go.  

       Doug:  That’s okay with me, but you guys know the drill.  

       Jamie (smiling and talking as if she was 
reciting something):  We make tactical decisions, 
about who does what and when, but it’s our responsibil-
ity to get product out the door on time.  

       Vinod:  And with quality.  

       Doug:  Exactly. But remember there are constraints. 
Marketing defi nes the software increments to be 
 produced—in consultation with us, of course.  

       Jamie:  And?    

 SAFEHOME 

        6.5 AGILE TEAMS   

  Over the past decade, agile software development (Chapter 5) has been sug-

gested as an antidote to many of the problems that have plagued software proj-

ect work. To review, the agile philosophy encourages customer satisfaction and 

early incremental delivery of software, small highly motivated project teams, 

informal methods, minimal software engineering work products, and overall 

development simplicity. 

  6.5.1 The Generic Agile Team 

 The small, highly motivated project team, also called an  agile team,  adopts 

many of the characteristics of successful software project teams discussed in the 

pre22126_ch06_087-102.indd   93pre22126_ch06_087-102.indd   93 13/12/13   6:10 PM13/12/13   6:10 PM



94 PART ONE  THE SOFTWARE PROCESS

preceding section and avoids many of the toxins that create problems. However, 

the agile philosophy stresses individual (team member) competency coupled 

with group collaboration as critical success factors for the team. Cockburn and 

Highsmith [Coc01a] note this when they write:

  If the people on the project are good enough, they can use almost any process and 

accomplish their assignment. If they are not good enough, no process will repair their 

inadequacy—“people trump process” is one way to say this. However, lack of user and 

executive support can kill a project—“politics trump people.” Inadequate support 

can keep even good people from accomplishing the job.       

  To make effective use of the competencies of each team member and to 

foster effective collaboration through a software project, agile teams are  self- 

organizing.  A self-organizing team does not necessarily maintain a single team 

structure, but instead, uses elements of Constantine’s random, open, and syn-

chronous paradigms discussed in Section 6.2.  

 Many agile process models (e.g., Scrum) give the agile team signifi cant au-

tonomy to make the project management and technical decisions required to 

get the job done. Planning is kept to a minimum, and the team is allowed to se-

lect its own approach (e.g., process, methods, tools), constrained only by business 

requirements and organizational standards. As the project proceeds, the team 

self-organizes to focus individual competency in a way that is most benefi cial to 

the project at a given point in time. To accomplish this, an agile team might con-

duct daily team meetings to coordinate and synchronize the work that must be 

accomplished for that day. 

 Based on information obtained during these meetings, the team adapts its 

approach in a way that accomplishes an increment of work. As each day passes, 

continual self-organization and collaboration move the team toward a completed 

software increment. 

   6.5.2 The   XP Team   

 Beck [Bec04a] defi nes a set of fi ve  values  that establish a foundation for all work 

performed as part of extreme programming (XP)—communication, simplicity, 

feedback, courage, and respect. Each of these values is used as a driver for spe-

cifi c XP activities, actions, and tasks.     

  In order to achieve effective  communication  between the agile team and other 

stakeholders (e.g., to establish required features and functions for the software), 

XP emphasizes close, yet informal (verbal) collaboration between customers 

and developers, the establishment of effective metaphors  4   for communicating 

   An agile team is a 
self-organizing team 
that has autonomy to 
plan and make techni-
cal decisions.  

   Keep it simple 
whenever you can, 
but recognize that 
continual “refactoring” 
can absorb signifi cant 
time and resources.  

  uote: 

 “Collective 
ownership is 
nothing more than 
an instantiation 
of the idea that 
products should 
be attributable to 
the [agile] team, 
not individuals 
who make up the 
team.” 

 Jim Highsmith 

  4  In the XP context, a  metaphor  is “a story that everyone—customers, programmers, and 

 managers—can tell about how the system works” [Bec04a]. 

pre22126_ch06_087-102.indd   94pre22126_ch06_087-102.indd   94 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  95

important concepts, continuous feedback, and the avoidance of voluminous doc-

umentation as a communication medium. 

  To achieve  simplicity,  the agile team designs only for immediate needs, rather 

than considering future needs. The intent is to create a simple design that can be 

easily implemented in code. If the design must be improved, it can be  refactored   5   

at a later time. 

   Feedback  is derived from three sources: the implemented software itself, the 

customer, and other software team members. By designing and implementing an 

effective testing strategy (Chapters 22 through 26), the software (via test results) 

provides the agile team with feedback. The team makes use of the  unit test  as 

its primary testing tactic. As each class is developed, the team develops a unit 

test to exercise each operation according to its specifi ed functionality. As an in-

crement is delivered to a customer, the  user stories  or  use cases  (Chapter 9) that 

are implemented by the increment are used to perform acceptance tests. The 

degree to which the software implements the output, function, and behavior of 

the use case is a form of feedback. Finally, as new requirements are derived as 

part of iterative planning, the team provides the customer with rapid feedback 

regarding cost and schedule impact.  

 Beck [Bec04a] argues that strict adherence to certain XP practices demands 

 courage.  A better word might be  discipline.  For example, there is often signifi -

cant pressure to design for future requirements. Most software teams succumb, 

arguing that “designing for tomorrow” will save time and effort in the long run. 

An XP team must have the discipline (courage) to design for today, recognizing 

that future requirements may change dramatically, thereby demanding substan-

tial rework of the design and implemented code. 

 By following each of these values, the XP team inculcates  respect  among its 

members, between other stakeholders and team members, and indirectly, for 

the software itself. As they achieve successful delivery of software increments, 

the team develops growing respect for the XP process. 

      6.6 THE IMPACT OF   SOCIAL MEDIA   

  Email, texting, and videoconferencing have become ubiquitous activities in soft-

ware engineering work. But these communication mechanisms are really noth-

ing more than modern substitutes or supplements for the face-to-face contact. 

Social media is different. 

  5  Refactoring allows a software engineer to improve the internal structure of a design (or source 

code) without changing its external functionality or behavior. In essence, refactoring can be 

used to improve the effi ciency, readability, or performance of a design or the code that imple-

ments a design. 

  uote: 

 “XP is the answer 
to the question, 
‘How little can we 
do and still build 
great software?’ “ 

 Anonymous 

pre22126_ch06_087-102.indd   95pre22126_ch06_087-102.indd   95 13/12/13   6:10 PM13/12/13   6:10 PM



96 PART ONE  THE SOFTWARE PROCESS

 Begel [Beg10] and his colleagues address the growth and application of social 

media in software engineering when they write:

  The social processes around software development are . . . highly dependent on engi-

neers’ abilities to fi nd and connect with individuals who share similar goals and com-

plementary skills, to harmonize each team member’s communication and teaming 

preferences, to collaborate and coordinate during the entire software lifecycle, and 

advocate for their product’s success in the marketplace.   

 In some ways, this “connection” can be as important as face-to-face communi-

cation. The value of social media grows as team size increases, and is magnifi ed 

further when the team is geographically dispersed. 

 First, a social network is defi ned for a software project. Using the network, the 

software team can draw from the collective experience of team members, stake-

holders, technologists, specialists, and other businesspeople who have been in-

vited to participate in the network (if the network is private) or to any interested 

party (if the network is public). And it can do this whenever an issue, a question, 

or a problem arises. There are a number of different forms of social media and 

each has a place in software engineering work. 

 A  blog  can be used to post a series of short articles describing important as-

pects of a system or voicing opinions about system features or functions that 

are yet to be developed. It is also important to note that “software companies 

frequently use blogs to share technical information and opinions with their em-

ployees, and very profi tably, with their customers, both internal and external.” 

[Beg10]  

  Microblogs  (e.g., Twitter) allow a member of a software engineering network to 

post short messages to followers who subscribe to them. Because the messages 

are instantaneous and can be read from all mobile platforms, dispersion of infor-

mation is close to real time. This enables a software team to call an impromptu 

meeting if an issue arises, to ask for specialized help if a problem occurs, or to 

inform stakeholders about some aspect of the project. 

  Targeted on-line forums  allow participants to post questions, opinions, case 

studies or any other relevant information. A technical question can be posted 

and within a few minutes, multiple “answers” are often available. 

  Social networking sites  (e.g., Facebook, LinkedIn) allow degrees-of-separation 

connections among software developers and related technologists. This allows 

“friends” on a social networking site to learn about friends of friends who may 

have knowledge or expertise related to the application domain or problem to 

be solved. Specialized private networks built on the social networking paradigm 

can be used within an organization. 

 Most social media enables the formation of “communities” of users with sim-

ilar interests. For example, a community of software engineers who specialize 

in real- time embedded systems might provide a useful way for an individual or 

  uote: 

 “If content is king, 
then conversation 
is queen.” 

 John Munsell 

pre22126_ch06_087-102.indd   96pre22126_ch06_087-102.indd   96 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  97

team working in that area to make connections that would enhance their work. 

As a community grows, participants discuss technology trends, application sce-

narios, new tools, and other software engineering knowledge. Finally,  social 

bookmarking sites  (e.g., Delicious, Stumble, CiteULike) allow a software engi-

neer or team to recommend Web-based resources that may be of interest to a 

social media community of like-minded individuals. 

 It is very important to note that privacy and security issues should not be over-

looked when using social media for software engineering work. Much of the work 

performed by software engineers may be proprietary to their employer and dis-

closure could be very harmful. For that reason, the distinct benefi ts of social media 

must be weighed against the treat of uncontrolled disclosure of private information.  

     6.7 SOFTWARE ENGINEERING USING THE CLOUD 

    Cloud computing   provides a mechanism for access to all software engineering 

work products, artifacts, and project-related information. It runs everywhere and 

removes the device dependency that was once a constraint for many software 

projects. It allows members of a software team to conduct platform- independent, 

low-risk trials of new software tools and to provide feedback on those tools. It 

provides new avenues for distribution and testing of beta software. It provides 

the potential for improved approaches to content and confi guration manage-

ment (Chapter 29). 

 Because cloud computing can accomplish these things, it has the potential 

to infl uence the manner in which software engineers organize their teams, the 

way they do their work, the manner in which they communicate and connect, 

and the way software projects are managed. Software engineering information 

developed by one team member can be instantly available to all team members, 

regardless of the platform others are using or their location. 

      In essence, information dispersion speeds up and broadens dramatically. That 

changes the software engineering dynamic and can have a profound impact on 

the human aspects of software engineering. 

 But cloud computing in a software engineering milieu is not without risk 

[The13]. The cloud is dispersed over many servers and the architecture and ser-

vices are often outside the control of a software team. As a consequence, there 

are multiple points of failure, presenting reliability and security risks. As the 

number of services provided by the cloud grows, the relative complexity of the 

software development environment also grows. Does each of these services play 

well with other services, possibly provided by other vendors? This presents an 

interoperability risk for cloud services. Finally, if the cloud becomes the develop-

ment environment, services must stress usability and performance. These attri-

butes sometime confl ict with security, privacy, and reliability. 

   The cloud is a powerful 
repository for software 
engineering informa-
tion, but you must 
be sure to consider 
the change control 
issues discussed in 
Chapter 29. 

  uote: 

 “They don’t call 
it the Internet 
anymore, they call 
it cloud computing. 
I’m no longer 
resisting the name. 
Call it what you 
want.” 

 Larry Ellison 

pre22126_ch06_087-102.indd   97pre22126_ch06_087-102.indd   97 13/12/13   6:10 PM13/12/13   6:10 PM



98 PART ONE  THE SOFTWARE PROCESS

 But from the human perspective, the cloud offers far more benefi ts than risks 

for software engineers. Dana Gardner [Gar09] summarizes the benefi ts (with a 

warning):

  Anything having to do with the social or collaboration aspects of software develop-

ment lent themselves well to the cloud. Project management, scheduling, task lists, 

requirements, and defect management all suit themselves well as these are at core 

group functions where communications is essential to keeping projects in sync and 

all members of the team – wherever they are located — on literally the same page. 

Of course, there is a huge caveat here – if your company designs embedded software 

that goes into products, it is not a good candidate for the cloud: imagine getting a hold 

of Apple’s project plans for the next version of the iPhone.   

 As Gardner states, one of the key benefi ts of the cloud is its ability to enhance 

the “social and collaborative aspects of software development.” In the next sec-

tion, you’ll learn a bit more about collaborative tools. 

     6.8 COLLABORATION TOOLS 

  Fillipo Lanubile and his colleagues [Lan10] suggest that the software develop-

ment environments (SDEs) of the last century have morphed into    collaborative 

development environments  (CDEs)  .  6   They state: 

  Tools are essential to collaboration among team members, enabling the facilitation, 

automation, and control of the entire development process. Adequate tool support is 

especially needed in global software engineering because distance aggravates coor-

dination and control problems, directly or indirectly, through its negative effects on 

communication.       

  Many of the tools used in a CDE are no different from the tools that are used to 

assist in the software engineering activities discussed in Parts 2, 3, and 4 of this 

book. But a worthwhile CDE also provides a set of services that are specifi cally 

designed to enhance collaborative work [Fok10]. These services include: 

    •  A  namespace  that allows a project team to store all work products and 

other information in a manner that enhances security and privacy, allow-

ing access only to authorized individuals.  

   •  A  calendar  for coordinating meeting and other project events.  

   •   Templates  that enable team members to create work products that have a 

consistent look and structure.  

   •   Metrics support  that tracks each team member’s contributions in a quanti-

tative manner.  

   What generic 
services 

are found in 
collaborative 
development 
environments? 

?

  6  The term  collaborative development environment  (CDE) was coined by Grady Booch [Boo02]. 

pre22126_ch06_087-102.indd   98pre22126_ch06_087-102.indd   98 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  99

   •   Communication analysis  that tracks communication across the team and 

isolates patterns that may imply problems or issues that need to be resolved.  

   •   Artifact-clustering  that organizes work products and other project 

 artifacts in a manner that answers questions such as: “ What triggered a 

particular change ,  who has discussed a specifi c artifact that should poten-

tially be consulted about changes to it,  and  how might a [team] member’s 

own work affect other people’s work?” [Fok10].        

  Collaborative Development 
Environments 
  Objective:  As software development 

becomes global, software teams need more than 
development tools. They need a set of services that 
enable members of the team to collaborate locally 
and over long distances. 

  Mechanics:  Tools and services in this category allow a 
team to establish mechanisms for collaborative work. 
A CDE will implement many or all of the services 
described in Section 6.6, while at the same time 
provide access to process management (Chapter 4) 

conventional software engineering tools discussed 
throughout this book. 

  Representative tools:7  

   GForge —a collaborative environment that contains both 
project and code management facilities  (http://
gforge.com/gf/)  

  OneDesk —provides a collaborative environment that 
creates and manages a project workspace for 
developers and stakeholders  (www.onedesk.com)  

  Rational Team Concert —an in-depth, collaborative life-
cycle management system  (http://www-01.ibm
.com/software/rational/products/rtc/)   

 SOFTWARE TOOLS 

  7  Tools noted here do not represent an endorsement, but rather, a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

        6.9 GLOBAL TEAMS     

 In the software domain, globalization implies more than the transfer of goods and 

services across international boundaries. For the past few decades, an increasing 

number of major software products have been built by software teams that are often 

located in different countries. These global software development (GSD) teams 

have many of the characteristics of a conventional software team (Section 6.4), but 

a GSD team has other unique challenges that include coordination, collaboration, 

communication, and specialized decision making. Approaches to coordination, 

collaboration, and communication have been discussed earlier in this chapter. De-

cision making on all software teams is complicated by four factors [Gar10]: 

   •  Complexity of the problem.  

   •  Uncertainty and risk associated with the decision.  

   •  The law of unintended consequences (i.e., work-associated decision has an 

unintended effect on another project objective).  

   •  Different views of the problem that lead to different conclusions about the 

way forward.    

  uote: 

 “More and more, 
in any company, 
managers are 
dealing with 
different cultures. 
Companies are 
going global, but 
the teams are 
being divided and 
scattered all over 
the planet.” 

 Carlos Ghosn, 
Nissan 

pre22126_ch06_087-102.indd   99pre22126_ch06_087-102.indd   99 13/12/13   6:10 PM13/12/13   6:10 PM



100 PART ONE  THE SOFTWARE PROCESS

 For a GSD team, the challenges associated with coordination, collaboration, 

and communication can have a profound effect on decision making.  Figure 6.2  il-

lustrates the impact of distance on the challenges that face a GSD team. Distance 

complicates communication, but at the same time, accentuates the need for co-

ordination. Distance also introduces barriers and complexity that can be driven 

by cultural differences. Barriers and complexity attenuate communication (i.e., 

the signal-to-noise ratio decreases). The problems inherent in this dynamic can 

result in a project that becomes unstable.  

 Although there is no silver bullet that can fully correct the relationships im-

plied by  Figure 6.2 , the use of effective CDEs (Section 6.6) can help reduce the 

impact of distance. 

       6.10 SUMMARY 

 A successful software engineer must have technical skills. But in addition, he 

must take responsibility for his commitments, be aware of the needs of his peers, 

be honest in his assessment of the product and the project, be resilient under 

pressure, treat his peers fairly, and exhibit attention to detail. 

 The psychology of software engineering includes individual cognition and mo-

tivation, the group dynamics of a software team, and the organization behavior 

of the company. In order to improve communication and collaboration, members 

of a software team can take on boundary-spanning roles. 

 A successful (“jelled”) software team is more productive and motivated than 

average. To be effective, a software team must have a sense of purpose, a sense of 

involvement, a sense of trust, and a sense of improvement. In addition the team 

Distance

Introduces

Complicates Accentuates
the need for

Attenuate

Communication

Enhances Improves

Collaboration Coordination

Reduces

Barriers and complexity

  FIGURE 6.2

 Factors 
 affecting a 
GSD team 
(adapted from 
[Cas06]) 

  

pre22126_ch06_087-102.indd   100pre22126_ch06_087-102.indd   100 13/12/13   6:10 PM13/12/13   6:10 PM



CHAPTER 6  HUMAN ASPECTS OF SOFTWARE ENGINEERING  101

must avoid “toxicity” that is characterized by a frenzied and frustrating work 

atmosphere, an inappropriate software process, an unclear defi nition of roles on 

the software team, and continuous exposure to failure. 

 There are many different team structures. Some teams organize hierarchi-

cally, while others prefer a loose structure that relies on individual initiative. 

Agile teams subscribe to the agile philosophy and generally have more auton-

omy than more conventional software teams. Agile teams emphasize communi-

cation, simplicity, feedback, courage, and respect. 

 Social media is becoming an integral part of many software projects. Blogs, 

microblogs, forums, and social networking capabilities help to form a software 

engineering community that communicates and coordinates more effectively. 

 Cloud computing has the potential to infl uence the manner in which software 

engineers organize their teams, the way they do their work, the manner in which 

they communicate and connect, and the way software projects are managed. In 

situations in which the cloud can enhance the social and collaborative aspects of 

software development, its benefi ts far outweigh its risks. 

 Collaborative development environments contain a number of services that 

enhance communication and collaboration for a software team. These environ-

ments are particularly useful for global software development where geographic 

separation can precipitate barriers to successful software engineering. 

     PROBLEMS AND POINTS TO PONDER 
    6.1.  Based on your personal observation of people who are excellent software developers, 
name three personality traits that appear to be common among them.  

   6.2.  How can you be “brutally honest” and still not be perceived (by others) as insulting or 
aggressive?  

   6.3.  How does a software team construct “artifi cial boundaries” that reduce their ability to 
communicate with others?  

   6.4.  Write a brief scenario that describes each of the “boundary-spanning roles” described 
in Section 6.2.  

   6.5.  In Section 6.3, we note that a sense of purpose, involvement, trust, and improvement 
are essential attributes for effective software teams. Who is responsible for instilling these 
attributes as a team is formed?  

   6.6.  Which of the four organizational paradigms for teams (Section 6.4) do you think would 
be most effective (a) for the IT department at a major insurance company; (b) for a software 
engineering group at a major defense contractor; (c) for a software group that builds com-
puter games; (d) for a major software company? Explain why you made the choices you did.  

   6.7.  If you had to pick one attribute of an agile team that makes it different from a conven-
tional software team, what would it be?  

   6.8.  Of the forms of social media that were described for software engineering work in 
 Section 6.6, which do you think would be most effective and why?  

   6.9.  Write a scenario in which the  SafeHome  team members make use of one or more forms 
of social media as part of their software project.  

pre22126_ch06_087-102.indd   101pre22126_ch06_087-102.indd   101 13/12/13   6:10 PM13/12/13   6:10 PM



102 PART ONE  THE SOFTWARE PROCESS

   6.10.  Presently, the cloud is one of the more hyped concepts in the world of computing. 
Describe how the cloud can add value for a software engineering organization with specifi c 
reference to services that are specifi cally designed to enhance software engineering work.  

   6.11.  Do some research on one of the CDE tools noted in the sidebar in Section 6.8 (or a tool 
assigned by your instructor) and prepare a brief presentation of the tool’s capabilities for 
your class.  

   6.12.  Referring to  Figure 6.2 , why does distance complicate communication? Why does dis-
tance accentuate the need for coordination? Why types of barriers and complexity are in-
troduced by distance?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Although many books have addressed the human aspects of software engineering, two 
books can legitimately be called classics. Jerry Weinberg ( The Psychology of Computer Pro-

gramming,  Silver Anniversary Edition, Dorset House, 1998) was the fi rst to consider the 
psychology of the people who build computer software. Tom DeMarco and Tim Lister ( Peo-

pleware: Productive Projects and Teams,  2nd ed., Dorset House, 1999) argue that the major 
challenges in software development are human, not technical. 

   Useful insights into the human aspects of software engineering have also been provided 
by Mantle and Lichty ( Managing the Unmanageable: Rules, Tools, and Insights for Managing 

Software People and Teams , Addison-Wesley, 2012), Fowler ( The Passionate Programmer,  
Pragmatic Bookshelf, 2009), McConnell ( Code Complete,  2nd ed., Microsoft Press, 2004), 
Brooks ( The Mythical Man-Month,  2nd ed., Addison-Wesley, 1999), and Hunt and Thomas 
( The Pragmatic Programmer,  Addison-Wesley, 1999). Tomayko and Hazzan  (Human Aspects 

of Software Engineering,  Charles River Media, 2004) address both the psychology and sociol-
ogy of software engineering with an emphasis on XP. 

   The human aspects of the agile development have been addressed by Rasmussen ( The 

Agile Samurai,  Pragmatic Bookshelf, 2010) and Davies ( Agile Coaching,  Pragmatic Book-
shelf, 2010). Important aspects of agile teams are considered by Adkins ( Coaching Agile 

Teams,  Addison-Wesley, 2010), and Derby, Larsen, and Schwaber ( Agile Retrospectives: Mak-

ing Good Teams Great,  Pragmatic Bookshelf, 2006). 
   Problem solving is a uniquely human activity and is addressed in books by Adair ( Deci-

sion Making and Problem Solving Strategies,  Kogan Page, 2010), Roam ( Unfolding the Nap-

kin,  Portfolio Trade, 2009), and Wananabe ( Problem Solving 101,  Portfolio Hardcover, 2009). 
   Guidelines for facilitating collaboration within a software team are presented by Tabaka 

( Collaboration Explained,  Addison-Wesley, 2006). Rosen ( The Culture of Collaboration,  Red 
Ape Publishing, 2009), Hansen ( Collaboration , Harvard Business School Press, 2009), and 
Sawyer ( Group Genius: The Creative Power of Collaboration,  Basic Books, 2007) present 
strategies and practical guidelines for improving collaboration on technical teams. 

   Fostering human innovation is the subject of books by Gray, Brown, and Macanufo ( Game 

Storming,  O-Reilly Media, 2010), Duggan ( Strategic Intuition,  Columbia University Press, 
2007), and Hohmann ( Innovation Games,  Addison-Wesley, 2006). 

   An overall look at global software development is presented by Ebert  (Global Software 

and IT: A Guide to Distributed Development, Projects, and Outsourcing,  Wiley-IEEE Com-
puter Society Press, 2011). Mite and his colleagues ( Agility Across Time and Space: Imple-

menting Agile Methods in Global Software Projects,  Springer, 2010) have edited an anthology 
that addresses the use of agile teams in global development. 

   A wide variety of information sources that discuss the human aspects of software engineer-
ing are available on the Internet. An up-to-date list of World Wide Web references that are rel-
evant to the software process can be found at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch06_087-102.indd   102pre22126_ch06_087-102.indd   102 13/12/13   6:10 PM13/12/13   6:10 PM



103

Two 
   P A R T

 In this part of  Software Engineering: A Practitioner’s Approach  

you’ll learn about the principles, concepts, and methods that are 

used to create high-quality requirements and design  models. 

These questions are addressed in the chapters that follow:

    •  What concepts and principles guide software engineering 

practice?  

   •  What is requirements engineering and what are the under-

lying concepts that lead to good requirements analysis?  

   •  How is the requirements model created and what are its 

elements?  

   •  What are the elements of a good design?  

   •  How does architectural design establish a framework for 

all other design actions and what models are used?  

   •  How do we design high-quality software components?  

   •  What concepts, models, and methods are applied as a user 

interface is designed?  

   •  What is pattern-based design?  

   •  What specialized strategies and methods are used to  design 

WebApps?  

   •  What specialized strategies and methods are used to  design 

mobile apps?    

 Once these questions are answered you’ll be better prepared to 

apply software engineering practice. 

 MODELING 

pre22126_ch07_103-130.indd   103pre22126_ch07_103-130.indd   103 13/12/13   6:11 PM13/12/13   6:11 PM



104

  C H A P T E R 

   K E Y 
C O N C E P T S 
    coding principles  . . 122  
    communication 
principles  . . . . . . . 110  
    core principles. . . . 106  
    deployment 
principles  . . . . . . . 125  
    design modeling 
principles  . . . . . . . 117  
    living modeling 
principles  . . . . . . . 120  
    modeling 
principles  . . . . . . . 114  
    planning 
principles  . . . . . . . 112  
    practice   . . . . . . . . 105 
    process. . . . . . . . . 106  
    requirements modeling 
principles  . . . . . . . 116  
    testing principles. . 123  

   In a book that explores the lives and thoughts of software engineers, Ellen 

Ullman [Ull97] depicts a slice of life as she relates the thoughts of a practi-

tioner under pressure:

 

 I have no idea what time it is. There are no windows in this offi ce and no clock, only 

the blinking red LED display of a microwave, which fl ashes 12:00, 12:00, 12:00, 12:00. 

Joel and I have been programming for days. We have a bug, a stubborn demon of a 

bug. So the red pulse no-time feels right, like a read-out of our brains, which have 

somehow synchronized themselves at the same blink rate . . . 

 What are we working on? . . . The details escape me just now. We may be helping 

poor sick people or tuning a set of low-level routines to verify bits on a distributed 

database protocol—I don’t care. I should care; in another part of my being—later, 

perhaps when we emerge from this room full of computers—I will care very much 

why and for whom and for what purpose I am writing software. But just now: no. 

I have passed through a membrane where the real world and its uses no longer 

matter. I am a software engineer . . . 

 PRINCIPLES THAT 
GUIDE PRACTICE 7 

         Q U I C K 
L O O K 

  What is it?   Software engineering 
practice is a broad array of princi-
ples, concepts, methods, and tools 
that you must consider as software 

is planned and developed. Principles that 
guide practice establish a foundation from 
which software engineering is conducted. 

   Who does it?   Practitioners (software engi-
neers) and their managers conduct a variety of 
software engineering tasks. 

   Why is it important?   The software process 
provides everyone involved in the creation of a 
computer-based system or product with a road 
map for getting to a successful destination. 
Practice provides you with the detail you’ll 
need to drive along the road. It tells you where 
the bridges, the roadblocks, and the forks are 
located. It helps you understand the concepts 
and principles that must be understood and 
followed to drive safely and rapidly. It instructs 
you on how to drive, where to slow down, and 
where to speed up. In the context of software 

engineering, practice is what you do day in 
and day out as software evolves from an idea 
to a reality. 

   What are the steps?   Three elements of prac-
tice apply regardless of the process model that 
is chosen. They are: principles, concepts, and 
methods. A fourth element of practice—tools—
supports the application of methods. 

   What is the work product?   Practice encom-
passes the technical activities that produce all 
work products that are defi ned by the software 
process model that has been chosen. 

   How do I ensure that I’ve done it right? 
  First, have a fi rm understanding of the princi-
ples that apply to the work (e.g., design) that 
you’re doing at the moment. Then, be certain 
that you’ve chosen an appropriate method for 
the work, be sure that you understand how to 
apply the method, use automated tools when 
they’re appropriate for the task, and be ada-
mant about the need for techniques to ensure 
the quality of work products that are produced. 

pre22126_ch07_103-130.indd   104pre22126_ch07_103-130.indd   104 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  105

  A dark image of software engineering practice to be sure, but upon refl ection, 

many of the readers of this book will be able to relate to it. 

 People who create computer software practice the art or craft or discipline  1   

that is software engineering. But what is software engineering “  practice  ”? In a 

generic sense,  practice  is a collection of concepts, principles, methods, and tools 

that a software engineer calls upon on a daily basis. Practice allows managers to 

manage software projects and software engineers to build computer programs. 

Practice populates a software process model with the necessary technical and 

management how-to’s to get the job done. Practice transforms a haphazard unfo-

cused approach into something that is more organized, more effective, and more 

likely to achieve success. 

  Various aspects of software engineering practice will be examined throughout 

the remainder of this book. In this chapter, our focus is on principles and con-

cepts that guide software engineering practice in general. 

     7.1 SOFTWARE ENGINEERING KNOWLEDGE 

  In an editorial published in  IEEE Software , Steve McConnell [McC99] made the 

following comment:

 

 Many software practitioners think of software engineering knowledge almost exclu-

sively as knowledge of specifi c technologies: Java, Perl, html, C++, Linux, Windows 

NT, and so on. Knowledge of specifi c technology details is necessary to perform com-

puter programming. If someone assigns you to write a program in C++, you have to 

know something about C++ to get your program to work. 

 You often hear people say that software development knowledge has a 3-year half-

life: half of what you need to know today will be obsolete within 3 years. In the domain 

of technology-related knowledge, that’s probably about right. But there is another 

kind of software development knowledge—a kind that I think of as “software engi-

neering principles”—that does not have a three-year half-life. These software engi-

neering principles are likely to serve a professional programmer throughout his or 

her career.  

 McConnell goes on to argue that the body of software engineering knowledge 

(circa the year 2000) had evolved to a “stable core” that he estimated represented 

about “75 percent of the knowledge needed to develop a complex system.” But 

what resides within this stable core? 

 Over the intervening years, we have seen the evolution of new operat-

ing systems like iOS or Android and languages like Java, Python, and C#. 

  1  Some writers argue for one of these terms to the exclusion of the others. In reality, software 

engineering is all three. 

pre22126_ch07_103-130.indd   105pre22126_ch07_103-130.indd   105 13/12/13   6:11 PM13/12/13   6:11 PM



106 PART TWO  MODELING

But, as McConnell indicates, core principles—the elemental ideas that guide 

software engineers in the work that they do—still provide a foundation from 

which software engineering models, methods, and tools can be applied and 

evaluated. 

       7.2 CORE PRINCIPLES   

  Software engineering is guided by a collection of core principles that help in the 

application of a meaningful software process and the execution of effective soft-

ware engineering methods. At the process level, core principles establish a phil-

osophical foundation that guides a software team as it performs framework and 

umbrella activities, navigates the process fl ow, and produces a set of software 

engineering work products. At the level of practice, core principles establish a 

collection of values and rules that serve as a guide as you analyze a problem, 

design a solution, implement and test the solution, and ultimately deploy the 

software in the user community.  

 In Chapter 2, we identifi ed a set of general principles that span software en-

gineering process and practice: (1) provide value to end users, (2) keep it simple, 

(3) maintain the vision (of the product and the project), (4) recognize that others 

consume (and must understand) what you produce, (5) be open to the future, 

(6)  plan ahead for reuse, and (7) think! Although these general principles are 

important, they are characterized at such a high level of abstraction that they are 

sometimes diffi cult to translate into day-to-day software engineering practice. In 

the subsections that follow, we take a more detailed look at the core principles 

that guide process and practice. 

  7.2.1  Principles That Guide   Process   

 In Part 1 of this book we discussed the importance of the software process and 

described the many different process models that have been proposed for soft-

ware engineering work. Regardless of whether a model is linear or iterative, 

prescriptive or agile, it can be characterized using the generic process frame-

work that is applicable for all process models. The following set of core prin-

ciples can be applied to the framework, and by extension, to every software 

process.     

         Principle 1.   Be agile.Be agile.  Whether the process model you choose is prescrip-

tive or agile, the basic tenets of agile development should govern your 

approach. Every aspect of the work you do should emphasize economy 

of action—keep your technical approach as simple as possible, keep the 

work products you produce as concise as possible, and make decisions 

 locally whenever possible.  

   Every project and every 
team is unique. That 
means that you must 
adapt your process to 
best fi t your needs. 

 uote:

  “In theory there 
is no difference 
between theory 
and practice. But, in 
practice, there is.”  

Jan van de 
Snepscheut 

pre22126_ch07_103-130.indd   106pre22126_ch07_103-130.indd   106 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  107

       Principle 2.   Focus on quality at every step.Focus on quality at every step.  The exit condition for every 

process activity, action, and task should focus on the quality of the work 

product that has been produced.  

       Principle 3.   Be ready to adapt.Be ready to adapt.  Process is not a religious experience, and 

dogma has no place in it. When necessary, adapt your approach to con-

straints imposed by the problem, the people, and the project itself.  

       Principle 4.   Build an effective team.Build an effective team.  Software engineering process and 

 practice are important, but the bottom line is people. Build a self- organizing 

team that has mutual trust and respect.  2     

       Principle 5.   Establish mechanisms for communication and coordination.  Establish mechanisms for communication and coordination.  

Projects fail because important information falls into the cracks and/

or stakeholders fail to coordinate their efforts to create a successful end 

product. These are management issues and they must be addressed.     

       Principle 6.   Manage change.Manage change.  The approach may be either formal or infor-

mal, but mechanisms must be established to manage the way changes are 

requested, assessed, approved, and implemented.  

       Principle 7.   Assess risk.Assess risk.  Lots of things can go wrong as software is being 

developed. It’s essential that you establish contingency plans. Some of 

these contingency plans will form the basis for security engineering tasks 

(Chapter 27).  

       Principle 8.   Create work products that provide value for others.Create work products that provide value for others.  Create 

only those work products that provide value for other process activities, 

actions, or tasks. Every work product that is produced as part of software 

engineering practice will be passed on to someone else. A list of required 

functions and features will be passed along to the person (people) who will 

develop a design, the design will be passed along to those who generate 

code, and so on. Be sure that the work product imparts the necessary 

 information without ambiguity or omission.  

  Part 4 of this book focuses on project and process management issues and con-

siders various aspects of each of these principles in some detail. 

   7.2.2  Principles That Guide   Practice   

 Software engineering practice has a single overriding goal—to deliver on-time, 

high-quality, operational software that contains functions and features that 

meet the needs of all stakeholders. To achieve this goal, you should adopt a set 

of core principles that guide your technical work. These principles have merit 

regardless of the analysis and design methods that you apply, the construction 

techniques (e.g., programming language, automated tools) that you use, or the 

  uote: 

     “The truth of the 
matter is that you 
always know the 
right thing to do. 
The hard part is 
doing it.” 

 General H. 
Norman 

Schwarzkopf 

     2  The characteristics of effective software teams have been discussed in Chapter 6. 

pre22126_ch07_103-130.indd   107pre22126_ch07_103-130.indd   107 13/12/13   6:11 PM13/12/13   6:11 PM



108 PART TWO  MODELING

verifi cation and validation approach that you choose. The following set of core 

principles are fundamental to the practice of software engineering: 

        Principle 1.   Divide and conquer.Divide and conquer.  Stated in a more technical manner, analysis 

and design should always emphasize  separation of concerns  (SoCs). A large 

problem is easier to solve if it is subdivided into a collection of elements (or 

 concerns ). Ideally, each concern delivers distinct functionality that can be 

developed, and in some cases validated, independently of other concerns.  

       Principle 2.   Understand the use of abstraction.Understand the use of abstraction.  At its core, an abstraction 

is a simplifi cation of some complex element of a system used to communi-

cate meaning in a single phrase. When we use the abstraction  spreadsheet , 

it is assumed that you understand what a spreadsheet is, the general struc-

ture of content that a spreadsheet presents, and the typical functions that 

can be applied to it. In software engineering practice, you use many differ-

ent levels of abstraction, each imparting or implying meaning that must 

be communicated. In analysis and design work, a software team normally 

begins with models that represent high levels of abstraction (e.g., a spread-

sheet) and slowly refi nes those models into lower levels of abstraction (e.g., 

a  column  or the  SUM  function). 

    Joel Spolsky [Spo02] suggests that “all non-trivial abstractions, to some 

degree, are leaky.” The intent of an abstraction is to eliminate the need to 

communicate details. But sometimes, problematic effects precipitated by 

these details “leak” through. Without an understanding of the details, the 

cause of a problem cannot be easily diagnosed.  

       Principle 3.   Strive for consistency.Strive for consistency.  Whether it’s creating an analysis model, 

developing a software design, generating source code, or creating test 

cases, the principle of consistency suggests that a familiar context makes 

software easier to use. As an example, consider the design of a user in-

terface for a WebApp. Consistent placement of menu options, the use of a 

consistent color scheme, and the consistent use of recognizable icons all 

help to make the interface ergonomically sound.  

       Principle 4.   Focus on the transfer of information.Focus on the transfer of information.  Software is about infor-

mation transfer—from a database to an end user, from a legacy system to a 

WebApp, from an end user into a graphic user interface (GUI), from an op-

erating system to an application, from one software component to  another—

the list is almost endless. In every case, information fl ows across an interface, 

and as a consequence, there are opportunities for error, or omission, or am-

biguity. The implication of this principle is that you must pay special atten-

tion to the analysis, design, construction, and testing of interfaces.  

       Principle 5.   Build software that exhibits effective modularity.Build software that exhibits effective modularity.  Separation 

of concerns (Principle 1) establishes a philosophy for software.  Modularity  

provides a mechanism for realizing the philosophy. Any complex system 

pre22126_ch07_103-130.indd   108pre22126_ch07_103-130.indd   108 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  109

can be divided into modules (components), but good software engineer-

ing practice demands more. Modularity must be  effective . That is, each 

module should focus exclusively on one well-constrained aspect of the 

system—it should be cohesive in its function and/or constrained in the 

content it represents. Additionally, modules should be interconnected in 

a relatively simple manner—each module should exhibit low coupling to 

other modules, to data sources, and to other environmental aspects.       

         Principle 6.   Look for patterns.Look for patterns.  Brad Appleton [App00] suggests that:

 

     The goal of patterns within the software community is to create a body of 

 literature to help software developers resolve recurring problems encoun-

tered throughout all of software development. Patterns help create a shared 

language for communicating insight and experience about these problems and 

their solutions. Formally codifying these solutions and their relationships lets 

us successfully capture the body of knowledge which defi nes our understand-

ing of good architectures that meet the needs of their users.  

    The use of design patterns can be applied to wider systems engineering 

and systems integration problems, by allowing components in complex 

systems to evolve independently.  

       Principle 7.   When possible, represent the problem and its solution from When possible, represent the problem and its solution from 

a number of different perspectives.a number of different perspectives.  When a problem and its solution are 

examined from a number of different perspectives, it is more likely that 

greater insight will be achieved and that errors and omissions will be un-

covered. For example, a requirements model can be represented using a 

scenario-oriented viewpoint, a class-oriented viewpoint, or a behavioral 

viewpoint (Chapters 9 through 11). Each provides a different perspective 

of the problem and its requirements.  

       Principle 8.   Remember that someone will maintain the software.Remember that someone will maintain the software.  Over the 

long term, software will be corrected as defects are uncovered, adapted as 

its environment changes, and enhanced as stakeholders request more ca-

pabilities. These maintenance activities can be facilitated if solid software 

engineering practice is applied throughout the software process.       

  These principles are not all you’ll need to build high-quality software, but 

they do establish a foundation for every software engineering method discussed 

in this book. 

      7.3 PRINCIPLES THAT GUIDE EACH FRAMEWORK ACTIVITY 

  In the sections that follow we consider principles that have a strong bearing 

on the success of each generic framework activity defi ned as part of the soft-

ware process. In many cases, the principles that are discussed for each of the 

   Avoid tunnel vision by 
examining a problem 
from a number of 
different perspectives. 
You discover aspects 
that would haven been 
hidden otherwise. 

   Use patterns (Chap-
ter 16) to capture 
knowledge and expe-
rience for future gen-
erations of software 
engineers. 

pre22126_ch07_103-130.indd   109pre22126_ch07_103-130.indd   109 13/12/13   6:11 PM13/12/13   6:11 PM



110 PART TWO  MODELING

framework activities are a refi nement of the principles presented in Section 7.2. 

They are simply core principles stated at a lower level of abstraction. 

    7.3.1  Communication Principles   

 Before customer requirements can be analyzed, modeled, or specifi ed they must 

be gathered through the communication activity. A customer has a problem that 

may be amenable to a computer-based solution. You respond to the customer’s 

request for help. Communication has begun. But the road from communication 

to understanding is often full of potholes. 

 Effective communication (among technical peers, with the customer and other 

stakeholders, and with project managers) is among the most challenging activi-

ties that you will confront. In this context, we discuss communication principles 

as they apply to customer communication. However, many of the principles apply 

equally to all forms of communication that occur within a software project.     

         Principle 1.   Listen.Listen.  Try to focus on the speaker’s words, rather than for-

mulating your response to those words. Ask for clarifi cation if something 

is unclear, but avoid constant interruptions.  Never  become contentious in 

your words or actions (e.g., rolling your eyes or shaking your head) as a 

person is talking.  

    Principle 2.   Prepare before you communicate.Prepare before you communicate.  Spend the time to under-

stand the problem before you meet with others. If necessary, do some 

research to understand business domain jargon. If you have responsibility 

for conducting a meeting, prepare an agenda in advance of the meeting.  

       Principle 3.   Someone should facilitate the activity.Someone should facilitate the activity.  Every communication 

meeting should have a leader (a facilitator) to keep the conversation mov-

ing in a productive direction, (2) to mediate any confl ict that does occur, 

and (3) to ensure that other principles are followed.   

       Principle 4.   Face-to-face communication is best.Face-to-face communication is best.  But it usually works bet-

ter when some other representation of the relevant information is pres-

ent. For example, a participant may create a drawing or a “strawman” 

document that serves as a focus for discussion.  

       Principle 5.   Take notes and document decisions.Take notes and document decisions.  Things have a way of fall-

ing into the cracks. Someone participating in the communication should 

serve as a “recorder” and write down all important points and decisions.  

       Principle 6.   Strive for collaboration.Strive for collaboration.  Collaboration and consensus occur 

when the collective knowledge of members of the team is used to describe 

product or system functions or features. Each small collaboration serves to 

build trust among team members and creates a common goal for the team.  

       Principle 7.   Stay focused; modularize your discussion.Stay focused; modularize your discussion.  The more people 

are involved in any communication, the more likely that discussion will 

   Before communicating 
be sure you understand 
the point of view of 
the other party, know 
a bit about his or her 
needs, and then listen. 

  uote: 

     “Plain questions 
and plain answers 
make the shortest 
road to most 
perplexities.” 

 Mark Twain 

pre22126_ch07_103-130.indd   110pre22126_ch07_103-130.indd   110 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  111

bounce from one topic to the next. The facilitator should keep the conver-

sation modular, leaving one topic only after it has been resolved (however, 

see Principle 9).  

     Principle 8.   If something is unclear, draw a picture.If something is unclear, draw a picture.  Verbal communication 

goes only so far. A sketch or drawing can often provide clarity when words 

fail to do the job.       

       Principle 9.   (a) Once you agree to something, move on. (b) If you can’t (a) Once you agree to something, move on. (b) If you can’t 

agree to something, move on. (c) If a feature or function is unclear and agree to something, move on. (c) If a feature or function is unclear and 

cannot be clarifi ed at the moment, move on.cannot be clarifi ed at the moment, move on.  Communication, like any soft-

ware engineering activity, takes time. Rather than iterating endlessly, the 

people who participate should recognize that many topics require discus-

sion (see Principle 2) and that “moving on” is sometimes the best way to 

achieve communication agility.  

     Principle 10.   Negotiation is not a contest or a game. It works best when Negotiation is not a contest or a game. It works best when 

both parties win.both parties win.  There are many instances in which you and other stake-

holders must negotiate functions and features, priorities, and delivery 

dates. If the team has collaborated well, all parties have a common goal. 

Still, negotiation will  demand compromise from all parties.       

Listen.

Prepare before you communicate.

Someone should facilitate the activity.

Face-to-face communication is best.

Take notes and document decisions.

Strive for collaboration.

Stay focused; modularize your discussion.

 What 
happens if 

I can’t come to an 
agreement with 
the customer on 
some project-
related issue? 

?

  The Difference Between 
Customers and End Users 
 Software engineers communicate with many 

different stakeholders, but customers and end users have 
the most signifi cant impact on the technical work that 
follows. In some cases the customer and the end user are 
one and the same, but for many projects, the customer 
and the end user are different people, working for differ-
ent managers in different business organizations. 

 A  customer  is the person or group who (1) originally 
requested the software to be built, (2) defi nes overall 

business objectives for the software, (3) provides basic 
product requirements, and (4) coordinates funding for 
the project. In a product or system business, the customer 
is often the marketing department. In an information 
technology (IT) environment, the customer might be a 
business component or department. 

 An  end user  is the person or group who (1) will 
 actually use the software that is built to achieve some 
business purpose and (2) will defi ne operational 
 details of the software so the business purpose can 
be achieved. 

  INFO 

  Communication Mistakes   Communication Mistakes 

        The scene:  Software engineering 
team workspace  

       The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, 
 software team member.  

       The conversation:   

       Ed:  What have you heard about this  SafeHome  project?  

       Vinod:  The kick-off meeting is scheduled for next 
week.  

        SAFEHOME 

pre22126_ch07_103-130.indd   111pre22126_ch07_103-130.indd   111 13/12/13   6:11 PM13/12/13   6:11 PM



112 PART TWO  MODELING

     7.3.2  Planning Principles   

 The communication activity helps you to defi ne your overall goals and objectives 

(subject, of course, to change as time passes). However, understanding these 

goals and objectives is not the same as defi ning a plan for getting there. The 

planning activity encompasses a set of management and technical practices that 

enable the software team to defi ne a road map as it travels toward its strategic 

goal and tactical objectives. 

 Try as we might, it’s impossible to predict exactly how a software project will 

evolve. There is no easy way to determine what unforeseen technical problems 

will be encountered, what important information will remain undiscovered until 

late in the project, what misunderstandings will occur, or what business issues 

will change. And yet, a good software team must plan its approach. 

 There are many different planning philosophies.  3   Some people are “minimal-

ists,” arguing that change often obviates the need for a detailed plan. Others 

are “traditionalists,” arguing that the plan provides an effective road map and 

the more detail it has, the less likely the team will become lost. Still others are 

“agilists,” arguing that a quick “planning game” may be necessary, but that the 

road map will emerge as “real work” on the software begins.      

  What to do? On many projects, overplanning is time consuming and fruitless 

(too many things change), but underplanning is a recipe for chaos. Like most 

things in life, planning should be conducted in moderation, enough to provide 

  uote: 

  “In preparing 
for battle I have 
always found that 
plans are useless, 
but planning is 
indispensable.” 

 General Dwight 
D. Eisenhower 

 WebRef 
  An excellent repository 
of planning and project 
management informa-
tion can be found at 
  www.4pm.com/
repository.htm  . 

       Jamie:  I’ve already done a little bit of investigation, 
but it didn’t go well.  

       Ed:  “What do you mean?”  

       Jamie:  Well, I gave Lisa Perez a call. She’s the market-
ing honcho on this thing.  

       Vinod:  And . . . ?  

       Jamie:  I wanted her to tell me about  SafeHome  
 features and functions . . . that sort of thing. Instead, 
she began asking me questions about security systems, 
 surveillance systems . . . I’m no expert.  

       Vinod:  What does that tell you?  

       (Jamie shrugs)  

       Vinod:  That marketing will need us to act as consul-
tants and that we’d better do some homework on this 

product area before our kick-off meeting. Doug said 
that he wanted us to “collaborate” with our customer, so 
we’d better learn how to do that.  

       Ed:  Probably would have been better to stop by her 
offi ce. Phone calls just don’t work as well for this sort of 
thing.  

       Jamie:  You’re both right. We’ve got to get our act to-
gether or our early communications will be a struggle.  

       Vinod:  I saw Doug reading a book on “requirements 
engineering.” I’ll bet that lists some principles of good 
communication. I’m going to borrow it from him.  

       Jamie:  Good idea . . . then you can teach us.  

       Vinod (smiling):  Yeah, right.      

  3  A detailed discussion of software project planning and management is presented in Part 4 of 

this book. 

pre22126_ch07_103-130.indd   112pre22126_ch07_103-130.indd   112 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  113

useful guidance for the team—no more, no less. Regardless of the rigor with 

which planning is conducted, the following principles always apply: 

        Principle 1.   Understand the scope of the project.Understand the scope of the project.  It’s impossible to use 

a road map if you don’t know where you’re going. Scope provides the 

 software team with a destination.  

       Principle 2.   Involve stakeholders in the planning activity.Involve stakeholders in the planning activity.  Stakeholders 

defi ne priorities and establish project constraints. To accommodate these 

realities, software engineers must often negotiate order of delivery, time 

lines, and other project-related issues.  

       Principle 3.   Recognize that planning is iterative.Recognize that planning is iterative.  A project plan is never 

engraved in stone. As work begins, it is very likely that things will change. 

As a consequence, the plan must be adjusted to accommodate these 

changes. In addition, iterative, incremental process models dictate re-

planning after the delivery of each software increment based on feedback 

received from users.  

       Principle 4.   Estimate based on what you know.Estimate based on what you know.  The intent of estimation 

is to provide an indication of effort, cost, and task duration, based on the 

team’s current understanding of the work to be done. If information is 

vague or unreliable, estimates will be equally unreliable.   

       Principle 5.   Consider risk as you defi ne the plan.Consider risk as you defi ne the plan.  If you have identifi ed 

risks that have high impact and high probability, contingency planning is 

necessary. In addition, the project plan (including the schedule) should be 

adjusted to accommodate the likelihood that one or more of these risks 

will occur. Take into account the likely exposure due to losses or compro-

mises of project assets.  

       Principle 6.   Be realistic.Be realistic.  People don’t work 100 percent of every day. Noise 

always enters into any human communication. Omissions and ambiguity 

are facts of life. Change will occur. Even the best software engineers make 

mistakes. These and other realities should be considered as a project plan 

is established.       

         Principle 7.   Adjust granularity as you defi ne the plan. Adjust granularity as you defi ne the plan. Granularity  refers 

to the level of detail that is introduced as a project plan is developed. 

A “high-granularity” plan provides signifi cant work task detail that is 

planned over relatively short time increments (so that tracking and con-

trol occur frequently). A “low-granularity” plan provides broader work 

tasks that are planned over longer time periods. In general, granularity 

moves from high to low as the project time line moves away from the cur-

rent date. Over the next few weeks or months, the project can be planned 

in signifi cant detail. Activities that won’t occur for many months do not 

require high granularity (too much can change).  

  uote: 

     “Success is more 
a function of 
consistent common 
sense than it is of 
genius.” 

 An Wang 

   The term  granularity  
refers to the detail with 
which some element of 
planning is represented 
or conducted. 

pre22126_ch07_103-130.indd   113pre22126_ch07_103-130.indd   113 13/12/13   6:11 PM13/12/13   6:11 PM



114 PART TWO  MODELING

       Principle 8.   Defi ne how you intend to ensure quality.Defi ne how you intend to ensure quality.  The plan should 

identify how the software team intends to ensure quality. If technical 

reviews  4   are to be conducted, they should be scheduled. If pair program-

ming (Chapter 5) is to be used during construction, it should be explicitly 

 defi ned within the plan.   

       Principle 9.   Describe how you intend to accommodate change.Describe how you intend to accommodate change.  Even the 

best planning can be obviated by uncontrolled change. You should iden-

tify how changes are to be accommodated as software engineering work 

proceeds. For example, can the customer request a change at any time? If 

a change is requested, is the team obliged to implement it immediately? 

How is the impact and cost of the change assessed?  

       Principle 10.   Track the plan frequently and make adjustments as  required.Track the plan frequently and make adjustments as  required.  

Software projects fall behind schedule one day at a time. Therefore, 

it makes sense to track progress on a daily basis, looking for problem 

areas and situations in which scheduled work does not conform to ac-

tual work conducted. When slippage is encountered, the plan is adjusted 

accordingly.  

  To be most effective, everyone on the software team should participate in the 

planning activity. Only then will team members “sign up” to the plan. 

     7.3.3  Modeling Principles   

 We create models to gain a better understanding of the actual entity to be built. 

When the entity is a physical thing (e.g., a building, a plane, a machine), we can 

build a model that is identical in form and shape but smaller in scale. However, 

when the entity to be built is software, our model must take a different form. 

It must be capable of representing the information that software transforms, 

the architecture and functions that enable the transformation to occur, the fea-

tures that users desire, and the behavior of the system as the transformation 

is taking place. Models must accomplish these objectives at different levels of 

 abstraction—fi rst depicting the software from the customer’s viewpoint and later 

representing the software at a more technical level. 

      In software engineering work, two classes of models can be created: require-

ments models and design models.  Requirements models  (also called  analysis 

models ) represent customer requirements by depicting the software in three dif-

ferent domains: the information domain, the functional domain, and the behav-

ioral domain.  Design models  represent characteristics of the software that help 

practitioners to construct it effectively: the architecture, the user interface, and 

component-level detail. 

   Analysis models 
represent customer 
requirements. Design 
models provide a 
concrete specifi cation 
for the construction of 
the software. 

      4  Technical reviews are discussed in Chapter 20. 

pre22126_ch07_103-130.indd   114pre22126_ch07_103-130.indd   114 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  115

 In their book on agile modeling, Scott Ambler and Ron Jeffries [Amb02b] de-

fi ne a set of modeling principles  5   that are intended for those who use the agile 

process model (Chapter 5) but are appropriate for all software engineers who 

perform modeling action and tasks: 

         Principle 1.   The primary goal of the software team is to build software, not The primary goal of the software team is to build software, not 

create models.create models.  Agility means getting software to the customer in the fast-

est possible time. Models that make this happen are worth creating, but 

models that slow the process down or provide little new insight should be 

avoided.  

       Principle 2.   Travel light—don’t create more models than you need.Travel light—don’t create more models than you need.  Every 

model that is created must be kept up-to-date as changes occur. More 

importantly, every new model takes time that might otherwise be spent 

on construction (coding and testing). Therefore, create only those models 

that make it easier and faster to construct the software.       

         Principle 3.   Strive to produce the simplest model that will describe the Strive to produce the simplest model that will describe the 

problem or the software.problem or the software.  Don’t overbuild the software [Amb02b]. By keep-

ing models simple, the resultant software will also be simple. The result is 

software that is easier to integrate, easier to test, and easier to maintain 

(to change). In addition, simple models are easier for members of the 

software team to understand and critique, resulting in an ongoing form 

of feedback that optimizes the end result.  

       Principle 4.   Build models in a way that makes them amenable to change. Build models in a way that makes them amenable to change.  

Assume that your models will change, but in making this assumption don’t 

get sloppy. For example, since requirements will change, there is a ten-

dency to give requirements models short shrift. Why? Because you know 

that they’ll change anyway. The problem with this attitude is that without 

a reasonably complete requirements model, you’ll create a design (design 

model) that will invariably miss important functions and features.  

       Principle 5.   Be able to state an explicit purpose for each model that is Be able to state an explicit purpose for each model that is 

 created. created.  Every time you create a model, ask yourself why you’re doing so. 

If you can’t provide solid justifi cation for the existence of the model, don’t 

spend time on it.  

       Principle 6.   Adapt the models you develop to the system at hand.Adapt the models you develop to the system at hand.  It may 

be necessary to adapt model notation or rules to the application; for 

example, a video game application might require a different modeling 

technique than real-time, embedded software that controls an automobile 

engine.  

Defi ne how you intend to ensure quality.

Describe how you intend to accommodate change.

Track the plan frequently and make adjustments as  required.

   The intent of any 
model is to communi-
cate information. To 
accomplish this, use 
a consistent format. 
Assume that you won’t 
be there to explain the 
model. It should stand 
on its own. 

  5  The principles noted in this section have been abbreviated and rephrased for the purposes of 

this book. 

pre22126_ch07_103-130.indd   115pre22126_ch07_103-130.indd   115 13/12/13   6:11 PM13/12/13   6:11 PM



116 PART TWO  MODELING

       Principle 7.   Try to build useful models, but forget about building perfect Try to build useful models, but forget about building perfect 

models.models.  When building requirements and design models, a software en-

gineer reaches a point of diminishing returns. That is, the effort required 

to make the model absolutely complete and internally consistent is not 

worth the benefi ts of these properties. Are we suggesting that modeling 

should be sloppy or low quality? The answer is no. But modeling should be 

conducted with an eye to the next software engineering steps. Iterating 

endlessly to make a model “perfect” does not serve the need for agility.  

       Principle 8.   Don’t become dogmatic about the syntax of the model. If it Don’t become dogmatic about the syntax of the model. If it 

communicates content successfully, representation is secondary.communicates content successfully, representation is secondary.  Although 

everyone on a software team should try to use consistent notation during 

modeling, the most important characteristic of the model is to commu-

nicate information that enables the next software engineering task. If a 

model does this successfully, incorrect syntax can be forgiven.  

       Principle 9.   If your instincts tell you a model isn’t right even though it If your instincts tell you a model isn’t right even though it 

seems okay on paper, you probably have reason to be concerned.seems okay on paper, you probably have reason to be concerned.  If you 

are an experienced software engineer, trust your instincts. Software work 

teaches many lessons—some of them on a subconscious level. If something 

tells you that a design model is doomed to fail (even though you can’t 

prove it explicitly), you have reason to spend additional time examining 

the model or developing a different one.  

       Principle 10.   Get feedback as soon as you can.Get feedback as soon as you can.  Every model should be re-

viewed by members of the software team. The intent of these reviews is to 

provide feedback that can be used to correct modeling mistakes, change 

misinterpretations, and add features or functions that were inadvertently 

omitted.  

     Requirements modeling principles.     Over the past three decades, a large num-

ber of requirements modeling methods have been developed. Investigators have 

identifi ed requirements analysis problems and their causes and have developed 

a variety of modeling notations and corresponding sets of heuristics to overcome 

them. Each analysis method has a unique point of view. However, all analysis 

methods are related by a set of operational principles:  

        Principle 1.   The information domain of a problem must be represented and The information domain of a problem must be represented and 

understood.understood.  The  information domain  encompasses the data that fl ow into 

the system (from end users, other systems, or external devices), the data that 

fl ow out of the system (via the user interface, network interfaces, reports, 

graphics, and other means), and the data stores that collect and  organize 

persistent data objects (i.e., data that are maintained permanently).  

       Principle 2.   The functions that the software performs must be defi ned.  The functions that the software performs must be defi ned.  

Software functions provide direct benefi t to end users and also provide 

  uote: 

 “The engineer's 
fi rst problem 
in any design 
situation is to 
discover what the 
problem really is.” 

 Author unknown 

pre22126_ch07_103-130.indd   116pre22126_ch07_103-130.indd   116 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  117

internal support for those features that are user visible. Some functions 

transform data that fl ow into the system. In other cases, functions effect 

some level of control over internal software processing or external system 

elements. Functions can be described at many different levels of abstrac-

tion, ranging from a general statement of purpose to a detailed descrip-

tion of the processing elements that must be invoked.       

         Principle 3.   The behavior of the software (as a consequence of external The behavior of the software (as a consequence of external 

events) must be represented.events) must be represented.  The behavior of computer software is driven 

by its interaction with the external environment. Input provided by end 

users, control data provided by an external system, or monitoring data 

collected over a network all cause the software to behave in a specifi c way.  

       Principle 4.   The models that depict information, function, and behavior The models that depict information, function, and behavior 

must be partitioned in a manner that uncovers detail in a layered (or hi-must be partitioned in a manner that uncovers detail in a layered (or hi-

erarchical) fashion.erarchical) fashion.  Requirements modeling is the fi rst step in software 

engineering problem solving. It allows you to better understand the prob-

lem and establishes a basis for the solution (design). Complex problems 

are diffi cult to solve in their entirety. For this reason, you should use a 

divide-and-conquer strategy. A large, complex problem is divided into 

subproblems until each subproblem is relatively easy to understand. This 

concept is called  partitioning  or  separation of concerns,  and it is a key 

strategy in requirements modeling.  

       Principle 5.   The analysis task should move from essential information to-The analysis task should move from essential information to-

ward implementation detail.ward implementation detail.  Analysis modeling begins by describing the 

problem from the end user’s perspective. The “essence” of the problem 

is described without any consideration of how a solution will be imple-

mented. For example, a video game requires that the player “instruct” its 

protagonist on what direction to proceed as she moves into a dangerous 

maze. That is the essence of the problem. Implementation detail (nor-

mally described as part of the design model) indicates how the essence 

will be implemented. For the video game, voice input might be used. Al-

ternatively, a keyboard command might be typed, a game pad joystick (or 

mouse) might be pointed in a specifi c direction, a motion-sensitive device 

might be waved in the air, or a device that reads the player’s body move-

ments directly can be used.  

  By applying these principles, a software engineer approaches a problem sys-

tematically. But how are these principles applied in practice? This question will 

be answered in Chapters 8 through 11. 

     Design modeling principles.     The software design model is the equivalent of an 

architect’s plans for a house. It begins by representing the totality of the thing to 

be built (e.g., a three-dimensional rendering of the house) and slowly refi nes the 

Try to build useful models, but forget about building perfect 

models.

Don’t become dogmatic about the syntax of the model. If it 

communicates content successfully, representation is secondary.

If your instincts tell you a model isn’t right even though it 

seems okay on paper, you probably have reason to be concerned.

Get feedback as soon as you can.

The information domain of a problem must be represented and 

understood.

 The functions that the software performs must be defi ned. 

   Analysis modeling 
focuses on three 
attributes of software: 
information to be pro-
cessed, function to be 
delivered, and behavior 
to be exhibited. 

pre22126_ch07_103-130.indd   117pre22126_ch07_103-130.indd   117 13/12/13   6:11 PM13/12/13   6:11 PM



118 PART TWO  MODELING

Component-level design should be functionally independent  .  

Components should be loosely coupled to one another and to 

the external environment  .

Design representations (models) should be easily understand-

able.

 The design should be developed iteratively  .

Creation of a design model does not preclude an agile 

 approach  .

 WebRef 
 Insightful comments 
on the design process, 
along with a discussion 
of design aesthetics, 
can be found at 
  http://www.
gobookee.net/
search.php?
q=aabyan+
design+aesthetics  . 

  uote: 

 “See fi rst that 
the design is wise 
and just: that 
ascertained, pursue 
it resolutely; do 
not for one repulse 
forego the purpose 
that you resolved 
to effect.” 

 William 
Shakespeare 

thing to provide guidance for constructing each detail (e.g., the plumbing layout). 

Similarly, the design model that is created for software provides a variety of dif-

ferent views of the system.  

 There is no shortage of methods for deriving the various elements of a software 

design. Some methods are data driven, allowing the data structure to dictate 

the program architecture and the resultant processing components. Others are 

pattern driven, using information about the problem domain (the requirements 

model) to develop architectural styles and processing patterns. Still others are 

object oriented, using problem domain objects as the driver for the creation of 

data structures and the methods that manipulate them. Yet all embrace a set of 

design principles that can be applied regardless of the method that is used: 

             Principle 1.   Design should be traceable to the requirements model.Design should be traceable to the requirements model.  The 

requirements model describes the information domain of the problem, 

user-visible functions, system behavior, and a set of requirements classes 

that package business objects with the methods that service them. The 

design model translates this information into an architecture, a set of sub-

systems that implement major functions, and a set of components that are 

the realization of requirements classes. The elements of the design model 

should be traceable to the requirements model.  

       Principle 2.   Always consider the architecture of the system to be built.Always consider the architecture of the system to be built.  

 Software architecture (Chapter 13) is the skeleton of the system to be 

built. It affects interfaces, data structures, program control fl ow and be-

havior, the manner in which testing can be conducted, the maintainability 

of the resultant system, and much more. For all of these reasons, design 

should start with architectural considerations. Only after the architecture 

has been established should component-level issues be considered.  

       Principle 3.   Design of data is as important as design of processing Design of data is as important as design of processing  functions.functions.  

Data design is an essential element of architectural design. The manner in 

which data objects are realized within the design cannot be left to chance. 

A well-structured data design helps to simplify program fl ow, makes the 

design and implementation of software components easier, and makes 

overall processing more effi cient.  

       Principle 4.   Interfaces (both internal and external) must be designed with Interfaces (both internal and external) must be designed with 

care.care.  The manner in which data fl ows between the components of a sys-

tem has much to do with processing effi ciency, error propagation, and 

design simplicity. A well-designed interface makes integration easier and 

assists the tester in validating component functions.  

       Principle 5.   User interface design should be tuned to the needs of the end User interface design should be tuned to the needs of the end 

user.user.   However, in every case, it should stress ease of use.However, in every case, it should stress ease of use.  The user interface 

is the visible manifestation of the software. No matter how sophisticated 

its internal functions, no matter how comprehensive its data structures, 

pre22126_ch07_103-130.indd   118pre22126_ch07_103-130.indd   118 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  119

no matter how well designed its architecture, a poor interface design 

often leads to the perception that the software is “bad.”  

       Principle 6.   Component-level design should be functionally independent  .  Component-level design should be functionally independent  .  

Functional independence is a measure of the “single-mindedness” of a 

software component. The functionality that is delivered by a component 

should be cohesive—that is, it should focus on one and only one function 

or subfunction.  6     

       Principle 7.   Components should be loosely coupled to one another and to Components should be loosely coupled to one another and to 

the external environment  .the external environment  .  Coupling is achieved in many ways—via a com-

ponent interface, by messaging, through global data. As the level of cou-

pling increases, the likelihood of error propagation also increases and the 

overall maintainability of the software decreases. Therefore, component 

coupling should be kept as low as is reasonable.  

       Principle 8.   Design representations (models) should be easily understand-Design representations (models) should be easily understand-

able.able.  The purpose of design is to communicate information to practitioners 

who will generate code, to those who will test the software, and to others 

who may maintain the software in the future. If the design is diffi cult to un-

derstand, it will not serve as an effective communication medium.  

       Principle 9.   The design should be developed iteratively  . The design should be developed iteratively  .  With each iteration, 

the designer should strive for greater simplicity. Like almost all creative 

activities, design occurs iteratively. The fi rst iterations work to refi ne the 

design and correct errors, but later iterations should strive to make the 

design as simple as is possible.  

       Principle 10.   Creation of a design model does not preclude an agile Creation of a design model does not preclude an agile 

 approach  . approach  .  Some proponents of agile software development (Chapter 5) 

insist that the code is the only design documentation that is needed. Yet 

the purpose of a design model is to help others who must maintain and 

evolve the system. It is extremely diffi cult to understand either the higher 

level purpose of a code fragment or its interactions with other modules in 

a modern multithreaded run-time environment.    

 Although in-line code documentation can be useful, it is often diffi cult to keep 

code and code descriptions consistent. The design model provides benefi t because 

it is created at a level of abstraction that is stripped of unnecessary technical  detail 

and is closely coupled to the application concepts and requirements. 

 Complementary design information can incorporate a design rationale in-

cluding the descriptions of rejected architectural design alternatives. This in-

formation may be needed to help you see through the code forest. In addition, it 

can help maintain consistency when fi ner-grained design decisions are required. 

  uote: 

 “The differences 
are not minor—
they are rather 
like the differences 
between Salieri 
and Mozart. Study 
after study shows 
that the very best 
designers produce 
structures that are 
faster, smaller, 
simpler, clearer, 
and produced with 
less effort.” 

 Frederick P. 
Brooks 

      6  Additional discussion of cohesion can be found in Chapter 12. 

pre22126_ch07_103-130.indd   119pre22126_ch07_103-130.indd   119 13/12/13   6:11 PM13/12/13   6:11 PM



120 PART TWO  MODELING

This type of architectural specifi cation can also help diverse system stakehold-

ers communicate with the design team and each other. 

 With the exception of relatively small systems that can be prototyped and ex-

perimented with quickly, doing high-level design using only source code is un-

wise. Agile design documentation keeps step with design and development. To 

avoid waste, the effort expended on these documents should be proportional to 

the stability of the design. In the early stages of design, descriptions must be ad-

equate to communicate with stakeholders. The more stable the design the more 

extensive the descriptions. One approach might be to use design modeling tools 

that produce executable models that can be evaluated in the usual agile manner. 

 When these design principles are properly applied, you create a design that 

exhibits both external and internal quality factors [Mye78].  External quality fac-

tors  are those properties of the software that can be readily observed by users 

(e.g., speed, reliability, correctness, usability).  Internal quality factors  are of 

importance to software engineers. They lead to a high-quality design from the 

technical perspective. To achieve internal quality factors, the designer must un-

derstand basic design concepts (Chapter 12). 

     Living modeling principles.     Breu [Bre10] describes  living models  as a paradigm 

that combines model-based development  7   with the management and operation 

of service-oriented systems.  8   Living models support cooperation among all proj-

ect stakeholders by providing appropriate model-based abstractions that de-

scribe interdependencies among system elements. There are eight principles 

that are crucial for establishing a living models environment: 

          Principle 1.   Stakeholder-centric models should target specifi c stakehold-Stakeholder-centric models should target specifi c stakehold-

ers and their tasks.ers and their tasks.  This means that stakeholders are allowed to operate 

on the models at a level of abstraction that is appropriate, and that lower 

levels are hidden from them. For example, the CIO is concerned with 

business processes while a tester needs to formulate test cases at the 

 requirements level.  

       Principle 2.   Models and code should be closely coupled.Models and code should be closely coupled.  If an operable 

system is the main target, any model that does not refl ect the operable 

system is useless. This means that the code and model need to be in con-

sistent states. Tools can be used to support linking models and the code.  

       Principle 3.   Bidirectional information fl ow should be established between Bidirectional information fl ow should be established between 

models and code.models and code.  Changes within the model, code, and operable system 

must be allowed to propagate when they occur. Traditionally, changes 

  7   Model-based development  (also called  model-driven engineering ) builds domain models that 

depict specifi c aspects of an application domain. 

  8  A  service-oriented system  packages software functionality in the form of services that are ac-

cessible through a networked infrastructure. 

pre22126_ch07_103-130.indd   120pre22126_ch07_103-130.indd   120 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  121

made at the code level are refl ected in the running system. It is also im-

portant to have those code changes refl ected in the model.  

       Principle 4.   A common system view should be created.A common system view should be created.  A system meta 

model defi nes business processes and information objects in the IT man-

agement layer, running services and physical nodes in the systems oper-

ations layer, and a requirements view in the software engineering layer. 

The associations in the system meta model describe dependencies from 

business processes and business objects to the technology layer.  

       Principle 5.   The information in the model must be persistent to allow track-The information in the model must be persistent to allow track-

ing of system changes.ing of system changes.  The system model describes the current state of 

the system at all levels of abstraction. System evolution may be described 

and documented as a sequence of system model snapshots.  

       Principle 6.   Information consistency across all levels of the model must be Information consistency across all levels of the model must be 

verifi ed.verifi ed.  Model constraint checking and state information retrieval are 

two important services required to support stakeholder decision making. 

For example, a software architect may need to check to see that each ser-

vice at the requirements level has a corresponding service at the architec-

ture level.  

       Principle 7.   Each model element has assigned stakeholder rights and  Each model element has assigned stakeholder rights and 

 responsibilities. responsibilities.  Each stakeholder is responsible for an identifi ed subset of 

model elements. Each model subset is a stakeholder’s domain. This means 

that each model element has access to information describing the actions 

each stakeholder is able to perform on the element.  

       Principle 8.   The states of various model elements should be represented. The states of various model elements should be represented.  

Just as the state of computation is defi ned by the values held by key vari-

ables during run time, the state of each model element can be defi ned by 

the values assigned to its attributes.    

    7.3.4  Construction Principles 

 The construction activity encompasses a set of coding and testing tasks that lead 

to operational software that is ready for delivery to the customer or end user. 

In modern software engineering work, coding may be (1) the direct creation of 

programming language source code (e.g., Java), (2) the automatic generation of 

source code using an intermediate designlike representation of the component to 

be built (e.g., Enterprise Architect),  9   or (3) the automatic generation of  executable 

code using a fourth-generation programming language (e.g., Visual C#). 

Stakeholder-centric models should target specifi c stakehold-

ers and their tasks.

Models and code should be closely coupled.

Bidirectional information fl ow should be established between 

models and code.

  uote: 

 “For much of 
my life, I have 
been a software 
voyeur, peeking 
furtively at other 
people's dirty code. 
Occasionally, I 
fi nd a real jewel, 
a well-structured 
program written in 
a consistent style, 
free of kludges, 
developed so that 
each component 
is simple and 
organized, and 
designed so that 
the product is easy 
to change.” 

 David Parnas 

  9  Enterprise Architect is tool created by Sparx Systems  http://www.sparxsystems.com/products/

ea/index.html  

pre22126_ch07_103-130.indd   121pre22126_ch07_103-130.indd   121 13/12/13   6:11 PM13/12/13   6:11 PM



122 PART TWO  MODELING

  The initial focus of testing is at the component level, often called  unit testing.  

Other levels of testing include (1)  integration testing  (conducted as the system 

is constructed), (2)  validation testing  that assesses whether requirements have 

been met for the complete system (or software increment), and (3)  acceptance 

testing  that is conducted by the customer in an effort to exercise all required 

features and functions. The following set of fundamental principles and concepts 

are applicable to coding and testing.     

     Coding principles.     The principles that guide the coding task are closely aligned 

with programming style, programming languages, and programming methods. 

However, there are a number of fundamental principles that can be stated: 

  Preparation Principles:    Before you write one line of code, be sure you  

   •    Understand of the problem you’re trying to solve.  

   •    Understand basic design principles and concepts.  

   •    Pick a programming language that meets the needs of the software to be 

built and the environment in which it will operate.  

   •    Select a programming environment that provides tools that will make 

your work easier.  

   •    Create a set of unit tests that will be applied once the component you code 

is completed.    

  Coding Principles:    As you begin writing code, be sure you  

   •    Constrain your algorithms by following structured programming [Boh00] 

practice.  

   •    Consider the use of pair programming.  

   •    Select data structures that will meet the needs of the design.  

   •    Understand the software architecture and create interfaces that are 

 consistent with it.  

   •    Keep conditional logic as simple as possible.  

   •    Create nested loops in a way that makes them easily testable.  

   •    Select meaningful variable names and follow other local coding standards.  

   •    Write code that is self-documenting.  

   •    Create a visual layout (e.g., indentation and blank lines) that aids 

understanding.  

   Validation Principles:    After you’ve completed your fi rst coding pass, be sure you  

   •    Conduct a code walkthrough when appropriate.  

   •    Perform unit tests and correct errors you’ve uncovered.  

   •    Refactor the code.       

   Avoid developing an 
elegant program that 
solves the wrong 
problem. Pay particular 
attention to the fi rst 
preparation principle. 

pre22126_ch07_103-130.indd   122pre22126_ch07_103-130.indd   122 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  123

  More books have been written about programming (coding) and the princi-

ples and concepts that guide it than about any other topic in the software pro-

cess. Books on the subject include early works on programming style [Ker78], 

practical software construction [McC04], programming pearls [Ben99], the art of 

programming [Knu98], pragmatic programming issues [Hun99], and many, many 

other subjects. A comprehensive discussion of these principles and concepts is 

beyond the scope of this book. If you have further interest, examine one or more 

of the references noted.     

      Testing principles.     In a classic book on software testing, Glen Myers [Mye79] 

states a number of rules that can serve well as testing objectives:

    •    Testing is a process of executing a program with the intent of fi nding an 

error.  

   •    A good test case is one that has a high probability of fi nding an as-yet un-

discovered error.  

   •    A successful test is one that uncovers an as-yet-undiscovered error.    

 These objectives imply a dramatic change in viewpoint for some software de-

velopers. They move counter to the commonly held view that a successful test is 

one in which no errors are found. Your objective is to design tests that systemat-

ically uncover different classes of errors and to do so with a minimum amount of 

time and effort.     

  If testing is conducted successfully (according to the objectives stated pre-

viously), it will uncover errors in the software. As a secondary benefi t, testing 

demonstrates that software functions appear to be working according to specifi -

cation, and that behavioral and performance requirements appear to have been 

met. In addition, the data collected as testing is conducted provide a good indica-

tion of software reliability and some indication of software quality as a whole. But 

testing cannot show the absence of errors and defects; it can show only that soft-

ware errors and defects are present. It is important to keep this (rather gloomy) 

statement in mind as testing is being conducted. 

 Davis [Dav95b] suggests a set of testing principles  10   that have been adapted 

for use in this book. In addition, Everett and Meyer [Eve09] suggest additional 

principles: 

         Principle 1.   All tests should be traceable to customer requirements.All tests should be traceable to customer requirements.   11     The 

objective of software testing is to uncover errors. It follows that the most 

   In a broader software 
design context, recall 
that we begin “in the 
large” by focusing on 
software architecture 
and end “in the small” 
focusing on compo-
nents. For testing, 
we simply reverse 
the focus and test our 
way out. 

 WebRef 
 A wide variety of links 
to coding standards 
can be found at 
  http://www
.literateprogramming
.com/links.html  . 

 What are the 
objectives of 

software testing? 
?

  10  Only a small subset of Davis’s testing principles are noted here. For more information, see 

[Dav95b]. 

      11  This principle refers to  functional tests , that is, tests that focus on requirements.  Structural 

tests  (tests that focus on architectural or logical detail) may not address specifi c requirements 

directly. 

pre22126_ch07_103-130.indd   123pre22126_ch07_103-130.indd   123 13/12/13   6:11 PM13/12/13   6:11 PM



124 PART TWO  MODELING

severe defects (from the customer’s point of view) are those that cause the 

program to fail to meet its requirements.   

       Principle 2.   Tests should be planned long before testing begins.Tests should be planned long before testing begins.  Test plan-

ning (Chapter 22) can begin as soon as the requirements model is com-

plete. Detailed defi nition of test cases can begin as soon as the design 

model has been solidifi ed. Therefore, all tests can be planned and de-

signed before any code has been generated.  

       Principle 3.   The Pareto principle applies to software testing.The Pareto principle applies to software testing.  In this context 

the Pareto principle implies that 80 percent of all errors uncovered during 

testing will likely be traceable to 20 percent of all program components. 

The problem, of course, is to isolate these suspect components and to 

thoroughly test them.  

       Principle 4.   Testing should begin “in the small” and progress toward test-Testing should begin “in the small” and progress toward test-

ing “in the large.”ing “in the large.”  The fi rst tests planned and executed generally focus on 

individual components. As testing progresses, focus shifts in an attempt 

to fi nd errors in integrated clusters of components and ultimately in the 

entire system.  

       Principle 5.   Exhaustive testing is not possible.Exhaustive testing is not possible.  The number of path permu-

tations for even a moderately sized program is exceptionally large. For 

this reason, it is impossible to execute every combination of paths during 

testing. It is possible, however, to adequately cover program logic and 

to ensure that all conditions in the component-level design have been 

exercised.  

       Principle 6.   Apply to each module in the system a testing effort Apply to each module in the system a testing effort 

 commensurate with its expected fault density. commensurate with its expected fault density.  These are often the newest 

modules or the ones that are least understood by the developers.  

       Principle 7.   Static testing techniques can yield high results.Static testing techniques can yield high results.  More than 85% 

of software defects originated in the software documentation (require-

ments, specifi cations, code walkthroughs, and user manuals) [Jon91]. 

There may be value in testing the system documentation.  

       Principle 8.   Track defects and look for patterns in defects uncovered by Track defects and look for patterns in defects uncovered by 

testing.testing.  The total defects uncovered is a good indicator of software quality. 

The types of defects uncovered can be a good measure of software stabil-

ity. Patterns of defects found over time can forecast numbers of expected 

defects.  

       Principle 9.   Include test cases that demonstrate software is behaving cor-Include test cases that demonstrate software is behaving cor-

rectly.rectly.  As software components are being maintained or adapted, unex-

pected interactions cause unintended side effects in other components. 

It is important to have a set of regression test cases (Chapter 22) ready to 

check system behavior after changes are applied to a software product.  

pre22126_ch07_103-130.indd   124pre22126_ch07_103-130.indd   124 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  125

       7.3.5  Deployment Principles   

 As we noted in Part 1 of this book, the deployment activity encompasses three ac-

tions: delivery, support, and feedback. Because modern software process models 

are evolutionary or incremental in nature, deployment happens not once, but a 

number of times as software moves toward completion. Each delivery cycle pro-

vides the customer and end users with an operational software increment that 

provides usable functions and features. Each support cycle provides documen-

tation and human assistance for all functions and features introduced during all 

deployment cycles to date. Each feedback cycle provides the software team with 

important guidance that results in modifi cations to the functions, features, and 

approach taken for the next increment. 

      The delivery of a software increment represents an important milestone for 

any software project. A number of key principles should be followed as the team 

prepares to deliver an increment: 

        Principle 1.   Customer expectations for the software must be managed.Customer expectations for the software must be managed.  Too 

often, the customer expects more than the team has promised to deliver, 

and disappointment occurs immediately. This results in feedback that is 

not productive and ruins team morale. In her book on managing expecta-

tions, Naomi Karten [Kar94] states: “The starting point for managing ex-

pectations is to become more conscientious about what you communicate 

and how.” She suggests that a software engineer must be careful about 

sending the customer confl icting messages (e.g., promising more than 

you can reasonably deliver in the time frame provided or delivering more 

than you promise for one software increment and then less than promised 

for the next).  

       Principle 2.   A complete delivery package should be assembled and tested.A complete delivery package should be assembled and tested.  

All executable software, support data fi les, support documents, and other 

relevant information should be assembled and thoroughly beta-tested with 

actual users. All installation scripts and other operational features should 

be thoroughly exercised in all possible computing confi gurations (i.e., hard-

ware, operating systems, peripheral devices, networking arrangements).  

       Principle 3.   A support regime must be established before the software is A support regime must be established before the software is 

 delivered. delivered.  An end user expects responsiveness and accurate information 

when a question or problem arises. If support is ad hoc, or worse, nonex-

istent, the customer will become dissatisfi ed immediately. Support should 

be planned, support materials should be prepared, and appropriate 

 record-keeping mechanisms should be established so that the software team 

can conduct a categorical assessment of the kinds of support requested.  

       Principle 4.   Appropriate instructional materials must be provided to Appropriate instructional materials must be provided to 

end users.end users.  The software team delivers more than the software itself. 

   Be sure that your 
customer knows what 
to expect before a 
software increment is 
 delivered. Otherwise, 
you can bet the 
 customer will expect 
more than you deliver. 

pre22126_ch07_103-130.indd   125pre22126_ch07_103-130.indd   125 13/12/13   6:11 PM13/12/13   6:11 PM



126 PART TWO  MODELING

Appropriate training aids (if required) should be developed; troubleshoot-

ing guidelines should be provided, and when necessary, a “what’s different 

about this software increment” description should be published.  12     

       Principle 5.   Buggy software should be fi xed fi rst, delivered later.Buggy software should be fi xed fi rst, delivered later.  Under 

time pressure, some software organizations deliver low-quality incre-

ments with a warning to the customer that bugs “will be fi xed in the next 

release.” This is a mistake. There’s a saying in the software business: 

 “Customers will forget you delivered a high-quality product a few days 

late, but they will never forget the problems that a low-quality product 

caused them. The software reminds them every day.”  

  The delivered software provides benefi t for the end user, but it also pro-

vides useful feedback for the software team. As the increment is put into use, 

end users should be encouraged to comment on features and functions, ease 

of use, reliability, security concerns, and any other characteristics that are 

appropriate.  

      7.4 WORK PRACTICES 

  Iskold [Isk08] writes that the quality of software has become the competitive 

differentiator between software companies. As you learned in Chapter 6, the 

human aspects of software engineering are as important as any other technol-

ogy area. For that reason, it is interesting to examine the traits and work habits 

that seem to be shared among successful software engineers. Among the more 

important are a desire to continuously refactor the design and code, actively 

use proven design patterns, acquire reusable components whenever possible, 

focus on usability, develop maintainable applications, apply the programming 

language that is best for the application, and build software using proven design 

and testing practices. 

 Beyond basic traits and work habits, Isklod [Isk08] suggests 10 concepts that 

transcend programming languages and specifi c technologies. Some of these 

concepts form the prerequisite knowledge needed to appreciate the role of soft-

ware engineering in the software process. 

     1.   Interfaces.  Simple, familiar interfaces are less error-prone than complex 

or unique interfaces.  

    2.   Conventions and templates.  Naming conventions and software templates 

are a good way to communicate with a larger number of developers and 

end users.  

  uote: 

 “The ideal engineer 
is a composite . . . 
He is not a 
scientist, he is not a 
mathematician, he 
is not a sociologist 
or a writer; but 
he may use the 
knowledge and 
techniques of any 
or all of these 
disciplines in 
solving engineering 
problems.” 

 N. W. Dougherty 

      12  During the communication activity, the software team should determine what types of help 

materials users want. 

pre22126_ch07_103-130.indd   126pre22126_ch07_103-130.indd   126 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  127

    3.   Layering.  Layering is the key to both data and programming abstractions. 

It allows a separation of design concepts and implementation details and, 

at the same time, reduces the complexity of the software design.  

    4.   Algorithmic complexity.  Software engineers must be able to appreciate 

the elegance and performance characteristics of algorithms, even when 

selecting among library routines. Writing simple and readable code is 

often a good way to ensure the time and space effi ciency of an application.  

    5.   Hashing.  Hashes are important for effi cient storage and retrieval of data. 

Hashes can also be important as a means to allocate data evenly among 

computers in a cloud database.  

    6.   Caching.  Software engineers need to appreciate the trade-offs associated 

with providing quick access to a subset of data by storing it in computer 

memory and not secondary storage devices. Thrashing may occur when 

mutually dependent data are not in memory at the same time. Applica-

tions can slow down when new information needs to be brought into mem-

ory (e.g., playing cut scenes in a real-time video game).  

    7.   Concurrency.  The widespread availability of multiprocessor computers 

and multithreaded programming environments creates software engi-

neering challenges.  

    8.   Cloud computing.  Cloud computing provides powerful and readily 

 accessible web services and data to computing platforms of all types. 

 9.   Security.  Protecting the confi dentiality and integrity of system assets 

should be the concern of every computing professional.  

    10.   Relational databases.  Relational databases are the cornerstone of infor-

mation storage and retrieval. It is important to know how to minimize 

data redundancy and to maximize the speed of retrieval.  

  In many cases a few good software engineers working “smart” can be more 

productive than groups many times their size. A good software engineer must 

know what principles, practices, and tools to use, when to use them, and why 

they are needed. 

       7.5 SUMMARY 

 Software engineering practice encompasses principles, concepts, methods, and 

tools that software engineers apply throughout the software process. Every soft-

ware engineering project is different. Yet, a set of generic principles apply to the 

process as a whole and to the practice of each framework activity regardless of 

the project or the product. 

 A set of core principles help in the application of a meaningful software pro-

cess and the execution of effective software engineering methods. At the process 

pre22126_ch07_103-130.indd   127pre22126_ch07_103-130.indd   127 13/12/13   6:11 PM13/12/13   6:11 PM



128 PART TWO  MODELING

level, core principles establish a philosophical foundation that guides a software 

team as it navigates through the software process. At the level of practice, core 

principles establish a collection of values and rules that serve as a guide as you 

analyze a problem, design a solution, implement and test the solution, and ulti-

mately deploy the software in the user community. 

 Communication principles focus on the need to reduce noise and improve 

bandwidth as the conversation between developer and customer progresses. 

Both parties must collaborate for the best communication to occur. 

 Planning principles provide guidelines for constructing the best map for the 

journey to a completed system or product. The plan may be designed solely for 

a single software increment, or it may be defi ned for the entire project. Regard-

less, it must address what will be done, who will do it, and when the work will be 

completed. 

 Modeling encompasses both analysis and design, describing representations 

of the software that progressively become more detailed. The intent of the mod-

els is to solidify understanding of the work to be done and to provide technical 

guidance to those who will implement the software. Modeling principles serve 

as a foundation for the methods and notation that are used to create representa-

tions of the software. 

 Construction incorporates a coding and testing cycle in which source code for a 

component is generated and tested. Coding principles defi ne generic actions that 

should occur before code is written, while it is being created, and after it has been 

completed. Although there are many testing principles, only one is dominant: 

testing is a process of executing a program with the intent of fi nding an error. 

 Deployment occurs as each software increment is presented to the customer 

and encompasses delivery, support, and feedback. Key principles for delivery 

consider managing customer expectations and providing the customer with 

appropriate support information for the software. Support demands advance 

preparation. Feedback allows the customer to suggest changes that have busi-

ness value and provide the developer with input for the next iterative software 

engineering cycle. 

     PROBLEMS AND POINTS TO PONDER 
    7.1.  Since a focus on quality demands resources and time, is it possible to be agile and still 
maintain a quality focus?  

   7.2.  Of the eight core principles that guide process (discussed in Section 7.2.1), which do you 
believe is most important?  

   7.3.  Describe the concept of  separation of concerns  in your own words.  

   7.4.  An important communication principle states, “Prepare before you communicate.” 
How should this preparation manifest itself in the early work that you do? What work prod-
ucts might result as a consequence of early preparation?  

pre22126_ch07_103-130.indd   128pre22126_ch07_103-130.indd   128 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 7  PRINCIPLES THAT GUIDE PRACTICE  129

   7.5.  Do some research on “facilitation” for the communication activity (use the references 
provided or others) and prepare a set of guidelines that focus solely on facilitation.  

   7.6.  How does agile communication differ from traditional software engineering communi-
cation? How is it similar?  

   7.7.  Why is it necessary to “move on”?  

   7.8.  Do some research on “negotiation” for the communication activity and prepare a set of 
guidelines that focus solely on negotiation.  

   7.9.  Describe what  granularity  means in the context of a project schedule.  

   7.10.  Why are models important in software engineering work? Are they always necessary? 
Are there qualifi ers to your answer about necessity?  

   7.11.  What three “domains” are considered during requirements modeling?  

   7.12.  Try to add one additional principle to those stated for coding in Section 7.3.4.  

   7.13.  What is a successful test?  

   7.14.  Do you agree or disagree with the following statement: “Since we deliver multi-
ple increments to the customer, why should we be concerned about quality in the early 
 increments—we can fi x problems in later iterations.” Explain your answer.  

   7.15.  Why is feedback important to the software team?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Customer communication is a critically important activity in software engineering, yet few 
practitioners spend any time reading about it. Withall ( Software Requirements Patterns,  
 Microsoft Press, 2007) presents a variety of useful patterns that address communications 
problems. van Lamsweerde ( Requirement Engineering: From System Goals to UML Models 

to Software Specifi cations,  Wiley, 2009) and Sutliff ( User-Centered Requirements  Engineering,  
Springer, 2002) focuses heavily on communications-related challenges. 

   Books by Karten ( Changing How You Manage and Communicate Change,  IT Governace 
Publishing, 2009), Weigers ( Software Requirements,  2nd ed., Microsoft Press, 2003), Pardee 
( To Satisfy and Delight Your Customer,  Dorset House, 1996), and Karten [Kar94] provide 
much insight into methods for effective customer interaction. Although their book does not 
focus on software, Hooks and Farry ( Customer-Centered Products , American Management 
Association, 2000) present useful generic guidelines for customer communication. Young 
( Project Requirements: A Guide to Best Practices,  Management Concepts, 2006 and  Effective 

Requirements Practices,  Addison-Wesley, 2001) emphasizes a “joint team” of customers and 
developers who develop requirements collaboratively. Hull, Jackson, and Dick ( Require-

ments Engineering,  Springer, 3rd ed., 2010) and Somerville and Kotonya ( Requirements 

Engineering: Processes and Techniques,  Wiley, 1998) discuss “elicitation” concepts and tech-
niques and other requirements engineering principles. 

   Communication and planning concepts and principles are considered in many project 
management books. Useful project management offerings include books by Juli ( Leadership 

Principles for Project Success,  CRC Press, 2012), West and his colleagues ( Project Manage-

ment for IT Related Projects,  British Informatics Society, 2012), Wysocki ( Effective Project 

Management: Agile, Adaptive, Extreme,  5th ed., Wiley, 2009), Hughes ( Software Project Man-

agement,  5th ed., McGraw-Hill, 2009), Bechtold ( Essentials of Software Project Management,  
2nd ed., Management Concepts, 2007), Leach ( Lean Project Management: Eight Principles for 

Success,  BookSurge Publishing, 2006), and Stellman and Greene ( Applied Software Project 

Management,  O'Reilly Media, 2005). 
   Davis [Dav95b] has compiled an excellent collection of software engineering principles. 

In addition, virtually every book on software engineering contains a useful discussion of 

pre22126_ch07_103-130.indd   129pre22126_ch07_103-130.indd   129 13/12/13   6:11 PM13/12/13   6:11 PM



130 PART TWO  MODELING

concepts and principles for analysis, design, and testing. Among the most widely used of-
ferings (in addition to this book!) are: 

   Abran, A., and J. Moore,  SWEBOK: Guide to the Software Engineering Body of Knowl-

edge,  IEEE, 2002.  13    

   Pfl eeger, S.,  Software Engineering: Theory and Practice,  4th ed., Prentice Hall, 2009. 

   Schach, S.,  Object-Oriented and Classical Software Engineering,  McGraw-Hill, 8th ed., 
2010. 

   Sommerville, I.,  Software Engineering,  9th ed., Addison-Wesley, 2010. 

   These books also present detailed discussion of modeling and construction principles. 
   Modeling principles are considered in many books dedicated to requirements analy-

sis and/or software design. Books by Lieberman ( The Art of Software Modeling,  Auerbach, 
2007), Rosenberg and Stephens ( Use Case Driven Object Modeling with UML: Theory and 

Practice,  Apress, 2007), Roques ( UML in Practice,  Wiley, 2004), Penker and Eriksson  ( Business 

Modeling with UML: Business Patterns at Work,  Wiley, 2001) discuss modeling principles and 
methods. 

   Norman’s ( The Design of Everyday Things,  Basic Books, 2002) is must reading for every 
software engineer who intends to do design work. Winograd and his colleagues ( Bringing 

Design to Software,  Addison-Wesley, 1996) have edited an excellent collection of essays 
that address practical issues for software design. Constantine and Lockwood ( Software for 

Use,  Addison-Wesley, 1999) present the concepts associated with “user-centered design.” 
Tognazzini ( Tog on Software Design,  Addison-Wesley, 1995) presents a worthwhile philo-
sophical discussion of the nature of design. Stahl and his colleagues ( Model-Driven Software 

Development: Technology, Engineering,  Wiley, 2006) discuss the principles of model-driven 
development. Halladay ( Principle-Based Refactoring,  Principle Publishing, 2012) considers 
eight fundamental design principles and identifi es 50 rules for refactoring. 

   Hundreds of books address one or more elements of the construction activity. Kernighan 
and Plauger [Ker78] have written a classic text on programming style, McConnell [McC04] 
presents pragmatic guidelines for practical software construction, Bentley [Ben99] suggests 
a wide variety of programming pearls, Knuth [Knu98] has written a classic three-volume 
series on the art of programming, and Hunt [Hun99] suggests pragmatic programming 
guidelines. 

   Myers and his colleagues ( The Art of Software Testing,  3rd ed., Wiley, 2011) have devel-
oped a major revision of his classic text and discuss many important testing principles. 
Books by  How Google Tests Software,  Addison-Wesley, 2012), Perry ( Effective Methods for 

Software Testing,  3rd ed., Wiley, 2006), and Whittaker ( How to Break Software,  Addison- 
Wesley, 2002), Kaner and his colleagues ( Lessons Learned in Software Testing,  Wiley, 2001), 
and Marick ( The Craft of Software Testing,  Prentice-Hall, 1997) each present important test-
ing concepts and principles and much pragmatic guidance. 

   A wide variety of information sources on software engineering practice are available on 
the Internet. An up-to-date list of World Wide Web references that are relevant to software 
engineering practice can be found at the SEPA website:  www.mhhe.com/pressman .     

  13  Available free of charge at  http://www.computer.org/portal/web/swebok/v3guide  

pre22126_ch07_103-130.indd   130pre22126_ch07_103-130.indd   130 13/12/13   6:11 PM13/12/13   6:11 PM



131

  Understanding the requirements of a problem is among the most diffi -

cult tasks that face a software engineer. When you fi rst think about it, 

developing a clear understanding of requirements doesn’t seem that 

hard. After all, doesn’t the customer know what is required? Shouldn’t the 

end users have a good understanding of the features and functions that will 

provide benefi t? Surprisingly, in many instances the answer to these ques-

tions is “no.” And even if customers and end users are explicit in their needs, 

those needs will change throughout the project. 

 In the forward to a book by Ralph Young [You01] on effective requirements 

practices, one of us [RSP] wrote:

  It’s your worst nightmare. A customer walks into your offi ce, sits down, looks you 

straight in the eye, and says, “I know you think you understand what I said, but 

what you don’t understand is what I said is not what I meant.” Invariably, this hap-

pens late in the project, after deadline commitments have been made, reputations 

are on the line, and serious money is at stake. 

 UNDERSTANDING
REQUIREMENTS 

   K E Y 
C O N C E P T S 
    analysis patterns  . 157  
    collaboration. . . . . 140  
    elaboration . . . . . . 135  
    elicitation . . . . . . . 134  
    inception. . . . . . . . 133  
    negotiation. . . . . . . 135  
    negotiation. . . . . . . 159  
    quality function 
deployment. . . . . . 146  
    requirements 
engineering. . . . . . 132  
    requirements 
gathering  . . . . . . . 143  
    requirements 
management. . . . . 138  
    requirements 
monitoring  . . . . . . 160  
    specifi cation  . . . . . 135  

     C H A P T E R

8 

  What is it?   Before you begin any 
technical work, it’s a good idea to 
create a set of requirements for any 
engineering tasks. These tasks lead to 

an understanding of what the business impact of 
the software will be, what the customer wants, 
and how end users will interact with the software. 

   Who does it?   Software engineers (sometimes 
referred to as system engineers or “analysts” 
in the IT world) and other project stakeholders 
(managers, customers, and end users) all par-
ticipate in requirements engineering. 

   Why is it important?   Designing and building 
an elegant computer program that solves the 
wrong problem serves no one’s needs. That’s 
why it’s important to understand what the cus-
tomer wants before you begin to design and 
build a computer-based system. 

   What are the steps?   Requirements engineering 
begins with inception (a task that defi nes the 
scope and nature of the problem to be solved). 
It moves onward to elicitation (a task that helps 

stakeholders defi ne what is required), and then 
elaboration (where basic requirements are re-
fi ned and modifi ed). As stakeholders defi ne the 
problem, negotiation occurs (what are the prior-
ities, what is essential, when is it required?) Fi-
nally, the problem is specifi ed in some manner 
and then reviewed or validated to ensure that 
your understanding of the problem and the stake-
holders’ understanding of the problem coincide. 

   What is the work product?   The intent of re-
quirements engineering is to provide all parties 
with a written understanding of the problem. This 
can be achieved though a number of work prod-
ucts: usage scenarios, functions and features 
lists, requirements models, or a specifi cation. 

   How do I ensure that I’ve done it right?  
 Requirements engineering work products are 
reviewed with stakeholders to ensure that what 
you have learned is what they really meant. A 
word of warning: Even after all parties agree, 
things will change, and they will continue to 
change throughout the project.  

 Q U I C K 
L O O K 

pre22126_ch08_131-165.indd   131pre22126_ch08_131-165.indd   131 13/12/13   6:11 PM13/12/13   6:11 PM



132 PART TWO  MODELING

 All of us who have worked in the systems and software business for more than 

a few years have lived this nightmare, and yet, few of us have learned to make it go 

away. We struggle when we try to elicit requirements from our customers. We have 

trouble understanding the information that we do acquire. We often record require-

ments in a disorganized manner, and we spend far too little time verifying what we do 

record. We allow change to control us, rather than establishing mechanisms to con-

trol change. In short, we fail to establish a solid foundation for the system or software. 

Each of these problems is challenging. When they are combined, the outlook is daunt-

ing for even the most experienced managers and practitioners. But solutions do exist.   

 It’s reasonable to argue that the techniques we’ll discuss in this chapter are 

not a true “solution” to the challenges just noted. But they do provide a solid ap-

proach for addressing these challenges. 

     8.1 REQUIREMENTS ENGINEERING 

   Designing and building computer software is challenging, creative, and just plain 

fun. In fact, building software is so compelling that many software developers 

want to jump right in before they have a clear understanding of what is needed. 

They argue that things will become clear as they build, that project stakeholders 

will be able to understand need only after examining early iterations of the soft-

ware, that things change so rapidly that any attempt to understand requirements 

in detail is a waste of time, that the bottom line is producing a working program, 

and that all else is secondary. What makes these arguments seductive is that they 

contain elements of truth.  1   But each argument is fl awed and can lead to a failed 

software project.      

  The broad spectrum of tasks and techniques that lead to an understanding of 

requirements is called  requirements engineering.  From a software process per-

spective, requirements engineering is a major software engineering action that 

begins during the communication activity and continues into the modeling activ-

ity. It must be adapted to the needs of the process, the project, the product, and 

the people doing the work. 

 Requirements engineering builds a bridge to design and construction. But 

where does the bridge originate? One could argue that it begins at the feet of 

the project stakeholders (e.g., managers, customers, and end users), where busi-

ness need is defi ned, user scenarios are described, functions and features are 

delineated, and project constraints are identifi ed. Others might suggest that it 

   Requirements 
engineering 
establishes a solid 
base for design and 
construction. Without 
it, the resulting 
software has a high 
probability of not 
meeting customer’s 
needs. 

    stakeholders. . . . . 139  
    use cases  . . . . . . . 149  
    validating 
requirements  . . . . 161  
    validation . . . . . . . 136  
    viewpoints . . . . . . 139  
    work products  . . . 147         

  uote: 

 “The hardest single 
part of building a 
software system is 
deciding what to 
build. No part of 
the work so cripples 
the resulting system 
if done wrong. No 
other part is more 
diffi cult to rectify 
later.” 

 Fred Brooks 

  1  This is particularly true for small projects (less than one month) and smaller, relatively simple 

software efforts. As software grows in size and complexity, these arguments begin to break 

down. 

pre22126_ch08_131-165.indd   132pre22126_ch08_131-165.indd   132 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  133

begins with a broader system defi nition, where software is but one component 

of the larger system domain. But regardless of the starting point, the journey 

across the bridge takes you high above the project, allowing you to examine the 

context of the software work to be performed; the specifi c needs that design and 

construction must address; the priorities that guide the order in which work is 

to be completed; and the information, functions, and behaviors that will have a 

profound impact on the resultant design. 

 Over the past decade, there have been many technology changes that impact 

the requirements engineering process [Wev11]. Ubiquitous computing allows 

computer technology to be integrated into many everyday objects. When these 

objects are networked they can allow the creation of more complete user pro-

fi les, with the accompanying concerns for privacy and security.     

  Widespread availability of applications in the electronic marketplace will lead 

to more diverse stakeholder requirements. Stakeholders can customize a prod-

uct to meet specifi c, targeted requirements that are applicable to only a small 

subset of all end users. As product development cycles shorten, there are pres-

sures to streamline requirements engineering so that products come to market 

more quickly. But the fundamental problem remains the same, getting timely, 

accurate, and stable stakeholder input. 

 Requirements engineering encompasses seven distinct tasks: inception, elic-

itation, elaboration, negotiation, specifi cation, validation, and management. It is 

important to note that some of these tasks occur in parallel and all are adapted 

to the needs of the project.     

  Inception.   How does a software project get started? Is there a single event that 

becomes the catalyst for a new computer-based system or product, or does the 

need evolve over time? There are no defi nitive answers to these questions. In 

some cases, a casual conversation is all that is needed to precipitate a major 

software engineering effort. But in general, most projects begin when a business 

need is identifi ed or a potential new market or service is discovered. Stakehold-

ers from the business community (e.g., business managers, marketing people, 

product managers) defi ne a business case for the idea, try to identify the breadth 

and depth of the market, do a rough feasibility analysis, and identify a working 

description of the project’s scope. All of this information is subject to change, but 

it is suffi cient to precipitate discussions with the software engineering organiza-

tion.  2   At project inception,  3   you establish a basic understanding of the problem, 

   Expect to do a bit of 
design during require-
ments work and a bit 
of requirements work 
during design. 

  uote: 

 “The seeds of 
major software 
disasters are 
usually sown in the 
fi rst three months 
of commencing the 
software project.” 

 Caper Jones 

  2  If a computer-based system is to be developed, discussions begin within the context of a system 

engineering process. For a detailed discussion of system engineering, visit the website that 

accompanies this book:  www.mhhe.com/pressman  

  3  Recall that the Unifi ed Process (Chapter 4) defi nes a more comprehensive “inception phase” 

that encompasses the inception, elicitation, and elaboration tasks discussed in this chapter. 

pre22126_ch08_131-165.indd   133pre22126_ch08_131-165.indd   133 13/12/13   6:11 PM13/12/13   6:11 PM



134 PART TWO  MODELING

the people who want a solution, the nature of the solution that is desired, and 

the effectiveness of preliminary communication and collaboration between the 

other stakeholders and the software team. 

    Elicitation.   It certainly seems simple enough—ask the customer, the users, and 

others what the objectives for the system or product are, what is to be accom-

plished, how the system or product fi ts into the needs of the business, and fi nally, 

how the system or product is to be used on a day-to-day basis. But it isn’t  simple—

it’s very hard. 

 An important part of elicitation is to establish business goals [Cle10]. Your job 

is to engage stakeholders and to encourage them to share their goals honestly. 

Once the goals have been captured, a prioritization mechanism should be es-

tablished, and a design rationale for a potential architecture (that meets stake-

holder goals) can be created.          

  Goal-Oriented Requirements 
Engineering 
 A  goal  is a long-term aim that a system or 

product must achieve. Goals may deal with either func-
tional or nonfunctional (e.g., reliability, security, usability, 
etc.) concerns. Goals are often a good way to explain 
requirements to stakeholders and, once established, can 
be used to manage confl icts among stakeholders. 

 Object models (Chapters 10 and 11) and require-
ments can be derived systematically from goals. A goal 
graph showing links among goals can provide some 
degree of traceability (Section 8.2.6) between high-level 

strategic concerns to low-level technical details. Goals 
should be specifi ed precisely and serve as the basis 
for requirements elaboration, verifi cation/validation, 
confl ict management, negotiation, explanation, and 
evolution. 

 Confl icts detected in requirements are often a result 
of confl icts present in the goals themselves. Confl ict 
resolution is achieved by negotiating a set of mutually 
agreed-upon goals that are consistent with one another 
and with stakeholder desires. A more complete discus-
sion on goals and requirements engineering can be 
found in a paper by Lamsweweerde [LaM01b].  

  INFO 

  Christel and Kang [Cri92] identify a number of problems that are encountered 

as elicitation occurs.  Problems of scope  occur when the boundary of the system is 

ill-defi ned or the customers and users specify unnecessary technical detail that 

may confuse, rather than clarify, overall system objectives.  Problems of under-

standing  are encountered when customers and users are not completely sure of 

what is needed, have a poor understanding of the capabilities and limitations of 

their computing environment, don’t have a full understanding of the problem 

domain, have trouble communicating needs, omit information that is believed to 

be “obvious,” specify requirements that confl ict with the needs of other custom-

ers and users, or specify requirements that are ambiguous or untestable.  Prob-

lems of volatility  occur when the requirements change over time. To help 

 Why is it 
diffi cult 

to gain a clear 
understanding 
of what the 
customer wants? 

?

pre22126_ch08_131-165.indd   134pre22126_ch08_131-165.indd   134 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  135

overcome these problems, you must approach the requirements-gathering activ-

ity in an organized manner.     

    Elaboration.   The information obtained from the customer during inception and 

elicitation is expanded and refi ned during elaboration. This task focuses on de-

veloping a refi ned requirements model (Chapters 9 through 11) that identifi es 

various aspects of software function, behavior, and information. 

 Elaboration is driven by the creation and refi nement of user scenarios that 

describe how the end user (and other actors) will interact with the system. Each 

user scenario is parsed to extract analysis classes—business domain entities that 

are visible to the end user. The attributes of each analysis class are defi ned, and 

the services  4   that are required by each class are identifi ed. The relationships 

and collaboration between classes are identifi ed, and a variety of supplementary 

diagrams are produced.      

    Negotiation.   It isn’t unusual for customers and users to ask for more than can 

be achieved, given limited business resources. It’s also relatively common for 

different customers or users to propose confl icting requirements, arguing that 

their version is “essential for our special needs.” 

 You have to reconcile these confl icts through a process of negotiation. Cus-

tomers, users, and other stakeholders are asked to rank requirements and then 

discuss confl icts in priority. Using an iterative approach that prioritizes require-

ments, assesses their cost and risk, and addresses internal confl icts, require-

ments are eliminated, combined, and/or modifi ed so that each party achieves 

some measure of satisfaction. 

   Specification.   In the context of computer-based systems (and software), the 

term  specifi cation  means different things to different people. A specifi cation can 

be a written document, a set of graphical models, a formal mathematical model, 

a collection of usage scenarios, a prototype, or any combination of these.     

  Some suggest that a “standard template” [Som97] should be developed and 

used for a specifi cation, arguing that this leads to requirements that are pre-

sented in a consistent and therefore more understandable manner. However, it is 

sometimes necessary to remain fl exible when a specifi cation is to be developed. 

For large systems, a written document, combining natural language descrip-

tions and graphical models may be the best approach. However, usage scenarios 

may be all that are required for smaller products or systems that reside within 

well-understood technical environments. 

   Elaboration is a good 
thing, but you have to 
know when to stop. 
The key is to describe 
the problem in a way 
that establishes a fi rm 
base for design. If you 
work beyond that point, 
you’re doing design. 

   There should be no 
winner and no loser in 
an effective negotia-
tion. Both sides win, 
because a “deal” that 
both can live with is 
solidifi ed. 

   The formality and for-
mat of a specifi cation 
varies with the size 
and the complexity 
of the software to be 
built. 

  4  A  service  manipulates the data encapsulated by the class. The terms  operation  and  method  are 

also used. If you are unfamiliar with object-oriented concepts, a basic introduction is presented 

in Appendix 2. 

pre22126_ch08_131-165.indd   135pre22126_ch08_131-165.indd   135 13/12/13   6:11 PM13/12/13   6:11 PM



136 PART TWO  MODELING

             Validation.   The work products produced as a consequence of requirements en-

gineering are assessed for quality during a validation step. Requirements valida-

tion examines the specifi cation  5   to ensure that all software requirements have 

been stated unambiguously; that inconsistencies, omissions, and errors have 

been detected and corrected; and that the work products conform to the stan-

dards established for the process, the project, and the product. 

  The primary requirements validation mechanism is the technical review 

(Chapter  20). The review team that validates requirements includes software 

engineers, customers, users, and other stakeholders who examine the specifi -

cation looking for errors in content or interpretation, areas where clarifi cation 

may be required, missing information, inconsistencies (a major problem when 

  Software Requirements 
Specifi cation Template 
 A  software requirements specifi cation  (SRS) 

is a work product that is created when a detailed de-
scription of all aspects of the software to be built must 
be specifi ed before the project is to commence. It is im-
portant to note that a formal SRS is not always written. In 
fact, there are many instances in which effort expended 
on an SRS might be better spent in other software en-
gineering activities. However, when software is to be 
developed by a third party, when a lack of specifi cation 
would create severe business issues, or when a system is 
extremely complex or business critical, an SRS may be 
justifi ed. 

 Karl Wiegers [Wie03] of Process Impact Inc. has 
developed a worthwhile template (available at 
  www.processimpact.com/process_assets/
srs_template.doc  ) that can serve as a guideline for 
those who must create a complete SRS. A topic outline 
follows:

        Table of Contents   

       Revision History   

        1. Introduction  
      1.1  Purpose  
     1.2  Document Conventions  
     1.3  Intended Audience and Reading Suggestions  
     1.4  Project Scope  
     1.5  References    

    2.   Overall Description
        2.1  Product Perspective  
     2.2  Product Features  
     2.3  User Classes and Characteristics  
     2.4  Operating Environment  
     2.5  Design and Implementation Constraints  
     2.6  User Documentation  
     2.7  Assumptions and Dependencies    

    3.   System Features  
      3.1  System Feature 1  
     3.2  System Feature 2 (and so on)    

    4.   External Interface Requirements  
      4.1  User Interfaces  
     4.2  Hardware Interfaces  
     4.3  Software Interfaces  
     4.4  Communications Interfaces    

    5.   Other Nonfunctional Requirements  
      5.1  Performance Requirements  
     5.2  Safety Requirements  
     5.3  Security Requirements  
     5.4  Software Quality Attributes    

    6.   Other Requirements   
       Appendix A: Glossary   
       Appendix B: Analysis Models   
       Appendix C: Issues List   

   A detailed description of each SRS topic can be ob-
tained by downloading the SRS template at the URL 
noted in this sidebar.  

 INFO 

  5  Recall that the nature of the specifi cation will vary with each project. In some cases, the “spec-

ifi cation” is a collection of user scenarios and little else. In others, the specifi cation may be a 

document that contains scenarios, models, and written descriptions. 

   A key concern during 
requirements validation 
is consistency. Use the 
analysis model to en-
sure that requirements 
have been consistently 
stated. 

pre22126_ch08_131-165.indd   136pre22126_ch08_131-165.indd   136 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  137

large products or systems are engineered), confl icting requirements, or unreal-

istic (unachievable) requirements. 

 To illustrate some of the problems that occur during requirements validation, 

consider two seemingly innocuous requirements:

    •    The software should be user friendly.  

   •    The probability of a successful unauthorized database intrusion should be 

less than 0.0001.    

 The fi rst requirement is too vague for developers to test or assess. What ex-

actly does “user friendly” mean? To validate it, it must be quantifi ed or qualifi ed 

in some manner. 

 The second requirement has a quantitative element (“less than 0.0001”), but 

intrusion testing will be diffi cult and time consuming. Is this level of security even 

warranted for the application? Can other complementary requirements associ-

ated with security (e.g., password protection, specialized handshaking) replace 

the quantitative requirement noted? 

 Glinz [Gli09] writes that quality requirements need to be represented in a 

manner that delivers optimal value. This means assessing the risk (Chapter 35) of 

delivering a system that fails to meet the stakeholders’ quality requirements and 

attempting to mitigate this risk at minimum cost. The more critical the quality 

requirement is, the greater the need to state it in quantifi able terms. Less-critical 

quality requirements can be stated in general terms. In some cases, a general 

quality requirement can be verifi ed using a qualitative technique (e.g., user sur-

vey or check list). In other situations, quality requirements can be verifi ed using 

a combination of qualitative and quantitative assessment.     

  Requirements Validation 
Checklist 
 It is often useful to examine each requirement 

against a set of checklist questions. Here is a small sub-
set of those that might be asked:

    •  Are requirements stated clearly? Can they be 
misinterpreted?  

   •  Is the source (e.g., a person, a regulation, a 
document) of the requirement identifi ed? Has the fi nal 
statement of the requirement been examined by or 
against the original source?  

   •  Is the requirement bounded in quantitative terms?  

   •  What other requirements relate to this requirement? 
Are they clearly noted via a cross-reference matrix or 
other mechanism?  

   •  Does the requirement violate any system domain 
constraints?  

   •  Is the requirement testable? If so, can we specify tests 
(sometimes called validation criteria) to exercise the 
requirement?  

   •  Is the requirement traceable to any system model that 
has been created?  

   •  Is the requirement traceable to overall system/
product objectives?  

   •  Is the specifi cation structured  in a way that leads 
to easy understanding, easy reference, and easy 
translation into more technical work products?  

   •  Has an index for the specifi cation been created?  

   •  Have requirements associated with performance, 
behavior, and operational characteristics been clearly 
stated? What requirements appear to be implicit?     

 INFO 

pre22126_ch08_131-165.indd   137pre22126_ch08_131-165.indd   137 13/12/13   6:11 PM13/12/13   6:11 PM



138 PART TWO  MODELING

    Requirements management.   Requirements for computer-based systems change, 

and the desire to change requirements persists throughout the life of the system. 

Requirements management is a set of activities that help the project team identify, 

control, and track requirements and changes to requirements at any time as the 

project proceeds.  6   Many of these activities are identical to the software confi gura-

tion management (SCM) techniques discussed in Chapter 29. 

  6  Formal requirements management is initiated only for large projects that have hundreds of 

identifi able requirements. For small projects, this requirements engineering function is con-

siderably less formal. 

  7  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  8  This approach is strongly recommended for projects that adopt an agile software development 

philosophy. 

  Requirements Engineering 

     Objective:   Requirements engineering tools 
assist in requirements gathering, requirements 

modeling, requirements management, and requirements 
validation. 

   Mechanics:   Tool mechanics vary. In general, 
requirements engineering tools build a variety 
of graphical (e.g., UML) models that depict the 
informational, functional, and behavioral aspects of 
a system. These models form the basis for all other 
activities in the software process. 

    Representative Tools:  7   
 A reasonably comprehensive (and up-to-date) listing 
of requirements engineering tools can be found at the 
Volvere Requirements resources site at   www.volere.
co.uk/tools.htm  . Requirements modeling tools are 

discussed in Chapters 9 and 10. Tools noted below 
focus on requirement management. 

  EasyRM,  developed by Cybernetic Intelligence GmbH 
( http://www.visuresolutions.com/visure-
requirements-software ), Visure Requirements 
is a fl exible and complete requirements engineering 
life-cycle solution, supporting requirements capture, 
analysis, specifi cation, validation and verifi cation, 
management, and reuse. 

  Rational RequisitePro,  developed by Rational Software 
(  www-03.ibm.com/software/products/us/
en/reqpro  ), allows users to build a requirements 
database; represent relationships among requirements; 
and organize, prioritize, and trace requirements. 

 Many additional requirements management tools can 
be found at the Volvere site noted earlier and at   www
.jiludwig.com/Requirements_Management_
Tools.html  .   

 SOFTWARE TOOLS 

             8.2 ESTABL ISHING THE GROUNDWORK 

  In an ideal setting, stakeholders and software engineers work together on the 

same team.  8   In such cases, requirements engineering is simply a matter of con-

ducting meaningful conversations with colleagues who are well-known members 

of the team. But reality is often quite different. 

 Customer(s) or end users may be located in a different city or country, may 

have only a vague idea of what is required, may have confl icting opinions about 

the system to be built, may have limited technical knowledge, and may have 

pre22126_ch08_131-165.indd   138pre22126_ch08_131-165.indd   138 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  139

limited time to interact with the requirements engineer. None of these things are 

desirable, but all are fairly common, and you are often forced to work within the 

constraints imposed by this situation. 

 In the sections that follow, we discuss the steps required to establish the 

groundwork for an understanding of software requirements—to get the project 

started in a way that will keep it moving forward toward a successful solution.     

   8.2.1  Identifying Stakeholders 

 Sommerville and Sawyer [Som97] defi ne a  stakeholder  as “anyone who benefi ts 

in a direct or indirect way from the system which is being developed.” We have 

already identifi ed the usual suspects: business operations managers, product 

managers, marketing people, internal and external customers, end users, con-

sultants, product engineers, software engineers, support and maintenance engi-

neers, and others. Each stakeholder has a different view of the system, achieves 

different benefi ts when the system is successfully developed, and is open to dif-

ferent risks if the development effort should fail.  

 At inception, you should create a list of people who will contribute input as 

requirements are elicited (Section 8.3). The initial list will grow as stakeholders 

are contacted because every stakeholder will be asked: “Whom else do you think 

I should talk to?” 

   8.2.2  Recognizing Multiple Viewpoints 

 Because many different stakeholders exist, the requirements of the system will 

be explored from many different points of view. For example, the marketing 

group is interested in functions and features that will excite the potential mar-

ket, making the new system easy to sell. Business managers are interested in a 

feature set that can be built within budget and that will be ready to meet defi ned 

market windows. End users may want features that are familiar to them and that 

are easy to learn and use. Software engineers may be concerned with functions 

that are invisible to nontechnical stakeholders but that enable an infrastructure 

that supports more marketable functions and features. Support engineers may 

focus on the maintainability of the software. 

 Each of these constituencies (and others) will contribute information to the 

requirements engineering process. As information from multiple viewpoints is 

collected, emerging requirements may be inconsistent or may confl ict with one 

another. You should categorize all stakeholder information (including inconsis-

tent and confl icting requirements) in a way that will allow decision makers to 

choose an internally consistent set of requirements for the system. 

 There are several things that can make it hard to elicit requirements for soft-

ware that satisfi es its users: project goals are unclear, stakeholders’ priorities 

differ, people have unspoken assumptions, stakeholders interpret meanings 

differently, and requirements are stated in a way that makes them diffi cult to 

 A  stakeholder  is 
anyone who has a 
direct interest in 
or benefi ts from 
the system that is 
to be developed. 

  uote: 

 “Put three 
stakeholders in 
a room and ask 
them what kind of 
system they want. 
You’re likely to 
get four or more 
different opinions.” 

 Author unknown 

pre22126_ch08_131-165.indd   139pre22126_ch08_131-165.indd   139 13/12/13   6:11 PM13/12/13   6:11 PM



140 PART TWO  MODELING

verify [Ale11]. The goal of effective requirements engineering is to eliminate or 

at least reduce these problems. 

   8.2.3  Working toward Collaboration 

 If fi ve stakeholders are involved in a software project, you may have fi ve (or 

more) different opinions about the proper set of requirements. Throughout ear-

lier chapters, we have noted that customers (and other stakeholders) should 

collaborate among themselves (avoiding petty turf battles) and with software en-

gineering practitioners if a successful system is to result. But how is this collab-

oration accomplished? 

 The job of a requirements engineer is to identify areas of commonality (i.e., 

requirements on which all stakeholders agree) and areas of confl ict or inconsis-

tency (i.e., requirements that are desired by one stakeholder but confl ict with the 

needs of another stakeholder). It is, of course, the latter category that presents 

a challenge. 

  Using “Priority Points” 
 One way of resolving confl icting require-
ments and at the same time better under-

standing the relative importance of all requirements is 
to use a “voting” scheme based on  priority points.  All 
stakeholders are provided with some number of priority 
points   that can be “spent” on any number of require-
ments. A list of requirements is presented, and each 

stakeholder indicates the relative importance of each 
(from his or her viewpoint) by spending one or more 
priority points on it. Points spent cannot be reused. Once 
a stakeholder’s priority points are exhausted, no further 
action on requirements can be taken by that person. 
Overall points spent on each requirement by all stake-
holders provide an indication of the overall importance 
of each requirement.  

 INFO 

      Collaboration does not necessarily mean that requirements are defi ned by 

committee. In many cases, stakeholders collaborate by providing their view of 

requirements, but a strong “project champion” (e.g., a business manager or a se-

nior technologist) may make the fi nal decision about which requirements make 

the cut. 

   8.2.4  Asking the First Questions  

 Questions asked at the inception of the project should be “context free” [Gau89]. 

The fi rst set of context-free questions focuses on the customer and other stake-

holders, the overall project goals and benefi ts. For example, you might ask:

    •  Who is behind the request for this work?  

   •  Who will use the solution?  

   •  What will be the economic benefi t of a successful solution?  

   •  Is there another source for the solution that you need?  

  uote: 

 “It is better to 
know some of the 
questions than all 
of the answers.” 

 James Thurber 

pre22126_ch08_131-165.indd   140pre22126_ch08_131-165.indd   140 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  141

   These questions help to identify all stakeholders who will have interest in the 

software to be built. In addition, the questions identify the measurable benefi t 

of a successful implementation and possible alternatives to custom software 

development. 

      The next set of questions enables you to gain a better understanding of the prob-

lem and allows the customer to voice his or her perceptions about a solution:

    •  How would you characterize “good” output that would be generated by a 

successful solution?  

   •  What problem(s) will this solution address?  

   •  Can you show me (or describe) the business environment in which the 

solution will be used?  

   •  Will special performance issues or constraints affect the way the solution 

is approached?     

 The fi nal set of questions focuses on the effectiveness of the communication 

activity itself. Gause and Weinberg [Gau89] call these “meta-questions” and pro-

pose the following (abbreviated) list:

    •  Are you the right person to answer these questions? Are your answers 

“offi cial”?  

   •  Are my questions relevant to the problem that you have?  

   •  Am I asking too many questions?  

   •  Can anyone else provide additional information?  

   •  Should I be asking you anything else?    

 These questions (and others) will help to “break the ice” and initiate the com-

munication that is essential to successful elicitation. But a question-and-answer 

meeting format is not an approach that has been overwhelmingly successful. In 

fact, the Q&A session should be used for the fi rst encounter only and then re-

placed by a requirements elicitation format that combines elements of problem 

solving, negotiation, and specifi cation. An approach of this type is presented in 

Section 8.3. 

   8.2.5  Nonfunctional Requirements 

 A  nonfunctional requirement  (NFR) can be described as a quality attribute, a 

performance attribute, a security attribute, or a general constraint on a system. 

These are often not easy for stakeholders to articulate. Chung [Chu09] suggests 

that there is a lopsided emphasis on functionality of the software, yet the software 

may not be useful or usable without the necessary non-functional characteristics. 

 In Section 8.3.2, we discuss a technique called  quality function deployment  

(QFD). Quality function deployment attempts to translate unspoken customer 

 What 
questions 

will help you gain 
a preliminary 
understanding of 
the problem? 

?

  uote: 

 “He who asks a 
question is a fool 
for fi ve minutes; 
he who does not 
ask a question is a 
fool forever.” 

 Chinese proverb 

pre22126_ch08_131-165.indd   141pre22126_ch08_131-165.indd   141 13/12/13   6:11 PM13/12/13   6:11 PM



142 PART TWO  MODELING

needs or goals into system requirements. Nonfunctional requirements are often 

listed separately in a software requirements specifi cation. 

 As an adjunct to QFD, it is possible to defi ne a two-phase approach [Hne11] 

that can assist a software team and other stakeholders in identifying nonfunc-

tional requirements. During the fi rst phase, a set of software engineering guide-

lines is established for the system to be built. These include guidelines for best 

practice, but also address architectural style (Chapter 13) and the use of design 

patterns (Chapter 16). A list of NFRs (e.g., requirements that address usability, 

testability, security or maintainability) is then developed. A simple table lists 

NFRs as  column labels  and software engineering guidelines as  row labels . A rela-

tionship matrix compares each guideline to all others, helping the team to assess 

whether each pair of guidelines is  complementary ,  overlapping ,  confl icting , or 

 independent . 

 In the second phase, the team prioritizes each nonfunctional requirement by 

creating a homogeneous set of nonfunctional requirements using a set of decision 

rules [Hne11] that establish which guidelines to implement and which to reject. 

   8.2.6  Traceability 

  Traceability  is a software engineering term that refers to documented links be-

tween software engineering work products (e.g., requirements and test cases). A 

 traceability matrix  allows a requirements engineer to represent the relationship 

between requirements and other software engineering work products. Rows of 

the traceability matrix are labeled using requirement names and columns can 

be labeled with the name of a software engineering work product (e.g., a design 

element or a test case). A matrix cell is marked to indicate the presence of a link 

between the two. 

 The traceability matrices can support a variety of engineering development 

activities. They can provide continuity for developers as a project moves from 

one project phase to another, regardless of the process model being used. Trace-

ability matrices often can be used to ensure the engineering work products have 

taken all requirements into account. 

 As the number of requirements and the number of work products grows, it be-

comes increasingly diffi cult to keep the traceability matrix up to date. Nonethe-

less, it is important to create some means for tracking the impact and evolution 

of the product requirements [Got11]. 

      8.3 ELICIT ING REQUIREMENTS 

  Requirements elicitation (also called  requirements gathering ) combines ele-

ments of problem solving, elaboration, negotiation, and specifi cation. In order to 

encourage a collaborative, team-oriented approach to requirements gathering, 

pre22126_ch08_131-165.indd   142pre22126_ch08_131-165.indd   142 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  143

stakeholders work together to identify the problem, propose elements of the 

solution, negotiate different approaches, and specify a preliminary set of solu-

tion requirements [Zah90].  9   

   8.3.1  Collaborative Requirements Gathering     

  Many different approaches to collaborative requirements gathering have been 

proposed. Each makes use of a slightly different scenario, but all apply some 

variation on the following basic guidelines:

    •  Meetings (either real or virtual) are conducted and attended by both soft-

ware engineers and other stakeholders.  

   •  Rules for preparation and participation are established.  

   •  An agenda is suggested that is formal enough to cover all important 

points but informal enough to encourage the free fl ow of ideas.  

   •  A “facilitator” (can be a customer, a developer, or an outsider) controls the 

meeting.  

   •  A “defi nition mechanism” (can be work sheets, fl ip charts, or wall stickers 

or an electronic bulletin board, chat room, or virtual forum) is used.     

 The goal is to identify the problem, propose elements of the solution, negotiate 

different approaches, and specify a preliminary set of solution requirements.     

  A one- or two-page “product request” is generated during inception (Section 8.2). 

A meeting place, time, and date are selected; a facilitator is chosen; and attendees 

from the software team and other stakeholder organizations are invited to partic-

ipate. The product request is distributed to all attendees before the meeting date.     

  As an example,  10   consider an excerpt from a product request written by a 

marketing person involved in the  SafeHome  project. This person writes the fol-

lowing narrative about the home security function that is to be part of  SafeHome: 

  Our research indicates that the market for home management systems is growing at 

a rate of 40 percent per year. The fi rst  SafeHome  function we bring to market should 

be the home security function. Most people are familiar with “alarm systems” so this 

would be an easy sell. 

 The home security function would protect against and/or recognize a variety of 

undesirable “situations” such as illegal entry, fi re, fl ooding, carbon monoxide levels, 

and others. It’ll use our wireless sensors to detect each situation, can be programmed 

by the homeowner, and will automatically telephone a monitoring agency when a 

situation is detected. 

 What are 
the basic 

guidelines for 
conducting a 
collaborative 
requirements 
gathering meeting? 

?

 WebRef 
  Joint Application 
Development  (JAD) is 
a popular technique for 
requirements gather-
ing. A good description 
can be found at 
  www.carolla.com/
wp-jad.htm  . 

  9  This approach is sometimes called a  facilitated application specifi cation technique  (FAST). 

  10  This example (with extensions and variations) is used to illustrate important software engi-

neering methods in many of the chapters that follow. As an exercise, it would be worthwhile to 

conduct your own requirements-gathering meeting and develop a set of lists for it. 

pre22126_ch08_131-165.indd   143pre22126_ch08_131-165.indd   143 13/12/13   6:11 PM13/12/13   6:11 PM



144 PART TWO  MODELING

   In reality, others would contribute to this narrative during the 

 requirements-gathering meeting and considerably more information would be 

available. But even with additional information, ambiguity is present, omissions 

are likely to exist, and errors might occur. For now, the preceding “functional 

description” will suffi ce. 

 While reviewing the product request in the days before the meeting, each at-

tendee is asked to make a list of objects that are part of the environment that 

surrounds the system, other objects that are to be produced by the system, and 

objects that are used by the system to perform its functions. In addition, each 

attendee is asked to make another list of services (processes or functions) that 

manipulate or interact with the objects. Finally, lists of constraints (e.g., cost, size, 

business rules) and performance criteria (e.g., speed, accuracy) are also devel-

oped. The attendees are informed that the lists are not expected to be exhaustive 

but are expected to refl ect each person’s perception of the system.  

 Objects described for  SafeHome  might include the control panel, smoke de-

tectors, window and door sensors, motion detectors, an alarm, an event (a sen-

sor has been activated), a display, a PC, telephone numbers, a telephone call, 

and so on. The list of services might include  confi guring  the system,  setting  the 

alarm,  monitoring  the sensors,  dialing  the phone,  programming  the control 

panel, and  reading  the display (note that services act on objects). In a similar 

fashion, each attendee will develop lists of constraints (e.g., the system must 

recognize when sensors are not operating, must be user friendly, must interface 

directly to a standard phone line) and performance criteria (e.g., a sensor event 

should be recognized within one second, and an event priority scheme should 

be implemented). 

      The lists of objects can be pinned to the walls of the room using large sheets 

of paper, stuck to the walls using adhesive-backed sheets, or written on a wall 

board. Alternatively, the lists may have been posted on a group forum, at an in-

ternal website, or posed in a social networking environment for review prior to 

the meeting. Ideally, each listed entry should be capable of being manipulated 

separately so that lists can be combined, entries can be deleted, and additions 

can be made. At this stage, critique and debate are strictly prohibited. 

 After individual lists are presented in one topic area, the group creates a com-

bined list by eliminating redundant entries, adding any new ideas that come up 

during the discussion, but not deleting anything. After you create combined lists 

for all topic areas, discussion—coordinated by the facilitator—ensues. The com-

bined list is shortened, lengthened, or reworded to properly refl ect the product 

or system to be developed. The objective is to develop a consensus list of objects, 

services, constraints, and performance for the system to be built. 

 In many cases, an object or service described on a list will require further 

explanation. To accomplish this, stakeholders develop  mini-specifi cations  for 

   Avoid the impulse to 
shoot down a cus-
tomer’s idea as “too 
costly” or “impracti-
cal.” The idea here is 
to negotiate a list that 
is acceptable to all. To 
do this, you must keep 
an open mind. 

  uote: 

 “Facts do not cease 
to exist because 
they are ignored.” 

 Aldous Huxley 

   If a system or product 
will serve many users, 
be absolutely certain 
that requirements are 
elicited from a repre-
sentative cross section 
of users. If only one 
user defi nes all require-
ments, acceptance risk 
is high. 

pre22126_ch08_131-165.indd   144pre22126_ch08_131-165.indd   144 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  145

entries on the lists or by creating a use case (Section 8.4) that involves the object 

or service. For example, the mini-spec for the  SafeHome  object  Control Panel  

might be:

  The control panel is a wall-mounted unit that is approximately 230 x 130 mm in size. 

The control panel has wireless connectivity to sensors and a PC. User interaction oc-

curs through a keypad containing 12 keys. A 75 x 75 mm OLED color display provides 

user feedback. Software provides interactive prompts, echo, and similar functions. 

   The mini-specs are presented to all stakeholders for discussion. Additions, 

deletions, and further elaboration are made. In some cases, the development of 

mini-specs will uncover new objects, services, constraints, or performance re-

quirements that will be added to the original lists. During all discussions, the 

team may raise an issue that cannot be resolved during the meeting. An  issues 

list  is maintained so that these ideas will be acted on later.     

  Conducting a Requirements-Gathering Meeting   Conducting a Requirements-Gathering Meeting 

        The scene:  A meeting room. The 
fi rst requirements-gathering meeting is 

in progress.  

       The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering 
manager; three members of marketing; a product engi-
neering representative; and a facilitator.  

       The conversation:   

       Facilitator (pointing at whiteboard):  So that’s the 
current list of objects and services for the home security 
function.  

       Marketing person:  That about covers it from our 
point of view.  

       Vinod:  Didn’t someone mention that they wanted all 
 SafeHome  functionality to be accessible via the Internet? 
That would include the home security function, no?  

       Marketing person:  Yes, that’s right . . . we’ll have to 
add that functionality and the appropriate objects.  

       Facilitator:  Does that also add some constraints?  

       Jamie:  It does, both technical and legal.  

       Production rep:  Meaning?  

       Jamie:  We better make sure an outsider can’t hack 
into the system, disarm it, and rob the place or worse. 
Heavy liability on our part.  

       Doug:  Very true.  

       Marketing:  But we still need that . . . just be sure to 
stop an outsider from getting in.  

       Ed:  That’s easier said than done and . . .  

       Facilitator (interrupting):  I don’t want to debate this 
issue now. Let’s note it as an action item and proceed.  

       (Doug, serving as the recorder for the meeting, makes 
an appropriate note.)  

       Facilitator:  I have a feeling there’s still more to con-
sider here.  

   (The group spends the next 20 minutes refi ning and ex-
panding the details of the home security function.)  

 SAFEHOME 

  Many stakeholder concerns (e.g., accuracy, data accessibility, security) are the 

basis for nonfunctional system requirements (Section 8.2). As stakeholders enun-

ciate these concerns, software engineers must consider them within the context 

pre22126_ch08_131-165.indd   145pre22126_ch08_131-165.indd   145 13/12/13   6:11 PM13/12/13   6:11 PM



146 PART TWO  MODELING

of the system to be built. Among the questions that must be answered [Lag10] are 

as follows:

    •  Can we build the system?  

   •  Will this development process allow us to beat our competitors to market?  

   •  Do adequate resources exist to build and maintain the proposed system?  

   •  Will the system performance meet the needs of our customers?        

  The answers to these and other questions will evolve over time. 

   8.3.2  Quality Function Deployment 

  Quality function deployment  (QFD) is a quality management technique that 

translates the needs of the customer into technical requirements for software. 

QFD “concentrates on maximizing customer satisfaction from the software engi-

neering process” [Zul92]. To accomplish this, QFD emphasizes an understanding 

of what is valuable to the customer and then deploys these values throughout the 

engineering process. 

 Within the context of QFD , normal requirements  identify the objectives and 

goals that are stated for a product or system during meetings with the customer. 

If these requirements are present, the customer is satisfi ed.  Expected require-

ments  are implicit to the product or system and may be so fundamental that the 

customer does not explicitly state them. Their absence will be a cause for signif-

icant dissatisfaction.  Exciting requirements  go beyond the customer’s expecta-

tions and prove to be very satisfying when present.     

  Although QFD concepts can be applied across the entire software process 

[Par96a]; specifi c QFD techniques are applicable to the requirements elicitation 

activity. QFD uses customer interviews and observation, surveys, and examination 

of historical data (e.g., problem reports) as raw data for the requirements gather-

ing activity. These data are then translated into a table of requirements—called the 

 customer voice table —that is reviewed with the customer and other stakeholders. 

A variety of diagrams, matrices, and evaluation methods are then used to extract 

expected requirements and to attempt to derive exciting requirements [Aka04].     

    8.3.3  Usage Scenarios 

 As requirements are gathered, an overall vision of system functions and features 

begin to materialize. However, it is diffi cult to move into more technical software 

engineering activities until you understand how these functions and features will 

be used by different classes of end users. To accomplish this, developers and 

users can create a set of scenarios that identify a thread of usage for the sys-

tem to be constructed. The scenarios, often called  use cases  [Jac92], provide a 

description of how the system will be used. Use cases are discussed in greater 

detail in Section 8.4.     

   QFD defi nes require-
ments in a way that 
maximizes customer 
satisfaction. 

   Everyone wants to 
implement lots of 
exciting requirements, 
but be careful. That’s 
how “requirements 
creep” sets in. On the 
other hand, exciting 
requirements lead to a 
breakthrough product! 

 WebRef 
 Useful information on 
QFD can be obtained at 
  www.qfdi.org  . 

pre22126_ch08_131-165.indd   146pre22126_ch08_131-165.indd   146 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  147

    8.3.4  Elicitation Work Products     

  The work products produced as a consequence of requirements elicitation will 

vary depending on the size of the system or product to be built. For most systems, 

the work products include: (1) a statement of need and feasibility, (2) a bounded 

statement of scope for the system or product, (3) a list of customers, users, and 

other stakeholders who participated in requirements elicitation, (4) a descrip-

tion of the system’s technical environment, (5) a list of requirements (prefera-

bly organized by function) and the domain constraints that applies to each, (6) a 

set of usage scenarios that provide insight into the use of the system or product 

under different operating conditions, and (7) any prototypes developed to better 

 What 
information 

is produced as 
a consequence 
of requirements 
gathering? 

?

  Developing a Preliminary User Scenario   Developing a Preliminary User Scenario 

        The scene:  A meeting room, 
continuing the fi rst requirements 

gathering meeting.  

       The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering 
manager; three members of marketing; a product engi-
neering representative; and a facilitator.  

       The conversation:   

       Facilitator:  We’ve been talking about security for ac-
cess to  SafeHome  functionality that will be accessible 
via the Internet. I’d like to try something. Let’s develop 
a usage scenario for access to the home security 
function.  

       Jamie:  How?  

       Facilitator:  We can do it a couple of different ways, 
but for now, I’d like to keep things really informal. Tell 
us (he points at a marketing person) how you envision 
accessing the system.  

       Marketing person:  Um . . . well, this is the kind of 
thing I’d do if I was away from home and I had to let 
someone into the house, say a housekeeper or repair 
guy, who didn’t have the security code.  

       Facilitator (smiling):  That’s the reason you’d do 
it . . . tell me how you’d actually do this.  

       Marketing person:  Um . . . the fi rst thing I’d need is 
a PC. I’d log on to a website we’d maintain for all users 
of  SafeHome.  I’d provide my user ID and . . .  

       Vinod (interrupting):  The Web page would have to be 
secure, encrypted, to guarantee that we’re safe and . . .  

       Facilitator (interrupting):  That’s good information, 
Vinod, but it’s technical. Let’s just focus on how the end 
user will use this capability. OK?  

       Vinod:  No problem.  

       Marketing person:  So as I was saying, I’d log on 
to a website and provide my user ID and two levels of 
passwords.  

       Jamie:  What if I forget my password?  

       Facilitator (interrupting):  Good point, Jamie, but 
let’s not address that now. We’ll make a note of that 
and call it an  exception.  I’m sure there’ll be others.  

       Marketing person:  After I enter the passwords, a 
screen representing all  SafeHome  functions will appear. 
I’d select the home security function. The system might 
request that I verify who I am, say, by asking for my ad-
dress or phone number or something. It would then dis-
play a picture of the security system control panel along 
with a list of functions that I can perform—arm the 
system, disarm the system, disarm one or more sensors. 
I suppose it might also allow me to reconfi gure security 
zones and other things like that, but I’m not sure.  

  (As the marketing person continues talking, Doug takes 
copious notes; these form the basis for the fi rst informal 
usage scenario. Alternatively, the marketing person 
could have been asked to write the scenario, but this 
would be done outside the meeting.)  

 SAFEHOME 

pre22126_ch08_131-165.indd   147pre22126_ch08_131-165.indd   147 13/12/13   6:11 PM13/12/13   6:11 PM



148 PART TWO  MODELING

defi ne requirements. Each of these work products is reviewed by all people who 

have participated in requirements elicitation. 

   8.3.5  Agile Requirements Elicitation     

  Within the context of an agile process, requirements are elicited by asking all 

stakeholders to create  user stories . Each user story describes a simple system 

requirement written from the user’s perspective. User stories can be written on 

small note cards, making it easy for developers to select and manage a subset of 

requirements to implement for the next product increment. Proponents claim 

that using note cards written in the user’s own language allows developers to 

shift their focus to communication with stakeholders on the selected require-

ments rather than their own agenda [Mai10a]. 

 Although the agile approach to requirements elicitation is attractive for many 

software teams, critics argue that a consideration of overall business goals and 

nonfunctional requirements is often lacking. In some cases, rework is required 

to accommodate performance and security issues. In addition, user stories may 

not provide a suffi cient basis for system evolution over time 

    8.3.6  Service-Oriented Methods 

 Service-oriented development views a system as an aggregation of services. A 

 service  can be “as simple as providing a single function, for example, a request/

response-based mechanism that provides a series of random numbers, or can be 

an aggregation of complex elements, such as the Web service API” [Mic12].     

  Requirements elicitation in service-oriented development focuses on the 

defi nition of services to be rendered by an application. As a metaphor, consider 

the service provided when you visit a fi ne hotel. A doorperson greets guests. A 

valet parks their cars. The desk clerk checks the guests in. A bellhop manages 

the bags. The concierge assists guest with local arrangements. Each contact or 

 touchpoint  between a guest and a hotel employee is designed to enhance the 

hotel visit and represents a service offered.     

  Most service design methods emphasize understanding the customer, think-

ing creatively, and building solutions quickly [Mai10b]. To achieve these goals, 

requirements elicitation can include ethnographic studies,  11   innovation work-

shops, and early low-fi delity prototypes. Techniques for eliciting requirements 

must also acquire information about the brand and the stakeholders’ percep-

tions of it. In addition to studying how the brand is used by customers, analysts 

need strategies to discover and document requirements about the desired quali-

ties of new user experiences. User stories are helpful in this regard. 

   User stories are the 
way to document 
requirements elicited 
from customers in agile 
process models. 

 What is a 
 service  in 

the context of 
service-oriented 
methods? 

?

   Requirements elicita-
tion for service-oriented 
methods fi nes services 
render by an app. A 
 touchpoint  represents 
an opportunity for the 
user to interact with 
the system to receive a 
desired service. 

  11  Studying user behavior in the environment where the proposed software product will be used. 

pre22126_ch08_131-165.indd   148pre22126_ch08_131-165.indd   148 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  149

  The requirements for touchpoints should be characterized in a manner that 

indicates achievement of the overall service requirements. This suggests that 

each requirement should be traceable to a specifi c service. 

      8.4 DEVELOPING USE CASES 

  In a book that discusses how to write effective use cases, Alistair Cockburn 

[Coc01b] notes that “a use case captures a contract . . . [that] describes the sys-

tem’s behavior under various conditions as the system responds to a request 

from one of its stakeholders . . .” In essence, a use case tells a stylized story about 

how an end user (playing one of a number of possible roles) interacts with the 

system under a specifi c set of circumstances. The story may be narrative text, an 

outline of tasks or interactions, a template-based description, or a diagrammatic 

representation. Regardless of its form, a use case depicts the software or system 

from the end user’s point of view.     

  The fi rst step in writing a use case is to defi ne the set of “actors” that will be 

involved in the story.  Actors  are the different people (or devices) that use the 

system or product within the context of the function and behavior that is to be 

described. Actors represent the roles that people (or devices) play as the system 

operates. Defi ned somewhat more formally, an actor is anything that communi-

cates with the system or product and that is external to the system itself. Every 

actor has one or more goals when using the system. 

      It is important to note that an actor and an end user are not necessarily the 

same thing. A typical user may play a number of different roles when using a 

system, whereas an actor represents a class of external entities (often, but not 

always, people) that play just one role in the context of the use case. As an ex-

ample, consider a machine operator (a user) who interacts with the control com-

puter for a manufacturing cell that contains a number of robots and numerically 

controlled machines. After careful review of requirements, the software for the 

control computer requires four different modes (roles) for interaction: program-

ming mode, test mode, monitoring mode, and troubleshooting mode. Therefore, 

four actors can be defi ned: programmer, tester, monitor, and troubleshooter. In 

some cases, the machine operator can play all of these roles. In others, different 

people may play the role of each actor. 

 Because requirements elicitation is an evolutionary activity, not all actors 

are identifi ed during the fi rst iteration. It is possible to identify primary actors 

[Jac92] during the fi rst iteration and secondary actors as more is learned about 

the system.  Primary actors  interact to achieve required system function and de-

rive the intended benefi t from the system. They work directly and frequently 

with the software.  Secondary actors  support the system so that primary actors 

can do their work.     

 WebRef 
 An excellent paper 
on use cases can be 
downloaded from 
  www.ibm.com/
developerworks/
webservices/
library/co-
design7.html  . 

   Use cases are defi ned 
from an actor’s point 
of view. An actor is 
a role that people 
(users) or devices play 
as they interact with 
the software. 

pre22126_ch08_131-165.indd   149pre22126_ch08_131-165.indd   149 13/12/13   6:11 PM13/12/13   6:11 PM



150 PART TWO  MODELING

  Once actors have been identifi ed, use cases can be developed. Jacobson 

[Jac92] suggests a number of questions  12   that should be answered by a use 

case: 

    •  Who is the primary actor, the secondary actor(s)?  

   •  What are the actor’s goals?  

   •  What preconditions should exist before the story begins?  

   •  What main tasks or functions are performed by the actor?  

   •  What exceptions might be considered as the story is described?  

   •  What variations in the actor’s interaction are possible?  

   •  What system information will the actor acquire, produce, or change?  

   •  Will the actor have to inform the system about changes in the external 

environment?  

   •  What information does the actor desire from the system?  

   •  Does the actor wish to be informed about unexpected changes?     

 Recalling basic  SafeHome  requirements, we defi ne four actors:  homeowner  

(a user),  setup manager  (likely the same person as  homeowner,  but playing a 

different role),  sensors  (devices attached to the system), and the  monitoring and 

response subsystem  (the central station that monitors the  SafeHome  home se-

curity function). For the purposes of this example, we consider only the  home-

owner  actor. The  homeowner  actor interacts with the home security function in 

a number of different ways using either the alarm control panel or a PC. The 

homeowner (1) enters a password to allow all other interactions, (2) inquires 

about the status of a security zone, (3) inquires about the status of a sensor, 

(4) presses the panic button in an emergency, and (5) activates/deactivates the 

security system. 

 Considering the situation in which the homeowner uses the control panel, the 

basic use case for system activation follows:  13   

    1.  The homeowner observes the  SafeHome  control panel ( Figure 8.1 ) to determine 

if the system is ready for input. If the system is not ready, a  not ready  message is 

displayed on the LCD display, and the homeowner must physically close windows 

or doors so that the  not ready  message disappears. [A  not ready  message implies 

that a sensor is open; i.e., that a door or window is open.]  

 What do 
I need to 

know in order 
to develop an 
effective use 
case? 

?

  12  Jacobson’s questions have been extended to provide a more complete view of use case content. 

  13  Note that this use case differs from the situation in which the system is accessed via the Inter-

net. In this case, interaction occurs via the control panel, not the GUI provided when a PC or 

mobile device is used. 

pre22126_ch08_131-165.indd   150pre22126_ch08_131-165.indd   150 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  151

   2.  The homeowner uses the keypad to key in a four-digit password. The password is 

compared with the valid password stored in the system. If the password is incor-

rect, the control panel will beep once and reset itself for additional input. If the 

password is correct, the control panel awaits further action.  

   3.  The homeowner selects and keys in  stay  or  away  (see  Figure 8.1 ) to activate the 

system.  Stay  activates only perimeter sensors (inside motion detecting sensors are 

deactivated).  Away  activates all sensors.  

   4.  When activation occurs, a red alarm light can be observed by the homeowner.  

  The basic use case presents a high-level story that describes the interaction 

between the actor and the system.     

  In many instances, uses cases are further elaborated to provide considerably 

more detail about the interaction. For example, Cockburn [Coc01b] suggests the 

following template for detailed descriptions of use cases: 

        Use case:    InitiateMonitoring   

       Primary actor:  Homeowner.  

       Goal in context:   To set the system to monitor sensors when the homeowner 

leaves the house or remains inside.  

       Preconditions:   System has been programmed for a password and to 

 recognize various sensors.  

       Trigger:   The homeowner decides to “set” the system, that is, to turn 

on the alarm functions.  

   Use cases are often 
written informally. 
However, use the 
template shown here 
to ensure that you’ve 
addressed all key 
issues. 

1 2 3

4 5 6

7 8 9

* 0

offSAFEHOME away stay

max test bypass

instant code chime

ready

#
armed power

alarm
check
fire

away
stay
instant
bypass
not ready

panic

  FIGURE 8.1 

 SafeHome  
 control panel   

pre22126_ch08_131-165.indd   151pre22126_ch08_131-165.indd   151 13/12/13   6:11 PM13/12/13   6:11 PM



152 PART TWO  MODELING

    Scenario : 

   1.  Homeowner: observes control panel  

   2.  Homeowner: enters password  

   3.  Homeowner: selects “stay” or “away”  

   4.  Homeowner: observes read alarm light to indicate that  SafeHome  has been armed  

    Exceptions:  

   1.  Control panel is  not ready:  homeowner checks all sensors to determine which are 

open; closes them.  

   2.  Password is incorrect (control panel beeps once): homeowner reenters correct 

password.  

   3.  Password not recognized: monitoring and response subsystem must be contacted 

to reprogram password.  

   4.   Stay  is selected: control panel beeps twice and a  stay  light is lit; perimeter sensors 

are activated.  

   5.   Away  is selected: control panel beeps three times and an  away  light is lit; all 

 sensors are activated.  

         Priority:  Essential, must be implemented  

       When available:  First increment  

       Frequency of use:  Many times per day  

       Channel to actor:  Via control panel interface  

       Secondary actors:  Support technician, sensors  

    Channels to secondary actors:  

       Support technician: phone line  

       Sensors: hardwired and radio frequency interfaces  

     Open issues: 

   1.  Should there be a way to activate the system without the use of a password or with 

an abbreviated password?  

   2.  Should the control panel display additional text messages?  

   3.  How much time does the homeowner have to enter the password from the time the 

fi rst key is pressed?  

   4.  Is there a way to deactivate the system before it actually activates?  

  Use cases for other  homeowner  interactions would be developed in a similar 

manner. It is important to review each use case with care. If some element of the 

interaction is ambiguous, it is likely that a review of the use case will indicate a 

problem.           

pre22126_ch08_131-165.indd   152pre22126_ch08_131-165.indd   152 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  153

  Developing a High-Level Use Case Diagram   Developing a High-Level Use Case Diagram 

        The scene:  A meeting room, continu-
ing the requirements-gathering meeting  

       The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering 
manager; three members of marketing; a product engi-
neering representative; and a facilitator.  

       The conversation:   

       Facilitator:   We’ve spent a fair amount of time talking 
about  SafeHome  home security functionality. During the 
break I sketched a use case diagram to summarize the im-
portant scenarios that are part of this function. Take a look.  

   (All attendees look at  Figure 8.2 .) 

        Jamie:  I’m just beginning to learn UML notation.  14   So 
the home security function is represented by the big box 
with the ovals inside it? And the ovals represent use 
cases that we’ve written in text?   

       Facilitator:  Yep. And the stick fi gures represent 
 actors—the people or things that interact with the 

system as described by the use case . . . oh, I use the 
labeled square to represent an actor that’s not a per-
son . . . in this case, sensors.  

       Doug:  Is that legal in UML?  

       Facilitator:  Legality isn’t the issue. The point is to com-
municate information. I view the use of a humanlike stick 
fi gure for representing a device to be misleading. So I’ve 
adapted things a bit. I don’t think it creates a problem.  

       Vinod:  Okay, so we have use case narratives for each 
of the ovals. Do we need to develop the more detailed 
template-based narratives I’ve read about?  

       Facilitator:  Probably, but that can wait until we’ve 
considered other  SafeHome  functions.  

       Marketing person:  Wait, I’ve been looking at 
this diagram and all of a sudden I realize we missed 
something. 

  Facilitator:  Oh really. Tell me what we’ve missed.  

    (The meeting continues.)  

 SAFEHOME 

Homeowner

System 
administrator

Arms/disarms
system

Responds to 
alarm event

Accesses
system

via Internet

Encounters
an error
condition

Reconfigures
sensors and

related 
system features

Sensors

  FIGURE 8.2

 UML use case 
diagram for 
 SafeHome  
home security 
function   

      14  A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation. 

pre22126_ch08_131-165.indd   153pre22126_ch08_131-165.indd   153 13/12/13   6:11 PM13/12/13   6:11 PM



154 PART TWO  MODELING

      8.5 BUILDING THE ANALYS IS  MODEL  16   

  The intent of the analysis model is to provide a description of the required infor-

mational, functional, and behavioral domains for a computer-based system. The 

model changes dynamically as you learn more about the system to be built, and 

other stakeholders understand more about what they really require. For that 

reason, the analysis model is a snapshot of requirements at any given time. You 

should expect it to change. 

 As the analysis model evolves, certain elements will become relatively stable, 

providing a solid foundation for the design tasks that follow. However, other el-

ements of the model may be more volatile, indicating that stakeholders do not 

yet fully understand requirements for the system. The analysis model and the 

methods that are used to build it are presented in detail in Chapters 9 to 11. We 

present a brief overview in the sections that follow. 

  8.5.1  Elements of the Analysis Model 

 There are many different ways to look at the requirements for a computer-based 

system. Some software people argue that it’s best to select one mode of represen-

tation (e.g., the use case) and apply it to the exclusion of all other modes. Other 

practitioners believe that it’s worthwhile to use a number of different modes of 

representation to depict the analysis model. Different modes of representation 

force you to consider requirements from different viewpoints—an approach that 

has a higher probability of uncovering omissions, inconsistencies, and ambiguity. 

A set of generic elements is common to most analysis models. 

   It is always a good 
idea to get stakehold-
ers involved. One of 
the best ways to do 
this is to have each 
stakeholder write use 
cases that describe 
how the software will 
be used. 

  Use Case Development    

  Objective:   Assist in the development of use 
cases by providing automated templates and 

mechanisms for assessing clarity and consistency. 

   Mechanics:   Tool mechanics vary. In general, use case 
tools provide fi ll-in-the-blank templates for creating effec-
tive use cases. Most use case functionality is embedded 
into a set of broader requirements engineering functions. 

    Representative Tools:  15   
  The vast majority of UML-based analysis modeling tools 
provide both text and graphical support for use case 
development and modeling. 
  Objects by Design  

(  www.objectsbydesign.com/tools/umltools_
byCompany.html  ) provides comprehensive links to 
tools of this type.   

 SOFTWARE TOOLS 

  15  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  16  Throughout this book, we use the terms  analysis model  and  requirements model  synonymously. 

Both refer to representations of the information, functional, and behavioral domains that 

 describe problem requirements. 

pre22126_ch08_131-165.indd   154pre22126_ch08_131-165.indd   154 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  155

       Scenario-based elements.   The system is described from the user’s point of view 

using a scenario-based approach. For example, basic use cases (Section 8.4) and 

their corresponding use case diagrams ( Figure 8.2 ) evolve into more elaborate 

template-based use cases. Scenario-based elements of the requirements model 

are often the fi rst part of the model that is developed. As such, they serve as input 

for the creation of other modeling elements.  Figure 8.3  depicts a UML activity di-

agram  17   for eliciting requirements and representing them using use cases. Three 

levels of elaboration are shown, culminating in a scenario-based representation.       

    Class-based elements.   Each usage scenario implies a set of objects that are ma-

nipulated as an actor interacts with the system. These objects are categorized 

into classes—a collection of things that have similar attributes and common be-

haviors. For example, a UML class diagram can be used to depict a  Sensor  class 

for the  SafeHome  security function ( Figure 8.4 ). Note that the diagram lists the 

attributes of sensors (e.g., name, type) and the operations (e.g.,  identify, enable ) 

that can be applied to modify these attributes. In addition to class diagrams, other 

analysis modeling elements depict the manner in which classes collaborate with 

   One way to isolate 
classes is to look for 
descriptive nouns in a 
use case script. At least 
some of the nouns 
will be candidate 
classes. More on this 
in Chapter 12. 

  17  A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation. 

Formal prioritization?
Yes No

Conduct
meetings

Make lists of 
functions, classes

Make lists of 
constraints, etc.

  Use QFD to
prioritize 

requirements

Informally
prioritize 

requirements

Create
use cases

Draw use-case
diagram

Define
actors

Write
scenario

Complete
template

Elicit requirements

  FIGURE 8.3

 UML activity 
diagrams 
for eliciting 
requirements   

pre22126_ch08_131-165.indd   155pre22126_ch08_131-165.indd   155 13/12/13   6:11 PM13/12/13   6:11 PM



156 PART TWO  MODELING

one another and the relationships and interactions between classes. These are 

discussed in more detail in Chapter 10.  

   Behavioral elements.   The behavior of a computer-based system can have a pro-

found effect on the design that is chosen and the implementation approach that 

is applied. Therefore, the requirements model must provide modeling elements 

that depict behavior. 

 The  state diagram  is one method for representing the behavior of a system by 

depicting its states and the events that cause the system to change state. A  state  

is any observable mode of behavior. In addition, the state diagram indicates what 

actions (e.g., process activation) are taken as a consequence of a particular event. 

      To illustrate the use of a state diagram, consider software embedded within 

the  SafeHome  control panel that is responsible for reading user input. A simpli-

fi ed UML state diagram is shown in  Figure 8.5 .  

 In addition to behavioral representations of the system as a whole, the behav-

ior of individual classes can also be modeled. Further discussion of behavioral 

modeling is presented in Chapter 11.          

   A state is an 
 externally observable 
mode of behavior. 
External  stimuli cause 
 transitions between 
states. 

Name
Type
Location
Area
Characteristics

Identify()
Enable()
Disable()
Reconfigure()

Sensor

  FIGURE 8.4

 Class diagram 
for sensor   

System status = "Ready"
Display msg = "enter cmd"
Display status = steady

State name

State variables

State activities
Entry/subsystems ready
Do: poll user input panel
Do: read user input
Do: interpret user input

Reading
commands

  FIGURE 8.5

 UML state 
 diagram 
notation   

pre22126_ch08_131-165.indd   156pre22126_ch08_131-165.indd   156 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  157

     8.5.2  Analysis Patterns 

 Anyone who has done requirements engineering on more than a few software 

projects begins to notice that certain problems reoccur across all projects within 

a specifi c application domain.  18   These  analysis patterns  [Fow97] suggest solutions 

(e.g., a class, a function, a behavior) within the application domain that can be 

reused when modeling many applications. 

  Geyer-Schulz and Hahsler [Gey01] suggest two benefi ts that can be associated 

with the use of analysis patterns:

  First, analysis patterns speed up the development of abstract analysis models that 

capture the main requirements of the concrete problem by providing reusable analy-

sis models with examples as well as a description of advantages and limitations. Sec-

ond, analysis patterns facilitate the transformation of the analysis model into a design 

model by suggesting design patterns and reliable solutions for common problems.   

 Analysis patterns are integrated into the analysis model by reference to 

the pattern name. They are also stored in a repository so that requirements 

   If you want to obtain 
solutions to customer 
requirements more 
rapidly  and  provide 
your team with proven 
approaches, use analy-
sis patterns. 

  Preliminary Behavioral Modeling   Preliminary Behavioral Modeling 

        The scene:  A meeting room, con-
tinuing the requirements meeting.  

       The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering 
manager; three members of marketing; a product engi-
neering representative; and a facilitator.  

       The conversation:   

       Facilitator:  We’ve just about fi nished talking about 
 SafeHome  home security functionality. But before we 
do, I want to discuss the behavior of the function.  

       Marketing person:  I don’t understand what you 
mean by behavior.  

       Ed (smiling):  That’s when you give the product a 
 “timeout” if it misbehaves.  

       Facilitator:  Not exactly. Let me explain.  

   (The facilitator explains the basics of behavioral model-
ing to the requirements gathering team.) 

        Marketing person:  This seems a little technical. I’m 
not sure I can help here.  

       Facilitator:  Sure you can. What behavior do you ob-
serve from the user’s point of view?  

       Marketing person:  Uh . . . well, the system will be 
 monitoring  the sensors. It’ll be  reading commands  from 
the homeowner. It’ll be  displaying  its status.  

       Facilitator:  See, you can do it.  

       Jamie:  It’ll also be  polling  the PC to determine if there 
is any input from it, for example, Internet-based access 
or confi guration information.  

       Vinod:  Yeah, in fact,  confi guring the system  is a state 
in its own right.  

       Doug:  You guys are rolling. Let’s give this a bit more 
thought . . . is there a way to diagram this stuff?  

       Facilitator:  There is, but let’s postpone that until after 
the meeting.    

 SAFEHOME 

  18  In some cases, problems reoccur regardless of the application domain. For example, the fea-

tures and functions used to solve user interface problems are common regardless of the appli-

cation domain under consideration. 

pre22126_ch08_131-165.indd   157pre22126_ch08_131-165.indd   157 13/12/13   6:11 PM13/12/13   6:11 PM



158 PART TWO  MODELING

engineers can use search facilities to fi nd and reuse them. Information about an 

analysis pattern (and other types of patterns) is presented in a standard template 

[Gey01]  19   that is discussed in more detail in Chapter 16. Examples of analysis pat-

terns and further discussion of this topic are presented in Chapter 11. 

    8.5.3  Agile Requirements Engineering 

 The intent of agile requirements engineering is to transfer ideas from stakehold-

ers to the software team rather than create extensive analysis work products. 

In many situations, requirements are not predefi ned but emerge as each iter-

ation of product development begins. As the agile team acquires a high-level 

understanding of a product’s critical features use stories (Chapter 5) relevant to 

the next product increment are refi ned. The agile process encourages the early 

identifi cation and implementation of the highest priority product features. This 

allows the early creation and testing of working prototypes. 

 Agile requirements engineering addresses important issues that are common 

in software projects: high requirements volatility, incomplete knowledge of de-

velopment technology, and customers not able to articulate their visions until 

they see a working prototype. The agile process interleaves requirements engi-

neering and design activities.     

    8.5.4  Requirements for Self-Adaptive Systems 

  Self-adaptive systems   20   can reconfi gure themselves, augment their functionality, 

protect themselves, recover from failure, and accomplish all of this while hid-

ing most of their internal complexity from their users [Qur09]. Adaptive require-

ments document the variability needed for self-adaptive systems. This means 

that a requirement must encompass the notion of variability or fl exibility while 

at the same time specifying either a functional or quality aspect of the software 

product. Variability might include timing uncertainty, user profi le differences 

(e.g., end users versus systems administrators), behavior changes based on prob-

lem domain (e.g., commercial or educational), or predefi ned behaviors exploit-

ing system assets. 

 Capturing adaptive requirements focuses on the same questions that are 

used for requirements engineering of more conventional systems. However, sig-

nifi cant variability can be present when answering each of these questions. The 

more variable the answers, the more complex the resulting system will need to 

be to accommodate the requirements. 

 What are the 
character-

istics of a self-
adaptive system? 

?

  19  A variety of patterns templates have been proposed in the literature. If you have interest, see 

[Fow97], [Gam95], [Yac03], and [Bus07] among many sources. 

  20  An example of a self-adaptive system is a “location aware” app that adapts its behavior to the 

location of the mobile platform on which it resides. 

pre22126_ch08_131-165.indd   158pre22126_ch08_131-165.indd   158 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  159

       8.6 NEGOTIATING REQUIREMENTS 

  In an ideal requirements engineering context, the inception, elicitation, and elab-

oration tasks determine customer requirements in suffi cient detail to proceed to 

subsequent software engineering activities. Unfortunately, this rarely happens. 

In reality, you may have to enter into a  negotiation  with one or more stakehold-

ers. In most cases, stakeholders are asked to balance functionality, performance, 

and other product or system characteristics against cost and time-to-market. 

The intent of this negotiation is to develop a project plan that meets stakeholder 

needs while at the same time refl ecting the real-world constraints (e.g., time, 

people, budget) that have been placed on the software team. 

 The best negotiations strive for a “win-win” result.  21   That is, stakeholders win 

by getting the system or product that satisfi es the majority of their needs and you 

(as a member of the software team) win by working to realistic and achievable 

budgets and deadlines. 

       Boehm [Boe98] defi nes a set of negotiation activities at the beginning of each 

software process iteration. Rather than a single customer communication activ-

ity, the following activities are defi ned:

     1.  Identifi cation of the system or subsystem’s key stakeholders.  

    2.  Determination of the stakeholders’ “win conditions.”  

    3.  Negotiation of the stakeholders’ win conditions to reconcile them into a 

set of win-win conditions for all concerned (including the software team).  

   Successful completion of these initial steps achieves a win-win result, which be-

comes the key criterion for proceeding to subsequent software engineering activities.     

 WebRef 
 A brief paper on ne-
gotiation for software 
requirements can be 
downloaded from 
  www.alexander-
egyed.com/
publications/
Software_
Requirements_
Negotiation-
Some_Lessons_
Learned.html  . 

  uote: 

 “A compromise is 
the art of dividing 
a cake in such a 
way that everyone 
believes he has the 
biggest piece.” 

 Ludwig Erhard 

  21  Dozens of books have been written on negotiating skills (e.g., [Fis11], [Lew09], [Rai06]). It is one 

of the more important skills that you can learn. Read one. 

  The Art of Negotiation   The Art of Negotiation 

 Learning how to negotiate effectively can serve 
you well throughout your personal and technical 

life. The following guidelines are well worth considering:

     1.   Recognize that it’s not a competition.  To be suc-
cessful, both parties have to feel they’ve won or 
achieved something. Both will have to compromise.  

    2.   Map out a strategy.  Decide what you’d like to 
achieve, what the other party wants to achieve, 
and how you’ll go about making both happen.  

    3.   Listen actively.  Don’t work on formulating your 
response while the other party is talking. Listen to 

her. It’s likely you’ll gain knowledge that will help 
you to better negotiate your position.  

    4.   Focus on the other party’s interests.  Don’t take hard 
positions if you want to avoid confl ict.  

    5.   Don’t let it get personal.  Focus on the problem that 
needs to be solved.  

    6.   Be creative.  Don’t be afraid to think out of the box 
if you’re at an impasse.  

    7.   Be ready to commit.  Once an agreement has been 
reached, don’t waffl e; commit to it and move on.     

 INFO 

pre22126_ch08_131-165.indd   159pre22126_ch08_131-165.indd   159 13/12/13   6:11 PM13/12/13   6:11 PM



160 PART TWO  MODELING

  Fricker [Fri10] and his colleagues suggest replacing the traditional handoff of 

requirements specifi cations to software teams with a bidirectional communica-

tion process called  handshaking.  In handshaking, the software team proposes 

solutions to requirements, describes their impact, and communicates their in-

tentions to customer representatives. The customer representatives review the 

proposed solutions, focusing on missing features and seeking clarifi cation of 

novel requirements. Requirements are determined to be  good enough  if the cus-

tomers accept the proposed solution. 

 Handshaking allows detailed requirements to be delegated to software teams. 

The teams need to elicit requirements from customers (e.g., product users and 

domain experts), thereby improving product acceptance. Handshaking tends to 

improve identifi cation, analysis, and selection of variants and promotes win-win 

negotiation.     

  The Start of a Negotiation   The Start of a Negotiation 

        The scene:  Lisa Perez’s offi ce, after 
the fi rst requirements gathering meeting.  

       The players:  Doug Miller, software engineering man-
ager and Lisa Perez, marketing manager.  

       The conversation:   

       Lisa:  So, I hear the fi rst meeting went really well.  

       Doug:  Actually, it did. You sent some good people to 
the meeting . . . they really contributed.  

       Lisa (smiling):  Yeah, they actually told me they got 
into it and it wasn’t a “propeller head activity.”  

       Doug (laughing):  I’ll be sure to take off my techie 
beanie the next time I visit . . . Look, Lisa, I think we 
may have a problem with getting all of the functional-
ity for the home security system out by the dates your 
management is talking about. It’s early, I know, but I’ve 
already been doing a little back-of-the-envelope plan-
ning and . . .  

       Lisa (frowning):  We’ve got to have it by that date, 
Doug. What functionality are you talking about?  

       Doug:  I fi gure we can get full home security function-
ality out by the drop-dead date, but we’ll have to delay 
Internet access ‘til the second release.  

       Lisa:  Doug, it’s the Internet access that gives  SafeHome  
“gee whiz” appeal. We’re going to build our entire 
marketing campaign around it. We’ve gotta have it!  

       Doug:  I understand your situation, I really do. The 
problem is that in order to give you Internet access, 
we’ll have to have a fully secure website up and 
running. That takes time and people. We’ll also have 
to build a lot of additional functionality into the fi rst 
release . . . I don’t think we can do it with the resources 
we’ve got.  

       Lisa (still frowning):  I see, but you’ve got to fi gure 
out a way to get it done. It’s pivotal to home security 
functions and to other functions as well . . . those can 
wait until the next releases . . . I’ll agree to that.  

  Lisa and Doug appear to be at an impasse, and yet 
they must negotiate a solution to this problem. Can they 
both “win” here? Playing the role of a mediator, what 
would you suggest?  

 SAFEHOME 

      8.7 REQUIREMENTS MONITORING 

  Today, incremental development is commonplace. This means that use cases 

evolve, new test cases are developed for each new software increment, and con-

tinuous integration of source code occurs throughout a project.  Requirements 

pre22126_ch08_131-165.indd   160pre22126_ch08_131-165.indd   160 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  161

monitoring  can be extremely useful when incremental development is used. It 

encompasses fi ve tasks: (1)  distributed debugging  uncovers errors and deter-

mines their cause, (2)  run-time verifi cation  determines whether software matches 

its specifi cation, (3)  run-time validation  assesses whether the evolving software 

meets user goals, (4)  business activity monitoring  evaluates whether a system 

satisfi es business goals, and (5)  evolution and codesign  provides information to 

stakeholders as the system evolves. 

 Incremental development implies the need for incremental validation. Re-

quirements monitoring supports continuous validation by analyzing user goal 

models against the system in use. For example, a monitoring system might con-

tinuously assess user satisfaction and use feedback to guide incremental im-

provements [Rob10]. 

     8.8 VALIDATING REQUIREMENTS 

  As each element of the requirements model is created, it is examined for incon-

sistency, omissions, and ambiguity. The requirements represented by the model 

are prioritized by stakeholders and grouped within requirements packages that 

will be implemented as software increments. A review of the requirements model 

addresses the following questions:     

     •  Is each requirement consistent with the overall objectives for the system 

or product?  

   •  Have all requirements been specifi ed at the proper level of abstraction? 

That is, do some requirements provide a level of technical detail that is 

inappropriate at this stage?  

   •  Is the requirement really necessary or does it represent an add-on feature 

that may not be essential to the objective of the system?  

   •  Is each requirement bounded and unambiguous?  

   •  Does each requirement have attribution? That is, is a source (generally, a 

specifi c individual) noted for each requirement?  

   •  Do any requirements confl ict with other requirements?  

   •  Is each requirement achievable in the technical environment that will 

house the system or product?  

   •  Is each requirement testable, once implemented?  

   •  Does the requirements model properly refl ect the information, function, 

and behavior of the system to be built?  

   •  Has the requirements model been “partitioned” in a way that exposes pro-

gressively more detailed information about the system?  

 When I 
review 

requirements, 
what questions 
should I ask? 

?

pre22126_ch08_131-165.indd   161pre22126_ch08_131-165.indd   161 13/12/13   6:11 PM13/12/13   6:11 PM



162 PART TWO  MODELING

   •  Have requirements patterns been used to simplify the requirements 

model? Have all patterns been properly validated? Are all patterns con-

sistent with customer requirements?  

  These and other questions should be asked and answered to ensure that the 

requirements model is an accurate refl ection of stakeholder needs and that it 

provides a solid foundation for design. 

     8.9 AVOIDING COMMON MISTAKES 

  Buschmann [Bus10] describes three related mistakes that must be avoided as 

a software team performs requirements engineering. He calls them: featuritis, 

fl exibilitis, and performitis. 

  Fearturitis  describes the practice of trading functional coverage for overall 

system quality. There is a tendency in some organizations to equate the quan-

tity of functions delivered at the earliest possible time with the overall quality 

of the end product. This is driven in part by business stakeholders who think 

more is better. There is also a tendency of software developers to want to imple-

ment easy functions quickly without thought to their quality. The reality is that 

one of the most common causes of software project failure is lack of operational 

 quality— not  missing functionality. To avoid this trap, you should initiate a discus-

sion (with other stakeholders) about the key functions the system requires and 

ensure that each delivered function exhibits all necessary quality attributes. 

  Flexibilitis  happens when software engineers overload product with adapta-

tion and confi guration facilities. Overly fl exible systems are hard to confi gure 

and exhibit poor operational performance. This can be a symptom of poorly de-

fi ned system scope. The root cause, however, may be developers who use fl exibil-

ity as a cover for uncertainty. Rather than making tough design decisions early, 

they provide design “hooks” to allow the addition of unplanned features. The 

result is a “fl exible” system that is unnecessarily complex, more diffi cult to test, 

and more challenging to manage. 

  Performitis  occurs when   software developers become overly focused on sys-

tem performance at the expense of quality attributes like maintainability, reli-

ability, or security. System performance characteristics should be determined 

as part of an evaluation of nonfunctional software requirements. Performance 

should conform to the business need for a product and must be compatible with 

the other system characteristics. 

       8.10 SUMMARY 

 Requirements engineering tasks are conducted to establish a solid foundation for 

design and construction. Requirements engineering occurs during the commu-

nication and modeling activities that have been defi ned for the generic software 

pre22126_ch08_131-165.indd   162pre22126_ch08_131-165.indd   162 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  163

process. Seven distinct requirements engineering functions—inception, elicita-

tion, elaboration, negotiation, specifi cation, validation, and management—are 

conducted by members of the software team. 

 At project inception, stakeholders establish basic problem requirements, de-

fi ne overriding project constraints, and address major features and functions 

that must be present for the system to meet its objectives. This information is 

refi ned and expanded during elicitation—a requirements gathering activity that 

makes use of facilitated meetings, QFD, and the development of usage scenarios. 

 Elaboration further expands requirements in a model—a collection of scenar-

io-based, activity-based, class-based, behavioral, and fl ow-oriented elements. 

The model may reference analysis patterns, characteristics of the problem do-

main that have been seen to reoccur across different applications. 

 As requirements are identifi ed and the requirements model is being created, 

the software team and other project stakeholders negotiate the priority, avail-

ability, and relative cost of each requirement. The intent of this negotiation is to 

develop a realistic project plan. In addition, each requirement and the require-

ments model as a whole are validated against customer need to ensure that the 

right system is to be built. 

     PROBLEMS AND POINTS TO PONDER 
    8.1.  Why is it that many software developers don’t pay enough attention to requirements 
engineering? Are there ever circumstances where you can skip it?  

   8.2.  You have been given the responsibility to elicit requirements from a customer who tells 
you he is too busy to meet with you. What should you do?  

   8.3.  Discuss some of the problems that occur when requirements must be elicited from 
three or four different customers.  

   8.4.  Why do we say that the requirements model represents a snapshot of a system in time?  

   8.5.  Let’s assume that you’ve convinced the customer (you’re a very good salesperson) to 
agree to every demand that you have as a developer. Does that make you a master negoti-
ator? Why?  

   8.6.  Develop at least three additional “context-free questions” that you might ask a stake-
holder during inception.  

   8.7.  Develop a requirements-gathering “kit.” The kit should include a set of guidelines for 
conducting a requirements-gathering meeting and materials that can be used to facilitate 
the creation of lists and any other items that might help in defi ning requirements.  

   8.8.  Your instructor will divide the class into groups of four or six students. Half of the group 
will play the role of the marketing department and half will take on the role of software en-
gineering. Your job is to defi ne requirements for the  SafeHome  security function described 
in this chapter. Conduct a requirements-gathering meeting using the guidelines presented 
in this chapter.  

   8.9.  Develop a complete use case for one of the following activities: 

     a.  Making a withdrawal at an ATM.  
    b.  Using your charge card for a meal at a restaurant.  

pre22126_ch08_131-165.indd   163pre22126_ch08_131-165.indd   163 13/12/13   6:11 PM13/12/13   6:11 PM



164 PART TWO  MODELING

    c.  Buying a stock using an online brokerage account.  
    d.  Searching for books (on a specifi c topic) using an online bookstore.  
    e.  An activity specifi ed by your instructor.    

   8.10.  What do use case “exceptions” represent?  

   8.11.  Write a user story for one of the activities listed in question 8.9.  

   8.12.  Consider the use case you created in question 8.9, write a nonfunctional requirement 
for the application.  

   8.13.  Describe what an  analysis pattern  is in your own words.  

   8.14.  Using the template presented in Section 8.5.2, suggest one or more analysis pattern for 
the following application domains: 

     a.  Accounting software.  
    b.  E-mail software.  
    c.  Internet browsers.  
    d.  Word-processing software.  
    e.  Website creation software.  
    f.  An application domain specifi ed by your instructor.    

   8.15.  What does  win-win  mean in the context of negotiation during the requirements engi-
neering activity?  

   8.16.  What do you think happens when requirement validation uncovers an error? Who is 
involved in correcting the error?  

   8.17.  What fi ve tasks make up a comprehensive requirements monitoring program?  

      FUR THER READINGS AND OTHER INFORMATION SOURCES 
  Because it is pivotal to the successful creation of any complex computer-based system, re-
quirements engineering is discussed in a wide array of books. Chemuturi ( Requirements 

Engineering and Management for Software Development Projects,  Springer, 2013) presents 
important aspects of requirements engineering. Pohl and Rupp ( Requirements Engineering 

Fundamentals,  Rocky Nook, 2011) present basic principles and concepts, and Pohl ( Require-

ments Engineering,  Springer, 2010) offers a more detailed view of the entire requirements 
engineering process. Young ( The Requirements Engineering Handbook,  Artech House Pub-
lishers, 2003) presents an in-depth discussion of requirements engineering tasks. 

   Beaty and Chen ( Visual Models for Software Products Best Practices,  Microsoft Press, 
2012), Robertson ( Mastering the Requirements Process: Getting Requirements Right , 3rd ed., 
Addison-Wesley, 2012), Hull and her colleagues ( Requirements Engineering,  3rd ed.,  Springer- 
Verlag, 2010), Bray ( An Introduction to Requirements Engineering,  Addison- Wesley, 2002), 
Arlow ( Requirements Engineering,  Addison-Wesley, 2001), Gilb ( Requirements Engineer-

ing,  Addison-Wesley, 2000), Graham ( Requirements Engineering and Rapid Development,  
 Addison-Wesley, 1999), and Sommerville and Kotonya ( Requirement Engineering: Processes 

and Techniques,  Wiley, 1998), are but a few of many books dedicated to the subject. Wiegers 
( More About Software Requirements,  Microsoft Press, 2010) provides many practical tech-
niques for requirements gathering and management. 

   A patterns-based view of requirements engineering is described by Withall ( Software 

Requirement Patterns,  Microsoft Press, 2007). Ploesch ( Contracts, Scenarios and Prototypes,  
Springer-Verlag, 2004) discusses advanced techniques for developing software require-
ments. Windle and Abreo ( Software Requirements Using the Unifi ed Process,  Prentice Hall, 
2002) discuss requirements engineering within the context of the Unifi ed Process and UML 
notation. Alexander and Steven ( Writing Better Requirements,  Addison-Wesley, 2002) pres-
ent a brief set of guidelines for writing clear requirements, representing them as scenarios, 
and reviewing the end result. 

pre22126_ch08_131-165.indd   164pre22126_ch08_131-165.indd   164 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 8  UNDERSTANDING REQUIREMENTS  165

   Use case modeling is often the driver for the creation of all other aspects of the analysis 
model. The subject is discussed at length by Rosenberg and Stephens ( Use Case Driven 

Object Modeling with UML: Theory and Practice,  Apress, 2007), Denny ( Succeeding with Use 

Cases: Working Smart to Deliver Quality,  Addison-Wesley, 2005), Alexander and Maiden 
(eds.) ( Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle,  Wiley, 
2004), Leffi ngwell and his colleagues ( Managing Software Requirements: A Use Case Ap-

proach,  2nd ed., Addison-Wesley, 2003) present a useful collection of requirement best 
practices. 

   A discussion of agile requirements can be found in books by Adzic ( Specifi cation by 

Example: How Successful Teams Deliver the Right Software,  Manning Publications, 2011), 
Leffi ngwell ( Agile Requirements: Lean Requirements for Teams, Programs, and Enterprises,  
Addison-Wesley, 2011), Cockburn ( Agile Software Development: The Cooperative Game,  2nd 
ed., Addison-Wesley, 2006), and Cohn ( User Stories Applied: For Agile Software Development,  
Addison-Wesley, 2004). 

   A wide variety of information sources on requirements engineering and analysis is avail-
able on the Internet. An up-to-date list of World Wide Web references that are relevant to 
requirements engineering and analysis can be found at the SEPA website:   www.mhhe.com/
pressman.       

pre22126_ch08_131-165.indd   165pre22126_ch08_131-165.indd   165 13/12/13   6:11 PM13/12/13   6:11 PM



166

  At a technical level, software engineering begins with a series of mod-

eling tasks that lead to a specifi cation of requirements and a design 

 representation for the software to be built. The requirements model  1  —

actually a set of models—is the fi rst technical representation of a system. 

  In a seminal book on requirements modeling methods, Tom DeMarco 

[DeM79] describes the process in this way:

  Looking back over the recognized problems and failings of the analysis phase, 

I suggest that we need to make the following additions to our set of analysis 

phase goals. The products of analysis must be highly maintainable. This applies 

   K E Y 
C O N C E P T S 
    activity diagram  . . 180  
    domain analysis  . . 170  
    formal use case. . . 177  
    requirements 
analysis  . . . . . . . . 167  
    requirements 
modeling  . . . . . . . . 171  
    scenario-based 
modeling  . . . . . . . . 173  
    swimlane diagram. 181  

 REQUIREMENTS MODELING: 
SCENARIO-BASED METHODS 9 

     C H A P T E R

  What is it?   The written word is a 
wonderful vehicle for communica-
tion, but it is not necessarily the best 
way to represent the requirements 

for computer software. Requirements modeling 
uses a combination of text and diagrammatic 
forms to depict requirements in a way that is 
relatively easy to understand, and more im-
portant, straightforward to review for correct-
ness, completeness, and consistency. 

   Who does it?   A software engineer (sometimes 
called an analyst) builds the model using re-
quirements elicited from the customer. 

   Why is it important?   To validate software re-
quirements, you need to examine them from 
a number of different points of view. In this 
chapter you’ll consider requirements modeling 
from a scenario-based perspective and exam-
ine how UML can be used to supplement the 
scenarios. In Chapters 10 and 11, you’ll learn 
about other “dimensions” of the requirements 
model. By examining a number of different 
 dimensions, you’ll increase the probability that 

errors will be found, that inconsistency will sur-
face, and that omissions will be uncovered. 

   What are the steps?   Scenario-based model-
ing represents the system from the user’s point 
of view. By building a scenario-based model, 
you will be able to better understand how the 
user interacts with the software, uncovering the 
major functions and features that stakeholder 
require of the system. 

   What is the work product?   Scenario-based 
modeling produces a text-oriented representation 
call a “use case.” The use case describes a spe-
cifi c interaction in a manner that can be informal 
(a simple narrative) or more structured and formal 
in nature. The use case can be supplemented with 
a number of different UML diagrams that overlay 
a more procedural view of the interaction. 

   How do I ensure that I’ve done it right?   Re-
quirements modeling work products must be 
reviewed for correctness, completeness, and 
consistency. They must refl ect the needs of all 
stakeholders and establish a foundation from 
which design can be conducted.  

 Q U I C K 
L O O K 

  1  In earlier editions of this book, the term  analysis model  was used, rather than  requirements 

model.  In this edition, we’ve decided to use both phrases to represent the modeling activity 

that defi nes various aspects of the problem to be solved.  Analysis  is the action that occurs as 

 requirements  are derived. 

pre22126_ch09_166-183.indd   166pre22126_ch09_166-183.indd   166 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  167

particularly to the Target Document [software requirements specifi cation]. Prob-

lems of size must be dealt with using an effective method of partitioning. The Vic-

torian novel specifi cation is out. Graphics have to be used whenever possible. We 

have to differentiate between logical [essential] and physical [implementation] con-

siderations . . . At the very least, we need . . . Something to help us partition our re-

quirements and document that partitioning before specifi cation . . . Some means of 

keeping track of and evaluating interfaces . . . New tools to describe logic and policy, 

something better than narrative text   

 Although DeMarco wrote about the attributes of analysis modeling more than 

three decades ago, his comments still apply to modern requirements modeling 

methods and notation. 

    uml models . . . . . . 179  
    use cases . . . . . . . . 173  
    use case 
exception . . . . . . . 177         

     9.1 REQUIREMENTS ANALYS IS 

  Requirements analysis results in the specifi cation of software’s operational 

characteristics, indicates software’s interface with other system elements, and 

establishes constraints that software must meet. Requirements analysis allows 

you (regardless of whether you’re called a  software engineer,  an  analyst,  or a 

 modeler ) to elaborate on basic requirements established during the inception, 

elicitation, and negotiation tasks that are part of requirements engineering 

(Chapter 8).  

 The requirements modeling action results in one or more of the following 

types of models:

    •   Scenario-based models  of requirements from the point of view of various 

system “actors.”  

   •   Class-oriented models  that represent object-oriented classes (attributes 

and operations) and the manner in which classes collaborate to achieve 

system requirements.  

   •   Behavioral and patterns-based models  that depict how the software be-

haves as a consequence of external “events.”  

   •   Data models  that depict the information domain for the problem.  

   •   Flow-oriented models  that represent the functional elements of the system 

and how they transform data as they move through the system.        

  These models provide a software designer with information that can be trans-

lated to architectural-, interface-, and component-level designs. Finally, the 

 requirements model (and the software requirements specifi cation) provides 

the developer and the customer with the means to assess quality once software 

is built. 

  uote: 

 “Any one ‘view’ 
of requirements 
is insuffi cient 
to understand 
or describe the 
desired behavior of 
a complex system.” 

 Alan M. Davis 

   The analysis model 
and requirements 
specifi cation provide 
a means for assessing 
quality once the soft-
ware is built. 

pre22126_ch09_166-183.indd   167pre22126_ch09_166-183.indd   167 13/12/13   6:11 PM13/12/13   6:11 PM



168 PART TWO  MODELING

 In this chapter, we focus on  scenario-based modeling —a technique that is 

growing increasingly popular throughout the software engineering community. 

In Chapters 10 and 11 we consider class-based models and behavioral models. 

Over the past decade, fl ow and data modeling have become less commonly used, 

while scenario and class-based methods, supplemented with behavioral ap-

proaches and pattern-based techniques have grown in popularity.  2     

  9.1.1 Overall Objectives and Philosophy 

 Throughout analysis modeling, your primary focus is on  what,  not  how.  What 

user interaction occurs in a particular circumstance, what objects does the sys-

tem manipulate, what functions must the system perform, what behaviors does 

the system exhibit, what interfaces are defi ned, and what constraints apply?  3        

  In previous chapters, we noted that complete specifi cation of requirements 

may not be possible at this stage. The customer may be unsure of precisely what 

is required for certain aspects of the system. The developer may be unsure that 

a specifi c approach will properly accomplish function and performance. These 

realities mitigate in favor of an iterative approach to requirements analysis and 

modeling. The analyst should model what is known and use that model as the 

basis for design of the software increment.  4   

  The requirements model must achieve three primary objectives: (1) to de-

scribe what the customer requires, (2) to establish a basis for the creation of a 

software design, and (3) to defi ne a set of requirements that can be validated 

once the software is built. The analysis model bridges the gap between a sys-

tem-level description that describes overall system or business functionality as 

it is achieved by applying software, hardware, data, human, and other system 

elements and a software design (Chapters 12 through 18) that describes the soft-

ware’s application architecture, user interface, and component-level structure. 

This relationship is illustrated in  Figure 9.1 .  

 It is important to note that all elements of the requirements model will be 

directly traceable to parts of the design model. A clear division of analysis and 

design tasks between these two important modeling activities is not always pos-

sible. Some design invariably occurs as part of analysis, and some analysis will be 

conducted during design. 

  uote: 

 “Requirements are 
not architecture. 
Requirements 
are not design, 
nor are they the 
user interface. 
Requirements are 
need.” 

 Andrew Hunt 
and David 

Thomas 

   The analysis model 
should describe what 
the customer wants, 
establish a basis for 
design, and establish a 
target for validation. 

  2  Our presentation of fl ow-oriented modeling and data modeling has been omitted from this 

edition. However, copious information about these older requirements modeling methods can 

be found on the Web. If you have interest, use the search phrase “structured analysis.” 

  3  It should be noted that as customers become more technologically sophisticated, there is a 

trend toward the specifi cation of  how  as well as  what.  However, the primary focus should re-

main on  what.  

  4  Alternatively, the software team may choose to create a prototype (Chapter 4) in an effort to 

better understand requirements for the system. 

pre22126_ch09_166-183.indd   168pre22126_ch09_166-183.indd   168 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  169

   9.1.2 Analysis Rules of Thumb     

  Arlow and Neustadt [Arl02] suggest a number of worthwhile rules of thumb that 

should be followed when creating the analysis model:

    •   The model should focus on requirements that are visible within the prob-

lem or business domain. The level of abstraction should be relatively high.  

“Don’t get bogged down in details” [Arl02] that try to explain how the 

 system will work.  

   •   Each element of the requirements model should add to an overall under-

standing of software requirements and provide insight into the information 

domain, function, and behavior of the system.   

   •   Delay consideration of infrastructure and other nonfunctional models until 

design.  That is, a database may be required, but the classes necessary to 

implement it, the functions required to access it, and the behavior that 

will be exhibited as it is used should be considered only after problem 

 domain analysis has been completed.  

   •   Minimize coupling throughout the system.  It is important to represent re-

lationships between classes and functions. However, if the level of “inter-

connectedness” is extremely high, efforts should be made to reduce it.   

   •   Be certain that the requirements model provides value to all stakeholders.  

Each constituency has its own use for the model. For example, business 

stakeholders should use the model to validate requirements; designers 

should use the model as a basis for design; QA people should use the 

model to help plan acceptance tests.  

   •   Keep the model as simple as it can be.  Don’t add additional diagrams 

when they add no new information. Don’t use complex notational forms 

when a simple list will do.        

 Are there 
some basic 

guidelines that can 
guide us as we 
do requirements 
analysis work? 

?

  uote: 

     “Problems worthy 
of attack, prove 
their worth by 
hitting back.” 

 Piet Hein 

System
description

Analysis
model

Design
model

  FIGURE 9.1

 The require-
ments model 
as a bridge 
between 
the system 
 description 
and the design 
model   

pre22126_ch09_166-183.indd   169pre22126_ch09_166-183.indd   169 13/12/13   6:11 PM13/12/13   6:11 PM



170 PART TWO  MODELING

    9.1.3 Domain Analysis 

 In the discussion of requirements engineering (Chapter 8), we noted that anal-

ysis patterns often reoccur across many applications within a specifi c business 

domain. If these patterns are defi ned and categorized in a manner that allows 

you to recognize and apply them to solve common problems, the creation of the 

analysis model is expedited. More important, the likelihood of applying design 

patterns and executable software components grows dramatically. This improves 

time-to-market and reduces development costs.     

  But how are analysis patterns and classes recognized in the fi rst place? Who 

defi nes them, categorizes them, and readies them for use on subsequent proj-

ects? The answers to these questions lie in  domain analysis.  Firesmith [Fir93] 

describes domain analysis in the following way:

  Software domain analysis is the identifi cation, analysis, and specifi cation of common 

requirements from a specifi c application domain, typically for reuse on multiple 

projects within that application domain . . . [Object-oriented domain analysis is] the 

identifi cation, analysis, and specifi cation of common, reusable capabilities within a 

specifi c application domain, in terms of common objects, classes, subassemblies, and 

frameworks.   

 The “specifi c application domain” can range from avionics to banking, from 

multimedia video games to software embedded within medical devices. The goal 

of domain analysis is straightforward: to fi nd or create those analysis classes 

and/or analysis patterns that are broadly applicable so that they may be reused.  5   

  Using terminology that was introduced previously in this book, domain anal-

ysis may be viewed as an umbrella activity for the software process. By this we 

mean that domain analysis is an ongoing software engineering activity that is not 

connected to any one software project. In a way, the role of a domain analyst is 

similar to the role of a master toolsmith in a heavy manufacturing environment. 

The job of the toolsmith is to design and build tools that may be used by many 

people doing similar but not necessarily the same jobs. The role of the domain 

analyst  6   is to discover and defi ne analysis patterns, analysis classes, and related 

information that may be used by many people working on similar but not neces-

sarily the same applications.   

  Figure 9.2  [Arn89] illustrates key inputs and outputs for the domain analysis 

process. Sources of domain knowledge are surveyed in an attempt to identify 

objects that can be reused across the domain.     

 WebRef 
 Many useful resources 
for domain analysis 
and many other 
topics can be found at 
  http://www.sei
.cmu.edu/  . 

   Domain analysis 
doesn’t look at a 
specifi c application, but 
rather at the domain in 
which the application 
resides. The intent is to 
identify common prob-
lem solving elements 
that are applicable to 
all applications within 
the domain. 

  5  A complementary view of domain analysis “involves modeling the domain so that software en-

gineers and other stakeholders can better learn about it . . . not all domain classes necessarily 

result in the development of reusable classes.” [Let03a] 

  6  Do not make the assumption that because a domain analyst is at work, a software engineer 

need not understand the application domain. Every member of a software team should have 

some understanding of the domain in which the software is to be placed. 

pre22126_ch09_166-183.indd   170pre22126_ch09_166-183.indd   170 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  171

Domain
analysis

Sources of
domain

knowledge

Customer surveys

Expert advice

Current/future requirements

Existing applications

Technical literature

Domain
analysis
model

Functional models

Domain languages

Reuse standards

Class taxonomies

  FIGURE 9.2  Input and output for domain analysis   

  Domain Analysis   Domain Analysis 

  The scene:  Doug Miller’s offi ce, 
after a meeting with marketing. 

  The players:  Doug Miller, software engineering 
manager, and Vinod Raman, a member of the software 
engineering team. 

  The conversation:  

  Doug:  I need you for a special project, Vinod. I’m going 
to pull you out of the requirements-gathering meetings. 

  Vinod (frowning):  Too bad. That format actually 
works . . . I was getting something out of it. What’s up? 

  Doug:  Jamie and Ed will cover for you. Anyway, 
marketing insists that we deliver the Internet capability 
along with the home security function in the fi rst release 
of  SafeHome.  We’re under the gun on this . . . not 
enough time or people, so we’ve got to solve both prob-
lems—the PC interface and the Web interface—at once. 

  Vinod (looking confused):  I didn’t know the plan 
was set . . . we’re not even fi nished with requirements 
gathering. 

  Doug (a wan smile):  I know, but the time lines 
are so short that I decided to begin strategizing with 
marketing right now . . . anyhow, we’ll revisit any 
tentative plan once we have the info from all of the 
 requirements-gathering meetings. 

  Vinod:  Okay, what’s up? What do you want me to do? 

  Doug:  Do you know what “domain analysis” is? 

  Vinod:  Sort of. You look for similar patterns in Apps 
that do the same kinds of things as the App you’re 
building. If possible, you then steal the patterns and 
reuse them in your work. 

  Doug:  Not sure I like the word  steal,  but basically 
you have it right. What I’d like you to do is to begin re-
searching existing user interfaces for systems that control 
something like  SafeHome . I want you to propose a set 
of patterns and analysis classes that can be common to 
both the PC-based interface that’ll sit in the house and the 
browser-based interface that is accessible via the Internet. 

  Vinod:  We can save time by making them the 
same . . . why don’t we just do that? 

  Doug:  Ah . . . it’s nice to have people who think like 
you do. That’s the whole point—we can save time and 
effort if both interfaces are nearly identical, implemented 
with the same code, blah, blah, that marketing insists on. 

  Vinod:  So you want, what—classes, analysis patterns, 
design patterns? 

  Doug:  All of ‘em. Nothing formal at this point. I just 
want to get a head start on our internal analysis and 
design work.  

  Vinod:  I’ll go to our class library and see what we’ve 
got. I’ll also use a patterns template I saw in a book I 
was reading a few months back. 

  Doug:  Good. Go to work.  

 SAFEHOME 

    9.1.4 Requirements Modeling Approaches 

 One view of requirements modeling, called  structured analysis,  considers data 

and the processes that transform the data as separate entities. Data objects are 

modeled in a way that defi nes their attributes and relationships. Processes that 

pre22126_ch09_166-183.indd   171pre22126_ch09_166-183.indd   171 13/12/13   6:11 PM13/12/13   6:11 PM



172 PART TWO  MODELING

manipulate data objects are modeled in a manner that shows how they trans-

form data as data objects fl ow through the system. 

 A second approach to analysis modeling, called  object-oriented analysis,  

focuses on the defi nition of classes and the manner in which they collaborate 

with one another to effect customer requirements. UML and the Unifi ed Process 

(Chapter 4) are predominantly object oriented. 

 In this edition of the book, we have chosen to emphasize elements of object- 

oriented analysis as it is modeled using UML. Our goal is to suggest a combina-

tion of representations will provide stakeholders with the best model of software 

requirements and the most effective bridge to software design.     

   Each element of the requirements model ( Figure 9.3 ) presents the problem 

from a different point of view. Scenario-based elements depict how the user in-

teracts with the system and the specifi c sequence of activities that occur as the 

software is used. Class-based elements model the objects that the system will 

manipulate, the operations that will be applied to the objects to effect the manip-

ulation, relationships (some hierarchical) between the objects, and the collabora-

tions that occur between the classes that are defi ned. Behavioral elements depict 

how external events change the state of the system or the classes that reside 

within it. Finally, fl ow-oriented elements represent the system as an information 

transform, depicting how data objects are transformed as they fl ow through var-

ious system functions.      

  Analysis modeling leads to the derivation of one or more of these modeling el-

ements. However, the specifi c content of each element (i.e., the diagrams that are 

used to construct the element and the model) may differ from project to project. 

As we have noted a number of times in this book, the software team must work to 

keep it simple. Only those modeling elements that add value to the model should 

be used. 

 What 
different 

points of view 
can be used to 
describe the 
requirements 
model? 

?

  uote: 

 “[A]nalysis is 
frustrating, 
full of complex 
interpersonal 
relationships, 
indefi nite, and 
diffi cult. In a word, 
it is fascinating. 
Once you’re 
hooked, the old 
easy pleasures of 
system building 
are never again 
enough to satisfy 
you.” 

 Tom DeMarco 

Software
Requirements

Class
models
e.g.,
class diagrams
collaboration diagrams

Flow
models
e.g.,
DFDs
data models

Scenario-based
models
e.g.,
use cases
user stories

Behavioral
models
e.g.,
state diagrams
sequence diagrams

  FIGURE 9.3

 Elements of 
the analysis 
model   

pre22126_ch09_166-183.indd   172pre22126_ch09_166-183.indd   172 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  173

      9.2 SCENARIO-BASED MODELING 

  Although the success of a computer-based system or product is measured in 

many ways, user satisfaction resides at the top of the list. If you understand how 

end users (and other actors) want to interact with a system, your software team 

will be better able to properly characterize requirements and build meaningful 

analysis and design models. Hence, requirements modeling with UML  7   begins 

with the creation of scenarios in the form of use cases, activity diagrams, and 

swimlane diagrams. 

   9.2.1 Creating a Preliminary Use Case  

 Alistair Cockburn characterizes a use case as a “contract for behavior” [Coc01b]. 

As we discussed in Chapter 8, the “contract” defi nes the way in which an actor  8   

uses a computer-based system to accomplish some goal. In essence, a use case 

captures the interactions that occur between producers and consumers of in-

formation and the system itself. In this section, we examine how use cases are 

developed as part of the analysis modeling activity.  9   

   In Chapter 8, we noted that a use case describes a specifi c usage scenario in 

straightforward language from the point of view of a defi ned actor. But how do 

you know (1) what to write about, (2) how much to write about it, (3) how detailed 

to make your description, and (4) how to organize the description? These are the 

questions that must be answered if use cases are to provide value as a require-

ments modeling tool.     

   What to Write About?   The fi rst two requirements engineering tasks—inception 

and elicitation—provide you with the information you’ll need to begin writing use 

cases. Requirements-gathering meetings, quality function deployment (QFD), 

and other requirements engineering mechanisms are used to identify stakehold-

ers, defi ne the scope of the problem, specify overall operational goals, establish 

priorities, outline all known functional requirements, and describe the things 

(objects) that will be manipulated by the system. 

 To begin developing a set of use cases, list the functions or activities per-

formed by a specifi c actor. You can obtain these from a list of required system 

functions, through conversations with stakeholders, or by an evaluation of activ-

ity diagrams (Section 9.3.1) developed as part of requirements modeling.     

  uote: 

 “[Use cases] are 
simply an aid to 
defi ning what 
exists outside the 
system (actors) 
and what should 
be performed by 
the system (use 
cases).” 

 Ivar Jacobson 

   In some situations, 
use cases become the 
dominant requirements 
engineering mecha-
nism. However, this 
does not mean that 
you should discard 
other modeling 
methods when they 
are appropriate. 

  7  UML will be used as the modeling notation throughout this book. Appendix 1 provides a brief 

tutorial for those readers who may be unfamiliar with basic UML notation. 

  8  An actor is not a specifi c person, but rather a role that a person (or a device) plays within a 

specifi c context. An actor “calls on the system to deliver one of its services ” [Coc01b]. 

  9  Use cases are a particularly important part of analysis modeling for user interfaces. Interface 

analysis and design is discussed in detail in Chapter 15. 

pre22126_ch09_166-183.indd   173pre22126_ch09_166-183.indd   173 13/12/13   6:11 PM13/12/13   6:11 PM



174 PART TWO  MODELING

  Developing Another Preliminary User Scenario   Developing Another Preliminary User Scenario 

   The scene:  A meeting room, during 
the second requirements-gathering 
meeting. 

  The players:  Jamie Lazar, software team member; Ed 
Robbins, software team member; Doug Miller, software 
engineering manager; three members of marketing; a 
product engineering representative; and a facilitator. 

  The conversation:  

  Facilitator:  It’s time that we begin talking about the 
 SafeHome  surveillance function. Let’s develop a user 
scenario for access to the surveillance function. 

  Jamie:  Who plays the role of the actor on this? 

  Facilitator:  I think Meredith (a marketing person) has 
been working on that functionality. Why don’t you play 
the role? 

  Meredith:  You want to do it the same way we did it 
last time, right? 

  Facilitator:  Right . . . same way. 

  Meredith:  Well, obviously the reason for surveillance 
is to allow the homeowner to check out the house while 
he or she is away, to record and play back video that is 
captured . . . that sort of thing. 

  Ed:  Will we use compression to store the video? 

  Facilitator:  Good question, Ed, but let’s postpone 
 implementation issues for now. Meredith? 

  Meredith:  Okay, so basically there are two parts 
to the surveillance function . . . the fi rst confi gures the 

system including laying out a fl oor plan—we have to 
have tools to help the homeowner do this—and the sec-
ond part is the actual surveillance function itself. Since 
the layout is part of the confi guration activity, I’ll focus 
on the surveillance function. 

  Facilitator (smiling):  Took the words right out of my 
mouth. 

  Meredith:  Um . . . I want to gain access to the sur-
veillance function either via the PC or via the Internet. 
My feeling is that the Internet access would be more 
frequently used. Anyway, I want to be able to display 
camera views on a PC and control pan and zoom for 
a specifi c camera. I specify the camera by selecting it 
from the house fl oor plan. I want to selectively record 
camera output and replay camera output. I also want 
to be able to block access to one or more cameras with 
a specifi c password. I also want the option of seeing 
small windows that show views from all cameras and 
then be able to pick the one I want enlarged. 

  Jamie:  Those are called thumbnail views. 

  Meredith:  Okay, then I want thumbnail views of all 
the cameras. I also want the interface for the surveil-
lance function to have the same look and feel as all 
other  SafeHome  interfaces. I want it to be intuitive, 
meaning I don’t want to have to read a manual to 
use it. 

  Facilitator:  Good job. Now, let’s go into this function 
in a bit more detail . . .  

 SAFEHOME 

  The  SafeHome  home surveillance function (subsystem) discussed in the side-

bar identifi es the following functions (an abbreviated list) that are performed by 

the  homeowner  actor:

    •  Select camera to view.  

   •  Request thumbnails from all cameras.  

   •  Display camera views in a PC window.  

   •  Control pan and zoom for a specifi c camera.  

   •  Selectively record camera output.  

   •  Replay camera output.  

   •  Access camera surveillance via the Internet.    

pre22126_ch09_166-183.indd   174pre22126_ch09_166-183.indd   174 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  175

 As further conversations with the stakeholder (who plays the role of a home-

owner) progress, the requirements-gathering team develops use cases for each 

of the functions noted. In general, use cases are written fi rst in an informal narra-

tive fashion. If more formality is required, the same use case is rewritten using a 

structured format similar to the one proposed in Chapter 8 and reproduced later 

in this section as a sidebar. 

 To illustrate, consider the function  access camera surveillance via the 

 Internet—display camera views  ( ACS-DCV ). The stakeholder who takes on the 

role of the  homeowner  actor might write the following narrative:

   Use case: Access camera surveillance via the Internet—display camera views 

(ACS-DCV)  

  Actor: homeowner  

 If I’m at a remote location, I can use any PC with appropriate browser software 

to log on to the  SafeHome Products  website. I enter my user ID and two levels of 

passwords and once I’m validated, I have access to all functionality for my in-

stalled  SafeHome  system. To access a specifi c camera view, I select “surveillance” 

from the major function buttons displayed. I then select “pick a camera” and the 

fl oor plan of the house is displayed. I then select the camera that I’m interested 

in. Alternatively, I can look at thumbnail snapshots from all cameras simultane-

ously by selecting “all cameras” as my viewing choice. Once I choose a camera, 

I select “view” and a one-frame-per-second view appears in a viewing window that 

is identifi ed by the camera ID. If I want to switch cameras, I select “pick a camera” 

and the original viewing window disappears and the fl oor plan of the house is 

displayed again. I then select the camera that I’m interested in. A new viewing 

window appears.   

 A variation of a narrative use case presents the interaction as an ordered 

 sequence of user actions. Each action is represented as a declarative sentence. 

Revisiting the  ACS-DCV  function, you would write:

   Use case: Access camera surveillance via the Internet—display camera views 

(ACS-DCV)  

  Actor: homeowner   

      1.   The homeowner logs onto the  SafeHome Products  website.  

    2.   The homeowner enters his or her user ID.  

    3.   The homeowner enters two passwords (each at least eight characters in length).  

    4.   The system displays all major function buttons.  

    5.   The homeowner selects the “surveillance” from the major function buttons.  

    6.   The homeowner selects “pick a camera.”  

    7.   The system displays the fl oor plan of the house.  

    8.   The homeowner selects a camera icon from the fl oor plan.  

    9.   The homeowner selects the “view” button.  

  uote: 

  “Use cases 
can be used in 
many [software] 
processes. Our 
favorite is a 
process that is 
iterative and risk 
driven.” 

 Geri Schneider 
and Jason 

Winters 

pre22126_ch09_166-183.indd   175pre22126_ch09_166-183.indd   175 13/12/13   6:11 PM13/12/13   6:11 PM



176 PART TWO  MODELING

   10.   The system displays a viewing window that is identifi ed by the camera ID.  

   11.   The system displays video output within the viewing window at one frame 

per second.    

 It is important to note that this sequential presentation does not consider any 

alternative interactions (the narrative is more free fl owing and did represent a 

few alternatives). Use cases of this type are sometimes referred to as  primary 

scenarios  [Sch98a].   

    9.2.2 Refi ning a Preliminary Use Case     

  A description of alternative interactions is essential for a complete understand-

ing of the function that is being described by a use case. Therefore, each step in 

the primary scenario is evaluated by asking the following questions [Sch98a]:

    •   Can the actor take some other action at this point?   

   •   Is it possible that the actor will encounter some error condition at this 

point?  If so, what might it be?  

   •   Is it possible that the actor will encounter some other behavior at this point 

(e.g., behavior that is invoked by some event outside the actor’s control)?  If 

so, what might it be?    

 Answers to these questions result in the creation of a set of  secondary scenar-

ios  that are part of the original use case but represent alternative behavior. For 

example, consider steps 6 and 7 in the primary scenario presented earlier:

     6.  The homeowner selects “pick a camera.”  

    7.  The system displays the fl oor plan of the house.    

  Can the actor take some other action at this point?  The answer is yes .  Re-

ferring to the free-fl owing narrative, the actor may choose to view thumbnail 

snapshots of all cameras simultaneously. Hence, one secondary scenario might 

be “View thumbnail snapshots for all cameras.” 

  Is it possible that the actor will encounter some error condition at this point?  

Any number of error conditions can occur as a computer-based system oper-

ates. In this context, we consider only error conditions that are likely as a di-

rect result of the action described in step 6 or step 7. Again the answer to the 

question is yes. A fl oor plan with camera icons may have never been confi g-

ured. Hence, selecting “pick a camera” results in an error condition: “No fl oor 

plan confi gured for this house.”  10   This error condition becomes a secondary 

scenario. 

 How do I 
examine 

alternative 
courses of action 
when I develop a 
use case? 

?

  10  In this case, another actor, the  system administrator,  would have to confi gure the fl oor plan, 

install and initialize (e.g., assign an equipment ID) all cameras, and test each camera to be 

certain that it is accessible via the system and through the fl oor plan. 

pre22126_ch09_166-183.indd   176pre22126_ch09_166-183.indd   176 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  177

   Is it possible that the actor will encounter some other behavior at this point?  Again 

the answer to the question is yes. As steps 6 and 7 occur, the system may encoun-

ter an alarm condition. This would result in the system displaying a special alarm 

notifi cation (type, location, system action) and providing the actor with a number 

of options relevant to the nature of the alarm. Because this secondary scenario can 

occur at any time for virtually all interactions, it will not become part of the  ACS-

DCV  use case. Rather, a separate use case— Alarm condition  encountered —would 

be developed and referenced from other use cases as required.     

  Each of the situations described in the preceding paragraphs is characterized 

as a use case exception. An  exception  describes a situation (either a failure con-

dition or an alternative chosen by the actor) that causes the system to exhibit 

somewhat different behavior. 

 Cockburn [Coc01b] recommends a “brainstorming” session to derive a rea-

sonably complete set of exceptions for each use case. In addition to the three 

generic questions suggested earlier in this section, the following issues should 

also be explored:

    •   Are there cases in which some “validation function” occurs during this use 

case?  This implies that validation function is invoked and a potential error 

condition might occur.  

   •   Are there cases in which a supporting function (or actor) will fail to re-

spond appropriately?  For example, a user action awaits a response but the 

function that is to respond times out.  

   •   Can poor system performance result in unexpected or improper user ac-

tions?  For example, a Web-based interface responds too slowly, resulting 

in a user making multiple selects on a processing button. These selects 

queue inappropriately and ultimately generate an error condition.    

 The list of extensions developed as a consequence of asking and answering 

these questions should be “rationalized” [Co01b] using the following criteria: an 

exception should be noted within the use case if the software can detect the con-

dition described and then handle the condition once it has been detected. In 

some cases, an exception will precipitate the development of another use case 

(to handle the condition noted). 

   9.2.3 Writing a Formal Use Case 

 The informal use cases presented in Section 9.2.1 are sometimes suffi cient for 

requirements modeling. However, when a use case involves a critical activity or 

describes a complex set of steps with a signifi cant number of exceptions, a more 

formal approach may be desirable. 

 The  ACS-DCV  use case shown in the sidebar follows a typical outline for for-

mal use cases. The  goal in context  identifi es the overall scope of the use case. 

 What 
is a use 

case exception 
and how do I 
determine what 
exceptions are 
likely? 

?

pre22126_ch09_166-183.indd   177pre22126_ch09_166-183.indd   177 13/12/13   6:11 PM13/12/13   6:11 PM



178 PART TWO  MODELING

The  precondition  describes what is known to be true before the use case is initi-

ated. The  trigger  identifi es the event or condition that “gets the use case started” 

[Coc01b]. The  scenario  lists the specifi c actions that are required by the actor and 

the appropriate system responses.  Exceptions  identify the situations uncovered 

as the preliminary use case is refi ned (Section 9.2.2). Additional headings may or 

may not be included and are reasonably self-explanatory.          

  Use Case Template for Surveillance   Use Case Template for Surveillance 

    Use case: Access camera surveillance 
 via the Internet—display camera 
 views (ACS-DCV)  

  Iteration:    2, last modifi cation: January 14 by 
V. Raman. 

  Primary actor:    Homeowner. 

  Goal in context:    To view output of camera placed 
throughout the house from any 
remote location via the Internet. 

  Preconditions:    System must be fully confi gured; 
appropriate user ID and passwords 
must be obtained. 

  Trigger:    The homeowner decides to take a 
look inside the house while away. 

  Scenario: 
    1.  The homeowner logs onto the  SafeHome Products  

website.  
    2.  The homeowner enters his or her user ID.  
    3.  The homeowner enters two passwords (each at 

least eight characters in length).  
    4.  The system displays all major function buttons.  
    5.  The homeowner selects the “surveillance” from the 

major function buttons.  
    6.  The homeowner selects “pick a camera.”  
    7.  The system displays the fl oor plan of the house.  
    8.  The homeowner selects a camera icon from the 

fl oor plan.  
    9.  The homeowner selects the “view” button.  
    10.  The system displays a viewing window that is 

identifi ed by the camera ID.  
    11.  The system displays video output within the view-

ing window at one frame per second.  

   Exceptions: 
    1.  ID or passwords are incorrect or not recognized—

see use case  Validate ID and passwords.   

    2.  Surveillance function not confi gured for this 
system—system displays appropriate error mes-
sage; see use case  Confi gure surveillance 
function.   

    3.  Homeowner selects “View thumbnail snapshots 
for all camera”—see use case  View thumbnail 
snapshots for all cameras.   

    4.  A fl oor plan is not available or has not been 
 confi gured—display appropriate error message 
and see use case  Confi gure fl oor plan.   

    5.  An alarm condition is encountered—see use case 
 alarm condition encountered.   

       Priority:    Moderate priority, to be imple-
mented after basic functions.  

     When available:    Third increment.  

     Frequency of use:    Infrequent.  

     Channel to actor:    Via PC-based browser and 
 Internet connection.  

     Secondary actors:    System administrator, cameras.  

   Channels to secondary actors:  
     1.  System administrator: PC-based system.  
    2.  Cameras: wireless connectivity.  

   Open issues:  
     1.  What mechanisms protect unauthorized use of this 

capability by employees of  SafeHome Products ?  
    2.  Is security suffi cient? Hacking into this feature 

would represent a major invasion of privacy.  
    3.  Will system response via the Internet be accept-

able given the bandwidth required for camera 
views?  

    4.  Will we develop a capability to provide video 
at a higher frames-per-second rate when high- 
bandwidth connections are available?    

 SAFEHOME 

pre22126_ch09_166-183.indd   178pre22126_ch09_166-183.indd   178 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  179

  In many cases, there is no need to create a graphical representation of a 

usage scenario. However, diagrammatic representation can facilitate under-

standing, particularly when the scenario is complex. As we noted earlier in this 

book, UML does provide use case diagramming capability.  Figure 9.4  depicts 

a preliminary use case diagram for the  SafeHome  product. Each use case is 

represented by an oval. Only the  ACS-DCV  use case has been discussed in this 

section.  

 Every modeling notation has limitations, and the use case is no exception. Like 

any other form of written description, a use case is only as good as its author(s). 

If the description is unclear, the use case can be misleading or ambiguous. A use 

case focuses on function and behavioral requirements and is generally inappro-

priate for nonfunctional requirements. For situations in which the requirements 

model must have signifi cant detail and precision (e.g., safety critical systems), a 

use case may not be suffi cient. 

 However, scenario-based modeling is appropriate for a signifi cant majority of 

all situations that you will encounter as a software engineer. If developed prop-

erly, the use case can provide substantial benefi t as a modeling tool. 

      9.3 UML MODELS THAT SUPPLEMENT THE USE CASE 

  There are many requirements modeling situations in which a text-based model—

even one as simple as a use case—may not impart information in a clear and con-

cise manner. In such cases, you can choose from a broad array of UML graphical 

models. 

 WebRef 
 When are you fi nished 
writing use cases? For 
a worthwhile discussion 
of this topic, see 
  ootips.org/use-
cases-done.html  . 

Home-
owner

Access camera 
surveillance via the 

Internet

Configure SafeHome 
system parameters

Set alarm

Cameras

SafeHome

  FIGURE 9.4

 Preliminary 
use case 
 diagram for 
the  SafeHome  
system   

pre22126_ch09_166-183.indd   179pre22126_ch09_166-183.indd   179 13/12/13   6:11 PM13/12/13   6:11 PM



180 PART TWO  MODELING

  9.3.1 Developing an Activity Diagram 

 The UML activity diagram supplements the use case by providing a graphical 

representation of the fl ow of interaction within a specifi c scenario. Similar to the 

fl owchart, an activity diagram uses rounded rectangles to imply a specifi c system 

function, arrows to represent fl ow through the system, decision diamonds to de-

pict a branching decision (each arrow emanating from the diamond is labeled), 

and solid horizontal lines to indicate that parallel activities are occurring. An 

activity diagram for the  ACS-DCV  use case is shown in  Figure 9.5 . It should be 

noted that the activity diagram adds additional detail not directly mentioned 

(but implied) by the use case. For example, a user may only attempt to enter 

  userID  and  password  a limited number of times. This is represented by a deci-

sion diamond below “Prompt for reentry.”  

Enter password 
and user ID

Select major
function

Valid passwords/ID

Prompt for reentry

Invalid passwords/ID

Input tries remain

No input 
tries remain

Select surveillance

Other functions
may also 

be selected

 

Thumbnail views Select a specific camera

Select camera icon

Prompt for 
another view

Select specific 
camera - thumbnails

Exit this function See another camera

View camera output 
in labeled window

  FIGURE 9.5

 Activity 
diagram 
for Access 
camera sur-
veillance via 
the  Internet— 
 display 
 camera views 
function.   

pre22126_ch09_166-183.indd   180pre22126_ch09_166-183.indd   180 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  181

   9.3.2 Swimlane Diagrams 

 The UML  swimlane diagram  is a useful variation of the activity diagram and al-

lows you to represent the fl ow of activities described by the use case and at the 

same time indicate which actor (if there are multiple actors involved in a specifi c 

use case) or analysis class (Chapter 10) has responsibility for the action described 

by an activity rectangle. Responsibilities are represented as parallel segments 

that divide the diagram vertically, like the lanes in a swimming pool.     

  Three analysis classes— Homeowner, Camera,  and  Interface —have direct 

or indirect responsibilities in the context of the activity diagram represented 

in  Figure 9.5 . Referring to  Figure 9.6 , the activity diagram is rearranged so that 

   A UML swimlane 
diagram represents the 
fl ow of actions and 
decisions and indicates 
which actors perform 
each. 

Enter password 
and user ID

Select major function

Valid passwords/ID

Prompt for reentry

Invalid 
passwords/ID

Input tries 
remain

No input
tries remain

Select surveillance

Other functions
may also be

selected

 

Thumbnail views Select a specific camera

Select camera icon

Generate video
output

Select specific
camera - thumbnails

Exit this
function

See
another
camera

Homeowner Camera Interface

Prompt for
another view

View camera output
in labelled window

 

  FIGURE 9.6  Swimlane diagram for Access camera surveillance via the Internet—display camera 
views function.   

pre22126_ch09_166-183.indd   181pre22126_ch09_166-183.indd   181 13/12/13   6:11 PM13/12/13   6:11 PM



182 PART TWO  MODELING

activities associated with a particular analysis class fall inside the swimlane for 

that class. For example, the  Interface  class represents the user interface as seen 

by the homeowner. The activity diagram notes two prompts that are the respon-

sibility of the interface—“prompt for reentry” and “prompt for another view.”   

These prompts and the decisions associated with them fall within the  Interface  

swimlane. However, arrows lead from that swimlane back to the  Homeowner  

swimlane, where homeowner actions occur.   

 Use cases, along with the activity and swimlane diagrams, are procedurally 

oriented. They represent the manner in which various actors invoke specifi c 

functions (or other procedural steps) to meet the requirements of the system. 

But a procedural view of requirements represents only a single dimension of a 

system In Chapters 10 and 11, we examine other dimensions of requirements 

modeling. 

  uote: 

 “A good model 
guides your 
thinking, a bad one 
warps it.” 

 Brian Marick 

 9.4        SUMMARY 

 The objective of requirements modeling is to create a variety of representations 

that describe what the customer requires, establish a basis for the creation of a 

software design, and defi ne a set of requirements that can be validated once the 

software is built. The requirements model bridges the gap between a  system-level 

description that describes overall system and business functionality and a soft-

ware design that describes the software’s application architecture, user inter-

face, and component-level structure. 

 Scenario-based models depict software requirements from the user’s point of 

view. The use case—a narrative or template-driven description of an interaction 

between an actor and the software—is the primary modeling element. Derived 

during requirements elicitation, the use case defi nes the keys steps for a specifi c 

function or interaction. The degree of use case formality and detail varies, but 

the end result provides necessary input to all other analysis modeling activi-

ties. Scenarios can also be described using an activity diagram—a fl owchart-like 

graphical representation that depicts the processing fl ow within a specifi c sce-

nario. Swimlane diagrams illustrate how the processing fl ow is allocated to var-

ious actors or classes. 

     PROBLEMS AND POINTS TO PONDER 
    9.1.  Is it possible to begin coding immediately after a requirements model has been  created? 
Explain your answer and then argue the counterpoint.  

   9.2.  An analysis rule of thumb is that the model “should focus on requirements that are 
 visible within the problem or business domain.” What types of requirements are  not  visible 
in these domains? Provide a few examples.  

pre22126_ch09_166-183.indd   182pre22126_ch09_166-183.indd   182 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 9  REQUIREMENTS MODELING: SCENARIO-BASED METHODS  183

   9.3.  What is the purpose of domain analysis? How is it related to the concept of require-
ments patterns?  

   9.4.  Is it possible to develop an effective analysis model without developing all four ele-
ments shown in  Figure 9.3 ? Explain.  

   9.5.  The department of public works for a large city has decided to develop a Web-based 
pothole tracking and repair system (PHTRS). A description follows:

       Citizens can log onto a website and report the location and severity of potholes. As 
potholes are reported they are logged within a “public works department repair 
system” and are assigned an identifying number, stored by street address, size (on 
a scale of 1 to 10), location (middle, curb, etc.), district (determined from street ad-
dress), and repair priority (determined from the size of the pothole). Work order data 
are associated with each pothole and include pothole location and size, repair crew 
identifying number, number of people on crew, equipment assigned, hours applied 
to repair, hole status (work in progress, repaired, temporary repair, not repaired), 
amount of fi ller material used, and cost of repair (computed from hours applied, 
number of people, material and equipment used). Finally, a damage fi le is created 
to hold information about reported damage due to the pothole and includes citizen’s 
name, address, phone number, type of damage, and dollar amount of damage. PHTRS 
is an online system; all queries are to be made interactively. 

    Draw a UML use case diagram PHTRS system. You’ll have to make a number of assumptions 
about the manner in which a user interacts with this system.    

   9.6.  Write two or three use cases that describe the roles of various actors in the PHTRS 
described in Problem 9.5.  

   9.7.  Develop an activity diagram for one aspect of PHTRS.  

   9.8.  Develop a swimlane diagram for one or more aspects of PHTRS.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Use cases can serve as the foundation for all requirements modeling approaches. The sub-
ject is discussed at length by Gomaa ( Software Modeling: UML, Use Case, Patterns, and Ar-

chitecture,  Cambridge University Press, 2011), Rosenberg and Stephens ( Use Case Driven 

Object Modeling with UML: Theory and Practice,  Apress, 2007), Denny ( Succeeding with Use 

Cases: Working Smart to Deliver Quality,  Addison-Wesley, 2005), Alexander and Maiden 
(Eds.) ( Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle,  Wiley, 
2004), Bittner and Spence ( Use Case Modeling,  Addison-Wesley, 2002), Cockburn [Coc01b], 
and other references noted in Chapter 8. 

   UML modeling techniques that can be applied for both analysis and design are discussed 
by Dennis and his colleagues ( Systems Analysis and Design with UML Version 2.0,  4th ed., 
Wiley, 2012), O’Docherty ( Object-Oriented Analysis and Design: Understanding System De-

velopment with UML 2.0,  Wiley, 2005), Arlow and Neustadt ( UML 2 and the Unifi ed Process,  
2nd ed., Addison-Wesley, 2005), Roques ( UML in Practice,  Wiley, 2004), Larman ( Applying 

UML and Patterns,  2nd ed., Prentice Hall, 2001), and Rosenberg and Scott ( Use Case Driven 

Object Modeling with UML,  Addison-Wesley, 1999). 
   Some books on requirements include Robertson and Robertson ( Mastering the Require-

ments Process: Getting Requirements Right,  3rd ed.,   Addison-Wesley, 2012), Hull, Jackson, 
and Dick ( Requirements Engineering,  3rd ed., Springer, 2010), and Alexander and Beus- 
Dukic ( Discovering Requirements: How to Specify Products and Services,  Wiley, 2009). A wide 
variety of information sources on requirements modeling are available on the Internet. 

   An up-to-date list of World Wide Web references that are relevant to analysis modeling 
can be found at the SEPA website:      www.mhhe.com/pressman .     

pre22126_ch09_166-183.indd   183pre22126_ch09_166-183.indd   183 13/12/13   6:11 PM13/12/13   6:11 PM



184

    C H A P T E R

   K E Y 
C O N C E P T S 
    analysis classes  . . 185  
    analysis packages . 199  
    associations  . . . . . 198  
    attributes . . . . . . . 188  
    collaborations . . . . 195  
    CRC modeling  . . . . 192  
    dependencies  . . . . 198  
    grammatical parse. 185  
    operations  . . . . . . 189  
    responsibilities  . . . 193         

  When they were fi rst introduced in the early 1990s, class-based meth-

ods for requirements modeling were often categorized as  object- 

oriented analysis.  Although a number of different class-based 

methods and representations were introduced, Coad and Yourdon [Coa91] 

noted one universal characteristic for all of them:

  [Object-oriented methods are all] based upon concepts that we fi rst learned in 

kindergarten: objects and attributes, wholes and parts, classes and members.   

 Class-based methods for requirements modeling use these common con-

cepts to craft a representation of an application that can be understood by 

nontechnical stakeholders. As the requirements model is refi ned and ex-

panding, it evolves into a specifi cation that can be used by software engineers 

in the creation of the software design. 

 Class-based modeling represents the objects that the system will manipu-

late, the operations (also called  methods  or  services ) that will be applied to the 

objects to effect the manipulation, relationships (some hierarchical) between 

the objects, and the collaborations that occur between the classes that are

 REQUIREMENTS MODELING: 
CLASS-BASED METHODS 10 

  What is it?   Software problems 
can almost always be characterized 
in terms of a set of interacting objects 
each representing something of inter-

est within a system. Each object becomes a mem-
ber of a class of objects. Each object is described 
by its state—the data attributes that describe the 
object. All of this can be represented using class-
based requirements modeling methods. 

   Who does it?   A software engineer (sometimes 
called an analyst) builds the class-based model 
using requirements elicited from the customer. 

   Why is it important?   A class-based require-
ments model makes use of objects drawn from 
the customer’s view of an application or sys-
tem. The model depicts a view of the system 
that is common to the customer. Therefore, 
it can be readily evaluated by the customer, 
 resulting in useful feedback at the earliest 
possible time. Later, as the model is refi ned, it 
 becomes the basis for software design. 

   What are the steps?   Class-based modeling 
defi nes objects, attributes, and relationships. 
A set of simple heuristics can be developed 
to extract objects and classes from a problem 
statement and then represent them in text-
based and/or diagrammatic forms. Once pre-
liminary models are created, they are refi ned 
and analyzed to assess their clarity, complete-
ness, and consistency. 

   What is the work product?   A wide array 
of text-based and diagrammatic forms may be 
chosen for the requirements model. Each of 
these representations provides a view of one 
or more of the model elements. 

   How do I ensure that I’ve done it right?   Re-
quirements modeling work products must be 
reviewed for correctness, completeness, and 
consistency. They must refl ect the needs of all 
stakeholders and establish a foundation from 
which design can be conducted.  

 Q U I C K 
L O O K 

pre22126_ch10_184-201.indd   184pre22126_ch10_184-201.indd   184 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  185

defi ned. The elements of a class-based model include classes and objects, attri-

butes, operations, class-responsibility-collaborator (CRC)   models, collaboration 

diagrams, and packages. The sections that follow present a series of informal 

guidelines that will assist in their identifi cation and representation. 

     10.1 IDENTIFY ING   ANALYS IS  CLASSES     

 If you look around a room, there is a set of physical objects that can be eas-

ily identifi ed, classifi ed, and defi ned (in terms of attributes and operations). But 

when you “look around” the problem space of a software application, the classes 

(and objects) may be more diffi cult to comprehend. 

 We can begin to identify classes by examining the usage scenarios developed 

as part of the requirements model (Chapter 9) and performing a “  grammatical 

parse  ” [Abb83] on the use cases developed for the system to be built. Classes are 

determined by underlining each noun or noun phrase and entering it into a sim-

ple table. Synonyms should be noted. If the class (noun) is required to implement 

a solution, then it is part of the solution space; otherwise, if a class is necessary 

only to describe a solution, it is part of the problem space. 

      But what should we look for once all of the nouns have been isolated?  Analysis 

classes  manifest themselves in one of the following ways:

    •   External entities  (e.g., other systems, devices, people) that produce or con-

sume information to be used by a computer-based system.  

   •   Things  (e.g., reports, displays, letters, signals) that are part of the informa-

tion domain for the problem.  

   •   Occurrences or events  (e.g., a property transfer or the completion of a series 

of robot movements) that occur within the context of system operation.  

   •   Roles  (e.g., manager, engineer, salesperson) played by people who interact 

with the system.  

   •   Organizational units  (e.g., division, group, team) that are relevant to an 

application.  

   •   Places  (e.g., manufacturing fl oor or loading dock) that establish the con-

text of the problem and the overall function of the system.  

   •   Structures  (e.g., sensors, four-wheeled vehicles, or computers) that defi ne 

a class of objects or related classes of objects.    

 This categorization is but one of many that have been proposed in the liter-

ature.  1   For example, Budd [Bud96] suggests a taxonomy of classes that includes 

 How do 
analysis 

classes manifest 
themselves as 
elements of the 
solution space? 

?

  uote: 

 “The really 
hard problem is 
discovering what 
are the right 
objects [classes] in 
the fi rst place.” 

 Carl Argila 

  1  Another important categorization, defi ning entity, boundary, and controller classes, is dis-

cussed in Section 10.5. 

pre22126_ch10_184-201.indd   185pre22126_ch10_184-201.indd   185 13/12/13   6:11 PM13/12/13   6:11 PM



186 PART TWO  MODELING

 producers  (sources) and  consumers  (sinks) of data,  data managers ,  view  or 

  observer classes , and  helper classes . 

  It is also important to note what classes or objects are not. In general, a class 

should never have an “imperative procedural name” [Cas89]. For example, if 

the developers of software for a medical imaging system defi ned an object with 

the name  InvertImage  or even  ImageInversion,  they would be making a subtle 

mistake. The  Image  obtained from the software could, of course, be a class (it 

is a thing that is part of the information domain). Inversion of the image is an 

 operation that is applied to the object. It is likely that inversion would be defi ned 

as an operation for the object  Image , but it would not be defi ned as a separate 

class to connote “image inversion.” As Cashman [Cas89] states, “[T]he intent of 

object-orientation is to encapsulate, but still keep separate, data and operations 

on the data.” 

 To illustrate how analysis classes might be defi ned during the early stages of 

modeling, consider a grammatical parse (nouns are underlined, verbs italicized) 

for a processing narrative  2   for the  SafeHome  security function. 

   The  SafeHome security function   enables  the  homeowner  to  confi gure  the  security 

system  when it is  installed, monitors  all  sensors   connected  to the security system, and 

 interacts  with the homeowner through the  Internet , a  PC  or a  control panel . 

 During  installation , the SafeHome PC is used to  program  and  confi gure  the  sys-

tem . Each sensor is assigned a  number  and  type , a  master password  is programmed 

for  arming  and  disarming  the system, and  telephone number(s)  are  input  for  dialing  

when a  sensor event  occurs. 

 When a sensor event is  recognized , the software  invokes  an  audible alarm   attached 

to the system. After a  delay time  that is  specifi ed  by the homeowner during system 

confi guration activities, the software dials a telephone number of a  monitoring ser-

vice ,  provides   information  about the  location ,  reporting  the nature of the event that 

has been detected. The telephone number will be  redialed  every 20 seconds until 

 telephone connection  is  obtained.  

 The homeowner  receives   security information  via a control panel, the PC, or a 

browser, collectively called an  interface . The interface  displays   prompting messages  

and  system status information  on the control panel, the PC, or the browser window. 

Homeowner interaction takes the following form . . .      

   The grammatical parse 
is not foolproof, but it 
can provide you with 
an excellent jump start 
if you’re struggling to 
defi ne data objects and 
the transforms that 
operate on them. 

  2  A processing narrative is similar to the use case in style but somewhat different in purpose. 

The processing narrative provides an overall description of the function to be developed. It 

is not a scenario written from one actor’s point of view. It is important to note, however, that 

a grammatical parse can also be used for every use case developed as part of requirements 

gathering (elicitation). 

pre22126_ch10_184-201.indd   186pre22126_ch10_184-201.indd   186 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  187

  Extracting the nouns, we can propose a number of potential classes:

Potential Class General Classification

homeowner role or external entity
sensor external entity
control panel external entity
installation occurrence
system (alias security system) thing
number, type not objects, attributes of sensor
master password thing
telephone number thing
sensor event occurrence
audible alarm external entity
monitoring service organizational unit or external entity

 The list would be continued until all nouns in the processing narrative have 

been considered. Note that we call each entry in the list a “potential” object. We 

must consider each further before a fi nal decision is made.     

  Coad and Yourdon [Coa91] suggest six selection characteristics that should 

be used as you consider each potential class for inclusion in the analysis model:

     1.   Retained information.  The potential class will be useful during analysis 

only if information about it must be remembered so that the system can 

function.  

    2.   Needed services.  The potential class must have a set of identifi able opera-

tions that can change the value of its attributes in some way.  

    3.   Multiple attributes.  During requirement analysis, the focus should be 

on “major” information; a class with a single attribute may, in fact, be 

 useful during design, but is probably better represented as an attribute of 

 another class during the analysis activity.  

    4.   Common attributes.  A set of attributes can be defi ned for the potential 

class and these attributes apply to all instances of the class.  

    5.   Common operations.  A set of operations can be defi ned for the potential 

class and these operations apply to all instances of the class.  

    6.   Essential requirements.  External entities that appear in the problem 

space and produce or consume information essential to the operation of 

any solution for the system will almost always be defi ned as classes in the 

 requirements model.     

 To be considered a legitimate class for inclusion in the requirements model, 

a potential object should satisfy all (or almost all) of these characteristics. The 

decision for inclusion of potential classes in the analysis model is somewhat sub-

jective, and later evaluation may cause an object to be discarded or reinstated. 

 How do I 
determine 

whether a 
potential class 
should, in fact, 
become an 
analysis class? 

?

  uote: 

 “Classes struggle, 
some classes 
triumph, others are 
eliminated.” 

 Mao Zedong 

pre22126_ch10_184-201.indd   187pre22126_ch10_184-201.indd   187 13/12/13   6:11 PM13/12/13   6:11 PM



188 PART TWO  MODELING

However, the fi rst step of class-based modeling is the defi nition of classes, and 

decisions (even subjective ones) must be made. With this in mind, you should 

apply the selection characteristics to the list of potential  SafeHome  classes:

Potential Class Characteristic Number That Applies
homeowner rejected: 1, 2 fail even though 6 applies
sensor accepted: all apply
control panel accepted: all apply
installation rejected
system (alias security function) accepted: all apply
number, type rejected: 3 fails, attributes of sensor
master password rejected: 3 fails
telephone number rejected: 3 fails
sensor event accepted: all apply
audible alarm accepted: 2, 3, 4, 5, 6 apply
monitoring service rejected: 1, 2 fail even though 6 applies

 It should be noted that (1) the preceding list is not all inclusive, additional classes 

would have to be added to complete the model; (2) some of the rejected potential 

classes will become attributes for those classes that were accepted (e.g., number 

and type are attributes of  Sensor , and master password and telephone number 

may become attributes of  System ); (3) different statements of the problem might 

cause different “accept or reject” decisions to be made (e.g., if each homeowner 

had an individual password or was identifi ed by voice print, the  Homeowner  class 

would satisfy characteristics 1 and 2 and would have been accepted). 

     10.2 SPECIFYING   ATTRIBUTES        

   Attributes  describe a class that has been selected for inclusion in the analysis 

model. In essence, it is the attributes that defi ne the class—that clarify what is 

meant by the class in the context of the problem space. For example, if we were 

to build a system that tracks baseball statistics for professional baseball players, 

the attributes of the class  Player  would be quite different than the attributes of 

the same class when it is used in the context of the professional baseball pension 

system. In the former, attributes such as name, position, batting average, fi elding 

percentage, years played, and games played might be relevant. For the latter, 

some of these attributes would be meaningful, but others would be replaced (or 

augmented) by attributes like average salary, credit toward full vesting, pension 

plan options chosen, mailing address, and the like. 

 To develop a meaningful set of attributes for an analysis class, you should 

study each use case and select those “things” that reasonably “belong” to the 

class. In addition, the following question should be answered for each class:  What 

data items (composite and/or elementary) fully defi ne this class in the context of 

the problem at hand?  

   Attributes are the set 
of data objects that 
fully defi ne the class 
within the context of 
the problem. 

pre22126_ch10_184-201.indd   188pre22126_ch10_184-201.indd   188 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  189

 To illustrate, we consider the  System  class defi ned for  SafeHome.  A homeowner 

can confi gure the security function to refl ect sensor information, alarm response 

information, activation/deactivation information, identifi cation information, and 

so forth. We can represent these composite data items in the following manner:

  identifi cation information 5 system ID 1 verifi cation phone number 1 system status 

 alarm response information 5 delay time 1 telephone number 

 activation/deactivation information 5 master password 1 number of allowable tries 1 

temporary password   

 Each of the data items to the right of the equal sign could be further defi ned 

to an elementary level, but for our purposes, they constitute a reasonable list of 

attributes for the  System  class (shaded portion of  Figure 10.1 ).  

 Sensors are part of the overall  SafeHome  system, and yet they are not listed 

as data items or as attributes in  Figure 10.1 .  Sensor  has already been defi ned as 

a class, and multiple  Sensor  objects will be associated with the  System  class. In 

general, we avoid defi ning an item as an attribute if more than one of the items 

is to be associated with the class. 

     10.3 DEFINING   OPERATIONS   

   Operations  defi ne the behavior of an object. Although many different types of 

operations exist, they can generally be divided into four broad categories: (1) op-

erations that manipulate data in some way (e.g., adding, deleting, reformat-

ting, selecting), (2) operations that perform a computation, (3) operations that 

inquire about the state of an object, and (4) operations that monitor an object 

for the  occurrence of a controlling event. These functions are accomplished by 

System

program( )
display( ) 
reset( ) 
query( ) 
arm( ) 
disarm( ) 

systemID
verificationPhoneNumber
systemStatus
delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries       

  FIGURE 10.1

 Class diagram 
for the system 
class   

pre22126_ch10_184-201.indd   189pre22126_ch10_184-201.indd   189 13/12/13   6:11 PM13/12/13   6:11 PM



190 PART TWO  MODELING

operating on attributes and/or associations (Section 10.5). Therefore, an opera-

tion must have “knowledge” of the nature of the class attributes and associations.     

  As a fi rst iteration at deriving a set of operations for an analysis class, you 

can again study a processing narrative (or use case) and select those operations 

that reasonably belong to the class. To accomplish this, the grammatical parse 

is again studied and verbs are isolated. Some of these verbs will be legitimate 

operations and can be easily connected to a specifi c class. For example, from the 

 SafeHome  processing narrative presented earlier in this chapter, we see that 

“sensor is  assigned  a number and type” or “a master password is  programmed  for 

 arming and disarming  the system.” These phrases indicate a number of things:

    •  That an  assign()  operation is relevant for the  Sensor  class.  

   •  That a  program()  operation will be applied to the  System  class.  

   •  That  arm()  and  disarm()  are operations that apply to  System  class.    

 Upon further investigation, it is likely that the operation  program()  will be divided 

into a number of more specifi c suboperations required to confi gure the system. For 

example,  program()  implies specifying phone numbers, confi guring system charac-

teristics (e.g., creating the sensor table, entering alarm characteristics), and enter-

ing password(s). But for now, we specify  program()  as a single operation. 

 In addition to the grammatical parse, you can gain additional insight into 

other operations by considering the communication that occurs between objects. 

Objects communicate by passing messages to one another. Before continuing 

with the specifi cation of operations, we explore this matter in a bit more detail. 

   When you defi ne 
operations for an 
analysis class, focus 
on problem-oriented 
behavior rather than 
behaviors required for 
implementation. 

  Class Models   Class Models 

  The scene:  Ed’s cubicle, as analysis 
modeling begins. 

  The players:  Jamie, Vinod, and Ed—all members of 
the  SafeHome  software engineering team. 

  The conversation:   
 [Ed has been working to extract classes from the use 
case template for ACS-DCV (presented in an earlier 
sidebar in this chapter) and is presenting the classes he 
has extracted to his colleagues.] 

  Ed:  So when the homeowner wants to pick a camera, 
he or she has to pick it from a fl oor plan. I’ve defi ned a 
 FloorPlan  class. Here’s the diagram. 
 (They look at  Figure 10.2 .) 

  Jamie:  So  FloorPlan  is an object that is put together 
with walls, doors, windows, and cameras. That’s what 
those labeled lines mean, right? 

  Ed:  Yeah, they’re called “associations.” One class is 
 associated with another according to the associations 
I’ve shown. [Associations are discussed in Section 10.5.] 

  Vinod:  So the actual fl oor plan is made up of walls 
and contains cameras and sensors that are placed 
within those walls. How does the fl oor plan know where 
to put those objects? 

  Ed:  It doesn’t, but the other classes do. See the 
 attributes under, say,  WallSegment,  which is used 
to build a wall. The wall segment has start and stop 
 coordinates and the  draw()  operation does the rest. 

  Jamie:  And the same goes for windows and doors. 
Looks like camera has a few extra attributes. 

  Ed:  Yeah, I need them to provide pan and zoom info. 

  Vinod:  I have a question. Why does the camera have 
an ID but the others don’t? I notice you have an attribute 

 SAFEHOME 

pre22126_ch10_184-201.indd   190pre22126_ch10_184-201.indd   190 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  191

called . How will  WallSegment  know what 
the next wall will be? 

  Ed:  Good question, but as they say, that’s a design 
decision, so I’m going to delay that until . . . 

  Jamie:  Give me a break . . . I’ll bet you’ve already 
fi gured it out. 

  Ed (smiling sheepishly):  True, I’m gonna use a list 
structure which I’ll model when we get to design. If you 
get religious about separating analysis and design, the 
level of detail I have right here could be suspect. 

  Jamie:  Looks pretty good to me, but I have a few 
more questions. 
 (Jamie asks questions which result in minor 
modifi cations.) 

  Vinod:  Do you have CRC cards for each of the 
 objects? If so, we ought to role-play through them, just 
to make sure nothing has been omitted. 

  Ed:  I’m not quite sure how to do them. 

  Vinod:  It’s not hard and they really pay off. I’ll show 
you.  

FloorPlan

determineType( ) 
positionFloorplan( ) 
scale( ) 
change color( ) 

type 
name 
outsideDimensions 

Camera

determineType( )  
translateLocation( ) 
displayID( ) 
displayView( ) 
displayZoom( )  

type 
ID 
location 
fieldView 
panAngle 
ZoomSetting 

WallSegment
type 
startCoordinates 
stopCoordinates 
nextWall

determineType( ) 
draw( )  

Window
type 
startCoordinates 
stopCoordinates 
nextWindow 

determineType( ) 
draw( )  

Is placed within

Wall
type 
wallDimensions  

determineType( ) 
computeDimensions ( )

Door
type 
startCoordinates 
stopCoordinates 
nextDoor

determineType( ) 
draw( )  

Is part of

Is used to build

Is used to build

Is used to build

  FIGURE 10.2

 Class diagram 
for FloorPlan 
(see sidebar 
discussion)   

pre22126_ch10_184-201.indd   191pre22126_ch10_184-201.indd   191 13/12/13   6:11 PM13/12/13   6:11 PM



192 PART TWO  MODELING

           10.4 CLASS-RESPONSIB IL ITY-COLLABORATOR MODELING   

  Class-responsibility-collaborator (CRC) modeling  [Wir90] provides a simple means 

for identifying and organizing the classes that are relevant to system or product 

requirements. Ambler [Amb95] describes   CRC modeling   in the following way:

  A CRC model is really a collection of standard index cards that represent classes. 

The cards are divided into three sections. Along the top of the card you write the 

name of the class. In the body of the card you list the class responsibilities on the left 

and the collaborators on the right.   

 In reality, the CRC model may make use of actual or virtual index cards. The 

intent is to develop an organized representation of classes.  Responsibilities  are 

the attributes and operations that are relevant for the class. Stated simply, a 

responsibility is “anything the class knows or does” [Amb95].  Collaborators  are 

those classes that are required to provide a class with the information needed to 

complete a responsibility. In general, a  collaboration  implies either a request for 

information or a request for some action.     

  A simple CRC index card for the  FloorPlan  class is illustrated in  Figure 10.3 . 

The list of responsibilities shown on the CRC card is preliminary and subject to 

additions or modifi cation. The classes  Wall  and  Camera  are noted next to the 

responsibility that will require their collaboration.  

  Classes.   Basic guidelines for identifying classes and objects were pre-

sented earlier in this chapter. The taxonomy of class types presented in 

Section 10.1 can be extended by considering the following categories:

     •   Entity classes  ,  also called  model  or  business  classes, are extracted 

 directly from the statement of the problem (e.g.,  FloorPlan  and  Sensor ). 

 WebRef 
 An excellent discussion 
of these class types can 
be found at   http://
www.oracle.com/ 
technetwork/ 
developer-tools/
jdev/gettingstarted 
withumlclass 
modeling-130316 
.pdf  . 

  uote: 

 “One purpose of 
CRC cards is to 
fail early, to fail 
often, and to fail 
inexpensively. It 
is a lot cheaper to 
tear up a bunch of 
cards than it would 
be to reorganize 
a large amount of 
source code.” 

 C. Horstmann 

Class:
Des

R e s Co llaabo rat o r :

Class:
De

Coo llabo rat o r :

Class:
D

CCo llabo rat o r :

Class: FloorPlan
Description

Responsibility: Collaborator:

Incorporates walls, doors, and windows
Shows position of video cameras

Defines floor plan name/type
Manages floor plan positioning
Scales floor plan for display
Scales floor plan for display

Wall
Camera

  FIGURE 10.3

 A CRC model 
index card   

pre22126_ch10_184-201.indd   192pre22126_ch10_184-201.indd   192 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  193

These classes typically represent things that are to be stored in a 

 database and persist throughout the duration of the application (unless 

they are specifi cally deleted).   

    •   Boundary classes  are used to create the interface (e.g., interactive 

screen or printed reports) that the user sees and interacts with as the 

software is used. Entity objects contain information that is important 

to users, but they do not display themselves. Boundary classes are 

 designed with the responsibility of managing the way entity  objects 

are represented to users. For example, a boundary class called 

  CameraWindow  would have the responsibility of displaying surveil-

lance camera output for the  SafeHome  system.  

    •   Controller classes  manage a “unit of work” from start to fi nish. That is, 

controller classes can be designed to manage (1) the creation or update 

of entity objects, (2) the instantiation of boundary objects as they obtain 

information from entity objects, (3) complex communication between 

sets of objects, (4) validation of data communicated between objects or 

between the user and the application. In general, controller classes are 

not considered until the design activity has begun.    

    Responsibilities.           Basic guidelines for identifying responsibilities (attri-

butes and operations) have been presented in Sections 10.2 and 10.3. 

Wirfs-Brock and her colleagues [Wir90] suggest fi ve guidelines for allocat-

ing responsibilities to classes:

     1.   System intelligence should be distributed across classes to best 

 address the needs of the problem.  Every application encompasses 

a certain degree of intelligence; that is, what the system knows and 

what it can do. This intelligence can be distributed across classes in a 

 number of different ways. “Dumb” classes (those that have few respon-

sibilities) can be modeled to act as servants to a few “smart” classes 

(those having many responsibilities). Although this approach makes 

the fl ow of control in a system straightforward, it has a few disadvan-

tages: it concentrates all intelligence within a few classes, making 

changes more diffi cult, and it tends to require more classes, hence 

more  development effort. 

     If system intelligence is more evenly distributed across the classes 

in an application, each object knows about and does only a few things 

(that are generally well focused), the cohesiveness of the system is 

 improved.  3   This enhances the maintainability of the software and 

 reduces the impact of side effects due to change. 

 What 
guidelines 

can be applied 
for allocating 
responsibilities to 
classes? 

?

  uote: 

     “Objects can 
be classifi ed 
scientifi cally 
into three major 
categories: those 
that don’t work, 
those that break 
down, and those 
that get lost.” 

 Russell Baker 

    3  Cohesiveness is a design concept that is discussed in Chapter 12. 

pre22126_ch10_184-201.indd   193pre22126_ch10_184-201.indd   193 13/12/13   6:11 PM13/12/13   6:11 PM



194 PART TWO  MODELING

     To determine whether system intelligence is properly distributed, 

the responsibilities noted on each CRC model index card should be 

evaluated to determine if any class has an extraordinarily long list of 

responsibilities. This indicates a concentration of intelligence.  4   In addi-

tion, the responsibilities for each class should exhibit the same level of 

abstraction. For example, among the operations listed for an aggregate 

class called  CheckingAccount  a reviewer notes two responsibilities: 

 balance-the-account  and  check-off-cleared-checks.  The fi rst operation 

(responsibility) implies a reasonably complex mathematical and logi-

cal procedure. The second is a simple clerical activity. Since these two 

operations are not at the same level of abstraction,  check-off-cleared-

checks  should be placed within the responsibilities of  CheckEntry , a 

class that is encompassed by the aggregate class  CheckingAccount .   

    2.   Each responsibility should be stated as generally as possible.  This 

guideline implies that general responsibilities (both attributes and 

 operations) should reside high in the class hierarchy (because they are 

generic, they will apply to all subclasses).  

    3.   Information and the behavior related to it should reside within the 

same class.  This achieves the object-oriented principle called  encap-

sulation . Data and the processes that manipulate the data should be 

packaged as a cohesive unit.  

    4.   Information about one thing should be localized with a single class, 

not distributed across multiple classes.  A single class should take on 

the responsibility for storing and manipulating a specifi c type of infor-

mation. This responsibility should not, in general, be shared across a 

number of classes. If information is distributed, software becomes more 

diffi cult to maintain and more challenging to test.  

    5.   Responsibilities should be shared among related classes, when appro-

priate.  There are many cases in which a variety of related objects must 

all exhibit the same behavior at the same time. As an example, con-

sider a video game that must display the following classes:  Player, Play-

erBody, PlayerArms, PlayerLegs, PlayerHead.  Each of these classes 

has its own attributes (e.g., position, orientation, color, speed) and all 

must be updated and displayed as the user manipulates a joystick. The 

responsibilities  update  and  display  must therefore be shared by each 

of the objects noted.  Player  knows when something has changed and 

 update  is required. It collaborates with the other objects to achieve a 

new position or orientation, but each object controls its own display.  

      4  In such cases, it may be necessary to split the class into multiple classes or complete subsys-

tems in order to distribute intelligence more effectively. 

pre22126_ch10_184-201.indd   194pre22126_ch10_184-201.indd   194 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  195

       Collaborations.      Classes fulfi ll their responsibilities in one of two ways: 

(1) A class can use its own operations to manipulate its own attributes, 

thereby fulfi lling a particular responsibility, or (2) a class can collaborate 

with other classes. Wirfs-Brock and her colleagues [Wir90] defi ne collabo-

rations in the following way:

  Collaborations represent requests from a client to a server in fulfi llment of a client 

responsibility. A collaboration is the embodiment of the contract between the client 

and the server. . . . We say that an object collaborates with another object if, to fulfi ll a 

responsibility, it needs to send the other object any messages. A single collaboration 

fl ows in one direction—representing a request from the client to the server. From the 

client’s point of view, each of its collaborations is associated with a particular respon-

sibility implemented by the server. 

   Collaborations are identifi ed by determining whether a class can fulfi ll each 

responsibility itself. If it cannot, then it needs to interact with another class. 

Hence, a collaboration. 

 As an example, consider the  SafeHome  security function. As part of the acti-

vation procedure, the  ControlPanel  object must determine whether any sensors 

are open. A responsibility named  determine-sensor-status()  is defi ned. If sensors 

are open,  ControlPanel  must set a status attribute to “not ready.” Sensor infor-

mation can be acquired from each  Sensor  object. Therefore, the responsibility 

 determine-sensor-status()  can be fulfi lled only if  ControlPanel  works in collabo-

ration with  Sensor.  

 To help in the identifi cation of collaborators, you can examine three different 

generic relationships between classes [Wir90]: (1) the  is-part-of  relationship, (2) the 

 has-knowledge-of  relationship, and (3) the  depends-upon  relationship. Each of the 

three generic relationships is considered briefl y in the paragraphs that follow. 

 All classes that are part of an aggregate class are connected to the aggregate 

class via an  is-part-of  relationship. Consider the classes defi ned for the video 

game noted earlier, the class  PlayerBody   is-part-of   Player , as are  PlayerArms, 

PlayerLegs,  and  PlayerHead.  In UML, these relationships are represented as the 

aggregation shown in  Figure 10.4 . 

  When one class must acquire information from another class, the  has- 

knowledge-of  relationship is established. The  determine-sensor-status()  respon-

sibility noted earlier is an example of a  has-knowledge-of  relationship. 

 The  depends-upon  relationship implies that two classes have a dependency that 

is not achieved by  has-knowledge-of  or  is-part-of.  For example,  PlayerHead  must 

always be connected to  PlayerBody  (unless the video game is particularly violent), 

yet each object could exist without direct knowledge of the other. An attribute of 

the  PlayerHead  object called center-position is determined from the center po-

sition of  PlayerBody . This information is obtained via a third object,  Player,  that 

acquires it from  PlayerBody . Hence,  PlayerHead   depends-upon   PlayerBody . 

pre22126_ch10_184-201.indd   195pre22126_ch10_184-201.indd   195 13/12/13   6:11 PM13/12/13   6:11 PM



196 PART TWO  MODELING

 In all cases, the collaborator class name is recorded on the CRC model index 

card next to the responsibility that has spawned the collaboration. Therefore, 

the index card contains a list of responsibilities and the corresponding collabo-

rations that enable the responsibilities to be fulfi lled ( Figure 10.3 ). 

 When a complete CRC model has been developed, the representatives from 

the stakeholders can review the model using the following approach [Amb95]:

     1.  All participants in the review (of the CRC model) are given a subset of the 

CRC model index cards. Cards that collaborate should be separated (i.e., 

no reviewer should have two cards that collaborate).  

    2.  All use-case scenarios (and corresponding use-case diagrams) should be 

organized into categories.  

    3.  The review leader reads the use case deliberately. As the review leader 

comes to a named object, she passes a token to the person holding the 

corresponding class index card. For example, a use case for  SafeHome  

contains the following narrative:

    The homeowner observes the  SafeHome  control panel to determine if the system 

is ready for input. If the system is not ready, the homeowner must physically close 

 windows/doors so that the ready indicator is present. [A not-ready indicator implies 

that a sensor is open, i.e., that a door or window is open.]   

     When the review leader comes to “control panel,” in the use case narra-

tive, the token is passed to the person. holding the  ControlPanel  index 

card. The phrase “implies that a sensor is open” requires that the index 

card contains a responsibility that will validate this implication (the 

 responsibility  determine-sensor-status()  accomplishes this). Next to the 

 responsibility on the index card is the collaborator  Sensor.  The token is 

then passed to the  Sensor  object.  

Player

PlayerHead PlayerBody PlayerArms PlayerLegs

  FIGURE 10.4

 A composite 
aggregate 
class   

pre22126_ch10_184-201.indd   196pre22126_ch10_184-201.indd   196 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  197

    4.  When the token is passed, the holder of the class card is asked to describe 

the responsibilities noted on the card. The group determines whether one 

(or more) of the responsibilities satisfi es the use-case requirement.  

    5.  If the responsibilities and collaborations noted on the index cards cannot 

accommodate the use case, modifi cations are made to the cards. This 

may include the defi nition of new classes (and corresponding CRC index 

cards) or the specifi cation of new or revised responsibilities or collabora-

tions on existing cards.    

 This modus operandi continues until the use case is fi nished. When all use cases 

(or use case diagrams) have been reviewed, requirements modeling continues.     

  CRC Models   CRC Models 

  The scene:  Ed’s cubicle, as require-
ments modeling begins. 

  The players:  Vinod and Ed—members of the 
 SafeHome  software engineering team. 

  The conversation:  
 [Vinod has decided to show Ed how to develop CRC 
cards by showing him an example.] 

  Vinod:  While you’ve been working on surveillance 
and Jamie has been tied up with security, I’ve been 
working on the home management function. 

  Ed:  What’s the status of that? Marketing kept changing 
its mind. 

  Vinod:  Here’s the fi rst-cut use case for the whole 
 function . . . we’ve refi ned it a bit, but it should give you 
an overall view . . . 

  Use case:   SafeHome  home management function. 

  Narrative:  We want to use the home management 
interface on a PC or an Internet connection to control 
electronic devices that have wireless interface control-
lers. The system should allow me to turn specifi c lights 
on and off, to control appliances that are connected to a 
wireless interface, to set my heating and air-conditioning 
system to temperatures that I defi ne. To do this, I want to 
select the devices from a fl oor plan of the house. Each 
device must be identifi ed on the fl oor plan. As an op-
tional feature, I want to control all audiovisual devices—
audio, television, DVD, digital recorders, and so forth. 

 With a single selection, I want to be able to set the 
entire house for various situations. One is home, another 
is away, a third is overnight travel, and a fourth is ex-
tended travel. All of these situations will have settings 

that will be applied to all devices. In the overnight travel 
and extended travel states, the system should turn lights 
on and off at random intervals (to make it look like some-
one is home) and control the heating and air-condition-
ing system. I should be able to override these setting via 
the Internet with appropriate password protection . . . 

  Ed:  The hardware guys have got all the wireless inter-
facing fi gured out? 

  Vinod (smiling):  They’re working on it; say it’s no 
problem. Anyway, I extracted a bunch of classes for 
home management and we can use one as an example. 
Let’s use the  HomeManagementInterface  class. 

  Ed:  Okay . . . so the responsibilities are what . . . the 
attributes and operations for the class and the collabo-
rations are the classes that the responsibilities point to. 

  Vinod:  I thought you didn’t understand CRC. 

  Ed:  Maybe a little, but go ahead. 

  Vinod:  So here’s my class defi nition for 
 HomeManagementInterface.  

  Attributes:  
 optionsPanel—contains info on buttons that enable user 
to select functionality. 

 situationPanel—contains info on buttons that enable 
user to select situation. 

 fl oorplan—same as surveillance object but this one dis-
plays devices. 

 deviceIcons—info on icons representing lights, appli-
ances, HVAC, etc. 

 devicePanels—simulation of appliance or device control 
panel; allows control. 

 SAFEHOME 

pre22126_ch10_184-201.indd   197pre22126_ch10_184-201.indd   197 13/12/13   6:11 PM13/12/13   6:11 PM



198 PART TWO  MODELING

         10.5 ASSOCIATIONS   AND   DEPENDENCIES        

  In many instances, two analysis classes are related to one another in some 

fashion. In UML these relationships are called  associations.  Referring back to 

 Figure  10.2 , the  FloorPlan  class is defi ned by identifying a set of associations 

 between  FloorPlan  and two other classes,  Camera  and  Wall . The class  Wall  is 

associated with three classes that allow a wall to be constructed,  WallSegment , 

 Window , and  Door . 

 In some cases, an association may be further defi ned by indicating  multi-

plicity . Referring to  Figure 10.2 , a  Wall  object is constructed from one or more 

 WallSegment  objects. In addition, the  Wall  object may contain 0 or more 

  Window  objects and 0 or more  Door  objects. These multiplicity constraints are 

illustrated in  Figure 10.5 , where “one or more” is represented using 1..*, and “0 

or more” by 0..*. In UML, the asterisk indicates an unlimited upper bound on 

the range.  5     

 In many instances, a client-server relationship exists between two analysis 

classes. In such cases, a client class depends on the server class in some way 

and a  dependency relationship  is established. Dependencies are defi ned by a ste-

reotype. A  stereotype  is an “extensibility mechanism” [Arl02] within UML that 

allows you to defi ne a special modeling element whose semantics are custom 

defi ned. In UML stereotypes are represented in double angle brackets (e.g., 

<<stereotype>>).     

  As an illustration of a simple dependency within the  SafeHome  surveillance 

system, a  Camera  object (in this case, the server class) provides a video image to 

 What is a 
stereotype? ?

   An association defi nes 
a relationship between 
classes. Multiplicity 
defi nes how many of 
one class are related to 
how many of another 
class. 

  Operations:  
  displayControl(), selectControl(), displaySituation(), 
select situation(), accessFloorplan(), selectDeviceIcon(), 
displayDevicePanel(), accessDevicePanel(), . . .  

  Class:  HomeManagementInterface 

 Responsibility  Collaborator 
 displayControl()  OptionsPanel  (class)
 selectControl()  OptionsPanel  (class)
 displaySituation()  SituationPanel  (class)
 selectSituation()  SituationPanel  (class)
 accessFloorplan()  FloorPlan  (class) . . .
 . . . 

  Ed:  So when the operation  accessFloorplan()  is 
invoked, it collaborates with the  FloorPlan  object 
just like the one we developed for surveillance. 
Wait, I have a description of it here. (They look at 
 Figure 10.2 .) 

  Vinod:  Exactly. And if we wanted to review the 
 entire class model, we could start with this index 
card, then go to the collaborator’s index card, and 
from there to one of the collaborator’s collaborators, 
and so on. 

  Ed:  Good way to fi nd omissions or errors. 

  Vinod:  Yep.  

  5  Other multiplicity relations—one to one, one to many, many to many, one to a specifi ed range 

with lower and upper limits, and others—may be indicated as part of an association. 

pre22126_ch10_184-201.indd   198pre22126_ch10_184-201.indd   198 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  199

a  DisplayWindow  object (in this case, the client class). The relationship between 

these two objects is not a simple association, yet a dependency association does 

exist. In a use case written for surveillance (not shown), you learn that a special 

password must be provided in order to view specifi c camera locations. One way 

to achieve this is to have  Camera  request a password and then grant permission 

to the  DisplayWindow  to produce the video display. This can be represented as 

shown in  Figure 10.6  where <<access>> implies that the use of the camera output 

is controlled by a special password.  

       10.6 ANALYS IS  PACKAGES        

  An important part of analysis modeling is categorization. That is, various  elements 

of the requirements model (e.g., use cases, analysis classes) are categorized in a 

manner that packages them as a grouping—called an  analysis  package —that is 

given a representative name. 

 To illustrate the use of analysis packages, consider the video game that we 

introduced earlier. As the analysis model for the video game is developed, a 

   A package is used to 
assemble a collection 
of related classes. 

WallSegment Window Door

Wall

Is used to buildIs used to build

Is used to build1..*

1 1 1

0..* 0..*

  FIGURE 10.5

 Multiplicity   

CameraDisplayWindow

{password}

<<access>>

  FIGURE 10.6

 Dependencies   

pre22126_ch10_184-201.indd   199pre22126_ch10_184-201.indd   199 13/12/13   6:11 PM13/12/13   6:11 PM



200 PART TWO  MODELING

large number of classes are derived. Some focus on the game environment—the 

visual scenes that the user sees as the game is played. Classes such as  Tree, 

Landscape, Road, Wall, Bridge, Building,  and  VisualEffect  might fall within this 

category.  Others focus on the characters within the game, describing their phys-

ical features, actions, and constraints. Classes such as  Player  (described earlier), 

 Protagonist, Antagonist,  and  SupportingRoles  might be defi ned. Still others 

 describe the rules of the game—how a player navigates through the environ-

ment. Classes such as  RulesOfMovement  and  ConstraintsOnAction  are candi-

dates here. Many other categories might exist. These classes can be represented 

as analysis classes as shown in  Figure 10.7 .  

 The plus sign preceding the analysis class name in each package indicates 

that the classes have public visibility and are therefore accessible from other 

packages. Although they are not shown in the fi gure, other symbols can precede 

an element within a package. A minus sign indicates that an element is hidden 

from all other packages and a # symbol indicates that an element is accessible 

only to packages contained within a given package. 

       10.7 SUMMARY 

 Class-based modeling uses information derived from use cases and other writ-

ten application descriptions to identify analysis classes. A grammatical parse 

may be used to extract candidate classes, attributes, and operations from text-

based narratives. Criteria for the defi nition of a class are defi ned. 

 A set of class-responsibility-collaborator index cards can be used to defi ne 

relationships between classes. In addition, a variety of UML modeling notation 

can be applied to defi ne hierarchies, relationships, associations, aggregations, 

Environment
+Tree 
+Landscape 
+Road 
+Wall 
+Bridge 
+Building 
+VisualEffect 
+Scene 

Characters
+Player 
+Protagonist 
+Antagonist 
+SupportingRole

RulesOfTheGame
+RulesOfMovement 
+ConstraintsOnAction

Package name

  FIGURE 10.7

 Packages   

pre22126_ch10_184-201.indd   200pre22126_ch10_184-201.indd   200 13/12/13   6:11 PM13/12/13   6:11 PM



CHAPTER 10  REQUIREMENTS MODELING: CLASS-BASED METHODS  201

and dependencies among classes. Analysis packages are used to categorize and 

group classes in a manner that makes them more manageable for large systems. 

     PROBLEMS AND POINTS TO PONDER 
    10.1.  You have been asked to build one of the following systems: 

     a.  A network-based course registration system for your university.  
    b.  A Web-based order-processing system for a computer store.  
    c.  A simple invoicing system for a small business.  
    d.  An Internet-based cookbook that is built into an electric range or microwave. 
      Select the system that is of interest to you and develop a processing narrative. Then 

use the grammatical parsing technique to identify candidate objects and classes.  

     10.2.  Develop a set of operations that are used within the classes identifi ed in Problem 10.1.  

   10.3.  Develop a class model for the PHTRS system present in Problem 9.5.  

   10.4.  Write a template-based use case for the  SafeHome  home management system 
 described informally in the sidebar following Section 10.4.  

   10.5.  Develop a complete set of CRC model index cards on the product or system you chose 
as part of Problem 10.1.  

   10.6.  Conduct a review of the CRC index cards with your colleagues. How many additional 
classes, responsibilities, and collaborators were added as a consequence of the review?  

   10.7.  What is an analysis package and how might it be used?  

      FUR THER READINGS AND INFORMATION SOURCES 
  General class-based concepts are discussed by Weisfeld ( The Object-Oriented Thought 

Process , 4th ed., Addison-Wesley, 2013). Class-based modeling methods are discussed in 
books by Bennet and Farmer (Object-Oriented Systems Analysis and Design Using UML, 
McGraw-Hill, 2010), Ashrafi  and Ashrafi  ( Object-Oriented Systems Analysis and Design,  
Prentice Hall, 2008), Booch ( Object-Oriented Analysis and Design with Applications,  3rd 
ed., Addison-Wesley, 2007), George and his colleagues ( Object-Oriented Systems Analysis 

and Design , 2nd ed., Prentice Hall, 2006), O’Docherty ( Object-Oriented Analysis and  Design,  
Wiley, 2005), Satzinger et al. ( Object-Oriented Analysis and Design with the Unifi ed Pro-

cess,  Course Technology, 2004), Stumpf and Teague ( Object-Oriented Systems Analysis and 

 Design with UML,  Prentice Hall, 2004). 
   UML modeling techniques that can be applied for both analysis and design are discussed 

by Dennis and his colleagues ( Systems Analysis and Design with UML Version 2.0,  Wiley, 
4th ed., 2012), Ramnath and Dathan ( Object-Oriented Analysis and Design,  Springer, 2011), 
 Bennett and Farmer ( Object-Oriented Systems Analysis and Design Using UML,  McGraw-Hill, 
4th  ed., 2010). Larman ( Applying UML and Patterns: An Introduction to Object-Oriented 

Analysis and Design and Iterative Development,  Dohrling Kindersley, 2008), Rosenberg and 
Stephens ( Use Case Driven Object Modeling with UML Theory and Practice,  Apress, 2007), 
and Arlow and Neustadt ( UML 2 and the Unifi ed Process,  2nd ed.,  Addison-Wesley, 2005) all 
address the defi nition of analysis classes within the context of UML. 

   A wide variety of information sources on class-based methods for requirements model-
ing are available on the Internet. An up-to-date list of World Wide Web references that are 
relevant to analysis modeling can be found at the SEPA website:   www.mhhe.com/pressman  .     

pre22126_ch10_184-201.indd   201pre22126_ch10_184-201.indd   201 13/12/13   6:11 PM13/12/13   6:11 PM



202

    C H A P T E R

 K E Y 
C O N C E P T S 
    analysis patterns  . .208   
   behavioral model. . 203   
   confi guration 
models . . . . . . . . . 219   
   content model . . . . 216   
   events  . . . . . . . . . 203   
   functional model . . 218   
   interaction model  . .217   
   navigation 
modeling  . . . . . . . 220   
   sequence diagrams  205   
   state diagrams  . . . 204   
   state representations 204    

        After our discussion of scenario-based and class-based models in Chap-

ters 9 and 10, it’s reasonable to ask, “Aren’t those requirement model-

ing representations enough?” 

 The only reasonable answer is, “That depends.” 

 For some types of software, the use case may be the only requirements mod-

eling representation that is required. For others, an object-oriented approach 

is chosen and class-based models may be developed. But in other situations, 

complex application requirements may demand an examination of how an 

application behaves as a consequence of external events; whether existing 

domain knowledge can be adapted to the current problem; or in the case of 

Web-based or mobile systems and applications, how content and functionality 

meld to provide an end user with the ability to successfully navigate an appli-

cation to achieve usage goals. 

 REQUIREMENTS MODELING: BEHAVIOR, 
PATTERNS, AND WEB/MOBILE APPS 11 

  What is it?   In this chapter you’ll 
learn about other dimensions of the 
requirements model—behavioral 
models, patterns, and the special re-

quirements analysis considerations that come 
into play when WebApps are developed. 
Each of these modeling representations sup-
plements the scenario-based and class-based 
models discussed in Chapters 9 and 10. 

   Who does it?   A software engineer (sometimes 
called an analyst) builds the model using re-
quirements elicited from various stakeholders. 

   Why is it important?   Your insight into soft-
ware requirements grows in direct proportion 
to the number of different requirements model-
ing dimensions. Although you may not have 
the time, the resources, or the inclination to 
develop every representation suggested in 
Chapters 9 to 11, recognize that each differ-
ent modeling approach provides you with a 
different way of looking at the problem. As a 
consequence, you (and other stakeholders) will 

be better able to assess whether you’ve prop-
erly specifi ed what must be accomplished. 

   What are the steps?   Behavioral model-
ing depicts the states of the system and its 
classes and the impact of events on these 
states. Pattern-based modeling makes use of 
existing domain knowledge to facilitate re-
quirements analysis. WebApp requirements 
models are especially adapted for the repre-
sentation of content, interaction, function, and 
confi guration-related requirements. 

   What is the work product?   A wide array 
of text-based and diagrammatic forms may be 
chosen for the requirements model. Each of 
these representations provides a view of one 
or more of the model elements. 

   How do I ensure that I’ve done it right?   Re-
quirements modeling work products must be 
reviewed for correctness, completeness, and 
consistency. They must refl ect the needs of all 
stakeholders and establish a foundation from 
which design can be conducted.  

 Q U I C K 
L O O K 

pre22126_ch11_202-223.indd   202pre22126_ch11_202-223.indd   202 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  203

     11.1 CREATING A BEHAVIORAL MODEL      

  The modeling notation that has been discussed in the preceding chapters rep-

resents static elements of the requirements model. It is now time to make a tran-

sition to the dynamic behavior of the system or product. To accomplish this, you 

can represent the behavior of the system as a function of specifi c events and time. 

 The  behavioral model  indicates how software will respond to external events 

or stimuli. To create the model, you should perform the following steps: (1) eval-

uate all use cases to fully understand the sequence of interaction within the sys-

tem, (2) identify events that drive the interaction sequence and understand how 

these events relate to specifi c objects, (3) create a sequence for each use case, 

(4) build a state diagram for the system, and (5) review the behavioral model to 

verify accuracy and consistency. Each of these steps is discussed in the sections 

that follow. 

     11.2 IDENTIFY ING EVENTS WITH THE USE CASE 

  In Chapter 9, you learned that the use case represents a sequence of activities 

that involves actors and the system. In general, an event occurs whenever the 

system and an actor exchange information. An event is  not  the information that 

has been exchanged, but rather the fact that information has been exchanged. 

 A use case is examined for points of information exchange. To illustrate, re-

consider the use case for a portion of the  SafeHome  security function.

  The  homeowner uses the keypad to key in a four-digit password . The  password is 

compared with the valid password stored in the system . If the password is incorrect, 

the  control panel will beep  once and reset itself for additional input. If the password 

is correct, the control panel awaits further action.   

 The underlined portions of the use case scenario indicate events. An actor 

should be identifi ed for each event; the information that is exchanged should be 

noted, and any conditions or constraints should be listed. 

 As an example of a typical event, consider the underlined use case phrase 

“homeowner uses the keypad to key in a four-digit password.” In the context 

of the requirements model, the object,  Homeowner,   1   transmits an event to the 

object  ControlPanel.  The event might be called  password entered . The informa-

tion transferred is the four digits that constitute the password, but this is not an 

essential part of the behavioral model. It is important to note that some events 

have an explicit impact on the fl ow of control of the use case, while others have 

no direct impact on the fl ow of control. For example, the event  password entered  

 How do 
I model 

the software’s 
reaction to some 
external event? 

?

  1  In this example, we assume that each user (homeowner) that interacts with  SafeHome  has an 

identifying password and is therefore a legitimate object. 

pre22126_ch11_202-223.indd   203pre22126_ch11_202-223.indd   203 13/12/13   6:12 PM13/12/13   6:12 PM



204 PART TWO  MODELING

does not explicitly change the fl ow of control of the use case, but the results of the 

event  password   compared  (derived from the interaction “password is compared 

with the valid password stored in the system”) will have an explicit impact on the 

information and control fl ow of the  SafeHome  software. 

  Once all events have been identifi ed, they are allocated to the objects involved. 

Objects can be responsible for generating events (e.g.,  Homeowner  generates 

the  password entered  event) or recognizing events that have occurred elsewhere 

(e.g.,  ControlPanel  recognizes the binary result of the  password   compared  event). 

     11.3 STATE REPRESENTATIONS 

       In the context of behavioral modeling, two different characterizations of states 

must be considered: (1) the state of each class as the system performs its function 

and (2) the state of the system as observed from the outside as the system per-

forms its function. 

 The state of a class takes on both passive and active characteristics [Cha93]. A 

 passive state  is simply the current status of all of an object’s attributes. For exam-

ple, the passive state of the class  Player  (in the video game application discussed 

in Chapter 10) would include the current position and orientation attributes of 

 Player  as well as other features of  Player  that are relevant to the game (e.g., an 

attribute that indicates magic wishes remaining). The  active state  of an object 

indicates the current status of the object as it undergoes a continuing transfor-

mation or processing. The class  Player  might have the following active states: 

 moving, at rest, injured, being cured, trapped, lost,  and so forth. An  event  (some-

times called a  trigger ) must occur to force an object to make a transition from one 

active state to another. 

 Two different behavioral representations are discussed in the paragraphs that 

follow. The fi rst indicates how an individual class changes state based on external 

events and the second shows the behavior of the software as a function of time. 

     State Diagrams for Analysis Classes.   One component of a behavioral model is 

a UML state diagram  2   that represents active states for each class and the events 

(triggers) that cause changes between these active states.  Figure 11.1  illustrates 

a state diagram for the  ControlPanel  object in the  SafeHome  security function.   

 Each arrow shown in  Figure 11.1  represents a transition from one active state 

of an object to another. The labels shown for each arrow represent the event that 

triggers the transition. Although the active state model provides useful insight 

into the “life history” of an object, it is possible to specify additional information 

to provide more depth in understanding the behavior of an object. In addition to 

   The system has states 
that represent specifi c 
externally observable 
behavior; a class has 
states that represent 
its behavior as the 
system performs its 
functions. 

  2  If you are unfamiliar with UML, a brief introduction to this important modeling notation is pre-

sented in Appendix 1. 

pre22126_ch11_202-223.indd   204pre22126_ch11_202-223.indd   204 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  205

specifying the event that causes the transition to occur, you can specify a guard 

and an action [Cha93]. A  guard  is a Boolean condition that must be satisfi ed in 

order for the transition to occur. For example, the guard for the transition from 

the “reading” state to the “comparing” state in  Figure 11.1  can be determined by 

examining the use case:

 if (password input 5 4 digits) then   compare   to stored password  

 In general, the guard for a transition usually depends upon the value of one 

or more attributes of an object. In other words, the guard depends on the passive 

state of the object. 

 An  action  occurs concurrently with the state transition or as a consequence of 

it and generally involves one or more operations (responsibilities) of the object. 

For example, the action connected to the  password entered  event ( Figure 11.1 ) 

is an operation named  validatePassword()  that accesses a  password  object and 

performs a digit-by-digit comparison to validate the entered password.     

     Sequence Diagrams.   The second type of behavioral representation, called a 

  sequence diagram  in UML, indicates how events cause transitions from object to 

object. Once events have been identifi ed by examining a use case, the modeler 

creates a sequence diagram—a representation of how events cause fl ow from 

one object to another as a function of time. In essence, the sequence diagram is 

   Unlike a state diagram 
that represents 
behavior without 
noting the classes 
involved, a sequence 
diagram represents 
behavior, by describing 
how classes move 
from state to state. 

Reading

Locked

Selecting

Password
entered 

Comparing

Password = incorrect
& numberOfTries < maxTries 

Password = correct

Activation successful

Key hit

Do: validatePassword

numberOfTries > maxTries

Timer ≤ lockedTime

Timer > lockedTime

  FIGURE 11.1

 State diagram 
for the 
ControlPanel 
class   

pre22126_ch11_202-223.indd   205pre22126_ch11_202-223.indd   205 13/12/13   6:12 PM13/12/13   6:12 PM



206 PART TWO  MODELING

a shorthand version of the use case. It represents key classes and the events that 

cause behavior to fl ow from class to class. 

   Figure 11.2  illustrates a partial sequence diagram for the  SafeHome  security 

function. Each of the arrows represents an event (derived from a use case) and 

indicates how the event channels behavior between  SafeHome  objects. Time is 

measured vertically (downward), and the narrow vertical rectangles represent 

time spent in processing an activity. States may be shown along a vertical time 

line. 

 The fi rst event,  system ready , is derived from the external environment and 

channels behavior to the  Homeowner  object. The homeowner enters a password. 

A  request lookup  event is passed to  System,  which looks up the password in a 

simple database and returns a  result  ( found  or  not found ) to  ControlPanel  (now 

in the  comparing  state). A valid password results in a  password=correct  event 

to  System,  which activates  Sensors  with a  request activation  event. Ultimately, 

control is passed back to the homeowner with the  activation successful  event. 

 Once a complete sequence diagram has been developed, all of the events 

that cause transitions between system objects can be collated into a set of input 

events and output events (from an object). This information is useful in the cre-

ation of an effective design for the system to be built. 

Control panel System

System 
ready

Reading

Request lookup
Comparing

Result

Password entered

Password = correct
Request activation

Activation successful

Locked

Selecting

Timer > lockedTime

A

A

Activation successful

Homeowner Sensors

numberOfTries > maxTries

  FIGURE 11.2  Sequence diagram (partial) for the  SafeHome  security function   

pre22126_ch11_202-223.indd   206pre22126_ch11_202-223.indd   206 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  207

           11.4 PATTERNS FOR REQUIREMENTS MODELING 

  Software patterns are a mechanism for capturing domain knowledge in a way 

that allows it to be reapplied when a new problem is encountered. In some cases, 

the domain knowledge is applied to a new problem within the same application 

domain. In other cases, the domain knowledge captured by a pattern can be ap-

plied by analogy to a completely different application domain. 

 The original author of an analysis pattern does not “create” the pattern, but, 

rather,  discovers  it as requirements engineering work is being conducted. Once 

the pattern has been discovered, it is documented by describing “explicitly the 

general problem to which the pattern is applicable, the prescribed solution, 

assumptions and constraints of using the pattern in practice, and often some 

other information about the pattern, such as the motivation and driving forces 

for using the pattern, discussion of the pattern’s advantages and disadvantages, 

and references to some known examples of using that pattern in practical appli-

cations” [Dev01]. 

 In Chapter 8, we introduced the concept of analysis patterns and indicated 

that these patterns represent something (e.g., a class, a function, a behavior) 

  Generalized Analysis Modeling 
in UML 

  Objective:   Analysis modeling tools provide 
the capability to develop scenario-based models, 
class-based models, and behavioral models using UML 
notation. 

   Mechanics:   Tools in this category support the full 
range of UML diagrams required to build an analysis 
model (these tools also support design modeling). In 
addition to diagramming, tools in this category (1) 
perform consistency and correctness checks for all 
UML diagrams, (2) provide links for design and code 
generation, (3) build a database that enables the 
management and assessment of large UML models 
required for complex systems. 

   Representative Tools: 3  
  The following tools support a full range of UML diagrams 
required for analysis modeling:

        ArgoUML  is an open source tool available at   argouml.
tigris.org  .  

       Enterprise Architect,  developed by Sparx Systems  

      (  www.sparxsystems.com.au  ).  

       PowerDesigner,  developed by Sybase (  www.sybase.
com  ).  

       Rational Rose,  developed by IBM (Rational) (  http://
www-01.ibm.com/software/rational/  ).  

       Rational System Architect,  developed by Popkin Software 
now owned by IBM (  http://www-01.ibm.com/
software/awdtools/systemarchitect/  ).  

       UML Studio,  developed by Pragsoft Corporation (  www.
pragsoft.com  ).  

       Visio,  developed by Microsoft ( http://offi ce.
microsoft.com/en-gb/visio/ ).  

       Visual UML,  developed by Visual Object Modelers 
(  www.visualuml.com  ).      

 SOFTWARE TOOLS 

  3  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch11_202-223.indd   207pre22126_ch11_202-223.indd   207 13/12/13   6:12 PM13/12/13   6:12 PM



208 PART TWO  MODELING

within the application domain that can be reused when performing requirements 

modeling for an application within a domain.  4   Analysis patterns are stored in a 

repository so that members of the software team can use search facilities to fi nd 

and reuse them. Once an appropriate pattern is selected, it is integrated into the 

requirements model by reference to the pattern name. 

   11.4.1  Discovering Analysis Patterns 

 The requirements model comprises a wide variety of elements: scenario-

based (use cases), class-based (objects and classes), and behavioral (events 

and states). Each of these elements represents the problem from a different 

perspective, and each provides an opportunity to discover patterns that may 

occur throughout an application domain, or by analogy, across different appli-

cation domains. 

 The most basic element in the description of a requirements model is the use 

case. In the context of this discussion, a coherent set of use cases may serve 

as the basis for discovering one or more   analysis patterns. A  semantic analysis 

pattern  (SAP) “is a pattern that describes a small set of coherent use cases that 

together describe a basic generic application” [Fer00]. 

 Consider the following preliminary use case for software required to control 

and monitor a real-view camera and proximity sensor for an automobile:

  Use case:    

  Description:  When the vehicle is placed in  reverse  gear, the control software enables 

a video feed from a rear-placed video camera to the dashboard display. The control 

software superimposes a variety of distance and orientation lines on the dashboard 

display so that the vehicle operator can maintain orientation as the vehicle moves in 

reverse. The control software also monitors a proximity sensor to determine whether 

an object is inside 10 feet of the rear of the vehicle. It will automatically brake the 

vehicle if the proximity sensor indicates an object within  x  feet of the rear of the 

vehicle, where  x  is determined based on the speed of the vehicle.   

 This use case implies a variety of functionality that would be refi ned and 

elaborated (into a coherent set of use cases) during requirements gathering 

and modeling. Regardless of how much elaboration is accomplished, the use 

cases suggest a simple, yet widely applicable SAP—the software-based moni-

toring and control of sensors and actuators in a physical system. In this case, 

the “sensors” provide information about proximity and video information. The 

“actuator” is the braking system of the vehicle (invoked if an object is close 

to the vehicle). But in a more general case, a widely applicable pattern is 

discovered.     

  4  An in-depth discussion of the use of patterns during software design is presented in Chapter 16. 

pre22126_ch11_202-223.indd   208pre22126_ch11_202-223.indd   208 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  209

  Software in many different application domains is required to monitor sensors 

and control physical actuators. It follows that an analysis pattern that describes 

generic requirements for this capability could be used widely. The pattern, called 

 Actuator-Sensor  ,  would be applicable as part of the requirements model for 

 SafeHome  and is discussed in Section 11.4.2. 

   11.4.2  A Requirements Pattern Example: Actuator-Sensor 5  

  One of the requirements of the  SafeHome  security function is the ability to mon-

itory security sensors (e.g., break-in sensors, fi re, smoke or CO sensors, water 

sensors). Internet-based extensions to  SafeHome  will require the ability to con-

trol the movement (e.g., pan, zoom) of a security camera within a residence. The 

implication— SafeHome  software must manage various sensors and “actuators” 

(e.g., camera control mechanisms). 

 Konrad and Cheng [Kon02] have suggested a requirements pattern named 

 Actuator-Sensor  that provides useful guidance for modeling this requirement 

within  SafeHome  software. An abbreviated version of the  Actuator-Sensor  pat-

tern, originally developed for automotive applications, follows. 

  Pattern Name.    Actuator-Sensor  

   Intent.   Specify various kinds of sensors and actuators in an embedded system. 

  Discovering an Analysis Pattern   Discovering an Analysis Pattern 

        The scene:  A meeting room, during 
a team meeting.  

       The players:  Jamie Lazar, software team member; Ed 
Robbins, software team member; Doug Miller, software 
engineering manager  

       The conversation:   

       Doug:  How are things going with modeling the re-
quirements for the sensor network for the  SafeHome  
project?  

       Jamie:  Sensor work is a little new to me, but I think 
I’m getting a handle on it.  

       Doug:  Is there anything we can do to help you with 
that?  

       Jamie:  It would be a lot easier if I’d built a system like 
this before.  

       Doug:  True.  

       Ed:  I was thinking this is a situation where we might 
be able to fi nd an analysis pattern that would help us 
model these requirements.  

       Doug:  If we can fi nd the right pattern, we’d avoid rein-
venting the wheel.  

       Jamie:  That sounds good to me. How do we start?  

       Ed:  We have access to a repository that contains a 
large number of analysis and design patterns. We just 
need to search for patterns with intents that match our 
needs.  

       Doug:  That seems like that might work. What do you 
think, Jamie?  

       Jamie:  If Ed can help me get started, I’ll tackle this 
today.    

 SAFEHOME 

  5  This section has been adapted from [Kon02] with the permission of the authors. 

pre22126_ch11_202-223.indd   209pre22126_ch11_202-223.indd   209 13/12/13   6:12 PM13/12/13   6:12 PM



210 PART TWO  MODELING

   Motivation.   Embedded systems usually have various kinds of sensors and actu-

ators. These sensors and actuators are all either directly or indirectly connected 

to a control unit. Although many of the sensors and actuators look quite different, 

their behavior is similar enough to structure them into a pattern. The pattern 

shows how to specify the sensors and actuators for a system, including attributes 

and operations. The  Actuator-Sensor  pattern uses a  pull  mechanism (explicit re-

quest for information) for  PassiveSensors  and a  push  mechanism (broadcast of 

information) for the  ActiveSensors . 

   Constraints 

    •  Each passive sensor must have some method to read sensor input and at-

tributes that represent the sensor value.  

   •  Each active sensor must have capabilities to broadcast update messages 

when its value changes.  

   •  Each active sensor should send a  life tick , a status message issued within 

a specifi ed time frame, to detect malfunctions.  

   •  Each actuator must have some method to invoke the appropriate re-

sponse determined by the  ComputingComponent .  

   •  Each sensor and actuator should have a function implemented to check 

its own operation state.  

   •  Each sensor and actuator should be able to test the validity of the values 

received or sent and set its operation state if the values are outside of the 

specifi cations.  

    Applicability.   Useful in any system in which multiple sensors and actuators are 

present. 

   Structure.   UML class diagram for the  Actuator-Sensor  pattern is shown in 

 Figure 11.3 .  Actuator, PassiveSensor,  and  ActiveSensor  are abstract classes and 

denoted in italics. There are four different types of sensors and actuators in this 

pattern. The  Boolean ,  Integer , and  Real  classes represent the most common types 

of sensors and actuators. The complex classes are sensors or actuators that use 

values that cannot be easily represented in terms of primitive data types, such as 

a radar device. Nonetheless, these devices should still inherit the interface from 

the abstract classes since they should have basic functionalities such as querying 

the operation states.  

   Behavior.    Figure 11.4  presents a UML sequence diagram for an example of 

the  Actuator-Sensor  pattern as it might be applied for the  SafeHome  function 

that controls the positioning (e.g., pan, zoom) of a security camera. Here, the 

 ControlPanel6  queries a sensor (a passive position sensor) and an actuator (pan 

  6  The original pattern uses the generic phrase  ComputingComponent.  

pre22126_ch11_202-223.indd   210pre22126_ch11_202-223.indd   210 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  211

control) to check the operation state for diagnostic purposes before reading or 

setting a value. The messages  Set Physical Value  and  Get Physical Value  are not 

messages between objects. Instead, they describe the interaction between the 

physical devices of the system and their software counterparts. In the lower part 

of the diagram, below the horizontal line, the  PositionSensor  reports that the op-

eration state is zero. The  ComputingComponent  then sends the error code for a 

position sensor failure to the  FaultHandler  that will decide how this error affects 

the system and what actions are required. It gets the data from the sensors and 

computes the required response for the actuators. 

Passive integer
sensor

Passive sensor Computing
component

Active sensor

Passive boolean
sensor

Passive complex
sensor

Passive real
sensor

Boolean
actuator

Integer
actuator

Complex
actuator

Real
actuator

Actuator

Active boolean
sensor

Active integer
sensor

Active complex
sensor

Active real
sensor

  FIGURE 11.3

 UML sequence 
diagram for 
the Actuator-
Sensor pattern. 
 Source: Adapted 
from [Kon02] with 
permission.    

FauntHandler

(PositionSensor.
OpState = 1)

PositionSensor ControlPanel

Get operation state

PanControl
Actuator

Senor
InputDevice

PositionSensor

Actuator
OutputDevice
PanControl

Get value

Get operation state

Get operation state

Set value

Set physical value

Store error

Get physical value

(PositionSensor.
OpState = 0)

  FIGURE 11.4

 UML Class 
diagram for 
the Actuator-
Sensor pattern. 
 Source: Reprinted 
from [Kon02] with 
permission.    

pre22126_ch11_202-223.indd   211pre22126_ch11_202-223.indd   211 13/12/13   6:12 PM13/12/13   6:12 PM



212 PART TWO  MODELING

     Participants.   This section of the patterns description “itemizes the classes/ob-

jects that are included in the requirements pattern” [Kon02] and describes the 

responsibilities of each class/object ( Figure 11.3 ). An abbreviated list follows:

    •   PassiveSensor abstract:  Defi nes an interface for passive sensors.  

   •   PassiveBooleanSensor:  Defi nes passive Boolean sensors.  

   •   PassiveIntegerSensor:  Defi nes passive integer sensors.  

   •   PassiveRealSensor:  Defi nes passive real sensors.  

   •   ActiveSensor abstract:  Defi nes an interface for active sensors.  

   •   ActiveBooleanSensor:  Defi nes active Boolean sensors.  

   •   ActiveIntegerSensor:  Defi nes active integer sensors.  

   •   ActiveRealSensor:  Defi nes active real sensors.  

   •   Actuator abstract:  Defi nes an interface for actuators.  

   •   BooleanActuator:  Defi nes Boolean actuators.  

   •   IntegerActuator:  Defi nes integer actuators.  

   •   RealActuator:  Defi nes real actuators.  

   •   ComputingComponent:  The central part of the controller; it gets the 

data from the sensors and computes the required response for the 

actuators.  

   •   ActiveComplexSensor:  Complex active sensors have the basic function-

ality of the abstract  ActiveSensor  class, but additional, more elaborate, 

methods and attributes need to be specifi ed.  

   •   PassiveComplexSensor:  Complex passive sensors have the basic function-

ality of the abstract  PassiveSensor  class, but additional, more elaborate, 

methods and attributes need to be specifi ed.  

   •   ComplexActuator:  Complex actuators also have the base functionality of 

the abstract  Actuator  class, but additional, more elaborate methods and 

attributes need to be specifi ed.    

   Collaborations.   This section describes how objects and classes interact with 

one another and how each carries out its responsibilities.

    •  When the  ComputingComponent  needs to update the value of a 

 PassiveSensor , it queries the sensors, requesting the value by sending the 

appropriate message.  

   •   ActiveSensors  are not queried. They initiate the transmission of sensor 

values to the computing unit, using the appropriate method to set the 

value in the  ComputingComponent . They send a life tick at least once 

during a specifi ed time frame in order to update their timestamps with 

the system clock’s time.  

pre22126_ch11_202-223.indd   212pre22126_ch11_202-223.indd   212 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  213

   •  When the  ComputingComponent  needs to set the value of an actuator, it 

sends the value to the actuator.  

   •  The  ComputingComponent  can query and set the operation state of the 

sensors and actuators using the appropriate methods. If an operation 

state is found to be zero, then the error is sent to the  FaultHandler , a class 

that contains methods for handling error messages, such as starting a 

more elaborate recovery mechanism or a backup device. If no recovery is 

possible, then the system can only use the last known value for the sensor 

or the default value.  

   •  The  ActiveSensors  offer methods to add or remove the addresses or 

address ranges of the components that want to receive the messages in 

case of a value change.    

   Consequences 

     1.  Sensor and actuator classes have a common interface.  

    2.  Class attributes can only be accessed through messages, and the class 

decides whether or not to accept the message. For example, if a value of 

an actuator is set above a maximum value, then the actuator class may not 

accept the message, or it might use a default maximum value.  

    3.  The complexity of the system is potentially reduced because of the unifor-

mity of interfaces for actuators and sensors.  

  The requirements pattern description might also provide references to other 

related requirements and design patterns. 

       11.5 REQUIREMENTS MODELING FOR WEB AND MOBILE APPS 7  

   Developers of Web and mobile applications are often skeptical when the idea 

of requirements analysis is suggested. “After all,” they argue, “our development 

process must be agile, and analysis is time consuming. It’ll slow us down just 

when we need to be designing and building the application.” 

 Requirements analysis does take time, but solving the wrong problem takes 

even more time. The question for every WebApp and mobile developer is 

simple—are you sure you understand the requirements of the problem or prod-

uct? If the answer is an unequivocal yes, then it may be possible to skip require-

ments modeling, but if the answer is no, then requirements modeling should be 

performed. 

  7  Portions of this section has been adapted from Pressman and Lowe [Pre08] with permission. 

pre22126_ch11_202-223.indd   213pre22126_ch11_202-223.indd   213 13/12/13   6:12 PM13/12/13   6:12 PM



214 PART TWO  MODELING

  11.5.1  How Much Analysis Is Enough? 

 The degree to which requirements modeling for Web and mobile apps is empha-

sized depends on the following size-related factors: (1) the size and complexity 

of the application increment, (2) the number of stakeholders (analysis can help 

to identify confl icting requirements coming from different sources), (3) the size 

of the app development team, (4) the degree to which members of the team have 

worked together before (analysis can help develop a common understanding of 

the project), and (5) the degree to which the organization’s success is directly 

dependent on the success of the application. 

 The converse of the preceding points is that as the project becomes smaller, the 

number of stakeholders fewer, the development team more cohesive, and the appli-

cation less critical, it is reasonable to apply a more lightweight analysis approach. 

 Although it is a good idea to analyze the problem or product requirements 

 before  beginning design, it is not true that  all  analysis must precede  all  design. 

In fact, the design of a specifi c part of the application only demands an analysis 

of those requirements that affect only that part of the application. As an example 

from  SafeHome , you could validly design the overall website aesthetics (layouts, 

color schemes, etc.) without having analyzed the functional requirements for 

e-commerce capabilities. You only need to analyze that part of the problem that 

is relevant to the design work for the increment to be delivered.  8   

    11.5.2  Requirements Modeling Input 

 An agile version of the generic software process discussed in Chapter 5 can be 

applied when Web or mobile apps are engineered. The process incorporates a 

communication activity that identifi es stakeholders and user categories, the 

business context, defi ned informational and applicative goals, general product 

requirements, and usage scenarios—information that becomes input to require-

ments modeling. This information is represented in the form of natural language 

descriptions, rough outlines, sketches, and other informal representations. 

 Analysis takes this information, structures it using a formally defi ned repre-

sentation scheme (where appropriate), and then produces more rigorous models 

as an output. The requirements model provides a detailed indication of the true 

structure of the problem and provides insight into the shape of the solution. 

 The  SafeHome  ACS-DCV (camera surveillance) function was introduced in 

Chapter 9. When it was introduced, this function seemed relatively clear and was de-

scribed in some detail as part of a use case (Section 9.2.1). However, a reexamination 

of the use case might uncover information that is missing, ambiguous, or unclear. 

 Some aspects of this missing information would naturally emerge during the 

design. Examples might include the specifi c layout of the function buttons, their 

  8  In situations in which a design of one part of an application will have impact across other parts 

of an application, the scope of analysis should be broadened. 

pre22126_ch11_202-223.indd   214pre22126_ch11_202-223.indd   214 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  215

aesthetic look and feel, the size of snapshot views, the placement of camera 

views and the house fl oor plan, or even minutiae such as the maximum and min-

imum length of passwords. Some of these aspects are design decisions (such as 

the layout of the buttons) and others are requirements (such as the length of the 

passwords) that don’t fundamentally infl uence early design work. 

 But some missing information might actually infl uence the overall design itself 

and relate more to an actual understanding of the requirements. For example:

       Q1:  What output video resolution is provided by  SafeHome  cameras?  

      Q2:  What occurs if an alarm condition is encountered while the cam-

era is being monitored?  

      Q3:  How does the system handle cameras that can be panned and 

zoomed?  

      Q4:  What information should be provided along with the camera view? 

(For example, location? time/date? last previous access?)    

 None of these questions were identifi ed or considered in the initial develop-

ment of the use case, and yet, the answers could have a substantial effect on 

different aspects of the design. 

 Therefore, it is reasonable to conclude that although the communication ac-

tivity provides a good foundation for understanding, requirements analysis re-

fi nes this understanding by providing additional interpretation. As the problem 

structure is delineated as part of the requirements model, questions invariably 

arise. It is these questions that fi ll in the gaps—or in some cases, actually help us 

to fi nd the gaps in the fi rst place. 

 To summarize, the inputs to the requirements model will be the information 

collected during the communication activity—anything from an informal e-mail 

to a detailed project brief complete with comprehensive usage scenarios and 

product specifi cations. 

   11.5.3  Requirements Modeling Output 

 Requirements analysis provides a disciplined mechanism for representing and 

evaluating application content and function, the modes of interaction that users 

will encounter, and the environment and infrastructure in which the WebApp or 

mobile app resides. 

 Each of these characteristics can be represented as a set of models that allow 

application requirements to be analyzed in a structured manner. While the spe-

cifi c models depend largely upon the nature of the application, there are fi ve 

main classes of models:

    •   Content model —identifi es the full spectrum of content to be provided by 

the application. Content includes text, graphics and images, video, and 

audio data.  

pre22126_ch11_202-223.indd   215pre22126_ch11_202-223.indd   215 13/12/13   6:12 PM13/12/13   6:12 PM



216 PART TWO  MODELING

   •   Interaction model —describes the manner in which users interact with 

the app.  

   •   Functional model —defi nes the operations that will be applied to manip-

ulate content and describes other processing functions that are indepen-

dent of content but necessary to the end user.  

   •   Navigation model —defi nes the overall navigation strategy for the app.  

   •   Confi guration model —describes the environment and infrastructure in 

which the app resides.    

 You can develop each of these models using a representation scheme (often 

called a “language”) that allows its intent and structure to be communicated and 

evaluated easily among members of the engineering team and other stakehold-

ers. As a consequence, a list of key issues (e.g., errors, omissions, inconsistencies, 

suggestions for enhancement or modifi cation, points of clarifi cation) are identi-

fi ed and acted upon. 

   11.5.4  Content Model 

 The content model contains structural elements that provide an important view 

of content requirements for an application. These structural elements encompass 

content objects and all  analysis classes —user-visible entities that are created or 

manipulated as a user interacts with the app through a browser or a mobile device.  9   

  Content can be developed prior to the implementation of the app, while the 

app is being built, or long after the app is operational. In every case, it is incorpo-

rated via navigational reference into the overall application structure. A  content 

object  might be a textual description of a product, an article describing a news 

event, a graphical representation of retrieved data (e.g., stock price as a func-

tion of time), an action photograph taken at a sporting event, a user’s response 

on a discussion forum, an animated representation of a corporate logo, a short 

video of a speech, or an audio overlay for a collection of presentation slides. The 

content objects might be stored as separate fi les or obtained dynamically from 

a database. They might be embedded directly into Web pages, displayed on the 

screen of a mobile device. In other words, a content object is any item of cohesive 

information that is to be presented to an end user. 

 Content objects can be determined directly from use cases by examining the 

scenario description for direct and indirect references to content. For example, a 

WebApp that supports  SafeHome  is established at  www.safehomeassured.com.  
A use case,  Purchasing Select SafeHome Components,  describes the scenario 

 required to purchase a  SafeHome  component and contains the sentence:

  I will be able to get descriptive and pricing information for each product component.   

  9  Analysis classes were discussed in Chapter 10. 

pre22126_ch11_202-223.indd   216pre22126_ch11_202-223.indd   216 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  217

 The content model must be capable of describing the content object 

 Component.  In many instances, a simple list of content objects, coupled with 

a brief description of each object, is suffi cient to defi ne the requirements for 

content that must be designed and implemented. However, in some cases, the 

content model may benefi t from a richer analysis that graphically illustrates 

the relationships among content objects and/or the hierarchy of content main-

tained by a WebApp.  

 For example, consider the  data tree  [Sri01] created for a  www.safehomeassured
.com  component shown in  Figure 11.5 . The tree represents a hierarchy of informa-

tion that is used to describe a component. Simple or composite data items (one or 

more data values) are represented as unshaded rectangles. Content objects are 

represented as shaded rectangles. In the fi gure, description is defi ned by fi ve con-

tent objects (the shaded rectangles). In some cases, one or more of these objects 

would be further refi ned as the data tree expands. 

 A data tree can be created for any content that is composed of multiple con-

tent objects and data items. The data tree is developed in an effort to defi ne 

hierarchical relationships among content objects and to provide a means for re-

viewing content so that omissions and inconsistencies are uncovered before de-

sign commences. In addition, the data tree serves as the basis for content design. 

   11.5.5  Interaction Model for Web and Mobile Apps 

 The vast majority of Web and mobile apps enable a “conversation” between an 

end user and application functionality, content, and behavior. This conversation 

can be described using an  interaction  model that can be composed of one or 

more of the following elements: (1) use cases, (2) sequence diagrams, (3) state 

diagrams,  10   and/or (4) user interface prototypes. 

  In many instances, a set of use cases  11   is suffi cient to describe the interaction 

at an analysis level (further refi nement and detail is introduced during design). 

Marketing description

Photograph

Tech description

Schematic

Video

Wholesale price

Part number

Part name

Part typeComponent

Description

Price

Retail price

  FIGURE 11.5

  10  Sequence diagrams and state diagrams are modeled using UML notation. 

  11  Use cases are described in detail in Chapter 9. 

 Data tree for a www.safehomeassured.com component   

pre22126_ch11_202-223.indd   217pre22126_ch11_202-223.indd   217 13/12/13   6:12 PM13/12/13   6:12 PM



218 PART TWO  MODELING

However, when the sequence of interaction is complex and involves multiple 

analysis classes or many tasks, it is sometimes worthwhile to depict it using a 

more rigorous diagrammatic form. 

 The layout of the user interface, the content it presents, the interaction mech-

anisms it implements, and the overall aesthetic of the user to app connection 

have much to do with user satisfaction and the overall success of the app. Al-

though it can be argued that the creation of a user interface prototype is a design 

activity, it is a good idea to perform it during the creation of the analysis model. 

The sooner that a physical representation of a user interface can be reviewed, 

the higher the likelihood that end users will get what they want. The design of 

user interfaces is discussed in detail in Chapter 15. 

 Because Web and mobile app construction tools are plentiful, relatively in-

expensive, and functionally powerful, it is best to create the interface prototype 

using such tools. The prototype should implement the major navigational links 

and represent the overall screen layout in much the same way that it will be con-

structed. For example, if fi ve major system functions are to be provided to the 

end user, the prototype should represent them as the user will see them upon 

fi rst entering the app. Will graphical links be provided? Where will the naviga-

tion menu be displayed? What other information will the user see? Questions 

like these should be answered by the prototype. 

   11.5.6  Functional Model 

 Many WebApps deliver a broad array of computational and manipulative func-

tions that can be associated directly with content (either using it or producing it) 

and that are often a major goal of user-WebApp interaction. Mobile apps tend to 

be more focused and provide a more limited set of computational and manipu-

lative functions. Regardless of the breadth of functionality, functional require-

ments should be analyzed, and when necessary, modeled. 

 The  functional model  addresses two app processing elements, each repre-

senting a different level of procedural abstraction: (1) user-observable function-

ality that is delivered by the app to end users, and (2) the operations contained 

within analysis classes that implement behaviors associated with the class. 

 User-observable functionality encompasses any processing functions that are 

initiated directly by the user. For example, a fi nancial mobile app might imple-

ment a variety of fi nancial functions (e.g., computation of mortgage payment). 

These functions may actually be implemented using operations within analysis 

classes, but from the point of view of the end user, the function (more correctly, 

the data provided by the function) is the visible outcome. 

 At a lower level of procedural abstraction, the requirements model describes 

the processing to be performed by analysis class operations. These operations 

manipulate class attributes and are involved as classes collaborate with one an-

other to accomplish some required behavior. 

pre22126_ch11_202-223.indd   218pre22126_ch11_202-223.indd   218 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  219

 Regardless of the level of procedural abstraction, the UML activity diagram 

can be used to represent processing details. At the analysis level, activity dia-

grams should be used only where the functionality is relatively complex. Much 

of the complexity of WebApps and mobile apps occurs not in the functionality 

provided, but rather with the nature of the information that can be accessed and 

the ways in which this can be manipulated. 

 An example of relatively complex functionality for  www.safehomeassured
.com  is addressed by a use case entitled  Get recommendations for sensor layout 

for my space.  The user has already developed a layout for the space to be moni-

tored, and in this use case, selects that layout and requests recommended loca-

tions for sensors within the layout.  www.safehomeassured.com  responds with 

a graphical representation of the layout with additional information on the rec-

ommended locations for sensors. The interaction is quite simple, the content is 

somewhat more complex, but the underlying functionality it very sophisticated. 

The system must undertake a relatively complex analysis of the fl oor layout in 

order to determine the optimal set of sensors. It must examine room dimensions, 

the location of doors and windows, and coordinate these with sensor capabilities 

and specifi cations. No small task! A set of activity diagrams can be used to de-

scribe processing for this use case. 

 The second example is the use case  Control cameras.  In this use case, the in-

teraction is relatively simple, but there is the potential for complex functionality, 

given that this “simple” operation requires complex communication with devices 

located remotely and accessible across the Internet. A further possible compli-

cation relates to negotiation of control when multiple authorized people attempt 

to monitor and/or control a single sensor at the same time. 

  Figure 11.6  depicts an activity diagram for the  takeControlOfCamera()  oper-

ation that is part of the  Camera  analysis class used within the  Control cameras  

use case. It should be noted that two additional operations are invoked with the 

procedural fl ow:  requestCameraLock(),  which tries to lock the camera for this 

user, and  getCurrentCameraUser(),  which retrieves the name of the user who is 

currently controlling the camera. The construction details indicating how these 

operations are invoked and the interface details for each operation are not con-

sidered until WebApp design commences.  

 An extension of  SafeHome  WebApp functionality might occur with the devel-

opment of a mobile app that provides access to the  SafeHome  system from a 

smart phone or tablet. The content and functional requirements for a  SafeHome  

mobile app might be similar to a subset of those provided by the WebApp, but 

specifi c interface and security requirements would have to be established. 

   11.5.7  Confi guration Models for WebApps 

 In some cases, the confi guration model is nothing more than a list of server-side and 

client-side attributes. However, for more complex apps, a variety of confi guration 

pre22126_ch11_202-223.indd   219pre22126_ch11_202-223.indd   219 13/12/13   6:12 PM13/12/13   6:12 PM



220 PART TWO  MODELING

complexities (e.g., distributing load among multiple servers, caching architec-

tures, remote databases, multiple servers serving various objects) may have an 

impact on analysis and design. The UML  deployment diagram  can be used in situ-

ations in which complex confi guration architectures must be considered. 

 For  www.safehomeassured.com  the public content and functionality should 

be specifi ed to be accessible across all major Web clients (i.e., those with more 

than 1 percent market share or greater). Conversely, it may be acceptable to 

restrict the more complex control and monitoring functionality (which is only 

accessible to  HomeOwner    users) to a smaller set of clients. For a mobile app, 

implementation might be limited to the three leading mobile operating environ-

ments. The confi guration model for  www.safehomeassured.com    will also specify 

interoperability with existing product databases and monitoring applications. 

   11.5.8  Navigation Modeling 

 In most mobile applications that reside on smartphone platforms, navigation is 

generally constrained to relatively simple button lists and icon-based menus. In 

addition, the depth of navigation (i.e., the number of levels into the hypermedia 

hierarchy) is relatively shallow. For these reasons, navigation modeling is rela-

tively simple. 

 For WebApps and an increasing number of tablet-based mobile applications, nav-

igation modeling is more complex and often considers how each user category will 

navigate from one WebApp element (e.g., content object) to another. The mechanics 

getCurrentCamera
User()

Report Camera
in use and name
of current user

Lock available Lock unavailable

Camera not in use Camera in use

requestCameraLock()

Report Camera
now locked for

user

Report Camera
unavailable

  FIGURE 11.6

 Activity 
diagram 
for the 
 takeControlOf-
Camera()  
operation 

  

pre22126_ch11_202-223.indd   220pre22126_ch11_202-223.indd   220 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  221

of navigation are defi ned as part of design. At this stage, you should focus on overall 

navigation requirements. The following questions should be considered:

    •  Should certain elements be easier to reach (require fewer navigation 

steps) than others? What is the priority for presentation?  

   •  Should certain elements be emphasized to force users to navigate in their 

direction?  

   •  How should navigation errors be handled?  

   •  Should navigation to related groups of elements be given priority over 

navigation to a specifi c element?  

   •  Should navigation be accomplished via links, via search-based access, or 

by some other means?  

   •  Should certain elements be presented to users based on the context of 

previous navigation actions?  

   •  Should a navigation log be maintained for users?  

   •  Should a full navigation map or menu (as opposed to a single “back” link 

or directed pointer) be available at every point in a user’s interaction?  

   •  Should navigation design be driven by the most commonly expected 

user behaviors or by the perceived importance of the defi ned WebApp 

elements?  

   •  Can a user “store” his previous navigation through the WebApp to expe-

dite future usage?  

   •  For which user category should optimal navigation be designed?  

   •  How should links external to the WebApp be handled? Overlaying the 

existing browser window? As a new browser window? As a separate frame?    

 These and many other questions should be asked and answered as part of 

navigation analysis. 

 You and other stakeholders must also determine overall requirements for 

navigation. For example, will a “site map” be provided to give users an overview 

of the entire WebApp structure? Can a user take a “guided tour” that will high-

light the most important elements (content objects and functions) that are avail-

able? Will a user be able to access content objects or functions based on defi ned 

attributes of those elements (e.g., a user might want to access all photographs of 

a specifi c building or all functions that allow computation of weight)? 

        11.6 SUMMARY 

 Behavioral modeling during requirements analysis depicts dynamic behavior 

of the software. The behavioral model uses input from scenario-based or class-

based elements to represent the states of analysis classes and the system as a 

pre22126_ch11_202-223.indd   221pre22126_ch11_202-223.indd   221 13/12/13   6:12 PM13/12/13   6:12 PM



222 PART TWO  MODELING

whole. To accomplish this, states are identifi ed, the events that cause a class (or 

the system) to make a transition from one state to another are defi ned, and the 

actions that occur as transition is accomplished are also identifi ed. State dia-

grams and sequence diagrams are the notation used for behavioral modeling. 

 Analysis patterns enable a software engineer to use existing domain knowl-

edge to facilitate the creation of a requirements model. An analysis pattern 

describes a specifi c software feature or function that can be described by a co-

herent set of use cases. It specifi es the intent of the pattern, the motivation for 

its use, constraints that limit its use, its applicability in various problem domains, 

the overall structure of the pattern, its behavior and collaborations, and other 

supplementary information. 

 Requirements modeling for mobile applications and WebApps can use most, 

if not all, of the modeling elements discussed in this book. However, these ele-

ments are applied within a set of specialized models that address content, in-

teraction, function, navigation, and the confi guration in which the mobile app or 

WebApp resides. 

     PROBLEMS AND POINTS TO PONDER 
    11.1.  There are two different types of “states” that behavioral models can represent. What 
are they?  

   11.2.  How does a sequence diagram differ from a state diagram? How are they similar?  

   11.3.  Suggest three requirements patterns for a modern mobile phone and write a brief 
description of each. Could these patterns be used for other devices? Provide an example.  

   11.4.  Select one of the patterns you developed in Problem 11.3 and develop a reason-
ably complete pattern description similar in content and style to the one presented in 
Section 11.4.2.  

   11.5.  How much analysis modeling do you think would be required for  www.safehomeassured
.com ? Would each of the model types described in Section 11.5.3 be required?  

   11.6.  What is the purpose of the interaction model for a WebApp?  

   11.7.  It could be argued that a WebApp functional model should be delayed until design. 
Present pros and cons for this argument.  

   11.8.  What is the purpose of a confi guration model?  

   11.9.  How does the navigation model differ from the interaction model?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Behavioral modeling presents an important dynamic view of system behavior. Books by 
Samek ( Practical UML Statecharts in C/C++: Event Driven Programming for Embedded Sys-

tems,  CRC Press, 2008), Wagner and his colleagues ( Modeling Software with Finite State 

Machines: A Practical Approach,  Auerbach, 2006) and Boerger and Staerk ( Abstract State 

Machines,  Springer, 2003) present thorough discussions of state diagrams and other behav-
ioral representations. Gomes and Fernandez ( Behavioral Modeling for Embedded Systems 

pre22126_ch11_202-223.indd   222pre22126_ch11_202-223.indd   222 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 11  REQUIREMENTS MODELING: BEHAVIOR, PATTERNS, AND WEB/MOBILE APPS  223

and Technologies,  Information Science Reference, 2009) have edited an anthology that ad-
dresses behavioral modeling techniques for embedded systems. 

   The majority of books written about software patterns focus on software design. 
However, books by Vaughn ( Implementing Domain-Driven Design , Addison-Wesley, 2013), 
Whithall ( Software Requirement Patterns,  Microsoft Press, 2007), Evans ( Domain-Driven 

Design,  Addison-Wesley, 2003) and Fowler ([Fow03] and [Fow97]) address analysis patterns 
specifi cally. 

   An in-depth treatment of analysis modeling for WebApps is presented by Pressman and 
Lowe [Pre08]. Books by Rossi and his colleagues ( Web Engineering: Modeling and Implement-

ing Web Applications,  Springer, 2010) and Neil ( Mobile Design Pattern Gallery: UI Patterns,  
O’Reilly, 2012) discuss the use of patterns in app development. Papers contained within 
an anthology edited by Murugesan and Desphande  (Web Engineering: Managing Diversity 

and Complexity of Web Application Development,  Springer, 2001) treat various aspects of 
WebApp requirements. In addition, the annual  Proceeding of the International Conference 

on Web Engineering  regularly addresses requirements modeling issues. 
   A wide variety of information sources on requirements modeling are available on the 

Internet. An up-to-date list of World Wide Web references that are relevant to analysis mod-
eling can be found at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch11_202-223.indd   223pre22126_ch11_202-223.indd   223 13/12/13   6:12 PM13/12/13   6:12 PM



224

   Software design encompasses the set of principles, concepts, and prac-

tices that lead to the development of a high-quality system or product. 

Design principles establish an overriding philosophy that guides the de-

sign work you must perform. Design concepts must be understood before the 

mechanics of design practice are applied, and design practice itself leads to 

the creation of various representations of the software that serve as a guide 

for the construction activity that follows. 

 Design is pivotal to successful software engineering. In the early 1990s 

Mitch Kapor, the creator of Lotus 1-2-3, presented a “software design mani-

festo” in  Dr. Dobbs Journal.  He wrote:

  What is design? It’s where you stand with a foot in two worlds—the world of 

 technology and the world of people and human purposes—and you try to bring 

the two together . . . 

   K E Y 
C O N C E P T S 
    abstraction . . . . . . 232   
   architecture  . . . . . 232   
   aspects. . . . . . . . . 237   
   cohesion . . . . . . . . 236   
   data design. . . . . . 244   
   design process  . . . 228   
   functional 
independence  . . . . 236   
   good design  . . . . . 228   
   information hiding . 235   
   modularity  . . . . . . 234   
   object-oriented 
design  . . . . . . . . . 238   
   patterns . . . . . . . . 233   
   quality attributes  . . 230   

 DESIGN 
CONCEPTS 12 

    C H A P T E R

  Q U I C K 
L O O K 

  What is it?   Design is what almost 
every engineer wants to do. It is the 
place where creativity rules—where 
stakeholder requirements, business 

needs, and technical considerations all come 
together in the formulation of a product or sys-
tem. Design creates a representation or model 
of the software, but unlike the requirements 
model (that focuses on describing required 
data, function, and behavior), the design model 
provides detail about software architecture, 
data structures, interfaces, and components that 
are necessary to implement the system. 

   Who does it?   Software engineers conduct 
each of the design tasks. 

   Why is it important?   Design allows you to 
model the system or product that is to be built. 
This model can be assessed for quality and 
improved before code is generated, tests are 
conducted, and end users become involved in 
large numbers. Design is the place where soft-
ware quality is established. 

   What are the steps?   Design depicts the soft-
ware in a number of different ways. First, the 

architecture of the system or product must be 
represented. Then, the interfaces that connect 
the software to end users, to other systems and 
devices, and to its own constituent components 
are modeled. Finally, the software components 
that are used to construct the system are de-
signed. Each of these views represents a differ-
ent design action, but all must conform to a set 
of basic design concepts that guide software 
design work. 

   What is the work product?   A design model 
that encompasses architectural, interface, 
 component-level, and deployment representa-
tions is the primary work product that is pro-
duced during software design. 

   How do I ensure that I’ve done it 
right?   The design model is assessed by 
the software team in an effort to determine 
whether it contains errors, inconsistencies, or 
omissions; whether better alternatives exist; 
and whether the model can be implemented 
within the constraints, schedule, and cost that 
have been established. 

pre22126_ch12_224-251.indd   224pre22126_ch12_224-251.indd   224 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  225

   quality guidelines  . .228   
   refactoring  . . . . . . 238   
   separation of 
concerns . . . . . . . . 234   
   software design  . . 230   
   stepwise 
refi nement  . . . . . . 237     

 The Roman architecture critic Vitruvius advanced the notion that well- designed 

buildings were those which exhibited fi rmness, commodity, and delight. The same 

might be said of good software.  Firmness:  A program should not have any bugs that 

inhibit its function.  Commodity:  A program should be suitable for the purposes for 

which it was intended.  Delight:  The experience of using the program should be a 

pleasurable one. Here we have the beginnings of a theory of design for software.   

 The goal of design is to produce a model or representation that exhibits fi rmness, 

commodity, and delight. To accomplish this, you must practice diversifi cation and 

then convergence. Belady [Bel81] states that “diversifi cation is the acquisition of 

a repertoire of alternatives, the raw material of design: components, component 

solutions, and knowledge, all contained in catalogs, textbooks, and the mind.” 

Once this diverse set of information is assembled, you must pick and choose ele-

ments from the repertoire that meet the requirements defi ned by requirements 

engineering and the analysis model (Chapters 8 to 11). As this occurs, alterna-

tives are considered and rejected, and you converge on “one particular confi gu-

ration of components, and thus the creation of the fi nal product” [Bel81]. 

 Diversifi cation and convergence combine intuition and judgment based on 

experience in building similar entities, a set of principles and/or heuristics that 

guide the way in which the model evolves, a set of criteria that enables quality 

to be judged, and a process of iteration that ultimately leads to a fi nal design 

representation.  

 Software design changes continually as new methods, better analysis, and 

broader understanding evolve.  1   Even today, most software design methodologies 

lack the depth, fl exibility, and quantitative nature that are normally associated 

with more classical engineering design disciplines. However, methods for soft-

ware design do exist, criteria for design quality are available, and design nota-

tion can be applied. In this chapter, we explore the fundamental concepts and 

principles that are applicable to all software design, the elements of the design 

model, and the impact of patterns on the design process. In Chapters 12 to 18 

we’ll present a variety of software design methods as they are applied to archi-

tectural, interface, and component-level design as well as pattern-based and 

Web-oriented design approaches. 

      12.1 DES IGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING 

  Software design sits at the technical kernel of software engineering and is ap-

plied regardless of the software process model that is used. Beginning once soft-

ware requirements have been analyzed and modeled, software design is the last 

  uote: 

 “The most common 
miracle of software 
engineering is the 
transition from 
analysis to design 
and design to 
code.” 

 Richard Due’ 

  1  Those readers with further interest in the philosophy of software design might have interest in 

Philippe Kruchen’s intriguing discussion of “post-modern” design [Kru05]. 

pre22126_ch12_224-251.indd   225pre22126_ch12_224-251.indd   225 13/12/13   6:12 PM13/12/13   6:12 PM



226 PART TWO  MODELING

software engineering action within the modeling activity and sets the stage for 

 construction  (code generation and testing). 

 Each of the elements of the requirements model (Chapters 9–11) provides 

 information that is necessary to create the four design models required for 

a complete specifi cation of design. The fl ow of information during software 

 design is illustrated in  Figure 12.1 . The requirements model, manifested by 

 scenario-based, class-based, and behavioral elements, feed the design task. 

Using design notation and design methods discussed in later chapters, design 

produces a data/class design, an architectural design, an interface design, and 

a component design.  

  The data/class design transforms class models (Chapter 10) into design class 

realizations and the requisite data structures required to implement the soft-

ware. The objects and relationships defi ned in the CRC diagram and the detailed 

data content depicted by class attributes and other notation provide the basis for 

the data design activity. Part of class design may occur in conjunction with the 

design of software architecture. More detailed class design occurs as each soft-

ware component is designed. 

 The architectural design defi nes the relationship between major structural el-

ements of the software, the architectural styles and patterns (Chapter 13 that can 

be used to achieve the requirements defi ned for the system, and the constraints 

that affect the way in which architecture can be implemented [Sha96]. The archi-

tectural design representation—the framework of a computer-based system—is 

derived from the requirements model. 

   Software design should 
always begin with 
a consideration of 
data—the foundation 
for all other elements 
of the design. After 
the foundation is laid, 
the architecture must 
be derived. Only then 
should you perform 
other design tasks. 

Analysis Model

Use cases - text 
Use-case diagrams 
Activity diagrams 
Swimlane diagrams

Behavioral
elements

Class-based
elements

Scenerio-based
elements

Class diagrams 
Analysis packages 
CRC models 
Collaboration diagrams  

State diagrams 
Sequence diagrams

Data/Class Design

Interface Design

Architectural Design

Component-
Level Design

Design Model

  FIGURE 12.1  Translating the requirements model into the design model   

pre22126_ch12_224-251.indd   226pre22126_ch12_224-251.indd   226 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  227

 The interface design describes how the software communicates with systems 

that interoperate with it, and with humans who use it. An interface implies a fl ow 

of information (e.g., data and/or control) and a specifi c type of behavior. There-

fore, usage scenarios and behavioral models provide much of the information 

required for interface design.  

 The component-level design transforms structural elements of the software 

architecture into a procedural description of software components. Information 

obtained from the class-based models and behavioral models serve as the basis 

for component design. 

 During design you make decisions that will ultimately affect the success of 

software construction and, as important, the ease with which software can be 

maintained. But why is design so important? 

 The importance of software design can be stated with a single word—  quality . 

Design is the place where quality is fostered in software engineering. Design 

provides you with representations of software that can be assessed for quality. 

Design is the only way that you can accurately translate stakeholder’s require-

ments into a fi nished software product or system. Software design serves as the 

foundation for all the software engineering and software support activities that 

follow. Without design, you risk building an unstable system—one that will fail 

when small changes are made; one that may be diffi cult to test; one whose qual-

ity cannot be assessed until late in the software process, when time is short and 

many dollars have already been spent. 

  uote: 

 “There are 
two ways of 
constructing a 
software design. 
One way is to 
make it so simple 
that there are 
obviously no 
defi ciencies, and 
the other way 
is to make it 
so complicated 
that there are 
no obvious 
defi ciencies. The 
fi rst method is far 
more diffi cult.” 

 C. A. R. Hoare 

  Design versus Coding   Design versus Coding 

      The scene:  Jamie’s cubicle, as the 
team prepares to translate require-

ments into design.  

     The players:  Jamie, Vinod, and Ed—all members of 
the  SafeHome  software engineering team.  

     The conversation:   

     Jamie:  You know, Doug [the team manager] is ob-
sessed with design. I gotta be honest, what I really love 
doing is coding. Give me C++ or Java, and I’m happy.  

     Ed:  Nah . . . you like to design.  

     Jamie:  You’re not listening—coding is where it’s at.  

     Vinod:  I think what Ed means is you don’t really like 
coding; you like to design and express it in code. Code 
is the language you use to represent the design.  

     Jamie:  And what’s wrong with that?  

     Vinod:  Level of abstraction.  

     Jamie:  Huh?  

     Ed:  A programming language is good for representing 
details like data structures and algorithms, but it’s not 
so good for representing architecture or component-to- 
component collaboration . . . stuff like that.  

     Vinod:  And a screwed-up architecture can ruin even 
the best code.  

     Jamie (thinking for a minute):  So, you’re saying that 
I can’t represent architecture in code . . . that’s not true.  

     Vinod:  You can certainly imply architecture in code, 
but in most programming languages, it’s pretty diffi cult 
to get a quick, big-picture read on architecture by 
 examining the code.  

     Ed:  And that’s what we want before we begin coding.  

     Jamie:  Okay, maybe design and coding are different, 
but I still like coding better.    

 SAFEHOME 

pre22126_ch12_224-251.indd   227pre22126_ch12_224-251.indd   227 13/12/13   6:12 PM13/12/13   6:12 PM



228 PART TWO  MODELING

      12.2 THE   DES IGN PROCESS   

  Software design is an iterative process through which requirements are trans-

lated into a “blueprint” for constructing the software. Initially, the blueprint de-

picts a holistic view of software. That is, the design is represented at a high level 

of abstraction—a level that can be directly traced to the specifi c system objective 

and more detailed data, functional, and behavioral requirements. As design it-

erations occur, subsequent refi nement leads to design representations at much 

lower levels of abstraction. These can still be traced to requirements, but the 

connection is more subtle. 

  12.2.1 Software Quality Guidelines and Attributes  

 Throughout the design process, the quality of the evolving design is assessed 

with a series of technical reviews discussed in Chapter 20. McGlaughlin [McG91] 

suggests three characteristics that serve as a guide for the evaluation of a   good 

design  :

    •  The design should implement all of the explicit requirements contained 

in the requirements model, and it must accommodate all of the implicit 

requirements desired by stakeholders.  

   •  The design should be a readable, understandable guide for those who 

generate code and for those who test and subsequently support the 

software.  

   •  The design should provide a complete picture of the software, addressing 

the data, functional, and behavioral domains from an implementation 

perspective.    

 Each of these characteristics is actually a goal of the design process. But how is 

each of these goals achieved? 

    Quality Guidelines  .   In order to evaluate the quality of a design representa-

tion, you and other members of the software team must establish technical 

criteria for good design. In Section 12.3, we discuss design concepts that also 

serve as software quality criteria. For the time being, consider the following 

guidelines: 

       1.  A design should exhibit an architecture that (1) has been created using 

recognizable architectural styles or patterns, (2) is composed of compo-

nents that exhibit good design characteristics (these are discussed later in 

this chapter), and (3) can be implemented in an evolutionary fashion,  2   

thereby facilitating implementation and testing.   

 What 
are the 

characteristics of 
a good design? 

?

  uote: 

 “[W]riting a clever 
piece of code 
that works is one 
thing; designing 
something that can 
support a long-
lasting business is 
quite another.” 

 C. Ferguson 

      2  For smaller systems, design can sometimes be developed linearly. 

pre22126_ch12_224-251.indd   228pre22126_ch12_224-251.indd   228 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
矩形

jjc20
高亮

jjc20
高亮

jjc20
高亮

jjc20
高亮

jjc20
高亮



CHAPTER 12  DESIGN CONCEPTS  229

    2.  A design should be modular; that is, the software should be logically parti-

tioned into elements or subsystems.  

     3.  A design should contain distinct representations of data, architecture, in-

terfaces, and components.  

    4.  A design should lead to data structures that are appropriate for the 

classes to be implemented and are drawn from recognizable data 

patterns.  

    5.  A design should lead to components that exhibit independent functional 

characteristics.  

    6.  A design should lead to interfaces that reduce the complexity of connec-

tions between components and with the external environment.  

    7.  A design should be derived using a repeatable method that is driven by 

information obtained during software requirements analysis.  

    8.  A design should be represented using a notation that effectively commu-

nicates its meaning.    

 These design guidelines are not achieved by chance. They are achieved through 

the application of fundamental design principles, systematic methodology, and 

thorough review.   

  uote: 

 “Design is not just 
what it looks like 
and feels like. 
Design is how it 
works.” 

 Steve Jobs 

  Assessing Design Quality—The Technical Review 

 Design is important because it allows a soft-
ware team to assess the quality  3   of the soft-

ware before it is implemented—at a time when errors, 
omissions, or inconsistencies are easy and inexpensive 
to correct. But how do we assess quality during design? 
The software can’t be tested, because there is no execut-
able software to test. What to do?  

 During design, quality is assessed by conducting a 
series of technical reviews (TRs). TRs are discussed in de-
tail in Chapter 20,  4   but it’s worth providing a summary 
of the technique at this point. A technical review is a 
meeting conducted by members of the software team. 
Usually two, three, or four people participate depending 
on the scope of the design information to be reviewed. 
Each person plays a role: the  review leader  plans the 

meeting, sets an agenda, and runs the  meeting; the 
 recorder  takes notes so that nothing is missed; the 
  producer  is the person whose work product (e.g., the 
design of a software component) is being reviewed. 
Prior to the meeting, each person on the review team is 
given a copy of the design work product and is asked 
to read it, looking for errors, omissions, or ambiguity. 
When the meeting commences, the intent is to note all 
problems with the work product so that they can be 
corrected before implementation begins. The TR  typically 
lasts between 60 to 90 minutes. At the conclusion of the 
TR, the review team determines whether further actions 
are required on the part of the producer before the 
 design work product can be approved as part of the 
fi nal  design model.   

 INFO 

  3  The quality factors discussed in Chapter 30 can assist the review team as it assesses quality.  

  4  You might consider looking ahead to Chapter 20 at this time. Technical reviews are a critical 

part of the design process and are an importance mechanism for achieving design quality. 

pre22126_ch12_224-251.indd   229pre22126_ch12_224-251.indd   229 13/12/13   6:12 PM13/12/13   6:12 PM



230 PART TWO  MODELING

     Quality Attributes  .   Hewlett-Packard [Gra87] developed a set of software quality 

attributes that has been given the acronym FURPS—functionality, usability, reli-

ability, performance, and supportability. The FURPS quality attributes represent 

a target for all software design:

    •   Functionality  is assessed by evaluating the feature set and capabilities of 

the program, the generality of the functions that are delivered, and the 

security of the overall system.  

   •   Usability  is assessed by considering human factors (Chapters 6 and 15), 

overall aesthetics, consistency, and documentation.  

   •   Reliability  is evaluated by measuring the frequency and severity of failure, 

the accuracy of output results, the mean-time-to-failure (MTTF), the ability 

to recover from failure, and the predictability of the program.  

   •   Performance  is measured using processing speed, response time, re-

source consumption, throughput, and effi ciency.  

   •   Supportability  combines extensibility, adaptability, and serviceability. 

These three attributes represent a more common term,   maintainability —

and in addition, testability, compatibility, confi gurability (the ability to 

organize and control elements of the software confi guration, Chapter 29), 

the ease with which a system can be installed, and the ease with which 

problems can be localized.    

  Not every software quality attribute is weighted equally as the software design is 

developed. One application may stress functionality with a special emphasis on 

security. Another may demand performance with particular emphasis on pro-

cessing speed. A third might focus on reliability. Regardless of the weighting, it 

is important to note that these quality attributes must be considered as design 

commences,  not  after the design is complete and construction has begun. 

    12.2.2 The Evolution of   Software Design    

 The evolution of software design is a continuing process that has now spanned 

more than six decades. Early design work concentrated on criteria for the de-

velopment of modular programs [Den73] and methods for refi ning software 

structures in a top-down “structured” manner ([Wir71], [Dah72], [Mil72]). Newer 

design approaches (e.g., [Jac92], [Gam95]) proposed an object-oriented approach 

to design derivation. More recent emphasis in software design has been on soft-

ware architecture [Kru06] and the design patterns that can be used to imple-

ment software architectures and lower levels of design abstractions (e.g., [Hol06], 

[Sha05]). Growing emphasis on aspect-oriented methods (e.g., [Cla05], [Jac04]), 

model-driven development [Sch06], and test-driven development [Ast04] empha-

size techniques for achieving more effective modularity and architectural struc-

ture in the designs that are created. 

   Software designers 
tend to focus on the 
problem to be solved. 
Just don’t forget that 
the FURPS attributes 
are always part of the 
problem. They must be 
considered. 

  uote: 

 “A designer 
knows that he has 
achieved perfection 
not when there is 
nothing left to add, 
but when there is 
nothing left to take 
away.” 

 Antoine de 
St-Expurey 

  uote: 

 “Quality isn’t 
something you 
lay on top of 
subjects and objects 
like tinsel on a 
Christmas tree.” 

 Robert Pirsig 

pre22126_ch12_224-251.indd   230pre22126_ch12_224-251.indd   230 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  231

  A number of design methods, growing out of the work just noted, are being 

applied throughout the industry. Like the analysis methods presented in 

 Chapters 9 to 11, each software design method introduces unique heuristics 

and notation, as well as a somewhat parochial view of what characterizes de-

sign quality. Yet, all of these methods have a number of common characteristics: 

(1) a mechanism for the translation of the requirements model into a design 

representation, (2) a notation for representing functional components and their 

interfaces, (3) heuristics for refi nement and partitioning, and (4) guidelines for 

quality assessment. 

 Regardless of the design method that is used, you should apply a set of basic 

concepts to data, architectural, interface, and component-level design. These 

concepts are considered in the sections that follow. 

 What 
characteristics 

are common to all 
design methods? 

?

       12.3 DES IGN CONCEPTS 

  A set of fundamental software design concepts has evolved over the history of 

software engineering. Although the degree of interest in these concepts has var-

ied over the years, each has stood the test of time. Each provides the software 

designer with a foundation from which more sophisticated design methods can 

be applied. Each helps you defi ne criteria that can be used to partition software 

  Generic Task Set for Design 

     1.  Examine the information domain 
model and design appropriate data 
structures for data objects and their 

attributes.  
    2.  Using the analysis model, select an architectural 

style (pattern) that is appropriate for the software.  
    3.  Partition the analysis model into design subsystems 

and allocate these subsystems within the architecture: 
    Be certain that each subsystem is functionally 

cohesive.  
   Design subsystem interfaces.  
   Allocate analysis classes or functions to each 

subsystem.    
    4.  Create a set of design classes or components: 

    Translate analysis class description into a design 
class.  

   Check each design class against design criteria; 
consider inheritance issues.  

   Defi ne methods and messages associated with 
each design class.  

   Evaluate and select design patterns for a design 
class or a subsystem.  

   Review design classes and revise as required.    
    5.  Design any interface required with external systems 

or devices.  
    6.  Design the user interface: 

    Review results of task analysis.  
   Specify action sequence based on user scenarios.  
   Create behavioral model of the interface.  
   Defi ne interface objects, control mechanisms.  
   Review the interface design and revise as 

required.    
    7.  Conduct component-level design. 

    Specify all algorithms at a relatively low level of 
abstraction.  

   Refi ne the interface of each component.  
   Defi ne component-level data structures.  

     Review each component and correct all errors 
uncovered.    

    8.  Develop a deployment model.    

 TASK SET  

pre22126_ch12_224-251.indd   231pre22126_ch12_224-251.indd   231 13/12/13   6:12 PM13/12/13   6:12 PM



232 PART TWO  MODELING

into individual components, separate or data structure detail from a conceptual 

representation of the software, and establish uniform criteria that defi ne the 

technical quality of a software design. 

 M. A. Jackson [Jac75] once said: “The beginning of wisdom for a [software en-

gineer] is to recognize the difference between getting a program to work, and 

getting it right.” In the sections that follow, we present an overview of fundamen-

tal software design concepts that provide the necessary framework for “getting 

it right.” 

    12.3.1 Abstraction    

 When you consider a modular solution to any problem, many levels of abstrac-

tion can be posed. At the highest level of abstraction, a solution is stated in broad 

terms using the language of the problem environment. At lower levels of abstrac-

tion, a more detailed description of the solution is provided. Problem-oriented 

terminology is coupled with implementation-oriented terminology in an effort to 

state a solution. Finally, at the lowest level of abstraction, the solution is stated in 

a manner that can be directly implemented. 

  As different levels of abstraction are developed, you work to create both pro-

cedural and data abstractions. A  procedural abstraction  refers to a sequence of 

instructions that have a specifi c and limited function. The name of a procedural 

abstraction implies these functions, but specifi c details are suppressed. An ex-

ample of a procedural abstraction would be the word  open  for a door.  Open  im-

plies a long sequence of procedural steps (e.g., walk to the door, reach out and 

grasp knob, turn knob and pull door, step away from moving door, etc.).  5    

 A  data abstraction  is a named collection of data that describes a data object. 

In the context of the procedural abstraction  open,  we can defi ne a data abstrac-

tion called  door.  Like any data object, the data abstraction for  door  would encom-

pass a set of attributes that describe the door (e.g., door type, swing direction, 

opening mechanism, weight, dimensions). It follows that the procedural abstrac-

tion  open  would make use of information contained in the attributes of the data 

abstraction  door . 

     12.3.2 Architecture   

   Software architecture  alludes to “the overall structure of the software and the 

ways in which that structure provides conceptual integrity for a system” [Sha95a]. 

In its simplest form, architecture is the structure or organization of program 

components (modules), the manner in which these components interact, and the 

   As a designer, work 
hard to derive both 
procedural and data 
abstractions that serve 
the problem at hand. 
If they can serve 
an entire domain of 
problems, that’s even 
better. 

 WebRef 
 An in-depth discussion 
of software architecture 
can be found at 
  www.sei.cmu.
edu/ata/ata_init.
html  . 

  uote: 

 “Abstraction is one 
of the fundamental 
ways that we as 
humans cope with 
complexity.” 

 Grady Booch 

  5  It should be noted, however, that one set of operations can be replaced with another, as long as 

the function implied by the procedural abstraction remains the same. Therefore, the steps re-

quired to implement  open  would change dramatically if the door were automatic and attached 

to a sensor. 

pre22126_ch12_224-251.indd   232pre22126_ch12_224-251.indd   232 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮
“软件的整体结构以及该结构为系统提供概念完整性的方式”



CHAPTER 12  DESIGN CONCEPTS  233

structure of data that are used by the components. In a broader sense, however, 

components can be generalized to represent major system elements and their 

interactions. 

 One goal of software design is to derive an architectural rendering of a sys-

tem. This rendering serves as a framework from which more detailed design 

activities are conducted. A set of architectural patterns enables a software engi-

neer to reuse design-level concepts.  

 Shaw and Garlan [Sha95a] describe a set of properties that should be specifi ed 

as part of an architectural design.  Structural properties  defi ne “the components 

of a system (e.g., modules, objects, fi lters) and the manner in which those compo-

nents are packaged and interact with one another.”  Extra-functional properties  

address  “ how the design architecture achieves requirements for performance, 

capacity, reliability, security, adaptability, and other system characteristics.  Fam-

ilies of related systems   “ draw upon repeatable patterns that are commonly en-

countered in the design of families of similar systems.” 

 Given the specifi cation of these properties, the architectural design can be 

represented using one or more of a number of different models [Gar95].  Struc-

tural models  represent architecture as an organized collection of program 

components.  Framework models  increase the level of design abstraction by 

 attempting to identify repeatable architectural design frameworks (patterns) 

that are encountered in similar types of applications.  Dynamic models  address 

the behavioral aspects of the program architecture, indicating how the struc-

ture or system confi guration may change as a function of external events.  Process 

 models  focus on the design of the business or technical process that the system 

must accommodate. Finally,  functional models  can be used to represent the func-

tional hierarchy of a system. 

 A number of different  architectural description languages  (ADLs) have been 

developed to represent these models [Sha95b]. Although many different ADLs 

have been proposed, the majority provide mechanisms for describing system 

components and the manner in which they are connected to one another. 

 You should note that there is some debate about the role of architecture in 

design. Some researchers argue that the derivation of software architecture 

should be separated from design and occurs between requirements engineering 

actions and more conventional design actions. Others believe that the derivation 

of architecture is an integral part of the design process. The manner in which 

software architecture is characterized and its role in design are discussed in 

Chapter 13.  

     12.3.3 Patterns   

 Brad Appleton defi nes a  design pattern  in the following manner: “A pattern is 

a named nugget of insight which conveys the essence of a proven solution to a 

recurring problem within a certain context amidst competing concerns” [App00]. 

  uote: 

 “A software 
architecture is the 
development work 
product that gives 
the highest return 
on investment with 
respect to quality, 
schedule, and 
cost.” 

 Len Bass et al. 

  uote: 

 “Each pattern 
describes a 
problem which 
occurs over and 
over again in our 
environment, and 
then describes the 
core of the solution 
to that problem, 
in such a way that 
you can use this 
solution a million 
times over, without 
ever doing it the 
same way twice.” 

 Christopher 
Alexander 

pre22126_ch12_224-251.indd   233pre22126_ch12_224-251.indd   233 13/12/13   6:12 PM13/12/13   6:12 PM



234 PART TWO  MODELING

Stated in another way, a design pattern describes a design structure that solves 

a particular design problem within a specifi c context and amid “forces” that may 

have an impact on the manner in which the pattern is applied and used. 

 The intent of each design pattern is to provide a description that enables a 

designer to determine (1) whether the pattern is applicable to the current work, 

(2) whether the pattern can be reused (hence, saving design time), and (3) whether 

the pattern can serve as a guide for developing a similar, but functionally or struc-

turally different pattern. Design patterns are discussed in detail in Chapter 16. 

     12.3.4 Separation of Concerns   

  Separation of concerns  is a design concept [Dij82] that suggests that any complex 

problem can be more easily handled if it is subdivided into pieces that can each 

be solved and/or optimized independently. A  concern  is a feature or behavior 

that is specifi ed as part of the requirements model for the software. By separat-

ing concerns into smaller, and therefore more manageable pieces, a problem 

takes less effort and time to solve. 

 It follows that the perceived complexity of two problems when they are com-

bined is often greater than the sum of the perceived complexity when each is 

taken separately. This leads to a divide-and-conquer strategy—it’s easier to solve 

a complex problem when you break it into manageable pieces. This has import-

ant implications with regard to software modularity. 

 Separation of concerns is manifested in other related design concepts: modu-

larity, aspects, functional independence, and refi nement. Each will be discussed 

in the subsections that follow. 

     12.3.5 Modularity   

  Modularity  is the most common manifestation of separation of concerns. Soft-

ware is divided into separately named and addressable components, sometimes 

called  modules,  that are integrated to satisfy problem requirements. 

 It has been stated that “modularity is the single attribute of software that al-

lows a program to be intellectually manageable” [Mye78]. Monolithic software 

(i.e., a large program composed of a single module) cannot be easily grasped by 

a software engineer. The number of control paths, span of reference, number 

of variables, and overall complexity would make understanding close to impos-

sible. In almost all instances, you should break the design into many modules, 

hoping to make understanding easier and, as a consequence, reduce the cost 

required to build the software.  

 Recalling our discussion of separation of concerns, it is possible to conclude 

that if you subdivide software indefi nitely the effort required to develop it will 

become negligibly small! Unfortunately, other forces come into play, causing 

this conclusion to be (sadly) invalid. Referring to  Figure 12.2 , the effort (cost) to 

develop an individual software module does decrease as the total number of 

pre22126_ch12_224-251.indd   234pre22126_ch12_224-251.indd   234 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  235

modules increases. Given the same set of requirements, more modules means 

smaller individual size. However, as the number of modules grows, the effort 

(cost) associated with integrating the modules also grows. These characteristics 

lead to a total cost or effort curve shown in the fi gure. There is a number,  M,  of 

modules that would result in minimum development cost, but we do not have the 

necessary sophistication to predict  M  with assurance. 

  The curves shown in  Figure 12.2  do provide useful qualitative guidance when 

modularity is considered. You should modularize, but care should be taken to 

stay in the vicinity of  M.  Undermodularity or overmodularity should be avoided. 

But how do you know the vicinity of  M ? How modular should you make software? 

The answers to these questions require an understanding of other design con-

cepts considered later in this chapter. 

 You modularize a design (and the resulting program) so that development 

can be more easily planned; software increments can be defi ned and delivered; 

changes can be more easily accommodated; testing and debugging can be con-

ducted more effi ciently, and long-term maintenance can be conducted without 

serious side effects. 

     12.3.6 Information Hiding   

 The concept of modularity leads you to a fundamental question: “How do I 

 decompose a software solution to obtain the best set of modules?” The principle 

of  information hiding  [Par72] suggests that modules be “characterized by  design 

decisions that (each) hides from all others.” In other words, modules should 

be specifi ed and designed so that information (algorithms and data) contained 

within a module is inaccessible to other modules that have no need for such 

information. 

  Hiding implies that effective modularity can be achieved by defi ning a set 

of independent modules that communicate with one another only that infor-

mation necessary to achieve software function. Abstraction helps to defi ne the 

 What is the 
right number 

of modules for a 
given system? 

?

   The intent of infor-
mation hiding is to 
hide the details of 
data structures and 
procedural processing 
behind a module 
interface. Knowledge 
of the details need not 
be known by users of 
the module. 

M

Region of minimum
cost

Number of modules
C

os
t o

r e
ffo

rt

Cost/module

Cost to integrate

Total software cost

  FIGURE 12.2

 Modularity 
and software 
cost   

pre22126_ch12_224-251.indd   235pre22126_ch12_224-251.indd   235 13/12/13   6:12 PM13/12/13   6:12 PM



236 PART TWO  MODELING

procedural (or informational) entities that make up the software. Hiding defi nes 

and enforces access constraints to both procedural detail within a module and 

any local data structure used by the module [Ros75]. 

 The use of information hiding as a design criterion for modular systems pro-

vides the greatest benefi ts when modifi cations are required during testing and 

later during software maintenance. Because most data and procedural detail are 

hidden from other parts of the software, inadvertent errors introduced during 

modifi cation are less likely to propagate to other locations within the software. 

     12.3.7 Functional Independence   

 The concept of functional independence is a direct outgrowth of separation of 

concerns, modularity, and the concepts of abstraction and information hiding. 

In landmark papers on software design Wirth [Wir71] and Parnas [Par72] allude 

to refi nement techniques that enhance module independence. Later work by 

 Stevens, Myers, and Constantine [Ste74] solidifi ed the concept. 

  Functional independence is achieved by developing modules with “ single- 

minded” function and an “aversion” to excessive interaction with other modules. 

Stated another way, you should design software so that each module addresses a 

specifi c subset of requirements and has a simple interface when viewed from 

other parts of the program structure. 

  It is fair to ask why independence is important. Software with effective mod-

ularity, that is, independent modules, is easier to develop because function can 

be compartmentalized and interfaces are simplifi ed (consider the ramifi cations 

when development is conducted by a team). Independent modules are easier to 

maintain (and test) because secondary effects caused by design or code modifi -

cation are limited, error propagation is reduced, and reusable modules are pos-

sible. To summarize, functional independence is a key to good design, and design 

is the key to software quality. 

 Independence is assessed using two qualitative criteria: cohesion and cou-

pling.  Cohesion  is an indication of the relative functional strength of a module. 

 Coupling  is an indication of the relative interdependence among modules. 

    Cohesion   is a natural extension of the information-hiding concept described 

in Section 12.3.6. A cohesive module performs a single task, requiring little inter-

action with other components in other parts of a program. Stated simply, a cohe-

sive module should (ideally) do just one thing. Although you should always strive 

for high cohesion (i.e., single-mindedness), it is often necessary and advisable 

to have a software component perform multiple functions. However, “schizo-

phrenic” components (modules that perform many unrelated functions) are to 

be avoided if a good design is to be achieved. 

 Coupling is an indication of interconnection among modules in a software 

structure. Coupling depends on the interface complexity between modules, the 

point at which entry or reference is made to a module, and what data pass across 

 Why 
should you 

strive to create 
independent 
modules? 

?

   Cohesion is a qualita-
tive indication of the 
degree to which a 
module focuses on just 
one thing. 

   Coupling is a qualita-
tive indication of the 
degree to which a 
module is connected to 
other modules and to 
the outside world. 

pre22126_ch12_224-251.indd   236pre22126_ch12_224-251.indd   236 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮

jjc20
高亮

jjc20
高亮
内聚是一个模块的相对功能强度的指示。

耦合是模块之间相对相互依赖的一个标志。



CHAPTER 12  DESIGN CONCEPTS  237

the interface. In software design, you should strive for the lowest possible cou-

pling. Simple connectivity among modules results in software that is easier to 

understand and less prone to a “ripple effect” [Ste74], caused when errors occur 

at one location and propagate throughout a system. 

    12.3.8 Refi nement 

    Stepwise refi nement    is a top-down design strategy originally proposed by Niklaus 

Wirth [Wir71]. An application is developed by successively refi ning levels of 

 procedural detail. A hierarchy is developed by decomposing a macroscopic 

statement of function (a procedural abstraction) in a stepwise fashion until pro-

gramming language statements are reached. 

 Refi nement is actually a process of  elaboration.  You begin with a statement 

of function (or description of information) that is defi ned at a high level of ab-

straction. That is, the statement describes function or information conceptually 

but provides no indication of the internal workings of the function or the inter-

nal structure of the information. You then elaborate on the original statement, 

providing more and more detail as each successive refi nement (elaboration) 

occurs. 

 Abstraction and refi nement are complementary concepts. Abstraction en-

ables you to specify procedure and data internally but suppress the need for 

“outsiders” to have knowledge of low-level details. Refi nement helps you to re-

veal low-level details as design progresses. Both concepts allow you to create a 

complete design model as the design evolves. 

     12.3.9 Aspects    

 As requirements analysis occurs, a set of “concerns” is uncovered. These con-

cerns “include requirements, use cases, features, data structures, quality-

of- service issues, variants, intellectual property boundaries, collaborations, 

patterns and contracts” [AOS07]. Ideally, a requirements model can be organized 

in a way that allows you to isolate each concern (requirement) so that it can be 

considered independently. In practice, however, some of these concerns span 

the entire  system and cannot be easily compartmentalized. 

 As design begins, requirements are refi ned into a modular design representa-

tion. Consider two requirements,  A  and  B.  Requirement  A crosscuts  requirement 

 B  “if a software decomposition [refi nement] has been chosen in which  B  cannot 

be satisfi ed without taking  A  into account” [Ros04]. 

  For example, consider two requirements for the  www.safehomeassured.com  

 WebApp. Requirement  A  is described via the ACS-DCV use case discussed in 

Chapter 9. A design refi nement would focus on those modules that would enable 

a registered user to access video from cameras placed throughout a space. Re-

quirement  B  is a generic security requirement that states that  a registered user 

must be validated prior to using   www.safehomeassured.com.  This requirement 

   There is a tendency 
to move immediately 
to full detail, skipping 
refi nement steps. This 
leads to errors and 
omissions and makes 
the design much more 
diffi cult to review. 
Perform stepwise 
refi nement. 

   A crosscutting concern 
is some characteristic 
of the system that 
applies across many 
different requirements. 

  uote: 

 “It’s hard to read 
through a book 
on the principles 
of magic without 
glancing at the 
cover periodically 
to make sure it 
isn’t a book on 
software design.” 

 Bruce Tognazzini 

pre22126_ch12_224-251.indd   237pre22126_ch12_224-251.indd   237 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮
需求A横切需求B"如果选择了软件分解细化，B在不考虑需求A的情况下不能满足"



238 PART TWO  MODELING

is applicable for all functions that are available to registered  SafeHome  users. As 

design refi nement occurs,  A*  is a design representation for requirement  A  and 

 B*  is a design representation for requirement  B . Therefore,  A*  and  B*  are repre-

sentations of concerns, and  B* crosscuts A* . 

 An  aspect  is a representation of a crosscutting concern. Therefore, the design 

representation,  B* , of the requirement  a registered user must be validated prior 

to using   www.safehomeassured.com,  is an aspect of the  SafeHome  WebApp. It 

is important to identify aspects so that the design can properly accommodate 

them as refi nement and modularization occur. In an ideal context, an aspect is 

implemented as a separate module (component) rather than as software frag-

ments that are “scattered” or “tangled” throughout many components [Ban06a]. 

To accomplish this, the design architecture should support a mechanism for de-

fi ning an aspect—a module that enables the concern to be implemented across 

all other concerns that it crosscuts. 

      12.3.10 Refactoring   

 An important design activity suggested for many agile methods (Chapter 5),  re-

factoring  is a reorganization technique that simplifi es the design (or code) of a 

component without changing its function or behavior. Fowler [Fow00] defi nes re-

factoring in the following manner: “Refactoring is the process of changing a soft-

ware system in such a way that it does not alter the external behavior of the code 

[design] yet improves its internal structure.” 

  When software is refactored, the existing design is examined for redundancy, 

unused design elements, ineffi cient or unnecessary algorithms, poorly con-

structed or inappropriate data structures, or any other design failure that can 

be corrected to yield a better design. For example, a fi rst design iteration might 

yield a component that exhibits low cohesion (i.e., it performs three functions 

that have only limited relationship to one another). After careful consideration, 

you may decide that the component should be refactored into three separate 

components, each exhibiting high cohesion. The result will be software that is 

easier to integrate, easier to test, and easier to maintain. 

 Although the intent of refactoring is to modify the code in a manner that does 

not alter its external behavior, inadvertent side effects can and do occur. As a 

consequence, refactoring tools [Soa10] are used to analyze changes automati-

cally and to “generate a test suite suitable for detecting behavioral changes.” 

      12.3.11 Object-Oriented Design Concepts   

 The object-oriented (OO) paradigm is widely used in modern software engineer-

ing. Appendix 2 has been provided for those readers who may be unfamiliar with 

OO design concepts such as classes and objects, inheritance, messages, and 

polymorphism, among others. 

 WebRef 
 Excellent resources 
for refactoring can 
be found at   www 
. refactoring.com.   

 WebRef 
 A variety of refactoring 
patterns can be found 
at   http://c2.com/
cgi/wiki?
Refactoring
Patterns.   

pre22126_ch12_224-251.indd   238pre22126_ch12_224-251.indd   238 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮
当软件被重构时，现有的设计将被检查为冗余、未使用的设计元素、低效或不必要的算法、构造不佳或不适当的数据结构，或者任何其他的设计失败，这些都可以被纠正，从而产生更好的设计。



CHAPTER 12  DESIGN CONCEPTS  239

   12.3.12 Design Classes 

 The analysis model defi nes a set of analysis classes (Chapter 10). Each of these 

classes describes some element of the problem domain, focusing on aspects of 

the problem that are user visible. The level of abstraction of an analysis class is 

relatively high. 

  As the design model evolves, you will defi ne a set of  design classes  that re-

fi ne the analysis classes by providing design detail that will enable the classes 

to be implemented, and implement a software infrastructure that supports the 

business solution. Five different types of design classes, each representing a dif-

ferent layer of the design architecture, can be developed [Amb01].  User interface 

classes  defi ne all abstractions that are necessary for human-computer interac-

tion (HCI) and often implement the HCI in the context of a metaphor.  Business 

domain classes  identify the attributes and services (methods) that are required 

to implement some element of the business domain that was defi ned by one or 

 What types 
of classes 

does the designer 
create? 

?

  Design Concepts   Design Concepts 

      The scene:  Vinod’s cubicle, as 
 design modeling begins.  

     The players:  Vinod, Jamie, and Ed—members of the 
 SafeHome  software engineering team. Also, Shakira, a 
new member of the team.  

     The conversation:   

     [All four team members have just returned from a morn-
ing seminar entitled “Applying Basic Design Concepts,” 
offered by a local computer science professor.]  

     Vinod:  Did you get anything out of the seminar?  

     Ed:  Knew most of the stuff, but it’s not a bad idea to 
hear it again, I suppose.  

     Jamie:  When I was an undergrad CS major, I never 
really understood why information hiding was as im-
portant as they say it is.  

     Vinod:  Because . . . bottom line . . . it’s a technique for 
reducing error propagation in a program. Actually, func-
tional independence also accomplishes the same thing.  

     Shakira:  I wasn’t a CS grad, so a lot of the stuff the 
instructor mentioned is new to me. I can generate good 
code and fast. I don’t see why this stuff is so important.  

     Jamie:  I’ve seen your work, Shak, and you know 
what, you do a lot of this stuff naturally . . . that’s why 
your designs and code work.  

     Shakira (smiling):  Well, I always do try to partition 
the code, keep it focused on one thing, keep interfaces 
simple and constrained, reuse code whenever I can . . . 
that sort of thing.  

     Ed:  Modularity, functional independence, hiding, 
 patterns . . . see.  

     Jamie:  I still remember the very fi rst programming 
course I took . . . they taught us to refi ne the code 
iteratively.  

     Vinod:  Same thing can be applied to design, you 
know.  

     Jamie:  The only concepts I hadn’t heard of before 
were “aspects” and “refactoring.”  

     Shakira:  That’s used in Extreme Programming, I think 
she said.  

     Ed:  Yep. It’s not a whole lot different than refi nement, 
only you do it after the design or code is completed. 
Kind of an optimization pass through the software, if 
you ask me.  

     Jamie:  Let’s get back to  SafeHome  design. I think we 
should put these concepts on our review checklist as we 
develop the design model for  SafeHome .  

     Vinod:  I agree. But as important, let’s all commit to 
think about them as we develop the design.    

 SAFEHOME 

pre22126_ch12_224-251.indd   239pre22126_ch12_224-251.indd   239 13/12/13   6:12 PM13/12/13   6:12 PM



240 PART TWO  MODELING

more analysis classes.  Process classes  implement lower-level business abstrac-

tions required to fully manage the business domain classes.  Persistent classes  

represent data stores (e.g., a database) that will persist beyond the execution of 

the software.  System classes  implement software management and control func-

tions that enable the system to operate and communicate within its computing 

environment and with the outside world. 

 As the architecture forms, the level of abstraction is reduced as each analysis 

class (Chapter 10) is transformed into a design representation. That is, analysis 

classes represent data objects (and associated services that are applied to them) 

using the jargon of the business domain. Design classes present signifi cantly 

more technical detail as a guide for implementation. 

 Arlow and Neustadt [Arl02] suggest that each design class be reviewed to en-

sure that it is “well-formed.” They defi ne four characteristics of a well-formed 

design class: 

       Complete and suffi cient.  A design class should be the complete encapsu-

lation of all attributes and methods that can reasonably be expected 

(based on a knowledgeable interpretation of the class name) to exist for 

the class. For example, the class  Scene  defi ned for video-editing software 

is complete only if it contains all attributes and methods that can reason-

ably be associated with the creation of a video scene. Suffi ciency ensures 

that the design class contains only those methods that are suffi cient to 

achieve the intent of the class, no more and no less.  

     Primitiveness.  Methods associated with a design class should be focused 

on accomplishing one service for the class. Once the service has been 

implemented with a method, the class should not provide another way to 

accomplish the same thing. For example, the class  VideoClip  for video- 

editing software might have attributes    and  to indicate 

the start and end points of the clip (note that the raw video loaded into the 

system may be longer than the clip that is used). The methods,  setStart-

Point()  and  setEndPoint(),  provide the only means for establishing start 

and end points for the clip.  

     High cohesion.  A cohesive design class has a small, focused set of re-

sponsibilities and single-mindedly applies attributes and methods to 

implement those responsibilities. For example, the class  VideoClip  might 

contain a set of methods for editing the video clip. As long as each method 

focuses solely on attributes associated with the video clip, cohesion is 

maintained.  

     Low coupling.  Within the design model, it is necessary for design classes 

to collaborate with one another. However, collaboration should be kept to 

an acceptable minimum. If a design model is highly coupled (all design 

classes collaborate with all other design classes), the system is diffi cult to 

 What is 
a “well-

formed” design 
class? 

?

pre22126_ch12_224-251.indd   240pre22126_ch12_224-251.indd   240 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  241

implement, to test, and to maintain over time. In general, design classes 

within a subsystem should have only limited knowledge of other classes. 

This restriction, called the  Law of Demeter  [Lie03], suggests that a method 

should only send messages to methods in neighboring classes.  6        

    6  A less formal way of stating the Law of Demeter is “Each unit should only talk to its friends; 

Don’t talk to strangers.” 

  Refi ning an Analysis Class into a Design Class   Refi ning an Analysis Class into a Design Class 

      The scene:  Ed’s cubicle, as design 
modeling begins.  

     The players:  Vinod and Ed—members of the 
  SafeHome  software engineering team.  

     The conversation:   

     [Ed is working on the  FloorPlan  class (see sidebar 
discussion in Section 10.3 and  Figure 10.2 ) and has 
refi ned it for the design model.]  

     Ed:  So you remember the  FloorPlan  class, right? It’s 
used as part of the surveillance and home management 
functions.  

     Vinod (nodding):  Yeah, I seem to recall that we 
used it as part of our CRC discussions for home 
management.  

     Ed:  We did. Anyway, I’m refi ning it for design. Want 
to show how we’ll actually implement the  FloorPlan  
class. My idea is to implement it as a set of linked lists 
[a specifi c data structure]. So . . . I had to refi ne the 
analysis class  FloorPlan  ( Figure 10.2 ) and actually, 
sort of simplify it.  

     Vinod:  The analysis class showed only things in the 
problem domain, well, actually on the computer screen, 
that were visible to the end user, right?  

     Ed:  Yep, but for the  FloorPlan  design class, I’ve got 
to add some things that are implementation specifi c. I 
needed to show that  FloorPlan  is an aggregation of 
segments—hence the  Segment  class—and that the 
 Segment  class is composed of lists for wall segments, 
windows, doors, and so on. The class  Camera  collab-
orates with  FloorPlan,  and obviously, there can be 
many cameras in the fl oor plan.  

     Vinod:  Phew, let’s see a picture of this new 
  FloorPlan  design class.  

     [Ed shows Vinod the drawing shown in  Figure 12.3 .]  

     Vinod:  Okay, I see what you’re trying to do. This 
allows you to modify the fl oor plan easily because new 
items can be added to or deleted from the list—the 
 aggregation—without any problems.  

     Ed (nodding):  Yeah, I think it’ll work.  

     Vinod:  So do I.    

 SAFEHOME 

   12.3.13 Dependency Inversion 

 The structure of many older software architectures is hierarchical. At the top of 

the architecture, “control” components rely on lower-level “worker” components 

to perform various cohesive tasks. Consider a simple program with three com-

ponents. The intent of the program is to read keyboard strokes and then print 

the result to a printer. A control module,  C , coordinates two other modules—a 

keystroke reader module,  R , and a module that writes to a printer,  W . 

  The design of the program is coupled because  C  is highly dependent on  R  

and  W . To remove the level of dependence that exists, the “worker” modules  R  

and  W  should be invoked from the control module  S  using abstractions. In 

   What is the 
“dependency 

inversion 
principle”? 

?

pre22126_ch12_224-251.indd   241pre22126_ch12_224-251.indd   241 13/12/13   6:12 PM13/12/13   6:12 PM



242 PART TWO  MODELING

object-oriented software engineering, abstractions are implemented as abstract 

classes,  R*  and  W*.  These abstract classes could then be used to invoke worker 

classes that perform any read and write function. Therefore a  copy  class,  C,  

 invokes abstract classes,  R*  and  W*,  and the abstract class points to the appro-

priate worker-class (e.g., the R* class might point to a  read()  operation within a 

 keyboard  class in one context and a  read()  operation within a  sensor  class in 

another. This approach reduces coupling and improves the testability of a 

design. 

 The example discussed in the preceding paragraph can be generalized with 

the  dependency inversion principle  [Obj10], which states:  High-level modules 

(classes) should not depend [directly] upon low-level modules. Both should de-

pend on abstractions. Abstractions should not depend on details. Details should 

depend on abstractions.  

   12.3.14 Design for Test 

 There is an ongoing chicken-and-egg debate about whether software design or 

test case design should come fi rst. Rebecca Wirfs-Brock [Wir09] writes: 

  Advocates of test-driven development (TDD) write tests before implementing any 

other code. They take to heart Tom Peters’ credo, “Test fast, fail fast, adjust fast.” Test-

ing guides their design as they implement in short, rapid-fi re “write test code—fail 

the test—write enough code to pass—then pass the test” cycles.   

FloorPlan

addCamera( ) 
addWall( ) 
addWindow( ) 
deleteSegment( ) 
draw( )  

type 
outsideDimensions  

WallSegment

Segment

startCoordinate 
endCoordinate 
getType( ) 
draw( )

Window

Camera
type 
id 
fieldView 
panAngle
zoomSetting 

 

1 *

1
*

  FIGURE 12.3

 Design class 
for FloorPlan 
and composite 
aggregation 
for the class 
(see sidebar 
discussion)   

  uote: 

 “Test fast, fail fast, 
adjust fast.” 

 Tom Peters 

pre22126_ch12_224-251.indd   242pre22126_ch12_224-251.indd   242 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  243

 But if design comes fi rst, then the design (and code) must be developed with 

 seams —locations in the detailed design where you can “insert test code that 

probes the state of your running software” and/or “isolate code under test from 

its production environment so that you can exercise it in a controlled testing 

context” [Wir09]. 

 Sometimes referred to as “test hooks,” seams must be consciously designed 

at the component level. To accomplish this, a designer must give thought to the 

tests that will be conducted to exercise the component. As Wirfs-Brock states: “In 

short, you need to provide appropriate test affordances—factoring your design in 

a way that lets test code interrogate and control the running system.” 

      12.4 THE DES IGN MODEL 

  The design model can be viewed in two different dimensions as illustrated in 

 Figure 12.4 . The  process dimension  indicates the evolution of the design model 

as design tasks are executed as part of the software process. The  abstraction 

dimension  represents the level of detail as each element of the analysis model 

is transformed into a design equivalent and then refi ned iteratively. Referring to 

the fi gure, the dashed line indicates the boundary between the analysis and de-

sign models. In some cases, a clear distinction between the analysis and design 

Process dimension

A
b
st

ra
ct

io
n
 d

im
en

si
o
n

Architecture 
elements

Interface 
elements

Component-level 
elements

Deployment-level 
elements

Low

High

Class diagrams 
Analysis packages 
CRC models 
Collaboration 
   diagrams 
Data flow diagrams 
Control-flow diagrams 
Processing narratives

Use cases - text 
Use-case diagrams 
Activity diagrams 
Swimlane diagrams 
Collaboration 
   diagrams
State diagrams
Sequence diagrams

Design class 
   realizations
Subsystems 
Collaboration 
   diagrams 

Refinements to:

Deployment diagrams

Class diagrams
Analysis packages
CRC models
Collaboration diagrams
Data flow diagrams
Control-flow diagrams
Processing narratives
State diagrams
Sequence diagrams

Component diagrams
Design classes 
Activity diagrams 
Sequence diagrams 

Refinements to:
Component diagrams
Design classes 
Activity diagrams 
Sequence diagrams 

Design class realizations 
Subsystems 
Collaboration diagrams 
Component diagrams 
Design classes 
Activity diagrams 
Sequence diagrams

Analysis model

Design model

Requirements:
  Constraints
  Interoperability
  Targets and
      configuration

Technical interface
 design  
Navigation design 
GUI design  

   Design class 
      realizations 
   Subsystems 
   Collaboration 
      diagrams 

  FIGURE 12.4  Dimensions of the design model   

pre22126_ch12_224-251.indd   243pre22126_ch12_224-251.indd   243 13/12/13   6:12 PM13/12/13   6:12 PM



244 PART TWO  MODELING

models is possible. In other cases, the analysis model slowly blends into the de-

sign and a clear distinction is less obvious.  

  The elements of the design model use many of the same UML diagrams  7   that 

were used in the analysis model. The difference is that these diagrams are re-

fi ned and elaborated as part of design; more implementation-specifi c detail is 

provided, and architectural structure and style, components that reside within 

the architecture, and interfaces between the components and with the outside 

world are all emphasized.   

 You should note, however, that model elements indicated along the horizontal 

axis are not always developed in a sequential fashion. In most cases prelimi-

nary architectural design sets the stage and is followed by interface design and 

component-level design, which often occur in parallel. The deployment model is 

usually delayed until the design has been fully developed. 

 You can apply design patterns (Chapter 16) at any point during design. These 

patterns enable you to apply design knowledge to domain-specifi c problems that 

have been encountered and solved by others. 

    12.4.1 Data Design   Elements 

 Like other software engineering activities, data design (sometimes referred to 

as  data architecting ) creates a model of data and/or information that is repre-

sented at a high level of abstraction (the customer/user’s view of data). This data 

model is then refi ned into progressively more implementation-specifi c repre-

sentations that can be processed by the computer-based system. In many soft-

ware applications, the architecture of the data will have a profound infl uence on 

the architecture of the software that must process it. 

  The structure of data has always been an important part of software design. 

At the program-component level, the design of data structures and the asso-

ciated algorithms required to manipulate them is essential to the creation of 

high- quality applications. At the application level, the translation of a data 

model (derived as part of requirements engineering) into a database is pivotal to 

achieving the business objectives of a system. At the business level, the collection 

of information stored in disparate databases and reorganized into a “data ware-

house” enables data mining or knowledge discovery that can have an impact on 

the success of the business itself. In every case, data design plays an important 

role. Data design is discussed in more detail in Chapter 13. 

   12.4.2 Architectural Design Elements  

 The  architectural design  for software is the equivalent to the fl oor plan of a house. 

The fl oor plan depicts the overall layout of the rooms; their size, shape, and re-

lationship to one another; and the doors and windows that allow movement into 

   The design model has 
four major elements: 
data, architecture, 
components, and 
interface. 

   At the architectural 
(application) level, 
data design focuses on 
fi les or databases; at 
the component level, 
data design considers 
the data structures 
that are required to 
implement local data 
objects. 

  7  Appendix 1 provides a tutorial on basic UML concepts and notation.  

 uote: 

 “Questions about 
whether design 
is necessary or 
affordable are 
quite beside the 
point: design is 
inevitable. The 
alternative to 
good design is 
bad design, not no 
design at all.” 

 Douglas Martin 

pre22126_ch12_224-251.indd   244pre22126_ch12_224-251.indd   244 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  245

and out of the rooms. The fl oor plan gives us an overall view of the house. Archi-

tectural design elements give us an overall view of the software. 

 The architectural model [Sha96] is derived from three sources: (1) information 

about the application domain for the software to be built; (2) specifi c require-

ments model elements such as use cases or analysis classes, their relationships 

and collaborations for the problem at hand; and (3) the availability of architec-

tural styles (Chapter 13) and patterns (Chapter 16). 

 The architectural design element is usually depicted as a set of intercon-

nected subsystems, often derived from analysis packages within the require-

ments model. Each subsystem may have its own architecture (e.g., a graphical 

user interface might be structured according to a preexisting architectural style 

for user interfaces). Techniques for deriving specifi c elements of the architec-

tural model are presented in Chapter 13. 

   12.4.3 Interface Design Elements  

 The interface design for software is analogous to a set of detailed drawings (and 

specifi cations) for the doors, windows, and external utilities of a house. In es-

sence, the detailed drawings (and specifi cations) for the doors, windows, and ex-

ternal utilities tell us how things and information fl ow into and out of the house 

and within the rooms that are part of the fl oor plan. The interface design ele-

ments for software depict information fl ows into and out of a system and how it is 

communicated among the components defi ned as part of the architecture. 

  There are three important elements of interface design: (1) the user inter-

face (UI), (2) external interfaces to other systems, devices, networks, or other 

producers or consumers of information, and (3) internal interfaces between var-

ious design components. These interface design elements allow the software to 

communicate externally and enable internal communication and collaboration 

among the components that populate the software architecture. 

 UI design (increasingly called  usability design ) is a major software engineer-

ing action and is considered in detail in Chapter 15. Usability design incorpo-

rates aesthetic elements (e.g., layout, color, graphics, interaction mechanisms), 

ergonomic elements (e.g., information layout and placement, metaphors, UI 

navigation), and technical elements (e.g., UI patterns, reusable components). In 

general, the UI is a unique subsystem within the overall application architecture.  

 The design of external interfaces requires defi nitive information about the 

entity to which information is sent or received. In every case, this information 

should be collected during requirements engineering (Chapter 8) and verifi ed 

once the interface design commences.  8   The design of external interfaces should 

incorporate error checking and appropriate security features. 

   There are three parts 
to the interface design 
element: the user 
interface, interfaces to 
system external to the 
application, and inter-
faces to components 
within the application. 

  uote: 

 “You can use an 
eraser on the 
drafting table or 
a sledge hammer 
on the construction 
site.” 

 Frank Lloyd 
Wright 

  uote: 

 “The public is 
more familiar 
with bad design 
than good design. 
It is, in effect, 
conditioned to 
prefer bad design, 
because that is 
what it lives with. 
The new becomes 
threatening, the 
old reassuring.” 

 Paul Rand 

  8  Interface characteristics can change with time. Therefore, a designer should ensure that the 

specifi cation for the interface is accurate and complete. 

pre22126_ch12_224-251.indd   245pre22126_ch12_224-251.indd   245 13/12/13   6:12 PM13/12/13   6:12 PM



246 PART TWO  MODELING

  The design of internal interfaces is closely aligned with component-level de-

sign (Chapter 14). Design realizations of analysis classes represent all operations 

and the messaging schemes required to enable communication and collabora-

tion between operations in various classes. Each message must be designed to 

accommodate the requisite information transfer and the specifi c functional re-

quirements of the operation that has been requested. 

  In some cases, an interface is modeled in much the same way as a class. In 

UML, an interface is defi ned in the following manner [OMG03a]: “An interface 

is a specifi er for the externally-visible [public] operations of a class, component, 

or other classifi er (including subsystems) without specifi cation of internal struc-

ture.” Stated more simply, an interface is a set of operations that describes some 

part of the behavior of a class and provides access to these operations.   

 For example, the  SafeHome  security function makes use of a control panel 

that allows a homeowner to control certain aspects of the security function. In an 

advanced version of the system, control panel functions may be implemented via 

a mobile platform (e.g., smartphone or tablet). 

 The  ControlPanel  class ( Figure 12.5 ) provides the behavior associated with a 

keypad, and therefore, it must implement the operations  readKeyStroke ()  and 

 decodeKey () . If these operations are to be provided to other classes (in this case, 

 Tablet  and  SmartPhone ), it is useful to defi ne an interface as shown in the fi gure. 

The interface, named  KeyPad , is shown as an <<interface>> stereotype or as a 

small, labeled circle connected to the class with a line. The interface is defi ned 

with no attributes and the set of operations that are necessary to achieve the 

behavior of a keypad. 

 WebRef 
 Extremely valuable 
information on UI 
design can be found at 
  www.useit.com.   

ControlPanel

LCDdisplay 
LEDindicators 
keyPadCharacteristics 
speaker 
wirelessInterface 
readKeyStroke( ) 
decodeKey( ) 
displayStatus( ) 
lightLEDs( ) 
sendControlMsg( )

KeyPad

readKeystroke( ) 
decodeKey( ) 

<<Interface>>

Tablet

SmartPhone

KeyPad

  FIGURE 12.5

 Interface rep-
resentation for 
ControlPanel   

  uote: 

 “Every now and 
then go away, have 
a little relaxation, 
for when you come 
back to your work 
your judgment 
will be surer. Go 
some distance 
away because then 
the work appears 
smaller and more 
of it can be taken 
in at a glance and 
a lack of harmony 
and proportion 
is more readily 
seen.” 

 Leonardo 
DaVinci 

pre22126_ch12_224-251.indd   246pre22126_ch12_224-251.indd   246 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  247

 The dashed line with an open triangle at its end ( Figure 12.5 ) indicates that the 

 ControlPanel  class provides  KeyPad  operations as part of its behavior. In UML, 

this is characterized as a  realization.  That is, part of the behavior of  ControlPanel  

will be implemented by realizing  KeyPad  operations. These operations will be 

provided to other classes that access the interface. 

   12.4.4 Component-Level Design Elements 

 The component-level design for software is the equivalent to a set of detailed 

drawings (and specifi cations) for each room in a house. These drawings depict 

wiring and plumbing within each room, the location of electrical receptacles and 

wall switches, faucets, sinks, showers, tubs, drains, cabinets, and closets, and 

every other detail associated with a room. 

 The component-level design for software fully describes the internal detail of 

each software component. To accomplish this, the component-level design de-

fi nes data structures for all local data objects and algorithmic detail for all pro-

cessing that occurs within a component and an interface that allows access to all 

component operations (behaviors).  

 Within the context of object-oriented software engineering, a component is 

represented in UML diagrammatic form as shown in  Figure 12.6 . In this fi g-

ure, a component named  SensorManagement  (part of the  SafeHome  security 

function) is represented. A dashed arrow connects the component to a class 

named  Sensor  that is assigned to it. The  SensorManagement  component per-

forms all functions associated with  SafeHome  sensors including monitoring 

and confi guring them. Further discussion of component diagrams is presented 

in Chapter 14.  

 The design details of a component can be modeled at many different lev-

els of abstraction. A UML activity diagram can be used to represent process-

ing logic. Detailed procedural fl ow for a component can be represented using 

either pseudocode (a programming languagelike representation described in 

Chapter 14) or some other diagrammatic form (e.g., fl owchart or box diagram). 

Algorithmic structure follows the rules established for structured programming 

(i.e., a set of constrained procedural constructs). Data structures, selected based 

on the nature of the data objects to be processed, are usually modeled using 

pseudocode or the programming language to be used for implementation. 

  uote: 

 “The details are not 
the details. They 
make the design.” 

 Charles Eames 

SensorManagement Sensor

  FIGURE 12.6

 A UML compo-
nent diagram   

  uote: 

 “A common 
mistake that 
people make 
when trying to 
design something 
completely 
foolproof was to 
underestimate 
the ingenuity of 
complete fools.” 

 Douglas Adams 

pre22126_ch12_224-251.indd   247pre22126_ch12_224-251.indd   247 13/12/13   6:12 PM13/12/13   6:12 PM



248 PART TWO  MODELING

   12.4.5 Deployment-Level Design Elements 

 Deployment-level design elements indicate how software functionality and sub-

systems will be allocated within the physical computing environment that will 

support the software. For example, the elements of the  SafeHome  product are 

confi gured to operate within three primary computing environments—a home-

based PC, the  SafeHome  control panel, and a server housed at CPI Corp. (provid-

ing Internet-based access to the system). In addition, limited functionality may 

be provided with mobile platforms.  

  During design, a UML deployment diagram is developed and then refi ned as 

shown in  Figure 12.7 . In the fi gure, three computing environments are shown (in 

actuality, there would be more including sensors, cameras, and functionality de-

livered by mobile platforms). The subsystems (functionality) housed within each 

computing element are indicated. For example, the personal computer houses 

subsystems that implement security, surveillance, home management, and com-

munications features. In addition, an external access subsystem has been de-

signed to manage all attempts to access the  SafeHome  system from an external 

source. Each subsystem would be elaborated to indicate the components that it 

implements. 

 The diagram shown in  Figure 12.7  is in  descriptor form.  This means that the de-

ployment diagram shows the computing environment but does not explicitly in-

dicate confi guration details. For example, the “personal computer” is not further 

   Deployment diagrams 
begin in descriptor 
form, where the de-
ployment environment 
is described in general 
terms. Later, instance 
form is used and 
elements of the con-
fi guration are explicitly 
described. 

CPI serverControl panel

Personal computer

Security

HomeManagement

Surveillance

Communication

Security HomeownerAccess

ExternalAccess

  FIGURE 12.7

 A UML deploy-
ment diagram   

pre22126_ch12_224-251.indd   248pre22126_ch12_224-251.indd   248 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  249

identifi ed. It could be a Mac, a Windows-based PC, a Linux-box or a mobile plat-

form with its associated operating system. These details are provided when the 

deployment diagram is revisited in  instance form  during the latter stages of 

design or as construction begins. Each instance of the deployment (a specifi c, 

named hardware confi guration) is identifi ed. 

        12.5 SUMMARY 

 Software design commences as the fi rst iteration of requirements engineering 

comes to a conclusion. The intent of software design is to apply a set of principles, 

concepts, and practices that lead to the development of a high-quality system or 

product. The goal of design is to create a model of software that will implement 

all customer requirements correctly and bring delight to those who use it. Soft-

ware designers must sift through many design alternatives and converge on a 

solution that best suits the needs of project stakeholders. 

 The design process moves from a “big picture” view of software to a more 

narrow view that defi nes the detail required to implement a system. The pro-

cess begins by focusing on architecture. Subsystems are defi ned; communication 

mechanisms among subsystems are established; components are identifi ed, and 

a detailed description of each component is developed. In addition, external, 

internal, and user interfaces are designed. 

 Design concepts have evolved over the fi rst 60 years of software engineering 

work. They describe attributes of computer software that should be present re-

gardless of the software engineering process that is chosen, the design methods 

that are applied, or the programming languages that are used. In essence, de-

sign concepts emphasize the need for abstraction as a mechanism for creating 

reusable software components; the importance of architecture as a way to better 

understand the overall structure of a system; the benefi ts of pattern-based engi-

neering as a technique for designing software with proven capabilities; the value 

of separation of concerns and effective modularity as a way to make software more 

understandable, more testable, and more maintainable; the consequences of infor-

mation hiding as a mechanism for reducing the propagation of side effects when 

errors do occur; the impact of functional independence as a criterion for building 

effective modules; the use of refi nement as a design mechanism; a consideration 

of aspects that crosscut system requirements; the application of refactoring for op-

timizing the design that is derived; the importance of object-oriented classes and 

the characteristics that are related to them; the need to use abstraction to reduce 

coupling between components, and the importance of design for testing. 

 The design model encompasses four different elements. As each of these el-

ements is developed, a more complete view of the design evolves. The archi-

tectural element uses information derived from the application domain, the 

requirements model, and available catalogs for patterns and styles to derive a 

pre22126_ch12_224-251.indd   249pre22126_ch12_224-251.indd   249 13/12/13   6:12 PM13/12/13   6:12 PM



250 PART TWO  MODELING

complete structural representation of the software, its subsystems, and compo-

nents. Interface design elements model external and internal interfaces and the 

user interface. Component-level elements defi ne each of the modules (compo-

nents) that populate the architecture. Finally, deployment-level design elements 

allocate the architecture, its components, and the interfaces to the physical con-

fi guration that will house the software. 

     PROBLEMS AND POINTS TO PONDER 
    12.1.  Do you design software when you “write” a program? What makes software design 
different from coding?  

   12.2.  If a software design is not a program (and it isn’t), then what is it?  

   12.3.  How do we assess the quality of a software design?  

   12.4.  Examine the task set presented for design. Where is quality assessed within the task 
set? How is this accomplished? How are the quality attributes discussed in Section 12.2.1 
achieved?  

   12.5.  Provide examples of three data abstractions and the procedural abstractions that can 
be used to manipulate them.  

   12.6.  Describe software architecture in your own words.  

   12.7.  Suggest a design pattern that you encounter in a category of everyday things (e.g., 
consumer electronics, automobiles, appliances). Briefl y describe the pattern.  

   12.8.  Describe separation of concerns in your own words. Is there a case when a “divide and 
conquer” strategy may not be appropriate? How might such a case affect the argument for 
modularity?  

   12.9.  When should a modular design be implemented as monolithic software? How can this 
be accomplished? Is performance the only justifi cation for implementation of monolithic 
software?  

   12.10.  Discuss the relationship between the concept of information hiding as an attribute of 
effective modularity and the concept of module independence.  

   12.11.  How are the concepts of coupling and software portability related? Provide examples 
to support your discussion.  

   12.12.  Apply a “stepwise refi nement approach” to develop three different levels of proce-
dural abstractions for one or more of the following programs: (1) Develop a check writer 
that, given a numeric dollar amount, will print the amount in words normally required on 
a check. (2) Iteratively solve for the roots of a transcendental equation. (3) Develop a simple 
task-scheduling algorithm for an operating system.  

   12.13.  Consider the software required to implement a full navigation capability (using GPS) 
in a mobile, handheld communication device. Describe two or three crosscutting concerns 
that would be present. Discuss how you would represent one of these concerns as an aspect.  

   12.14.  Does “refactoring” mean that you modify the entire design iteratively? If not, what 
does it mean?  

   12.15.  Discuss what the dependency inversion principle is in your own words.  

   12.16.  Why is design for testing so important?  

   12.17.  Briefl y describe each of the four elements of the design model.  

pre22126_ch12_224-251.indd   250pre22126_ch12_224-251.indd   250 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  251

      FUR THER READINGS AND INFORMATION SOURCES 
  Donald Norman has written three books ( Emotional Design: We Love (or Hate) Everyday 

Things,  Basic Books, 2005), ( The Design of Everyday Things,  Doubleday, 1990), and ( The Psy-

chology of Everyday Things,  HarperCollins, 1988) that have become classics in the design 
literature and “must” reading for anyone who designs anything that humans use. Adams 
( Conceptual Blockbusting,  4th ed., Addison-Wesley, 2001) has written a book that is essen-
tial reading for designers who want to broaden their way of thinking. Finally, a classic text 
by Polya ( How to Solve It,  2nd ed., Princeton University Press, 1988) provides a generic 
 problem-solving process that can help software designers when they are faced with com-
plex problems. 

   Books by Hanington and Martin ( Universal Methods of Design: 100 Ways to Research 

 Complex Problems, Develop Innovative Ideas, and Design Effective Solutions, Rockport,  2012) 
and Hanington and Martin ( Universal Principles of Design: 125 Ways to Enhance  Usability, 

Infl uence Perception, Increase Appeal, Make Better Design Decisions, and Teach through 

Design,  2nd ed., Rockport, 2010) discuss design principles in general. 
   Following in the same tradition, Winograd et al. ( Bringing Design to Software,   Addison- 

Wesley, 1996) discusses software designs that work, those that don’t, and why. A fascinat-
ing book edited by Wixon and Ramsey ( Field Methods Casebook for Software Design,  Wiley, 
1996) suggests fi eld research methods (much like those used by anthropologists) to under-
stand how end users do the work they do and then design software that meets their needs. 
 Holtzblatt ( Rapid Contextual Design: A How-to Guide to Key Techniques for User-Center 

Design,  Morgan Kaufman, 2004) and Beyer and Holtzblatt ( Contextual Design: A  Customer- 

Centered Approach to Systems Designs,  Academic Press, 1997) offer another view of soft-
ware design that integrates the customer/user into every aspect of the software design 
process. Bain ( Emergent Design,  Addison-Wesley, 2008) couples patterns, refactoring, and 
test-driven development into an effective design approach. 

   Comprehensive treatment of design in the context of software engineering is presented 
by Otero ( Software Engineering Design: Theory and Practice,  Auerbach, 2012), Venit and 
Drake ( Prelude to Programming: Concepts and Design,  5th ed., Addison-Wesley, 2010),     Fox 
 (Introduction to Software Engineering Design,  Addison-Wesley, 2006), and Zhu ( Software 

Design Methodology,  Butterworth-Heinemann, 2005). McConnell ( Code Complete,  2nd ed., 
Microsoft Press, 2004) presents an excellent discussion of the practical aspects of designing 
high-quality computer software. Robertson ( Simple Program Design,  5th ed., Course Tech-
nology, 2006) presents an introductory discussion of software design that is useful for those 
beginning their study of the subject. Budgen ( Software Design,  2nd ed., Addison-Wesley, 2004) 
introduces a variety of popular design methods, comparing and contrasting each. Fowler 
and his colleagues ( Refactoring: Improving the Design of Existing Code,   Addison-Wesley, 
1999) discuss techniques for the incremental optimization of software designs. Rosenberg 
and Stevens ( Use Case Driven Object Modeling with UML,  Apress, 2007) discuss the develop-
ment of object-oriented designs using use cases as a foundation. 

   A worthwhile historical survey of software design is contained in an anthology edited 
by Freeman and Wasserman ( Software Design Techniques,  4th ed., IEEE, 1983). This tutorial 
reprints many of the classic papers that have formed the basis for current trends in soft-
ware design. Measures of design quality, presented from both the technical and manage-
ment perspectives, are considered by Card and Glass ( Measuring Software Design Quality,  
 Prentice Hall, 1990). 

   A wide variety of information sources on software design are available on the Internet. 
An up-to-date list of World Wide Web references that are relevant to software design and 
design engineering can be found at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch12_224-251.indd   251pre22126_ch12_224-251.indd   251 13/12/13   6:12 PM13/12/13   6:12 PM



252

   K E Y 
C O N C E P T S 
    agility and 
architecture . . . . . 280  
    archetypes . . . . . . 269  
    architectural 
decisions  . . . . . . . 266  
    architectural description 
language . . . . . . . 276  
    architectural 
descriptions . . . . . 255  
    architectural 
design . . . . . . . . . 267  

 ARCHITECTURAL 
DESIGN 13 

    C H A P T E R

  Q U I C K 
L O O K 

  What is it?   Architectural design 
represents the structure of data and 
program components that are re-
quired to build a computer-based 

system. It considers the architectural style that 
the system will take, the structure and properties 
of the components that constitute the system, 
and the interrelationships that occur among all 
architectural components of a system. 

   Who does it?   Although a software engineer 
can design both data and architecture, the job 
is often allocated to specialists when large, 
complex systems are to be built. A database 
or data warehouse designer creates the data 
architecture for a system. The “system archi-
tect” selects an appropriate architectural style 
from the requirements derived during software 
requirements analysis. 

   Why is it important?   You wouldn’t attempt to 
build a house without a blueprint, would you? 
You also wouldn’t begin drawing blueprints by 
sketching the plumbing layout for the house. 
You’d need to look at the big picture—the 
house itself—before you worry about details. 

That’s what architectural design does—it pro-
vides you with the big picture and ensures that 
you’ve got it right. 

   What are the steps?   Architectural design be-
gins with data design and then proceeds to 
the derivation of one or more representations 
of the architectural structure of the system. Al-
ternative architectural styles or patterns are 
analyzed to derive the structure that is best 
suited to customer requirements and quality 
attributes. Once an alternative has been se-
lected, the architecture is elaborated using an 
architectural design method. 

   What is the work product?   An architecture 
model encompassing data architecture and 
program structure is created during architec-
tural design. In addition, component properties 
and relationships (interactions) are described. 

   How do I ensure that I’ve done it right?   At 
each stage, software design work products 
are reviewed for clarity, correctness, complete-
ness, and consistency with requirements and 
with one another. 

   Design has been described as a multistep process in which represen-

tations of data and program structure, interface characteristics, and 

procedural detail are synthesized from information requirements. 

This description is extended by Freeman [Fre80]:

    [D]esign is an activity concerned with making major decisions, often of a struc-

tural nature. It shares with programming a concern for abstracting information 

representation and processing sequences, but the level of detail is quite different 

at the extremes. Design builds coherent, well-planned representations of pro-

grams that concentrate on the interrelationships of parts at the higher level and 

the logical operations involved at the lower levels.  

pre22126_ch13_252-284.indd   252pre22126_ch13_252-284.indd   252 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  253

 As we noted in  Chapter 12 , design is information driven. Software design 

methods are derived from consideration of each of the three domains of the anal-

ysis model. The data, functional, and behavioral domains serve as a guide for the 

creation of the software design. 

 Methods required to create “coherent, well-planned representations” of 

the data and architectural layers of the design model are presented in this 

chapter. The objective is to provide a systematic approach for the derivation 

of the architectural design—the preliminary blueprint from which software is 

constructed. 

 13.1     SOFTWARE ARCHITECTURE 

  In their landmark book on the subject, Shaw and Garlan [Sha96] discuss software 

architecture in the following manner:

   Ever since the fi rst program was divided into modules, software systems have had 

architectures, and programmers have been responsible for the interactions among 

the modules and the global properties of the assemblage. Historically, architectures 

have been implicit—accidents of implementation, or legacy systems of the past. Good 

software developers have often adopted one or several architectural patterns as 

strategies for system organization, but they use these patterns informally and have 

no means to make them explicit in the resulting system.   

 Today, effective software architecture and its explicit representation and 

 design have become dominant themes in software engineering. 

  13.1.1  What Is Architecture? 

 When you consider the architecture of a building, many different attributes come 

to mind. At the most simplistic level, you think about the overall shape of the 

physical structure. But in reality, architecture is much more. It is the manner in 

which the various components of the building are integrated to form a cohesive 

whole. It is the way in which the building fi ts into its environment and meshes 

with other buildings in its vicinity. It is the degree to which the building meets its 

stated purpose and satisfi es the needs of its owner. It is the aesthetic feel of the 

structure—the visual impact of the building—and the way textures, colors, and 

materials are combined to create the external facade and the internal “living en-

vironment.” It is small details—the design of lighting fi xtures, the type of fl ooring, 

the placement of wall hangings, the list is almost endless. And fi nally, it is art. 

  Architecture is also something else. It is “thousands of decisions, both big and 

small” [Tyr05]. Some of these decisions are made early in design and can have 

a profound impact on all other design actions. Others are delayed until later, 

thereby eliminating overly restrictive constraints that would lead to a poor im-

plementation of the architectural style. 

    architectural 
genres . . . . . . . . . 257  
    architectural 
patterns   . . . . . . . 263  
    architectural 
styles   . . . . . . . . . 258  
    architecture . . . . . 253  
    architecture 
conformance 
checking   . . . . . . . 279  
    refi ning the 
architecture . . . . . 270         

  uote: 

 “The architecture 
of a system is a 
comprehensive 
framework that 
describes its form 
and structure—its 
components and 
how they fi t 
together.” 

 Jerrold Grochow 

pre22126_ch13_252-284.indd   253pre22126_ch13_252-284.indd   253 13/12/13   6:12 PM13/12/13   6:12 PM



254 PART TWO  MODELING

      But what about software architecture? Bass, Clements, and Kazman [Bas03] 

defi ne this elusive term in the following way:

   The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software components, the externally visible 

properties of those components, and the relationships among them. 

   The architecture is not the operational software. Rather, it is a representa-

tion that enables you to (1) analyze the effectiveness of the design in meeting 

its stated requirements, (2) consider architectural alternatives at a stage when 

making design changes is still relatively easy, and (3) reduce the risks associated 

with the construction of the software. 

 This defi nition emphasizes the role of “software components” in any archi-

tectural representation. In the context of architectural design, a software com-

ponent can be something as simple as a program module or an object- oriented 

class, but it can also be extended to include databases and “middleware” that 

enable the confi guration of a network of clients and servers. The properties of 

components are those characteristics that are necessary to an understanding of 

how the components interact with other components. At the architectural level, 

internal properties (e.g., details of an algorithm) are not specifi ed. The relation-

ships between components can be as simple as a procedure call from one mod-

ule to another or as complex as a database access protocol. 

  Some members of the software engineering community (e.g., [Kaz03]) make 

a distinction between the actions associated with the derivation of a software 

 architecture (what we call “architectural design”) and the actions that are  applied 

to derive the software design. As one reviewer of a past edition noted:

   There is a distinct difference between the terms  architecture  and  design . A  design  is an 

instance of an  architecture  similar to an object being an instance of a class. For exam-

ple, consider the client-server architecture. I can design a network- centric  software 

system in many different ways from this architecture using either the Java platform 

(Java EE) or Microsoft platform (.NET framework). So, there is one  architecture, but 

many designs can be created based on that architecture. Therefore, you cannot mix 

“architecture” and “design” with each other. 

   Although we agree that a software design is an instance of a specifi c software 

 architecture, the elements and structures that are defi ned as part of an architec-

ture are the root of every design. Design begins with a consideration of architecture.     

    13.1.2  Why Is Architecture Important? 

 In a book dedicated to software architecture, Bass and his colleagues [Bas03] 

identify three key reasons that software architecture is important:

    •  Software architecture provides a representation that facilitates communi-

cation among all stakeholders.  

   Software architecture 
must model the 
 structure of a system 
and the manner 
in which data and 
procedural components 
collaborate with one 
another. 

 WebRef 
 Useful pointers to 
many software 
 architecture sites 
can be obtained at 
  http://www.
ewita.com/links/
softwareArchitec-
tureLinks.htm.   

  uote: 

 “Marry your 
architecture in 
haste, repent at 
your leisure." 

 Barry Boehm 

pre22126_ch13_252-284.indd   254pre22126_ch13_252-284.indd   254 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮



CHAPTER 13  ARCHITECTURAL DESIGN  255

   •  The architecture highlights early design decisions that will have a pro-

found impact on all software engineering work that follows.  

   •  Architecture “constitutes a relatively small, intellectually graspable model 

of how the system is structured and how its components work together” 

[Bas03].    

 The architectural design model and the architectural patterns contained 

within it are transferable. That is, architecture genres, styles, and patterns 

 (Sections 13.2 through 13.6) can be applied to the design of other systems and 

represent a set of abstractions that enable software engineers to describe archi-

tecture in predictable ways.     

    13.1.3  Architectural Descriptions 

 Each of us has a mental image of what the word  architecture  means. The im-

plication is that different stakeholders will see an architecture from different 

viewpoints that are driven by different sets of concerns. This implies that an 

 architectural description is actually a set of work products that refl ect different 

views of the system. 

 Smolander, Rossi, and Purao [Smo08] have identifi ed multiple metaphors, 

representing different views of the same architecture, that stakeholders use to 

understand the term  software architecture . The  blueprint metaphor  seems to be 

most familiar to the stakeholders who write programs to implement a system. 

Developers regard architecture descriptions as a means of transferring explicit 

information from architects to designers to software engineers charged with 

producing the system components. The  language metaphor  views architecture 

as a facilitator of communication across stakeholder groups. This view is pre-

ferred by stakeholders with a high customer focus (e.g., managers or marketing 

experts). The architectural description needs to be concise and easy to under-

stand since it forms the basis for negotiation particularly in determining system 

boundaries. 

 The  decision metaphor  represents architecture as the product of decisions 

involving trade-offs among properties such as cost, usability, maintainability, 

and performance. Each of these properties can have a signifi cant impact on 

the system design. Stakeholders (e.g., project managers) view architectural 

decisions as the basis for allocating project resources and work tasks. These 

decisions may affect the sequence of tasks and the structure of the software 

team. The  literature metaphor  is used to document architectural solutions 

constructed in the past. This view supports the construction of artifacts and 

the transfer of knowledge between designers and software maintenance staff. 

It also supports stakeholders whose concern is reuse of components and 

designs. 

   The architectural model 
provides a Gestalt 
view of the system, 
allowing the software 
engineer to examine it 
as a whole. 

pre22126_ch13_252-284.indd   255pre22126_ch13_252-284.indd   255 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮



256 PART TWO  MODELING

 An architectural description of a software-based system must exhibit char-

acteristics that combine these metaphors. Tyree and Akerman [Tyr05] note this 

when they write:

   Developers want clear, decisive guidance on how to proceed with design. Customers 

want a clear understanding of the environmental changes that must occur and assur-

ances that the architecture will meet their business needs. Other architects want a 

clear, salient understanding of the architecture’s key aspects. 

   Each of these “wants” is refl ected in a different metaphor represented using a 

different viewpoint. 

 The IEEE Computer Society has proposed IEEE-Std-1471-2000,  Recommended 

Practice for Architectural Description of Software-Intensive Systems,  [IEE00], with 

the following objectives: (1) to establish a conceptual framework and vocabulary 

for use during the design of software architecture, (2) to provide detailed guide-

lines for representing an architectural description, and (3) to encourage sound 

architectural design practices. An  architectural description  (AD) represents 

multiple views, where each view is “a representation of a whole system from the 

perspective of a related set of [stakeholder] concerns.” 

   13.1.4  Architectural Decisions 

 Each view developed as part of an architectural description addresses a specifi c 

stakeholder concern. To develop each view (and the architectural description as 

a whole) the system architect considers a variety of alternatives and ultimately 

decides on the specifi c architectural features that best meet the concern. There-

fore, architectural decisions themselves can be considered to be one view of the 

architecture. The reasons that decisions were made provide insight into the 

structure of a system and its conformance to stakeholder concerns. 

 As a system architect, you can use the template suggested in the sidebar to 

document each major decision. By doing this, you provide a rationale for your 

work and establish a historical record that can be useful when design modifi ca-

tions must be made. 

 Grady Booch [Boo11a] writes that when setting out to build an innovative 

product, software engineers often feel compelled to plunge right in, build stuff, 

fi x what doesn’t work, improve what does work, and then repeat the process. 

After doing this a few times, they begin to recognize that an architecture should 

be defi ned and decisions associated with architectural choices must be stated 

explicitly. It may not be possible to predict the right choices before building a 

new product. However, if innovators fi nd that architectural decisions are worth 

repeating after testing their prototypes in the fi eld, then a  dominant design   1   for 

  1   Dominant design  describes an innovative software architecture or process that becomes an 

industry standard after a period of successful adaptation and use in the marketplace. 

pre22126_ch13_252-284.indd   256pre22126_ch13_252-284.indd   256 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  257

this type of product may begin to emerge. Without documenting what worked 

and what did not, it is hard for software engineers to decide when to innovate 

and when to use previously created architecture.      

       13.2 ARCHITECTURAL GENRES 

  Although the underlying principles of architectural design apply to all types of 

 architecture, the architectural  genre  will often dictate the specifi c architectural 

approach to the structure that must be built. In the context of architectural design, 

 genre  implies a specifi c category within the overall software domain. Within each 

category, you encounter a number of subcategories. For example, within the genre 

of  buildings , you would encounter the following general styles: houses, condos, 

apartment buildings, offi ce buildings, industrial building, warehouses, and so on. 

Within each general style, more specifi c styles might apply (Section 13.3). Each style 

would have a structure that can be described using a set of predictable patterns.     

  In his evolving  Handbook of Software Architecture  [Boo08], Grady Booch suggests 

the following architectural genres for software-based systems that include artifi cial 

intelligence, communications, devices, fi nancial, games, industrial, legal, medical, 

military, operating systems, transportation, and utilities, among many others. 

   A number of different 
architectural styles 
may be applicable to 
a specifi c genre (also 
called an application 
domain). 

  Architecture Decision Description Template 
 Each major architectural decision can be 
documented for later review by stakeholders 

who want to understand the architecture description that 
has been proposed. The template presented in this side-
bar is an adapted and abbreviated version of a template 
proposed by Tyree and Ackerman [Tyr05].

        Design issue:   Describe the architectural design 
issues that are to be addressed.  

       Resolution:   State the approach you’ve chosen 
to address the design issue.  

       Category:   Specify the design category that 
the issue and resolution address 
(e.g., data design, content 
structure, component structure, 
integration, presentation).  

       Assumptions:   Indicate any assumptions that 
helped shape the decision.  

       Constraints:   Specify any environmental 
constraints that helped shape 
the decision (e.g., technology 
standards, available patterns, 
project-related issues).  

       Alternatives:   Briefl y describe the architectural 
design alternatives that were 
considered and why they were 
rejected.  

       Argument:   State why you chose the 
resolution over other alternatives.  

       Implications:   Indicate the design 
consequences of making the 
decision. How will the resolution 
affect other architectural design 
issues? Will the resolution 
constrain the design in any way?  

       Related decisions:   What other documented decisions 
are related to this decision?  

       Related concerns:   What other requirements are 
related to this decision?  

       Work products:   Indicate where this decision will 
be refl ected in the architecture 
description.  

       Notes:   Reference any team notes or 
other documentation that was 
used to make the decision.     

 INFO 

pre22126_ch13_252-284.indd   257pre22126_ch13_252-284.indd   257 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮



258 PART TWO  MODELING

     13.3 ARCHITECTURAL STYLES 

  When a builder uses the phrase “center hall colonial” to describe a house, most 

people familiar with houses in the United States will be able to conjure a general 

image of what the house will look like and what the fl oor plan is likely to be. The 

builder has used an  architectural style  as a descriptive mechanism to differenti-

ate the house from other styles (e.g., A-frame, raised ranch, Cape Cod). But more 

important, the architectural style is also a template for construction. Further 

 details of the house must be defi ned, its fi nal dimensions must be specifi ed, cus-

tomized features may be added, building materials are to be determined, but the 

style—a “center hall colonial”—guides the builder in his work. 

  The software that is built for computer-based systems also exhibits one of many 

architectural styles. Each style describes a system category that encompasses 

(1) a set of components (e.g., a database, computational modules) that perform 

a function required by a system, (2) a set of connectors that enable “communi-

cation, coordination and cooperation” among components, (3) constraints that 

defi ne how components can be integrated to form the system, and (4) semantic 

models that enable a designer to understand the overall properties of a system by 

analyzing the known properties of its constituent parts [Bas03].     

  An architectural style is a transformation that is imposed on the design of 

an  entire system. The intent is to establish a structure for all components of the 

system. In the case where an existing architecture is to be reengineered ( Chap-

ter 36 ), the  imposition of an architectural style will result in fundamental changes 

to the structure of the software including a reassignment of the functionality of 

components [Bos00].     

  An architectural pattern, like an architectural style, imposes a transforma-

tion on the design of an architecture. However, a pattern differs from a style in a 

number of fundamental ways: (1) the scope of a pattern is less broad, focusing on 

one aspect of the architecture rather than the architecture in its entirety, (2) a 

pattern imposes a rule on the architecture, describing how the software will han-

dle some aspect of its functionality at the infrastructure level (e.g., concurrency) 

[Bos00], (3) architectural patterns (Section 13.3.2) tend to address specifi c behav-

ioral issues within the context of the architecture (e.g., how real-time applica-

tions handle synchronization or interrupts). Patterns can be used in conjunction 

with an architectural style to shape the overall structure of a system. 

  13.3.1  A Brief Taxonomy of Architectural Styles 

 Although millions of computer-based systems have been created over the past 60 

years, the vast majority can be categorized into one of a relatively small number 

of architectural styles: 

  Data-Centered Architectures.   A data store (e.g., a fi le or database) resides at 

the center of this architecture and is accessed frequently by other components 

 WebRef 
 Attribute-based archi-
tectural styles (ABAS) 
can be used as building 
blocks for software 
architectures. Informa-
tion can be obtained 
at   www.sei.cmu.
edu/architecture/
abas.html.   

 What is an 
architectural 

style? 
?

  uote: 

 “There is at the 
back of every 
artist’s mind, a 
pattern or type of 
architecture.” 

 G. K. Chesterton 

pre22126_ch13_252-284.indd   258pre22126_ch13_252-284.indd   258 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮



CHAPTER 13  ARCHITECTURAL DESIGN  259

that update, add, delete, or otherwise modify data within the store.  Figure 13.1  

illustrates a typical data-centered style. Client software accesses a central re-

pository. In some cases the data repository is passive. That is, client software 

accesses the data independent of any changes to the data or the actions of other 

client software. A variation on this approach transforms the repository into a 

“blackboard” that sends notifi cations to client software when data of interest to 

the client changes. 

   Data-centered architectures promote  integrability  [Bas03]. That is, exist-

ing components can be changed and new client components added to the 

 architecture without concern about other clients (because the client components 

 operate independently). In addition, data can be passed among clients using the 

blackboard mechanism (i.e., the blackboard component serves to coordinate 

the transfer of information between clients). Client components independently 

 execute processes. 

   Data-Flow Architectures.   This architecture is applied when input data are to 

be transformed through a series of computational or manipulative components 

into output data. A pipe-and-fi lter pattern ( Figure 13.2 ) has a set of components, 

called  fi lters , connected by  pipes  that transmit data from one component to the 

next. Each fi lter works independently of those components upstream and down-

stream, is designed to expect data input of a certain form, and produces data 

output (to the next fi lter) of a specifi ed form. However, the fi lter does not require 

knowledge of the workings of its neighboring fi lters. 

 If the data fl ow degenerates into a single line of transforms, it is termed  batch 

sequential . This structure accepts a batch of data and then applies a series of 

sequential components (fi lters) to transform it. 

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Data store
(repository or
blackboard)

  FIGURE 13.1

 Data-centered 
architecture   

  uote: 

 “The use of 
patterns and 
styles of design 
is pervasive in 
engineering 
disciplines.” 

 Mary Shaw and 
David Garlan 

pre22126_ch13_252-284.indd   259pre22126_ch13_252-284.indd   259 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮

jjc20
高亮

jjc20
高亮



260 PART TWO  MODELING

    Call and Return Architectures.   This architectural style enables you to achieve 

a program structure that is relatively easy to modify and scale. A number of sub-

styles [Bas03] exist within this category:

    •   Main program/subprogram architectures.  This classic program structure 

decomposes function into a control hierarchy where a “main” program 

invokes a number of program components, which in turn may invoke still 

other components.  Figure 13.3  illustrates an architecture of this type.  

   •   Remote procedure call architectures.  The components of a main program/

subprogram architecture are distributed across multiple computers on a 

network.     

Filter

Pipes

Filter

Filter

Filter Filter

FilterFilter

Filter

Pipes and filters

Filter

Filter

  FIGURE 13.2

 Data-fl ow 
architecture   

Main program

Controller 
subprogram

Controller 
subprogram

Controller 
subprogram

Application 
subprogram

Application 
subprogram

Application 
subprogram

Application 
subprogram

Application 
subprogram

Application 
subprogram

Application 
subprogram

  FIGURE 13.3

 Main  program/
subprogram 
architecture   

pre22126_ch13_252-284.indd   260pre22126_ch13_252-284.indd   260 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮



CHAPTER 13  ARCHITECTURAL DESIGN  261

   Object-Oriented Architectures.   The components of a system encapsulate data 

and the operations that must be applied to manipulate the data. Communication 

and coordination between components are accomplished via message passing. 

   Layered Architectures.   The basic structure of a layered architecture is illus-

trated in  Figure 13.4 . A number of different layers are defi ned, each accomplish-

ing operations that progressively become closer to the machine instruction set. 

At the outer layer, components service user interface operations. At the inner 

layer, components perform operating system interfacing. Intermediate layers 

provide utility services and application software functions. 

  These architectural styles are only a small subset of those available.  2   Once re-

quirements engineering uncovers the characteristics and constraints of the sys-

tem to be built, the architectural style and/or combination of patterns that best 

fi ts those characteristics and constraints can be chosen. In many cases, more 

than one pattern might be appropriate and alternative architectural styles can 

be designed and evaluated. For example, a layered style (appropriate for most 

systems) can be combined with a data-centered architecture in many database 

applications. 

       Choosing the right architecture style can be tricky. Buschman [Bus10a] sug-

gests two complementary concepts that can provide some guidance.  Problem 

frames  describe characteristics of recurring problems, without being distracted 

by references to details of domain knowledge or programming solution imple-

mentations.  Domain-driven design  suggests that the software design should 

Core layer

Components

User interface layer

Application layer

Utility layer

  FIGURE 13.4

 Layered 
architecture   

  2  See [Roz11], [Tay09], [Bus07], [Gor06], or [Bas03], for a detailed discussion of architectural styles 

and patterns. 

pre22126_ch13_252-284.indd   261pre22126_ch13_252-284.indd   261 13/12/13   6:12 PM13/12/13   6:12 PM

jjc20
高亮

jjc20
高亮



262 PART TWO  MODELING

refl ect the domain and the domain logic of the business problem you want to 

solve with your application ( Chapter 8 ). 

 A  problem frame  is a generalization of a class of problems that might be used 

to solve the problem at hand. There are fi ve fundamental problem frames, and 

these are often associated with architectural styles: simple work pieces (tools), 

required behavior (data centered), commanded behavior (command processor), 

information display (observer), and transformation (pipe and fi lter variants). 

 Real-world problems often follow more than one problem frame, and as a con-

sequence an architectural model may be a combination of different frames. For 

example, the model-view-controller (MVC) architecture used in WebApp design  4   

might be viewed as combining two problem frames (command behavior and in-

formation display). In MVC the end user’s command is sent from the browser win-

dow to a command processor (controller) which manages access to the content 

(model) and instructs the information rendering model (view) to translate it for 

display by the browser software. 

  Choosing an Architectural Style   Choosing an Architectural Style 

        The scene:  Jamie’s cubicle, as 
 design modeling begins.  

       The players:  Jamie and Ed—members of the 
  SafeHome  software engineering team.  

       The conversation:   

       Ed (frowning):  We’ve been modeling the security 
function using UML . . . you know classes, relation-
ships, that sort of stuff. So I guess the object-oriented 
 architecture  3   is the right way to go.   

       Jamie:  But . . .?  

       Ed:  But . . . I have trouble visualizing what an object- 
oriented architecture is. I get the call and return archi-
tecture, sort of a conventional process hierarchy, but 
OO . . . I don’t know, it seems sort of amorphous.  

       Jamie (smiling):  Amorphous, huh?  

       Ed:  Yeah . . . what I mean is I can’t visualize a real 
structure, just design classes fl oating in space.  

       Jamie:  Well, that’s not true. There are class hier-
archies . . . think of the hierarchy (aggregation) we 
did for the   FloorPlan  object [Figure 12.3]. An OO 
architecture is a combination of that structure and the 
interconnections—you know, collaborations—between 
the classes. We can show it by fully describing the attri-
butes and operations, the messaging that goes on, and 
the structure of the classes.  

       Ed:  I’m going to spend an hour mapping out a call and 
return architecture; then I’ll go back and consider an OO 
architecture.  

       Jamie:  Doug’ll have no problem with that. He said 
that we should consider architectural alternatives. By 
the way, there’s absolutely no reason why both of these 
architectures couldn’t be used in combination with one 
another.  

       Ed:  Good. I’m on it.    

 SAFEHOME 

      3  It can be argued that the  SafeHome  architecture should be considered at a higher level than 

the architecture noted.  SafeHome  has a variety of subsystems—home monitoring functionality, 

the company’s monitoring site, and the subsystem running in the owner’s PC. Within subsys-

tems, concurrent processes (e.g., those monitoring sensors) and event handling are prevalent. 

Some architectural decisions at this level are made during product engineering, but architec-

tural design within software engineering may very well have to consider these issues. 

  4  The MVC architecture is considered in more detail in  Chapter 17 . 

pre22126_ch13_252-284.indd   262pre22126_ch13_252-284.indd   262 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  263

  Domain modeling can infl uence the choice of architectural style, particularly 

the core properties of domain objects. The domain objects that represent physi-

cal objects (e.g., sensors or drives) should be treated differently from those repre-

senting logical objects (e.g., schedules or workfl ows). Physical objects must obey 

stringent constraints like connection limitations or use of consumable resources. 

Logical objects may have softer real-time behaviors that can be canceled or un-

done.  Domain-driven design is often best supported by a layered architectural 

style. [Eva04] 

    13.3.2  Architectural Patterns 

 As the requirements model is developed, you’ll notice that the software must ad-

dress a number of broad problems that span the entire application. For example, 

the requirements model for virtually every e-commerce application is faced with 

the following problem:  How do we offer a broad array of goods to many different 

customers and allow those customers to purchase our goods online?  

  The requirements model also defi nes a context in which this question must 

be answered. For example, an e-commerce business that sells golf equipment 

to consumers will operate in a different context than an e-commerce business 

that sells high-priced industrial equipment to medium and large corporations. 

In addition, a set of limitations and constraints may affect the way you address 

the problem to be solved. 

 Architectural patterns address an application-specifi c problem within a spe-

cifi c context and under a set of limitations and constraints. The pattern proposes 

an architectural solution that can serve as the basis for architectural design. 

 Previously in this chapter, we noted that most applications fi t within a specifi c 

domain or genre and that one or more architectural styles may be appropriate 

for that genre. For example, the overall architectural style for an application 

might be call-and-return or object-oriented. But within that style, you will en-

counter a set of common problems that might best be addressed with specifi c 

architectural patterns. Some of these problems and a more complete discussion 

of architectural patterns are presented in  Chapter 16 . 

   13.3.3  Organization and Refi nement 

      Because the design process often leaves you with a number of architectural 

 alternatives, it is important to establish a set of design criteria that can be used 

to assess an architectural design that is derived. The following questions [Bas03] 

provide insight into an architectural style:

        Control.   How is control managed within the architecture? Does a distinct 

control hierarchy exist, and if so, what is the role of components within 

this control hierarchy? How do components transfer control within the 

system? How is control shared among components? What is the  control 

 topology (i.e., the geometric form that the control takes)? Is control 

 synchronized or do components operate asynchronously?  

 How do I 
assess an 

architectural style 
that has been 
derived? 

?

  uote: 

 “Maybe it’s in the 
basement. Let me 
go upstairs and 
check.” 

 M. C. Escher 

pre22126_ch13_252-284.indd   263pre22126_ch13_252-284.indd   263 13/12/13   6:12 PM13/12/13   6:12 PM



264 PART TWO  MODELING

     Data.   How are data communicated between components? Is the fl ow of 

data continuous, or are data objects passed to the system sporadically? 

What is the mode of data transfer (i.e., are data passed from one compo-

nent to another or are data available globally to be shared among system 

components)? Do data components (e.g., a blackboard or repository) exist, 

and if so, what is their role? How do functional components interact with 

data components? Are data components passive or active (i.e., does the 

data component actively interact with other components in the system)? 

How do data and control interact within the system?  

   These questions provide the designer with an early assessment of design quality 

and lay the foundation for more detailed analysis of the architecture. 

 Evolutionary process models ( Chapter 4 ) have become very popular. This im-

plies the software architectures may need to evolve as each product increment 

is planned and implemented. In  Chapter 12  we described this process as refac-

toring—improving the internal structure of the system without changing its ex-

ternal behavior. 

      13.4 ARCHITECTURAL CONSIDERATIONS 

       Buschmann and Henny [Bus10b, Bus10c] suggest several architectural consider-

ations that can provide software engineers with guidance as architecture deci-

sions are made.

     •   Economy —Many software architectures suffer from unnecessary complex-

ity driven by the inclusion of unnecessary features or nonfunctional re-

quirements (e.g., reusability when it serves no purpose). The best software 

is uncluttered and relies on abstraction to reduce unnecessary detail.  

    •   Visibility —As the design model is created, architectural decisions and the 

reasons for them should be obvious to software engineers who examine 

the model at a later time. Poor visibility arises when important design and 

domain concepts are poorly communicated to those who must complete 

the design and implement the system.  

    •   Spacing— Separation of concerns in a design without introducing hidden 

dependencies is a desirable design concept ( Chapter 12 ) that is sometimes 

referred to as  spacing.  Suffi cient spacing leads to modular designs, but too 

much spacing leads to fragmentation and loss of visibility. Methods like 

domain-driven design can help to identify what to separate in a design 

and what to treat as a coherent unit.  

    •   Symmetry —Architectural symmetry implies that a system is consistent 

and balanced in its attributes. Symmetric designs are easier to under-

stand, comprehend, and communicate. As an example of architectural 

 What issues 
should 

I consider 
as I develop 
a software 
architecture? 

?

pre22126_ch13_252-284.indd   264pre22126_ch13_252-284.indd   264 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  265

symmetry, consider a  customer account  object whose life cycle is modeled 

directly by a software architecture that requires both  open()  and  close()  

methods. Architectural symmetry can be both structural and behavioral.  

    •   Emergence —Emergent, self-organized behavior and control are often the 

key to creating scalable, effi cient, and economic software architectures. 

For example, many real-time software applications are event driven. The 

sequence and duration of the events that defi ne the system’s behavior is 

an emergent quality. It is very diffi cult to plan for every possible sequence 

of events. Instead the system architect should create a fl exible system that 

accommodates this emergent behavior.  

   These considerations do not exist in isolation. They interact with each other and 

are moderated by each other. For example, spacing can be both reinforced and 

reduced by economy. Visibility can be balanced by spacing. 

  Evaluating Architectural Decisions   Evaluating Architectural Decisions 

        The scene:  Jamie’s cubicle, as 
 design modeling continues.  

       The players:  Jamie and Ed—members of the 
  SafeHome  software engineering team.  

       The conversation:   

       Ed:  I fi nished my call-return architectural model of the 
security function.  

       Jamie:  Great! Do you think it meets our needs?  

       Ed:  It doesn’t introduce any unneeded features, so it 
seems to be economic.  

       Jamie:  How about visibility?  

       Ed:  Well, I understand the model and there’s no prob-
lem implementing the security requirements needed for 
this product.  

       Jamie:  I get that you understand the architecture, but 
you may not be the programmer for this part of the proj-
ect. I’m a little worried about spacing. This design may 
not be as modular as an object-oriented design.  

       Ed:  Maybe, but that may limit our ability to reuse some 
of our code when we have to create the web-based 
 version of this  SafeHome .  

       Jamie:  What about symmetry?  

       Ed:  Well, that’s harder for me to assess. It seems to me 
the only place for symmetry in the security function is 
adding and deleting PIN information.  

       Jamie:  That will get more complicated when we add 
remote security features to the web-based product.  

       Ed:  That’s true, I guess. 

  [They both pause for a moment, pondering the architec-
tural issues.]  

       Jamie:   SafeHome  is a real-time system, so state transi-
tion and sequencing of events will be tough to predict.  

       Ed:  Yeah, but the emergent behavior of this system can 
be handled with a fi nite state model.  

       Jamie:  How?  

       Ed:  The model can be implemented based on the 
call-return architecture. Interrupts can be handled easily 
in many programming languages.  

       Jamie:  Do you think we need to do the same kind of 
analysis for the object-oriented architecture we were 
initially considering?  

       Ed:  I suppose it might be a good idea, since architec-
ture is hard to change once implementation starts.  

       Jamie:  It’s also important for us to map the nonfunc-
tional requirements besides security on top of these 
architectures to be sure they have been considered 
thoroughly.  

       Ed:  Also, true.    

 SAFEHOME 

pre22126_ch13_252-284.indd   265pre22126_ch13_252-284.indd   265 13/12/13   6:12 PM13/12/13   6:12 PM



266 PART TWO  MODELING

 The architectural description for a software product is not explicitly visible 

in the source code used to implement it. As a consequence, code modifi cations 

made over time (e.g., software maintenance activities) can cause slow erosion of 

the software architecture. The challenge for a designer is to fi nd suitable abstrac-

tions for the architectural information. These abstractions have the potential to 

add structuring that improves readability and maintainability of the source code 

[Bro10b].     

      13.5 ARCHITECTURAL DECIS IONS 

  Decisions associated with system architecture capture key design issues and 

the rationale behind chosen architectural solutions. Some of these decisions 

include software system organization, selection of structural elements and 

their interfaces as defi ned by their intended collaborations, and the composi-

tion of these elements into increasingly larger subsystems [Kru09]. In addition, 

choices of  architectural patterns, application technologies, middleware assets, 

and  programming language can also be made. The outcome of the architec-

tural  decisions infl uences the system’s nonfunctional characteristics and many 

of its quality attributes [Zim11] and can be documented with  developer notes . 

These notes document key design decisions along with their justifi cation, pro-

vide a reference for new project team members, and serve as a repository for 

lessons-learned. 

  In general, software architectural practice focuses on architectural views that 

represent and document the needs of various stakeholders. It is possible, how-

ever, to defi ne a  decision view  that cuts across several views of information con-

tained in traditional architectural representations. The decision view captures 

both the architecture design decisions and their rationale. 

  Service-oriented architecture decision  (SOAD)  5   modeling [Zim11] is a knowl-

edge management framework that provides support for capturing architectural 

decision dependencies in a manner that allows them to guide future develop-

ment activities. 

  A  guidance model  contains knowledge about architectural decisions required 

when applying an architectural style in a particular application genre. It is based 

architectural information obtained from completed projects that employed the 

architectural style in that genre. The guidance model documents places where 

design problems exist and architectural decisions must be made, along with 

quality attributes that should be considered in selecting from among potential 

  uote: 

 “A doctor can 
bury his mistakes, 
but an architect 
can only advise 
his client to plant 
vines.” 

 Frank Lloyd 
Wright 

  5  SOAD is analogous to the use of architecture patterns discussed in  Chapter 16 . Further infor-

mation can be obtained at:   http://soadecisions.org/soad.htm   

pre22126_ch13_252-284.indd   266pre22126_ch13_252-284.indd   266 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  267

alternatives. Potential alternative solutions (with their pros and cons) from pre-

vious software applications are included to assist the architect in making the 

best decision possible. 

 The  decision model  documents both the architectural decisions required and 

records the decisions actually made on previous projects with their justifi ca-

tions. The guidance model feeds the architectural decision model in a  tailoring  

step that allows the architect to delete irrelevant issues, enhance important is-

sues, or add new issues. A decision model can make use of more than one guid-

ance model and provides feedback to the guidance model after the project is 

completed. This feedback may be accomplished by  harvesting  lessons learned 

from project postmortem reviews. 

     13.6 ARCHITECTURAL DES IGN 

  As architectural design begins, context must be established. To accomplish this, 

the external entities (e.g., other systems, devices, people) that interact with the 

software and the nature of their interaction are described. This information can 

generally be acquired from the requirements model. Once context is modeled 

and all external software interfaces have been described, you can identify a set 

of architectural archetypes. 

 An  archetype  is an abstraction (similar to a class) that represents one element 

of system behavior. The set of archetypes provides a collection of abstractions 

that must be modeled architecturally if the system is to be constructed, but the 

archetypes themselves do not provide enough implementation detail. Therefore, 

the designer specifi es the structure of the system by defi ning and refi ning soft-

ware components that implement each archetype. This process continues itera-

tively until a complete architectural structure has been derived. 

 A number of questions [Boo11b] must be asked and answered as a software en-

gineer creates meaningful architectural diagrams. Does the diagram show how 

the system responds to inputs or events? What visualizations might there be to 

help emphasize areas of risk? How can hidden system design patterns be made 

more obvious to other developers? Can multiple viewpoints show the best way to 

refactor specifi c parts of the system? Can design trade-offs be represented in a 

meaningful way? If a diagrammatic representation of software architecture an-

swers these questions, it will have value to software engineers that use it. 

  13.6.1  Representing the System in Context 

 At the architectural design level, a software architect uses an  architectural con-

text diagram  (ACD) to model the manner in which software interacts with enti-

ties external to its boundaries. The generic structure of the architectural context 

diagram is illustrated in  Figure 13.5 . 

What is an 
archetype??

pre22126_ch13_252-284.indd   267pre22126_ch13_252-284.indd   267 13/12/13   6:12 PM13/12/13   6:12 PM



268 PART TWO  MODELING

       Referring to the fi gure, systems that interoperate with the  target system  (the 

system for which an architectural design is to be developed) are represented as:

    •   Superordinate systems —those systems that use the target system as part 

of some higher-level processing scheme.  

   •   Subordinate systems —those systems that are used by the target system 

and provide data or processing that are necessary to complete target sys-

tem functionality.  

   •   Peer-level systems —those systems that interact on a peer-to-peer basis 

(i.e., information is either produced or consumed by the peers and the tar-

get system.  

   •   Actors —entities (people, devices) that interact with the target system 

by producing or consuming information that is necessary for requisite 

processing.  

   Each of these external entities communicates with the target system through 

an interface (the small shaded rectangles). 

 To illustrate the use of the ACD, consider the home security function of the  Safe-

Home  product. The overall  SafeHome  product controller and the  Internet-based 

system are both superordinate to the security function and are shown above the 

function in  Figure 13.6 . The surveillance function is a  peer system  and uses (is 

used by) the home security function in later versions of the product. The home-

owner and control panels are actors that producer and consume information 

used/produced by the security software. Finally, sensors are used by the security 

software and are shown as subordinate to it. 

  FIGURE 13.5

  Architectural 
context 
diagram 
    Source:  Adapted from 
[Bos00]. 

Superordinate systems

Subordinate systems

Depends on

Uses 
Uses 

Used by

Peers

Actors

Target system

 How do 
systems 

interoperate with 
one another? 

?

pre22126_ch13_252-284.indd   268pre22126_ch13_252-284.indd   268 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  269

  As part of the architectural design, the details of each interface shown in 

  Figure 13.6  would have to be specifi ed. All data that fl ow into and out of the target 

system must be identifi ed at this stage. 

   13.6.2  Defi ning Archetypes 

 An  archetype  is a class or pattern that represents a core abstraction that is criti-

cal to the design of an architecture for the target system. In general, a relatively 

small set of archetypes is required to design even relatively complex systems. 

The target system architecture is composed of these archetypes, which repre-

sent stable elements of the architecture but may be instantiated many different 

ways based on the behavior of the system. 

      In many cases, archetypes can be derived by examining the analysis classes 

defi ned as part of the requirements model. Continuing the discussion of the 

 SafeHome  home security function, you might defi ne the following archetypes:

    •   Node.  Represents a cohesive collection of input and output elements of 

the home security function. For example, a node might be composed of 

(1) various sensors and (2) a variety of alarm (output) indicators.  

   •   Detector.  An abstraction that encompasses all sensing equipment that 

feeds information into the target system.  

   •   Indicator.  An abstraction that represents all mechanisms (e.g., alarm siren, 

fl ashing lights, bell) for indicating that an alarm condition is occurring.  

   •   Controller.  An abstraction that depicts the mechanism that allows the 

arming or disarming of a node. If controllers reside on a network, they 

have the ability to communicate with one another.  

   Archetypes are the 
abstract building blocks 
of an architectural 
design. 

Target system: 
security function

Uses 
Uses PeersHomeowner

SafeHome
product

Internet-based
system

Surveillance
function

Sensors

Control 
panel

Sensors

 Uses

  FIGURE 13.6

  Architectural 
context 
 diagram for 
the  SafeHome  
security 
function   

pre22126_ch13_252-284.indd   269pre22126_ch13_252-284.indd   269 13/12/13   6:12 PM13/12/13   6:12 PM



270 PART TWO  MODELING

   Each of these archetypes is depicted using UML notation as shown in 

  Figure 13.7 . Recall that the archetypes form the basis for the architecture but are 

abstractions that must be further refi ned as architectural design proceeds. For 

example,  Detector  might be refi ned into a class hierarchy of sensors.  

   13.6.3  Refi ning the Architecture into Components 

 As the software architecture is refi ned into components, the structure of the sys-

tem begins to emerge. But how are these components chosen? In order to answer 

this question, you begin with the classes that were described as part of the re-

quirements model.  6   These analysis classes represent entities within the applica-

tion (business) domain that must be addressed within the software architecture. 

Hence, the application domain is one source for the derivation and refi nement 

of components. Another source is the infrastructure domain. The architecture 

must accommodate many infrastructure components that enable application 

components but have no business connection to the application domain. For ex-

ample, memory management components, communication components, data-

base components, and task management components are often integrated into 

the software architecture. 

   The interfaces depicted in the architecture context diagram (Section 13.6.1) 

imply one or more specialized components that process the data that fl ows 

across the interface. In some cases (e.g., a graphical user interface), a complete 

subsystem architecture with many components must be designed. 

Controller

Node

Communicates with

Detector Indicator

  FIGURE 13.7

 UML rela-
tionships for 
  SafeHome  
 security 
function 
archetypes   
  Source:  Adapted from 
[Bos00]. 

  6  If a conventional (non-object-oriented) approach is chosen, components may be derived from 

the subprogram calling hierarchy (see  Figure 13.3 ). 

  uote: 

 “The structure 
of a software 
system provides 
the ecology in 
which code is born, 
matures, and dies. 
A well-designed 
habitat allows 
for the successful 
evolution of all 
the components 
needed in a 
software system.” 

 R. Pattis 

pre22126_ch13_252-284.indd   270pre22126_ch13_252-284.indd   270 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  271

 Continuing the  SafeHome  home security function example, you might defi ne 

the set of top-level components that address the following functionality:

    •   External communication management —coordinates communication of 

the security function with external entities such as other Internet-based 

systems and external alarm notifi cation.  

   •   Control panel processing —manages all control panel functionality.  

   •   Detector management —coordinates access to all detectors attached to the 

system.  

   •   Alarm processing —verifi es and acts on all alarm conditions.  

   Each of these top-level components would have to be elaborated iteratively 

and then positioned within the overall  SafeHome  architecture. Design classes 

(with appropriate attributes and operations) would be defi ned for each. It is im-

portant to note, however, that the design details of all attributes and operations 

would not be specifi ed until component-level design ( Chapter 14 ). 

 The overall architectural structure (represented as a UML component dia-

gram) is illustrated in  Figure 13.8 . Transactions are acquired by  external com-

munication management  as they move in from components that process the 

 SafeHome  GUI and the Internet interface. This information is managed by a 

 SafeHome  executive component that selects the appropriate product function 

(in this case security). The  control panel processing  component interacts with 

the homeowner to arm/disarm the security function. The  detector management  

SafeHome 
executive

External 
communication
management

 

GUI Internet
interface

Function 
selection

Security Surveillance Home
management

Control panel 
processing

Detector
management

Alarm
processing

-

  FIGURE 13.8  Overall architectural structure for  SafeHome  with top-level components   

pre22126_ch13_252-284.indd   271pre22126_ch13_252-284.indd   271 13/12/13   6:12 PM13/12/13   6:12 PM



272 PART TWO  MODELING

component polls sensors to detect an alarm condition, and the  alarm processing  

component produces output when an alarm is detected.  

   13.6.4  Describing Instantiations of the System 

 The architectural design that has been modeled to this point is still relatively 

high level. The context of the system has been represented, archetypes that indi-

cate the important abstractions within the problem domain have been defi ned, 

the overall structure of the system is apparent, and the major software compo-

nents have been identifi ed. However, further refi nement (recall that all design is 

iterative) is still necessary. 

 To accomplish this, an actual instantiation of the architecture is developed. By 

this we mean that the architecture is applied to a specifi c problem with the intent 

of demonstrating that the structure and components are appropriate. 

  Figure 13.9  illustrates an instantiation of the  SafeHome  architecture for the 

security system. Components shown in  Figure 13.8  are elaborated to show addi-

tional detail. For example, the  detector management  component interacts with 

External
communication
management

GUI Internet
interface

Security

Control
panel 

processing

Detector
management

Alarm
processing

Keypad
processing

CP display
functions

Scheduler Phone
communication

Alarm

SafeHome
executive

Sensor

  FIGURE 13.9  An instantiation of the security function with component elaboration   

pre22126_ch13_252-284.indd   272pre22126_ch13_252-284.indd   272 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  273

a  scheduler  infrastructure component that implements polling of each  sensor  

object used by the security system. Similar elaboration is performed for each of 

the components represented in  Figure 13.8 . 

  Architectural Design 
  Objective:   Architectural design tools model 
the overall software structure by representing 

component interface, dependencies and relationships, 
and interactions. 

   Mechanics:   Tool mechanics vary. In most cases, 
architectural design capability is part of the functionality 
provided by automated tools for analysis and design 
modeling. 

    Representative Tools:  7   
   Adalon,  developed by Synthis Corp. (  www.synthis

.com  ), is a specialized design tool for the design 

and construction of specifi c Web-based component 
architectures. 

  ObjectiF,  developed by microTOOL GmbH 
(  www.microtool.de/objectiF/en/  ), is a 
UML-based design tool that leads to architectures 
(e.g., Coldfusion, J2EE, Fusebox) amenable to 
component-based software engineering 
( Chapter 14 ). 

  Rational Rose,  developed by Rational 
(  http://www-01.ibm.com/software/rational/  ), 
is a UML-based design tool that supports all 
aspects of architectural design.  

 SOFTWARE TOOLS 

         13.6.5  Architectural Design for Web Apps 

 WebApps  8   are client-server applications typically structured using multilayered 

architectures, including a user interface or view layer, a controller layer which 

directs the fl ow of information to and from the client browser based on a set of 

business rules, and a content or model layer that may also contain the business 

rules for the WebApp. 

  The user interface for a WebApp is designed around the characteristics of the 

web browser running on the client machine (usually a personal computer or mobile 

device). Data layers reside on a server. Business rules can be implemented using a 

server-based scripting language such as PHP or a client-based scripting language 

such as javascript. An architect will examine requirements for security and usabil-

ity to determine which features should be allocated to the client or server. 

 The architectural design of a WebApp is also infl uenced by the structure (lin-

ear or nonlinear) of the content that needs to be accessed by the client. The ar-

chitectural components (Web pages) of a WebApp are designed to allow control 

to be passed to other system components, allowing very fl exible navigation struc-

tures. The physical location of media and other content resources also infl uences 

the architectural choices made by software engineers. 

  7  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  8  WebApp design is discussed in more detail in  Chapter 17 . 

pre22126_ch13_252-284.indd   273pre22126_ch13_252-284.indd   273 13/12/13   6:12 PM13/12/13   6:12 PM



274 PART TWO  MODELING

   13.6.6  Architectural Design for Mobile Apps 

 Mobile apps  9   are typically structured using multilayered architectures, including 

a user interface layer, a business layer, and a data layer. With mobile apps you 

have the choice of building a thin Web-based client or a rich client. With a thin 

client, only the user interface resides on the mobile device, whereas the business 

and data layers reside on a server. With a rich client all three layers may reside 

on the mobile device itself. 

  Mobile devices differ from one another in terms of their physical characteris-

tics (e.g., screen sizes, input devices), software (e.g., operating systems, language 

support), and hardware (e.g., memory, network connections). Each of these attri-

butes shapes the direction of the architectural alternatives that can be selected. 

Meier and his colleagues [Mei09] suggest a number of considerations that can 

infl uence the architectural design of a mobile app: (1) the type of web client (thin 

or rich) to be built, (2) the categories of devices (e.g., smartphones, tablets) that 

are supported, (3) the degree of connectivity (occasional or persistent) required, 

(4) the bandwidth required, (5) the constraints imposed by the mobile platform, 

(6) the degree to which reuse and maintainability are important, and (7) device 

resource constraints (e.g., battery life, memory size, processor speed). 

      13.7 ASSESS ING ALTERNATIVE ARCHITECTURAL DES IGNS 

  In their book on the evaluation of software architectures, Clements and his 

 colleagues [Cle03] state:

  To put it bluntly, an architecture is a bet, a wager on the success of a system. Wouldn’t 

it be nice to know in advance if you’ve placed your bet on a winner, as opposed to wait-

ing until the system is mostly completed before knowing whether it will meet its re-

quirements or not? If you’re buying a system or paying for its development, wouldn’t 

you like to have some assurance that it’s started off down the right path? If you’re the 

architect yourself, wouldn’t you like to have a good way to validate your intuitions 

and experience, so that you can sleep at night knowing that the trust placed in your 

design is well founded? 

   Indeed, answers to these questions would have value. Design results in a num-

ber of architectural alternatives that are each assessed to determine which is 

the most appropriate for the problem to be solved. In the sections that follow, we 

present two different approaches for the assessment of alternative  architectural 

designs. The fi rst method uses an iterative method to assess design trade-offs. 

The second approach applies a pseudo-quantitative technique for assessing 

 design quality. 

  9  Mobile app design is discussed in more detail in  Chapter 18 . 

pre22126_ch13_252-284.indd   274pre22126_ch13_252-284.indd   274 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  275

 The Software Engineering Institute (SEI) has developed an  architecture trade-

off analysis method  (ATAM) [Kaz98] that establishes an iterative evaluation pro-

cess for software architectures. The design analysis activities that follow are 

performed iteratively:

     1.   Collect scenarios.  A set of use cases ( Chapters 8  and  9 ) is developed to 

represent the system from the user’s point of view.  

    2.   Elicit requirements, constraints, and environment description.  This infor-

mation is required as part of requirements engineering and is used to be 

certain that all stakeholder concerns have been addressed.  

    3.   Describe the architectural styles/patterns that have been chosen to ad-

dress the scenarios and requirements.  The architectural style(s) should be 

described using one of the following architectural views:    

 •    Module view  for analysis of work assignments with components and the 

degree to which information hiding has been achieved.  

   •   Process view  for analysis of system performance.  

   •    Data fl ow view  for analysis of the degree to which the architecture 

meets functional requirements.    

    4.   Evaluate quality attributes by considering each attribute in isolation.  The 

number of quality attributes chosen for analysis is a function of the time 

available for review and the degree to which quality attributes are rel-

evant to the system at hand. Quality attributes for architectural design 

assessment include reliability, performance, security, maintainability, 

 fl exibility, testability, portability, reusability, and interoperability.  

    5.   Identify the sensitivity of quality attributes to various architectural attributes 

for a specifi c architectural style.  This can be accomplished by making small 

changes in the architecture and determining how sensitive a quality attri-

bute, say performance, is to the change. Any attributes that are signifi cantly 

affected by variation in the architecture are termed  sensitivity points.   

    6.   Critique candidate architectures (developed in step 3) using the sensitivity 

analysis conducted in step 5.  The SEI describes this approach in the fol-

lowing manner [Kaz98]:

       Once the architectural sensitivity points have been determined, fi nding trade-off 

points is simply the identifi cation of architectural elements to which multiple at-

tributes are sensitive. For example, the performance of a client-server architec-

ture might be highly sensitive to the number of servers (performance increases, 

within some range, by increasing the number of servers). . . . The number of serv-

ers, then, is a trade-off point with respect to this architecture.  

     These six steps represent the fi rst ATAM iteration. Based on the results of 

steps 5 and 6, some architecture alternatives may be eliminated, one or more of 

pre22126_ch13_252-284.indd   275pre22126_ch13_252-284.indd   275 13/12/13   6:12 PM13/12/13   6:12 PM



276 PART TWO  MODELING

the remaining architectures may be modifi ed and represented in more detail, 

and then the ATAM steps are reapplied.  10        

  10  The  software architecture analysis method  (SAAM) is an alternative to ATAM and is well worth 

examining by those readers interested in architectural analysis. A paper on SAAM can be 

downloaded from  www.sei.cmu.edu/publications/articles/saam-metho-propert-sas.html . 

  Architecture Assessment   Architecture Assessment 

        The scene:  Doug Miller’s offi ce 
as architectural design modeling 

proceeds.  

       The players:  Vinod, Jamie, and Ed—members of the 
 SafeHome  software engineering team and Doug Miller, 
manager of the software engineering group.  

       The conversation:   

       Doug:  I know you guys are deriving a couple of differ-
ent architectures for the  SafeHome  product, and that’s a 
good thing. I guess my question is, how are we going 
to choose the one that’s best?  

       Ed:  I’m working on a call and return style and then ei-
ther Jamie or I are going to derive an OO architecture.  

       Doug:  Okay, and how do we choose?  

       Jamie:  I took a CS course in design in my senior year, 
and I remember that there are a number of ways to do it.  

       Vinod:  There are, but they’re a bit academic. Look, I 
think we can do our assessment and choose the right 
one using use cases and scenarios.  

       Doug:  Isn’t that the same thing?  

       Vinod:  Not when you’re talking about architectural 
assessment. We already have a complete set of use 
cases. So we apply each to both architectures and see 

how the system reacts, how components and connectors 
work in the use case context.  

       Ed:  That’s a good idea. Make sure we didn’t leave 
anything out.  

       Vinod:  True, but it also tells us whether the architec-
tural design is convoluted, whether the system has to 
twist itself into a pretzel to get the job done.  

       Jamie:  Aren’t scenarios just another name for use 
cases?  

       Vinod:  No, in this case a scenario implies something 
different.  

       Doug:  You’re talking about a quality scenario or a 
change scenario, right?  

       Vinod:  Yes. What we do is go back to the stakehold-
ers and ask them how  SafeHome  is likely to change 
over the next, say, three years. You know, new versions, 
features, that sort of thing. We build a set of change 
scenarios. We also develop a set of quality scenarios 
that defi ne the attributes we’d like to see in the software 
architecture.  

       Jamie:  And we apply them to the alternatives.  

       Vinod:  Exactly. The style that handles the use cases 
and scenarios best is the one we choose.    

 SAFEHOME 

   13.7.1  Architectural Description Languages 

  Architectural description language  (ADL) provides a semantics and syntax for 

describing a software architecture. Hofmann and his colleagues [Hof01] suggest 

that an ADL should provide the designer with the ability to decompose archi-

tectural components, compose individual components into larger architectural 

blocks, and represent interfaces (connection mechanisms) between components. 

Once descriptive, language-based techniques for architectural design have been 

pre22126_ch13_252-284.indd   276pre22126_ch13_252-284.indd   276 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  277

established, it is more likely that effective assessment methods for architectures 

will be established as the design evolves. 

        13.7.2  Architectural Reviews 

 Architectural reviews are a type of specialized technical review ( Chapter 20 ) that 

provide a means of assessing the ability of a software architecture to meet the 

system’s quality requirements (e.g., scalability or performance) and to identify 

any potential risks. Architectural reviews have the potential to reduce project 

costs by detecting design problems early. 

 Unlike requirements reviews that involve representatives of all stakeholders, 

architecture reviews often involve only software engineering team members 

supplemented by independent experts. The most common architectural review 

techniques used in industry are: experienced-based reasoning,  11   prototype eval-

uation, scenario review ( Chapter 9 ), and use of checklists.  12   Many architectural 

reviews occur early in the project life cycle, they should also occur after new 

components or packages are acquired in component-based design ( Chapter 14 ). 

Software engineers who conduct architectural reviews note that architectural 

work products are sometimes missing or inadequate, thereby making reviews 

diffi cult to complete [Bab09]. 

  Architectural Description Languages 
 The following summary of a number of 
 important ADLs was prepared by Rickard 

Land [Lan02] and is reprinted with the author’s per-
mission. It should be noted that the fi rst fi ve ADLs listed 
have been developed for research purposes and are not 
commercial products. 

  xArch (   http://www.isr.uci.edu/projects/
xarchuci/  ) a standard, extensible XML-based 
representation for software architectures. 

  UniCon (  www.cs.cmu.edu/~UniCon ) is “an 
architectural description language intended to aid 
designers in defi ning software architectures in terms 
of abstractions that they fi nd useful.” 

  Wright (  www.cs.cmu.edu/~able/wright/ ) is a 
formal language including the following elements: 

 components  with  ports ,  connectors  with  roles , and 
 glue  to attach roles to ports. Architectural styles 
can be formalized in the language with predicates, 
thus allowing for static checks to determine the 
consistency and completeness of an architecture. 

  Acme (  www.cs.cmu.edu/~acme/ ) can be seen 
as a second-generation ADL, in that its intention is to 
identify a kind of least common denominator for ADLs. 

  UML (  www.uml.org/ ) includes many of the artifacts 
needed for architectural descriptions—processes, 
nodes, views, etc. For informal descriptions, UML 
is well suited just because it is a widely understood 
standard. It, however, lacks the full strength needed 
for an adequate architectural description.  

 SOFTWARE TOOLS 

  11   Experience-based reasoning  compares the new software architecture to an architecture used 

to create a similar system in the past. 

  12  Representative checklists can be found at  http://www.opengroup.org/architecture/togaf7-doc/

arch/p4/comp/clists/syseng.htm  

pre22126_ch13_252-284.indd   277pre22126_ch13_252-284.indd   277 13/12/13   6:12 PM13/12/13   6:12 PM



278 PART TWO  MODELING

        13.8 LESSONS LEARNED 

  Software-based systems are built by people with a variety of different needs and 

points of view. Therefore, a software architect should build consensus among 

members of the software team (and other stakeholders) in order to achieve the 

architectural vision for the fi nal software product [Wri11]. 

      Architects often focus on the long-term impact of the system’s nonfunctional 

requirements as the architecture is created. Senior managers assess the archi-

tecture within the context of business goals and objectives. Project managers are 

often driven by short-term considerations of delivery dates and budget. Software 

engineers are often focused on their own technology interests and feature delivery. 

Each of these (and other) constituencies should work to achieve consensus that the 

software architecture chosen has distinct advantages over any other alternatives. 

 Wright [Wri11] suggests the use of several  decision analysis and resolution  

(DAR) methods that may help to counteract some hindrances to collaboration. 

These methods can help increase active team member participation and in-

crease the likelihood of their buy-in to the fi nal decision. DAR methods help 

team members to consider several viable architectural alternatives in an objec-

tive manner. Three representative examples of DAR methods are:

    •   Chain of causes.  This technique is a form of root cause  13   analysis in which 

the team defi nes an architectural goal or effect and then enunciates the 

related actions that will cause the goal to be achieved.   

   •   Ishikawa fi shbone.   14   This is a graphical technique that identifi es the many 

possible actions or causes required to achieve a desired architectural goal.   

   •   Mind mapping or spider diagrams.   15   This diagram is used to represent 

words, concepts, tasks, or software engineering artifacts arranged around 

a central key word, constraint, or requirement. 

              13.9 PATTERN-BASED ARCHITECTURE REVIEW 

  Formal technical reviews ( Chapter 20 ) can be applied to software architecture 

and provide a means for managing system quality attributes, uncovering errors, 

and avoiding unnecessary rework. However, in situations in which short build 

cycles, tight deadlines, volatile requirements, and/or small teams are the norm, 

 WebRef 
 A discussion of 
 pattern-based 
 architecture reviews 
appears at   http://
www.infoq.com/
articles/ieee- 
pattern-based-
architecture-
reviews   

 WebRef 
 Examples of software 
architectural design 
lessons learned can 
be found at   http://
www.sei.cmu.
edu/library/
abstracts/
news-at-sei/
01feature200707.
cfm   

      13  Further information can be obtained at:  http://www.thinkreliability.com/Root-Cause-Analysis-

CM-Basics.aspx  

      14  Further information can be obtained at:  http://asq.org/learn-about-quality/cause-analysis-

tools/overview/fi shbone.html  

      15  Further information can be obtained at:  http://mindmappingsoftwareblog.com/5-best-mind-

mapping-programs-for-brainstorming/  

pre22126_ch13_252-284.indd   278pre22126_ch13_252-284.indd   278 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  279

a lightweight architectural review process known as  pattern-based architecture 

review  (PBAR) might be the best option. 

 PBAR is an evaluation method that leverages the relationship between archi-

tectural patterns  16   and software quality attributes. A PBAR is a face-to-face audit 

meeting involving all developers and other interested stakeholders. An external 

reviewer with expertise in architecture, architecture patterns, quality attributes, 

and the application domain is also in attendance. The system architect is the 

primary presenter. 

  A PBAR should be scheduled after the fi rst working prototype or  walking 

 skeleton   17   is completed. The PBAR encompasses the following iterative steps 

[Har11]: 

      1.  Identify and discuss the quality attributes most important to the system by 

walking through the relevant use cases ( Chapter 9 ).  

    2.  Discuss a diagram of the system’s architecture in relation to its 

requirements.  

    3.  Help the reviewers identify the architecture patterns used and match the 

system’s structure to the patterns’ structure.  

    4.  Using existing documentation and past use cases, examine the archi-

tecture and quality attributes to determine each pattern’s effect on the 

 system’s quality attributes.  

    5.  Identify and discuss all quality issues raised by architecture patterns used 

in the design.  

    6.  Develop a short summary of the issues uncovered during the meeting and 

makes appropriate revisions to the walking skeleton.  

  PBARs are well-suited to small, agile teams and require a relatively small 

amount of extra project time and effort. With its short preparation and review time, 

PBAR can accommodate changing requirements and short build cycles, and at the 

same time, help improve the team’s understanding of the system architecture. 

     13.10 ARCHITECTURE CONFORMANCE CHECKING 

  As the software process moves through design and into construction, software 

engineers must work to ensure that an implemented and evolving system con-

forms to its planned architecture. Many things (e.g., confl icting requirements, 

  16  An  architectural pattern  is a generalized solution to an architectural design problem with a 

specifi c set of conditions or constraints. Patterns are discussed in detail in  Chapter 16 . 

  17  A walking skeleton contains a baseline architecture that supports the functional requirements 

with the highest priorities in the business case and the most challenging quality attributes. 

pre22126_ch13_252-284.indd   279pre22126_ch13_252-284.indd   279 13/12/13   6:12 PM13/12/13   6:12 PM



280 PART TWO  MODELING

technical diffi culties, deadline pressures) cause deviations from a defi ned ar-

chitecture. If architecture is not checked for conformance periodically, uncon-

trolled deviations can cause  architecture erosion  and affect the quality of the 

system [Pas10]. 

       Static architecture-conformance analysis  (SACA) assesses whether an imple-

mented software system is consistent with its architectural model. The formalism 

(e.g., UML) used to model the system architecture presents the static organiza-

tion of system components and how the components interact. Often the architec-

tural model is used by a project manager to plan and allocate work tasks, as well 

as to assess implementation progress. 

 WebRef 
 A discussion of the role 
of architecture in agile 
software processes 
  http://msdn.
microsoft.
com/enus/ 
architecture/
ff476940.aspx   

  Architectural-Conformance Tools 
  Lattix Dependency Manager  (  http://
www.lattix.com/  ). This tool includes a 

simple language to declare design rules that the 
implementation must follow, detects violations in 
design rules, and visually represents them as a 
dependency-structure matrix. 

  Source Code Query Languages  (  http://www.
semmle.com/  ). This tool can be used to automate 
software development tasks such defi ning and 
checking architectural constraints and makes use 

of a Prolog-like to defi ne recursive queries on the 
inheritance hierarchy of object-oriented systems. 

  Refl exion Models  ( http://www.iese.fraunhofer.de/
en/competencies/architecture/tools_architecture.
html#contentPar_textblockwithpics ). The SAVE tool can 
be used to allow software engineers to build a high-
level model that captures the architecture of a system 
and then defi ne the relations between this model and 
the source code. SAVE will then identify missing or 
erroneous relations between the model and the code.  

 SOFTWARE TOOLS 

               13.11 AGIL ITY AND ARCHITECTURE 

  In the view of some proponents of agile development, architectural design is 

equated with “big design upfront.” In their view, this leads to unnecessary docu-

mentation and the implementation of unnecessary features. However, most agile 

developers do agree [Fal10] that it is important to focus on software architecture 

when a system is complex (i.e., when a product has a large number of require-

ments, many stakeholders, or wide geographic distribution). For this reason, 

there is a need to integrate new architectural design practices into agile process 

models. 

 In order to make early architectural decisions and avoid the rework required 

and/or the quality problems encountered required when the wrong architecture 

is chosen, agile developers should anticipate architectural elements  18   and struc-

ture based on an emerging collection of user stories ( Chapter 5 ). By creating an 

  18  An excellent discussion of architectural agility can be found in [Bro10a]. 

 WebRef 
 An overview of archi-
tecture conformance 
checking appears at 
  http://www.cin.
ufpe.br/~fcf3/
Arquitetura%20
de%20Software/
arquitetura/
getPDF3.pdf   

pre22126_ch13_252-284.indd   280pre22126_ch13_252-284.indd   280 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  281

architectural prototype (e.g., a walking skeleton) and developing explicit archi-

tectural work products to communicate to the necessary stakeholders, an agile 

team can satisfy the need for architectural design. 

  Agile development gives software architects repeated opportunities to work 

closely with the business and technical teams to guide the direction of a good ar-

chitectural design. Madison [Mad10] suggests the use of a hybrid framework that 

contains elements of Scrum, XP, and sequential project management.  19   In this 

framework up-front planning sets the architectural direction, but moves quickly 

into storyboarding [Bro10b]. 

  During storyboarding the architect contributes architectural user stories to 

the project and works with the product owner to prioritize the architectural 

stories with the business user stories as “sprints” (work units) are planned. The 

architect works with the team during the sprint to ensure that the evolving soft-

ware continues to show high architectural quality. If quality is high, the team is 

left alone to continue development on its own. If not, the architect joins the team 

for the duration of the sprint. After the sprint is completed, the architect reviews 

the working prototype for quality before the team presents it to the stakeholders 

in a formal sprint review. Well-run agile projects require the iterative delivery 

of work products (including architectural documentation) with each sprint. Re-

viewing the work products and code as it emerges from each sprint is a useful 

form of architectural review. 

  Responsibility-driven architecture  (RDA) is a process that focuses on archi-

tectural decision-making. It addresses when and how architectural decisions 

should be made and who on the project team makes them. This approach also 

emphasizes the role of architect as being a servant-leader rather than an auto-

cratic decision maker and is consistent with the agile philosophy. The architect 

acts as facilitator and focuses on how the development team works with stake-

holder concerns from outside the team (e.g., business, security, infrastructure). 

 Agile teams insist on the freedom to make changes as new requirements 

emerge. Architects want to make sure that the important parts of the architec-

ture were carefully considered and that developers have consulted the appro-

priate stakeholders. Both concerns may be satisfi ed by making use of a practice 

called  progressive sign-off  in which the evolving product is documented and ap-

proved as each successive prototype is completed [Bla10]. 

 Using a process that is compatible with the agile philosophy provides verifi -

able sign-off for regulators and auditors, without preventing agile teams from 

making decisions as needed. At the end of the project the team has a complete 

set of work products, and the architecture has been reviewed for quality as it 

evolves. 

  19  Scrum and XP are agile process models and are discussed in  Chapter 5 . 

pre22126_ch13_252-284.indd   281pre22126_ch13_252-284.indd   281 13/12/13   6:12 PM13/12/13   6:12 PM



282 PART TWO  MODELING

       13.12 SUMMARY 

 Software architecture provides a holistic view of the system to be built. It depicts 

the structure and organization of software components, their properties, and the 

connections between them. Software components include program modules and 

the various data representations that are manipulated by the program. There-

fore, data design is an integral part of the derivation of the software architec-

ture. Architecture highlights early design decisions and provides a mechanism 

for considering the benefi ts of alternative system structures. 

 A number of different architectural styles and patterns are available to the 

software engineer and may be applied within a given architectural genre. Each 

style describes a system category that encompasses a set of components that 

perform a function required by a system; a set of connectors that enable com-

munication, coordination, and cooperation among components; constraints 

that  defi ne how components can be integrated to form the system; and seman-

tic models that enable a designer to understand the overall properties of a 

system. 

 In a general sense, architectural design is accomplished using four distinct 

steps. First, the system must be represented in context. That is, the designer 

should defi ne the external entities that the software interacts with and the na-

ture of the interaction. Once context has been specifi ed, the designer should 

identify a set of top-level abstractions, called archetypes, that represent pivotal 

elements of the system’s behavior or function. After abstractions have been de-

fi ned, the design begins to move closer to the implementation domain. Compo-

nents are identifi ed and represented within the context of an architecture that 

supports them. Finally, specifi c instantiations of the architecture are developed 

to “prove” the design in a real-world context. 

 Architectural design can coexist with agile methods by applying a hybrid 

architectural design framework that makes use of existing techniques derived 

from popular agile methods. Once an architecture is developed, it can be as-

sessed to ensure conformance with business goals, software requirements, and 

quality attributes. 

     PROBLEMS AND POINTS TO PONDER 
    13.1.  Using the architecture of a house or building as a metaphor, draw comparisons with 
software architecture. How are the disciplines of classical architecture and the software 
architecture similar? How do they differ?  

   13.2.  Present two or three examples of applications for each of the architectural styles 
noted in Section 13.3.1.  

   13.3.  Some of the architectural styles noted in Section 13.3.1 are hierarchical in nature and 
others are not. Make a list of each type. How would the architectural styles that are not 
hierarchical be implemented?  

pre22126_ch13_252-284.indd   282pre22126_ch13_252-284.indd   282 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 13  ARCHITECTURAL DESIGN  283

   13.4.  The terms  architectural style, architectural pattern,  and  framework  (not discussed in 
this book) are often encountered in discussions of software architecture. Do some research 
and describe how each of these terms differs for its counterparts.  

   13.5.  Select an application with which you are familiar. Answer each of the questions posed 
for control and data in Section 13.3.3.  

   13.6.  Research the ATAM (using [Kaz98]) and present a detailed discussion of the six steps 
presented in Section 13.7.1.  

   13.7.  If you haven’t done so, complete Problem 9.5. Use the design approach described in 
this chapter to develop a software architecture for the PHTRS.  

   13.8.  Use the architectural decision template from Section 13.1.4 to document one of the 
architectural decisions for PHTRS architecture developed in Problem 13.7.  

   13.9.  Select a mobile application you are familiar with, assess it using the architecture con-
siderations (economy, visibility, spacing, symmetry, emergence) from Section 13.4.  

   13.10.  List the strengths and weakness of the PHTRS architecture you created for 
Problem 13.7.  

   13.11.  Create a dependency structure matrix  20   for the software PHTRS architecture created 
for Problem 13.7.   

   13.12.  Pick an agile process model from  Chapter 5  and identify the architectural design 
activities that are included.  

      FUR THER READINGS AND INFORMATION SOURCES 
  The literature on software architecture has exploded over the past decade. Varma  ( Software 

Architecture: A Case Based Approach,  Pearson, 2013) presents architecture in the context of 
a series of case studies. Books by Bass and his colleagues ( Software Architecture in Practice,  
3rd ed., Addison-Wesley, 2012), Gorton ( Essential Software Architecture,  2nd ed., Springer, 
2011), Rozanski and Woods ( Software Systems Architecture,  2nd ed., Addison- Wesley, 2011), 
Eeles and Cripps ( The Process of Software Architecting,  Addison-Wesley, 2009), Taylor and 
his colleagues ( Software Architecture,  Wiley, 2009), Reekie and McAdam ( A Software Archi-

tecture Primer,  2nd ed., Angophora Press, 2006), and Albin ( The Art of Software Architecture,  
Wiley, 2003), present worthwhile treatments of an intellectually challenging topic area. 

   Buschman and his colleagues ( Pattern-Oriented Software Architecture,  Wiley, 2007) 
and Kuchana ( Software Architecture Design Patterns in Java,  Auerbach, 2004) discuss 
 pattern-oriented aspects of architectural design. Knoernschilf ( Java Application Archi-

tecture: Modularity Patterns with Examples Using OSGi , Prentice Hall, 2012), Rozanski 
and Woods ( Software Systems Architecture , 2nd ed., Addison-Wesley, 2011), Henderikson 
 ( 12  Essential Skills for Software Architects,  Addison-Wesley, 2011), Clements and his col-
leagues ( Documenting Software Architecture: View and Beyond,  2nd ed., Addison- Wesley, 
2010), Microsoft ( Microsoft Application Guide , Microsoft Press, 2nd ed., 2009), Fowler 
 ( Patterns of Enterprise Application Architecture,  Addison-Wesley, 2003), Bosch [Bos00], and 
Hofmeister and his colleagues [Hof00] provide in-depth treatments of software architecture. 

   Hennesey and Patterson ( Computer Architecture,  5th ed., Morgan-Kaufmann, 2011) take 
a distinctly quantitative view of software architectural design issues. Clements and his 
colleagues ( Evaluating Software Architectures,  Addison-Wesley, 2002) consider the issues 
associated with the assessment of architectural alternatives and the selection of the best 
architecture for a given problem domain. 

      20  Use Wikipedia as a starting point to obtain further information about the DSM at:  http://

en.wikipedia.org/wiki/Design_structure_matrix.  

pre22126_ch13_252-284.indd   283pre22126_ch13_252-284.indd   283 13/12/13   6:12 PM13/12/13   6:12 PM



284 PART TWO  MODELING

   Implementation-specifi c books on architecture address architectural design within 
a specifi c development environment or technology. Erl ( SOA Design Patterns , Prentice 
Hall, 2009) and Marks and Bell ( Service-Oriented Architecture,  Wiley, 2006) discuss a  design 
 approach that links business and computational resources with the requirements defi ned 
by customers. Bambilla et al. ( Model-Driven Software Engineering in Practice , Morgan 
 Claypool, 2012) and Stahl and his colleagues ( Model-Driven Software Development,  Wiley, 
2006) discuss architecture within the context of domain-specifi c modeling approaches. 
 Radaideh and Al-ameed ( Architecture of Reliable Web Applications Software,  IGI Global, 
2007) consider architectures that are appropriate for WebApps. Esposito ( Architecting 

Mobile Solutions for the Enterprise , Microsoft Press, 2012) discusses architecting mobile 
applications.  Clements and Northrop ( Software Product Lines: Practices and Patterns,  
 Addison-Wesley, 2001)  address the design of architectures that support software product 
lines. Shanley ( Protected Mode Software Architecture,  Addison-Wesley, 1996) provides ar-
chitectural design guidance for anyone designing PC-based real-time operating systems, 
multitask operating systems, or device drivers. 

   Current software architecture research is documented yearly in the  Proceedings of the 

International Workshop on Software Architecture,  sponsored by the ACM and other com-
puting organizations, and the  Proceedings of the International Conference on Software 

Engineering.  
   A wide variety of information sources on architectural design are available on the In-

ternet. An up-to-date list of World Wide Web references that are relevant to architectural 
design can be found at the SEPA website:   www.mhhe.com/pressman  .     

pre22126_ch13_252-284.indd   284pre22126_ch13_252-284.indd   284 13/12/13   6:12 PM13/12/13   6:12 PM



285

 COMPONENT-LEVEL 
DESIGN 

        Component-level design occurs after the fi rst iteration of architec-

tural design has been completed. At this stage, the overall data and 

program structure of the software has been established. The intent 

is to translate the design model into operational software. But the level of 

abstraction of the existing design model is relatively high, and the abstrac-

tion level of the operational program is low. The translation can be challeng-

ing, opening the door to the introduction of subtle errors that are diffi cult 

to fi nd and correct in later stages of the software process. In a famous lec-

ture,  Edsgar Dijkstra, a major contributor to our understanding of software 

 design, stated [Dij72]:

  Software seems to be different from many other products, where as a rule higher 

quality implies a higher price. Those who want really reliable software will dis-

cover that they must fi nd a means of avoiding the majority of bugs to start with, 

and as a result, the programming process will become cheaper .  .  . effective 

 programmers . . . should not waste their time debugging—they should not intro-

duce bugs to start with. 

 Although these words were spoken many years ago, they remain true today. 

As you translate the design model into source code, you should follow a set of 

design principles that not only perform the translation but also do not “intro-

duce bugs to start with.” 

14 
    C H A P T E R

 K E Y 
C O N C E P T S 
    cohesion . . . . . . . . 296  
    component  . . . . . . 312  

    adaptation  . . . . 310  
    classifying  . . . . 286  
    composition  . . . 310  
    qualifi cation  . . . 309  
    WebApp . . . . . . 305  

    component-based 
development. . . . . 308  
    content design  . . . 306  
    coupling  . . . . . . . . 298  
    dependency inversion 
principle . . . . . . . . 293  
    design for reuse . . . 312  
    design guidelines. . 295  
    domain 
engineering. . . . . . 308  
    interface segregation 
principle . . . . . . . . 294  
    Liskov substitution 
principle . . . . . . . . 293  
    object-oriented 
view  . . . . . . . . . . 286  
    open-closed 
principle . . . . . . . . 292  
    process-related . . . 291  
    traditional 
components  . . . . . 307  
    traditional view . . . 288  
  

  What is it?   A complete set of soft-
ware components is defi ned during 
architectural design. But the internal 
data structures and processing de-

tails of each component are not represented 
at a level of abstraction that is close to code. 
Component-level design defi nes the data struc-
tures, algorithms, interface characteristics, and 
communication mechanisms allocated to each 
software component. 

   Who does it?   A software engineer performs 
component-level design. 

   Why is it important?   You have to be able to 
determine whether the software will work be-
fore you build it. The component-level design 
represents the software in a way that allows 
you to review the details of the design for cor-
rectness and consistency with other design 
representations (i.e., the data, architectural, 
and interface designs). It provides a means for 

 Q U I C K 
L O O K 

pre22126_ch14_285-316.indd   285pre22126_ch14_285-316.indd   285 13/12/13   6:12 PM13/12/13   6:12 PM



286 PART TWO  MODELING

     14.1 WHAT IS A COMPONENT? 

   A  component  is a modular building block for computer software. More formally, 

the  OMG Unifi ed Modeling Language Specifi cation  [OMG03a] defi nes a compo-

nent as “a modular, deployable, and replaceable part of a system that encapsu-

lates implementation and exposes a set of interfaces.” 

 As we discussed in Chapter 13, components populate the software architec-

ture and, as a consequence, play a role in achieving the objectives and require-

ments of the system to be built. Because components reside within the software 

architecture, they must communicate and collaborate with other components 

and with entities (e.g., other systems, devices, people) that exist outside the 

boundaries of the software. 

 The true meaning of the term  component  will differ depending on the point of 

view of the software engineer who uses it. In the sections that follow, we examine 

three important views of what a component is and how it is used as design mod-

eling proceeds.     

   14.1.1 An Object-Oriented View 

 In the context of object-oriented software engineering, a component contains a 

set of collaborating classes.  1   Each class within a component has been fully elabo-

rated to include all attributes and operations that are relevant to its implemen-

tation. As part of the design elaboration, all interfaces that enable the classes to 

communicate and collaborate with other design classes must also be defi ned. To 

   From an object-
oriented viewpoint, a 
component is a set of 
collaborating classes. 

assessing whether data structures, interfaces, 
and algorithms will work. 

   What are the steps?   Design representations 
of data, architecture, and interfaces form the 
foundation for component-level design. The 
class defi nition or processing narrative for each 
component is translated into a detailed design 
that makes use of diagrammatic or text-based 
forms that specify internal data structures, 
local interface detail, and processing logic. 
Design notation encompasses UML diagrams 
and supplementary forms. Procedural design 
is specifi ed using a set of structured program-
ming constructs. It is often possible to acquire 
existing reusable software components rather 
than building new ones. 

   What is the work product?   The design for 
each component, represented in graphical, 
tabular, or text-based notation, is the primary 
work product produced during  component-level 
design. 

   How do I ensure that I’ve done it right?   A 
design review is conducted. The design is ex-
amined to determine whether data structures, 
interfaces, processing sequences, and logical 
conditions are correct and will produce the 
appropriate data or control transformation al-
located to the component during earlier design 
steps.  

 uote:

   “The details are not 
the details. They 
make the design.” 

 Charles Eames 

  1  In some cases, a component may contain a single class. 

pre22126_ch14_285-316.indd   286pre22126_ch14_285-316.indd   286 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  287

accomplish this, you begin with the analysis model and elaborate analysis classes 

(for components that relate to the problem domain) and infrastructure classes 

(for components that provide support services for the problem domain). 

  To illustrate this process of design elaboration, consider software to be built 

for a sophisticated print shop. The overall intent of the software is to collect the 

customer’s requirements at the front counter, cost a print job, and then pass the 

job on to an automated production facility. During requirements engineering, 

an analysis class called  PrintJob  was derived. The attributes and operations de-

fi ned during analysis are noted at the top of  Figure 14.1 . During architectural 

design,  PrintJob  is defi ned as a component within the software architecture and 

is represented using the shorthand UML notation  2   shown in the middle right of 

  2  Readers who are unfamiliar with UML notation should refer to Appendix 1. 

  FIGURE 14.1

 Elaboration 
of a design 
component   

PrintJob

computeJob

initiateJob

numberOfPages
numberOfSides
paperType
   paperWeight
   paperSize
   paperColor
magnification
colorRequirements
productionFeatures
   collationOptions
   bindingOptions
   coverStock
   bleed
   priority
totalJobCost
WOnumber 

PrintJob

computePageCost( ) 
computePaperCost( ) 
computeProdCost( ) 
computeTotalJobCost( ) 
buildWorkOrder( ) 
checkPriority( ) 
passJobto Production( ) 

Elaborated design class<<interface>> 
computeJob

computePageCost( ) 
computePaperCost( ) 
computeProdCost( ) 
computeTotalJobCost( )

<<interface>> 
initiateJob

buildWorkOrder( ) 
checkPriority( ) 
passJobto Production( )

Design
component

numberOfPages 
numberOfSides 
paperType 
magnification 
productionFeatures

PrintJob

computeJobCost( ) 
passJobtoPrinter( ) 

Analysis class

pre22126_ch14_285-316.indd   287pre22126_ch14_285-316.indd   287 13/12/13   6:12 PM13/12/13   6:12 PM



288 PART TWO  MODELING

the fi gure. Note that  PrintJob  has two interfaces,  computeJob,  which provides job 

costing capability, and  initiateJob,  which passes the job along to the production 

facility. These are represented using the “lollipop” symbols shown to the left of 

the component box.       

       Component-level design begins at this point. The details of the component 

 PrintJob  must be elaborated to provide suffi cient information to guide imple-

mentation. The original analysis class is elaborated to fl esh out all attributes and 

operations required to implement the class as the component  PrintJob.  Refer-

ring to the lower right portion of  Figure 14.1 , the elaborated design class  PrintJob  

contains more detailed attribute information as well as an expanded description 

of operations required to implement the component. The interfaces  compute-

Job  and  initiateJob  imply communication and collaboration with other compo-

nents (not shown here). For example, the operation  computePageCost()  (part of 

the  computeJob  interface) might collaborate with a  PricingTable  component that 

contains job pricing information. The  checkPriority()  operation (part of the  ini-

tiateJob  interface) might collaborate with a  JobQueue  component to determine 

the types and priorities of jobs currently awaiting production. 

 This elaboration activity is applied to every component defi ned as part of the 

architectural design. Once it is completed, further elaboration is applied to each 

attribute, operation, and interface. The data structures appropriate for each 

attribute must be specifi ed. In addition, the algorithmic detail required to im-

plement the processing logic associated with each operation is designed. This 

procedural design activity is discussed later in this chapter. Finally, the mech-

anisms required to implement the interface are designed. For object-oriented 

software, this may encompass the description of all messaging that is required to 

effect communication between objects within the system. 

   14.1.2 The Traditional View 

 In the context of traditional software engineering, a component is a functional 

element of a program that incorporates processing logic, the internal data struc-

tures that are required to implement the processing logic, and an interface that 

enables the component to be invoked and data to be passed to it. A traditional 

component, also called a  module,  resides within the software architecture and 

serves one of three important roles: (1) a  control component  that coordinates 

the invocation of all other problem domain components, (2) a  problem domain 

component  that implements a complete or partial function that is required by the 

customer, or (3) an  infrastructure component  that is responsible for functions that 

support the processing required in the problem domain.  

 Like object-oriented components, traditional software components are derived 

from the analysis model. In this case, however, the component elaboration element 

of the analysis model serves as the basis for the derivation. Each component repre-

sented the component hierarchy is mapped (Section 13.6) into a module hierarchy. 

  
 Recall that analysis 
modeling and design 
modeling are both 
iterative actions. 
Elaborating the original 
analysis class may 
require additional 
analysis steps, which 
are then followed 
with design modeling 
steps to represent the 
elaborated design class 
(the details of the 
component). 

 uote: 

 “A complex system 
that works is 
invariably found to 
have evolved from 
a simple system 
that worked.” 

 John Gall 

pre22126_ch14_285-316.indd   288pre22126_ch14_285-316.indd   288 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  289

Control components (modules) reside near the top of the hierarchy (program ar-

chitecture), and problem domain components tend to reside toward the bottom 

of the hierarchy. To achieve effective modularity, design concepts like functional 

independence (Chapter 12) are applied as components are elaborated. 

 To illustrate this process of design elaboration for traditional components, again 

consider software to be built for a sophisticated print shop. A hierarchical architec-

ture is derived and shown in  Figure 14.2 . Each box represents a software component. 

Note that the shaded boxes are equivalent in function to the operations defi ned for 

the  PrintJob  class discussed in Section 14.1.1. In this case, however, each operation 

is represented as a separate module that is invoked as shown in the fi gure. Other 

modules are used to control processing and are therefore control components.  

 During component-level design, each module in  Figure 14.2  is elaborated. The 

module interface is defi ned explicitly. That is, each data or control object that 

fl ows across the interface is represented. The data structures that are used inter-

nal to the module are defi ned. The algorithm that allows the module to accom-

plish its intended function is designed using the stepwise refi nement approach 

discussed in Chapter 12. The behavior of the module is sometimes represented 

using a state diagram. 

 To illustrate this process, consider the module  ComputePageCost.  The intent 

of this module is to compute the printing cost per page based on specifi cations 

  FIGURE 14.2  Structure chart for a traditional system   

Read
print job

data

Job
management

system

Select
jobmgmt
function

Develop
job cost

Build
work order

Send job
to

production

Compute
page cost

Compute
paper cost

Compute
prod cost

Check
priority

Pass job to
production

pre22126_ch14_285-316.indd   289pre22126_ch14_285-316.indd   289 13/12/13   6:12 PM13/12/13   6:12 PM



290 PART TWO  MODELING

provided by the customer. Data required to perform this function are: number of pages 

in the document, total number of documents to be produced, one- or two-side printing, color require-

ments, and size requirements. These data are passed to  ComputePageCost  via the mod-

ule’s interface.  ComputePageCost  uses these data to determine a page cost that is 

based on the size and complexity of the job—a function of all data passed to the 

module via the interface. Page cost is inversely proportional to the size of the job 

and directly proportional to the complexity of the job.     

        Figure 14.3  represents the component-level design using a modifi ed UML 

notation. The  ComputePageCost  module accesses data by invoking the module 

 getJobData,  which allows all relevant data to be passed to the component, and 

a database interface,  accessCostsDB,  which enables the module to access a data-

base that contains all printing costs. As design continues, the  ComputePageCost  

module is elaborated to provide algorithm detail and interface detail ( Fig-

ure 14.3 ). Algorithm detail can be represented using the pseudocode text shown 

in the fi gure or with a UML activity diagram. The interfaces are represented as 

  
 As the design for each 
software component is 
elaborated, the focus 
shifts to the design 
of specifi c data struc-
tures and procedural 
design to manipulate 
the data structures. 
However, don’t forget 
the architecture that 
must house the 
components or the 
global data structures 
that may serve many 
components. 

  FIGURE 14.3  Component-level design for  ComputePageCost    

ComputePageCost

Design component

accessCostsDB

getJobData

Elaborated module

PageCost

in: numberPages 
in: numberDocs 
in: sides= 1, 2 
in: color=1, 2, 3, 4 
in: page size = A, B, C, D 
out: page cost 
in:  job size 
in:  color=1, 2, 3, 4 
in:  pageSize = A, B, C, D 
out:  BPC 
out:  SF  job size (JS) =

    numberPages * numberDocs;
 lookup base page cost (BPC) -->
    accessCostsDB (JS, color);
 lookup size factor (SF) -->
    accessCostDB (JS, color, size)
 job complexity factor (JCF) = 
   1 + [(sides-1)*sideCost + SF]
 pagecost = BPC * JCF  

getJobData (numberPages, numberDocs,
 sides, color, pageSize, pageCost) 
accessCostsDB(jobSize, color, pageSize, 
BPC, SF) 
computePageCost( )

pre22126_ch14_285-316.indd   290pre22126_ch14_285-316.indd   290 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  291

a collection of input and output data objects or items. Design elaboration con-

tinues until suffi cient detail is provided to guide construction of the component.  

   14.1.3 A Process-Related View 

 The object-oriented and traditional views of component-level design presented 

in Sections 14.1.1 and 14.1.2 assume that the component is being designed from 

scratch. That is, you have to create a new component based on specifi cations de-

rived from the requirements model. There is, of course, another approach. 

 Over the past three decades, the software engineering community has em-

phasized the need to build systems that make use of existing software compo-

nents or design patterns. In essence, a catalog of proven design or code-level 

components is made available to you as design work proceeds. As the software 

architecture is developed, you choose components or design patterns from the 

catalog and use them to populate the architecture. Because these components 

have been created with reusability in mind, a complete description of their in-

terface, the function(s) they perform, and the communication and collaboration 

they require are all available to you. We discuss some of the important aspects of 

component-based software engineering (CBSE) later in Section 14.6.     

       14.2 DES IGNING CLASS-BASED COMPONENTS 

  As we have already noted, component-level design draws on information devel-

oped as part of the requirements model (Chapters 9–11) and represented as part 

of the architectural model (Chapter 13). When an object-oriented software engi-

neering approach is chosen, component-level design focuses on the elaboration 

of problem domain specifi c classes and the defi nition and refi nement of infra-

structure classes contained in the requirements model. The detailed description 

of the attributes, operations, and interfaces used by these classes is the design 

detail required as a precursor to the construction activity. 

 One of the key elements that lead to the 
success or failure of CBSE is the availability 

of component-based standards, sometimes called mid-
dleware.  Middleware  is a collection of infrastructure 
components that enable problem domain components 
to communicate with one another across a network or 
within a complex system. Software engineers who want 
to use component-based development as their software 
process can choose from among the following standards:

         OMG CORBA —  www.corba.org/   

        Microsoft COM —  http://www.microsoft.com/
 com/default.mspx   
        Microsoft .NET —  http://msdn.microsoft.com/
 en-us/netframework/default.aspx   
        Sun JavaBeans —  http://www.oracle.com/
 technetwork/java/javaee/ejb/index.html     

 The websites noted present a wide array of tutorials, 
white papers, tools, and general resources on these im-
portant middleware standards.  

 INFO 
  Component-Based Standards and Frameworks 

pre22126_ch14_285-316.indd   291pre22126_ch14_285-316.indd   291 13/12/13   6:12 PM13/12/13   6:12 PM



292 PART TWO  MODELING

  14.2.1 Basic Design Principles 

 Four basic design principles are applicable to component-level design and have 

been widely adopted when object-oriented software engineering is applied. The 

underlying motivation for the application of these principles is to create designs 

that are more amenable to change and to reduce the propagation of side effects 

when changes do occur. You can use these principles as a guide as each software 

component is developed. 

  The Open-Closed Principle (OCP).   “ A module [component] should be open for 

extension but closed for modifi cation”  [Mar00]. This statement seems to be a con-

tradiction, but it represents one of the most important characteristics of a good 

component-level design. Stated simply, you should specify the component in a way 

that allows it to be extended (within the functional domain that it addresses) with-

out the need to make internal (code or logic-level) modifi cations to the component 

itself. To accomplish this, you create abstractions that serve as a buffer between 

the functionality that is likely to be extended and the design class itself. 

 For example, assume that the  SafeHome  security function makes use of a 

 Detector class that must check the status of each type of security sensor. It is 

likely that as time passes, the number and types of security sensors will grow. 

If internal processing logic is implemented as a sequence of if-then-else con-

structs, each addressing a different sensor type, the addition of a new sensor 

type will require additional internal processing logic (still another if-then-else). 

This is a violation of OCP.  

 One way to accomplish OCP for the Detector class is illustrated in  Figure 14.4 . 

The  sensor  interface presents a consistent view of sensors to the detector compo-

nent. If a new type of sensor is added no change is required for the Detector class 

(component). The OCP is preserved.          

  FIGURE 14.4

 Following the 
OCP   Detector<<interface>>

Sensor
read( ) 
enable( ) 
disable( ) 
test( )

Window/ 
doorSensor

SmokeSensor MotionDetector HeatSensor CO2Sensor

pre22126_ch14_285-316.indd   292pre22126_ch14_285-316.indd   292 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  293

         The Liskov Substitution Principle (LSP).   “ Subclasses should be substitutable for 

their base classes”  [Mar00]. This design principle, originally proposed by Barbara 

Liskov [Lis88], suggests that a component that uses a base class should continue 

to function properly if a class derived from the base class is passed to the compo-

nent instead. LSP demands that any class derived from a base class must honor 

any implied contract between the base class and the components that use it. In 

the context of this discussion, a “contract” is a  precondition  that must be true 

before the component uses a base class and a  postcondition  that should be true 

after the component uses a base class. When you create derived classes, be sure 

they conform to the pre- and postconditions. 

   Dependency Inversion Principle (DIP).   “ Depend on abstractions. Do not depend 

on concretions”  [Mar00]. As we have seen in the discussion of the OCP, abstrac-

tions are the place where a design can be extended without great complication. 

The more a component depends on other concrete components (rather than on 

abstractions such as an interface), the more diffi cult it will be to extend. 

 
  If you dispense with 
design and hack out 
code, just remember 
that code is the 
ultimate “concretion.” 
You’re violating DIP. 

  The OCP in Action   The OCP in Action 

      The scene:  Vinod’s cubicle.  

     The players:  Vinod and Shakira—members of the 
 SafeHome  software engineering team.   

     The conversation:    

     Vinod:  I just got a call from Doug [the team manager]. 
He says marketing wants to add a new sensor.  

     Shakira (smirking):  Not again, jeez!  

     Vinod:  Yeah . . . and you’re not going to believe what 
these guys have come up with.  

     Shakira:  Amaze me.  

     Vinod (laughing):  They call it a doggie angst 
sensor.  

     Shakira:  Say what?  

     Vinod:  It’s for people who leave their pets home in 
apartments or condos or houses that are close to one 
another. The dog starts to bark. The neighbor gets angry 
and complains. With this sensor, if the dog barks for 
more than, say, a minute, the sensor sets a special alarm 
mode that calls the owner on his or her cell phone.  

     Shakira:  You’re kidding me, right?  

     Vinod:  Nope. Doug wants to know how much time it’s 
going to take to add it to the security function.  

     Shakira (thinking a moment):  Not much . . . 
look. [She shows Vinod  Figure 14.4 ] We’ve isolated the 
actual sensor classes behind the sensor interface. As 
long as we have specs for the doggie sensor, adding it 
should be a piece of cake. Only thing I’ll have to do is 
create an appropriate component . . . uh, class, for it. 
No change to the Detector component at all.  

     Vinod:  So I’ll tell Doug it’s no big deal.  

     Shakira:  Knowing Doug, he’ll keep us focused and 
not deliver the doggie thing until the next release.  

     Vinod:  That’s not a bad thing, but you can implement 
now if he wants you to?  

     Shakira:  Yeah, the way we designed the interface lets 
me do it with no hassle.  

     Vinod (thinking a moment):  Have you ever heard 
of the open-closed principle?  

     Shakira (shrugging):  Never heard of it.  

     Vinod (smiling):  Not a problem.    

 SAFEHOME 

pre22126_ch14_285-316.indd   293pre22126_ch14_285-316.indd   293 13/12/13   6:12 PM13/12/13   6:12 PM



294 PART TWO  MODELING

   The Interface Segregation Principle (ISP).    “Many client-specifi c interfaces are 

better than one general purpose interface”  [Mar00]. There are many instances 

in which multiple client components use the operations provided by a server 

class. ISP suggests that you should create a specialized interface to serve each 

major category of clients. Only those operations that are relevant to a particular 

category of clients should be specifi ed in the interface for that client. If multiple 

clients require the same operations, it should be specifi ed in each of the special-

ized interfaces.     

  As an example, consider the FloorPlan class that is used for the  SafeHome  

security and surveillance functions (Chapter 10). For the security functions, 

FloorPlan is used only during confi guration activities and uses the operations 

 placeDevice(), showDevice(), groupDevice(),  and  removeDevice()  to place, show, 

group, and remove sensors from the fl oor plan. The  SafeHome  surveillance 

function uses the four operations noted for security, but also requires special 

operations to manage cameras:  showFOV()  and  showDeviceID().  Hence, the ISP 

suggests that client components from the two  SafeHome  functions have special-

ized interfaces defi ned for them. The interface for security would encompass only 

the operations  placeDevice(), showDevice(), groupDevice(),  and  removeDevice().  

The interface for surveillance would incorporate the operations  placeDevice(), 

showDevice(), groupDevice(),  and  removeDevice(),  along with  showFOV()  and 

 showDeviceID().  

 Although component-level design principles provide useful guidance, compo-

nents themselves do not exist in a vacuum. In many cases, individual components 

or classes are organized into subsystems or packages. It is reasonable to ask how 

this packaging activity should occur. Exactly how should components be organized 

as the design proceeds? Martin [Mar00] suggests additional packaging principles 

that are applicable to component-level design. These principles follow. 

   The Release Reuse Equivalency Principle (REP).   “ The granule of reuse is the 

granule of release”  [Mar00]. When classes or components are designed for reuse, 

an implicit contract is established between the developer of the reusable entity 

and the people who will use it. The developer commits to establish a release 

control system that supports and maintains older versions of the entity while the 

users slowly upgrade to the most current version. Rather than addressing each 

class individually, it is often advisable to group reusable classes into packages 

that can be managed and controlled as newer versions evolve. 

   The Common Closure Principle (CCP).   “ Classes that change together belong to-

gether.”  [Mar00]   Classes should be packaged cohesively. That is, when classes 

are packaged as part of a design, they should address the same functional or 

behavioral area. When some characteristic of that area must change, it is likely 

that only those classes within the package will require modifi cation. This leads to 

more effective change control and release management. 

   Designing components 
for reuse requires more 
than good technical 
design. It also requires 
effective confi guration 
control mechanisms 
(Chapter 29). 

pre22126_ch14_285-316.indd   294pre22126_ch14_285-316.indd   294 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  295

   The Common Reuse Principle (CRP).   “ Classes that aren’t reused together should 

not be grouped together”  [Mar00]. When one or more classes with a package 

changes, the release number of the package changes. All other classes or pack-

ages that rely on the package that has been changed must now update to the 

most recent release of the package and be tested to ensure that the new release 

operated without incident. If classes are not grouped cohesively, it is possible that 

a class with no relationship to other classes within a package is changed. This will 

precipitate unnecessary integration and testing. For this reason, only classes that 

are reused together should be included within a package. 

    14.2.2 Component-Level Design Guidelines 

 In addition to the principles discussed in Section 14.2.1, a set of pragmatic design 

guidelines can be applied as component-level design proceeds. These guidelines 

apply to components, their interfaces, and the dependencies and inheritance 

characteristics that have an impact on the resultant design. Ambler [Amb02b] 

suggests the following guidelines: 

       Components.   Naming conventions should be established for components 

that are specifi ed as part of the architectural model and then refi ned and 

elaborated as part of the component-level model. Architectural component 

names should be drawn from the problem domain and should have meaning 

to all stakeholders who view the architectural model. For example, the class 

name  FloorPlan  is meaningful to everyone reading it regardless of technical 

background. On the other hand, infrastructure components or elaborated 

component-level classes should be named to refl ect implementation-specifi c 

meaning. If a linked list is to be managed as part of the  FloorPlan  implementa-

tion, the operation  manageList()  is appropriate, even if a nontechnical person 

might misinterpret it.  3   

  You can choose to use stereotypes to help identify the nature of components at 

the detailed design level. For example, <<infrastructure>> might be used to identify 

an infrastructure component, <<database>> could be used to identify a database 

that services one or more design classes or the entire system; <<table>> can be 

used to identify a table within a database. 

   Interfaces.   Interfaces provide important information about communication 

and collaboration (as well as helping us to achieve the OPC). However, unfet-

tered representation of interfaces tends to complicate component diagrams. 

Ambler [Amb02c] recommends that (1) lollipop representation of an interface 

should be used in lieu of the more formal UML box and dashed arrow approach, 

when diagrams grow complex; (2) for consistency, interfaces should fl ow from the 

 What should 
we consider 

when we name 
components?  

?

  3  It is unlikely that someone from marketing or the customer organization (a nontechnical type) 

would examine detailed design information. 

pre22126_ch14_285-316.indd   295pre22126_ch14_285-316.indd   295 13/12/13   6:12 PM13/12/13   6:12 PM



296 PART TWO  MODELING

left-hand side of the component box; (3) only those interfaces that are relevant 

to the component under consideration should be shown, even if other interfaces 

are available. These recommendations are intended to simplify the visual nature 

of UML component diagrams. 

   Dependencies and Inheritance.   For improved readability, it is a good idea to model 

dependencies from left to right and inheritance from bottom (derived classes) to 

top (base classes). In addition, components’ interdependencies should be repre-

sented via interfaces, rather than by representation of a  component-to-component 

dependency. Following the philosophy of the OCP, this will help to make the sys-

tem more maintainable. 

    14.2.3 Cohesion 

 In Chapter 12, we described cohesion as the “single-mindedness” of a compo-

nent. Within the context of component-level design for object-oriented systems, 

 cohesion  implies that a component or class encapsulates only attributes and op-

erations that are closely related to one another and to the class or component 

itself. Lethbridge and Laganiére [Let01] defi ne a number of different types of co-

hesion (listed in order of the level of the cohesion):  4   

         Functional.  Exhibited primarily by operations, this level of cohesion occurs 

when a module performs one and only one computation and then returns a 

result.  

       Layer.  Exhibited by packages, components, and classes, this type of cohesion 

occurs when a higher layer accesses the services of a lower layer, but lower 

layers do not access higher layers. Consider, for example, the  SafeHome  

security function requirement to make an outgoing phone call if an alarm is 

sensed. It might be possible to defi ne a set of layered packages as shown in 

 Figure 14.5 . The shaded packages contain infrastructure components. Access 

is from the control panel package downward.         

        Communicational.  All operations that access the same data are defi ned 

within one class. In general, such classes focus solely on the data in question, 

accessing and storing it.  

  Classes and components that exhibit functional, layer, and communicational 

 cohesion are relatively easy to implement, test, and maintain. You should strive 

to achieve these levels of cohesion whenever possible. It is important to note, 

however, that pragmatic design and implementation issues sometimes force you 

to opt for lower levels of cohesion.     

   Although an under-
standing of the various 
levels of cohesion is 
instructive, it is more 
important to be aware 
of the general concept 
as you design compo-
nents. Keep cohesion 
as high as is possible. 

  4  In general, the higher the level of cohesion, the easier the component is to implement, test, and 

maintain. 

pre22126_ch14_285-316.indd   296pre22126_ch14_285-316.indd   296 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  297

Detector

Control panel

Phone

Modem

T-com

  FIGURE 14.5

 Layer cohesion   

  Cohesion in Action   Cohesion in Action 

      The scene:  Jamie’s cubicle.  

     The players:  Jamie and Ed—members of the  Safe-
Home  software engineering team who are working on 
the surveillance function.  

     The conversation:   

     Ed:  I have a fi rst-cut design of the  camera  component.  

     Jamie:  Wanna do a quick review?  

     Ed:  I guess . . . but really, I’d like your input on something.  

   (Jamie gestures for him to continue.) 

      Ed:  We originally defi ned fi ve operations for  camera . 
Look . . .  

          determineType()  tells me the type of camera.  

        translateLocation()  allows me to move the camera 
around the fl oor plan.  

        displayID()  gets the camera ID and displays it near 
the camera icon.  

        displayView()  shows me the fi eld of view of the 
camera graphically.  

        displayZoom()  shows me the magnifi cation of the 
camera graphically.    

     Ed:  I’ve designed each separately, and they’re pretty 
simple operations. So I thought it might be a good idea 
to combine all of the display operations into just one 
that’s called  displayCamera() —it’ll show the ID, the 
view, and the zoom. Whaddaya think?  

     Jamie (grimacing):  Not sure that’s such a good idea.  

     Ed (frowning):  Why? All of these little ops can cause 
headaches.  

     Jamie:  The problem with combining them is we lose 
cohesion, you know, the  displayCamera()  op won’t be 
single-minded.  

     Ed (mildly exasperated):  So what? The whole 
thing will be less than 100 source lines, max. It’ll be 
easier to implement, I think.  

     Jamie:  And what if marketing decides to change the 
way that we represent the view fi eld?  

     Ed:  I just jump into the  displayCamera()  op and make 
the mod.  

     Jamie:  What about side effects?  

     Ed:  Whaddaya mean?  

     Jamie:  Well, say you make the change but inadver-
tently create a problem with the ID display.  

     Ed:  I wouldn’t be that sloppy.  

     Jamie:  Maybe not, but what if some support person 
two years from now has to make the mod. He might not 
understand the op as well as you do, and, who knows, 
he might be sloppy.  

     Ed:  So you’re against it?  

     Jamie:  You’re the designer . . . it’s your decision . . . just 
be sure you understand the consequences of low cohesion.  

     Ed (thinking a moment):  Maybe we’ll go with sep-
arate display ops.  

     Jamie:  Good decision.    

 SAFEHOME 

pre22126_ch14_285-316.indd   297pre22126_ch14_285-316.indd   297 13/12/13   6:12 PM13/12/13   6:12 PM



298 PART TWO  MODELING

    14.2.4 Coupling 

      In earlier discussions of analysis and design, we noted that communication 

and collaboration are essential elements of any object-oriented system. There 

is, however, a darker side to this important (and necessary) characteristic. As 

the amount of communication and collaboration increases (i.e., as the degree of 

“connectedness” between classes increases), the complexity of the system also 

increases. And as complexity increases, the diffi culty of implementing, testing, 

and maintaining software grows. 

  Coupling  is a qualitative measure of the degree to which classes are con-

nected to one another. As classes (and components) become more interdepen-

dent, coupling increases. An important objective in component-level design is to 

keep coupling as low as is possible. 

  Class coupling  can manifest itself in a variety of ways. Lethbridge and Lagan-

iére [Let01] defi ne a spectrum of coupling categories. For example,  content cou-

pling  occurs when one component “surreptitiously modifi es data that is internal 

to another component” [Let01]. This violates information hiding—a basic design 

concept.  Control coupling  occurs when operation  A()  invokes operation  B()  and 

passes a control fl ag to  B.  The control fl ag then “directs” logical fl ow within  B.  The 

problem with this form of coupling is that an unrelated change in  B  can result 

in the necessity to change the meaning of the control fl ag that  A  passes. If this 

is overlooked, an error will result.  External coupling  occurs when a component 

communicates or collaborates with infrastructure components (e.g., operating 

system functions, database capability, telecommunication functions). Although 

this type of coupling is necessary, it should be limited to a small number of com-

ponents or classes within a system. 

 Software must communicate internally and externally. Therefore, coupling is 

a fact of life. However, the designer should work to reduce coupling whenever 

possible and understand the ramifi cations of high coupling when it cannot be 

avoided.     

   As the design for each 
software component is 
elaborated, the focus 
shifts to the design 
of specifi c data struc-
tures and procedural 
design to manipulate 
the data structures. 
However, don’t forget 
the architecture that 
must house the 
components or the 
global data structures 
that may serve many 
components. 

  Coupling in Action   Coupling in Action 

        The scene:  Shakira’s cubicle.  

     The players:  Vinod and Shakira—members of 
the  SafeHome  software team who are working on 
the  security function.  

     The conversation:   

     Shakira:  I had what I thought was a great idea . . . 
then I thought about it a little, and it seemed like a not 

so great idea. I fi nally rejected it, but I just thought I’d 
run it by you.  

     Vinod:  Sure. What’s the idea?  

     Shakira:  Well, each of the sensors recognizes an 
alarm condition of some kind, right?  

     Vinod (smiling):  That’s why we call them sensors, 
Shakira.  

 SAFEHOME 

pre22126_ch14_285-316.indd   298pre22126_ch14_285-316.indd   298 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  299

       14.3 CONDUCTING COMPONENT-LEVEL DES IGN   

 Earlier in this chapter we noted that component-level design is elaborative in 

nature. You must transform information from requirements and architectural 

models into a design representation that provides suffi cient detail to guide the 

construction (coding and testing) activity. The following steps represent a typical 

task set for component-level design, when it is applied for an object-oriented 

system.    

  Step 1. Identify all design classes that correspond to the problem domain.   Using 

the requirements and architectural model, each analysis class and architectural 

component is elaborated as described in Section 14.1.1.     

    Step 2. Identify all design classes that correspond to the infrastructure  domain.   

These classes are not described in the requirements model and are often missing 

from the architecture model, but they must be described at this point. As we have 

noted earlier, classes and components in this category include GUI components 

(often available as reusable components), operating system components, and ob-

ject and data management components. 

   Step 3. Elaborate all design classes that are not acquired as reusable  components.  

 Elaboration requires that all interfaces, attributes, and operations necessary to 

implement the class be described in detail. Design heuristics (e.g., component 

cohesion and coupling) must be considered as this task is conducted. 

   Step 3a. Specify message details when classes or components collaborate.   The re-

quirements model makes use of a collaboration diagram to show how analysis classes 

collaborate with one another. As component-level design proceeds, it is sometimes 

useful to show the details of these collaborations by specifying the structure of 

   If you’re working in a 
non-OO environment, 
the fi rst three steps 
focus on refi nement 
of data objects and 
processing functions 
(transforms) identifi ed 
as part of the analysis 
model. 

     Shakira (exasperated):  Sarcasm, Vinod, you’ve 
got to work on your interpersonal skills.  

     Vinod:  You were saying?  

     Shakira:  Okay, anyway, I fi gured . . . why not 
create an operation within each sensor object called 
 makeCall()  that would collaborate directly with the 
  OutgoingCall  component, well, with an interface to 
the  OutgoingCall  component.  

     Vinod (pensive):  You mean rather than having that 
collaboration occur out of a component like  Control-
Panel  or something?  

     Shakira:  Yeah . . . but then, I said to myself, that 
means that every sensor object will be connected to the 

 OutgoingCall  component, and that means that it’s 
i  ndirectly coupled to the outside world and . . . well, 
I just thought it made things complicated.  

     Vinod:  I agree. In this case, it’s a better idea to let the 
sensor interface pass info to the  ControlPanel  and 
let it initiate the outgoing call. Besides, different sen-
sors might result in different phone numbers. You don’t 
want the sensor to store that information because if it 
changes . . .  

     Shakira:  It just didn’t feel right.  

     Vinod:  Design heuristics for coupling tell us it’s not 
right.  

     Shakira:  Whatever . . .    

 uote:

   “If I had more 
time, I would have 
written a shorter 
letter.” 

 Blaise Pascal 

pre22126_ch14_285-316.indd   299pre22126_ch14_285-316.indd   299 13/12/13   6:12 PM13/12/13   6:12 PM



300 PART TWO  MODELING

messages that are passed between objects within a system. Although this design ac-

tivity is optional, it can be used as a precursor to the specifi cation of interfaces that 

show how components within the system communicate and collaborate.  

  Figure 14.6  illustrates a simple collaboration diagram for the printing system 

discussed earlier. Three objects,  ProductionJob, WorkOrder,  and  JobQueue,  col-

laborate to prepare a print job for submission to the production stream. Messages 

are passed between objects as illustrated by the arrows in the fi gure. During 

requirements modeling the messages are specifi ed as shown in the fi gure. How-

ever, as design proceeds, each message is elaborated by expanding its syntax in 

the following manner [Ben02]: 

  [guard condition] sequence expression (return value) :5  

 message name (argument list) 

 where a [guard condition] is written in Object Constraint Language (OCL)  5   and 

specifi es any set of conditions that must be met before the message can be sent; 

 sequence expression is an integer value (or other ordering indicator, e.g., 3.1.2) that 

indicates the sequential order in which a message is sent; (return value) is the name 

of the information that is returned by the operation invoked by the message; 

 message name identifi es the operation that is to be invoked, and (argument list) is the 

list of attributes that are passed to the operation. 

    Step 3b. Identify appropriate interfaces for each component.   Within the context 

of component-level design, a UML interface is “a group of externally visible (i.e., 

public) operations. The interface contains no internal structure, it has no attributes, 

no associations.  .  .” [Ben02]. Stated more formally, an interface is the equivalent 

of an abstract class that provides a controlled connection between design classes. 

The elaboration of interfaces is illustrated in  Figure 14.1 . In essence, operations de-

fi ned for the design class are categorized into one or more abstract classes. Every 

:ProductionJob

:WorkOrder
:JobQueue

1: buildJob
(WOnumber)

2: submitJob
(WOnumber)

  FIGURE 14.6

 Collaboration 
diagram with 
messaging   

  5  OCL is discussed briefl y in Appendix 1. 

pre22126_ch14_285-316.indd   300pre22126_ch14_285-316.indd   300 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  301

operation within the abstract class (the interface) should be cohesive; that is, it 

should exhibit processing that focuses on one limited function or subfunction. 

 Referring to  Figure 14.1 , it can be argued that the interface  initiateJob  does not 

exhibit suffi cient cohesion. In actuality, it performs three different  subfunctions—

building a work order, checking job priority, and passing a job to production. 

The interface design should be refactored. One approach might be to reexamine 

the design classes and defi ne a new class WorkOrder that would take care of 

all activities associated with the assembly of a work order. The operation  build-

WorkOrder()  becomes a part of that class. Similarly, we might defi ne a class 

JobQueue that would incorporate the operation  checkPriority() . A class Produc-

tionJob would encompass all information associated with a production job to be 

passed to the production facility. The interface  initiateJob  would then take the 

form shown in  Figure 14.7 . The interface  initiateJob  is now cohesive, focusing 

on one function. The interfaces associated with ProductionJob, WorkOrder, and 

JobQueue are similarly single-minded.  

   Step 3c. Elaborate attributes and define data types and data structures required 

to implement them.   In general, data structures and types used to defi ne attri-

butes are defi ned within the context of the programming language that is to be 

used for implementation. UML defi nes an attribute’s data type using the follow-

ing syntax: 

 name : type-expression 5 initial-value {property string} 

 where name is the attribute name, type expression is the data type, initial value is the 

value that the attribute takes when an object is created, and property-string defi nes 

a property or characteristic of the attribute. 

  FIGURE 14.7  Refactoring interfaces and class defi nitions for PrintJob   

PrintJob

computeJob

initiateJob

ProductionJob

buildJob

submitJob

WorkOrder

appropriate attributes

buildWorkOrder ( )
getJobDescription

JobQueue

appropriate attributes

checkPriority ( )

<<interface>>
 initiateJob

passJobToProduction( )

pre22126_ch14_285-316.indd   301pre22126_ch14_285-316.indd   301 13/12/13   6:12 PM13/12/13   6:12 PM



302 PART TWO  MODELING

 During the fi rst component-level design iteration, attributes are normally 

described by name. Referring once again to  Figure 14.1 , the attribute list for 

 PrintJob  lists only the names of the attributes. However, as design elaboration 

proceeds, each attribute is defi ned using the UML attribute format noted. For 

example, paperType-weight is defi ned in the following manner: 

 paperType-weight: string 5 “A” { contains 1 of 4 values 2  A, B, C, or D} 

 which defi nes paperType-weight as a string variable initialized to the value A that 

can take on one of four values from the set {A, B, C, D}. 

 If an attribute appears repeatedly across a number of design classes, and it 

has a relatively complex structure, it is best to create a separate class to accom-

modate the attribute. 

   Step 3d. Describe processing flow within each operation in detail.   This may be 

accomplished using a programming language-based pseudocode or with a UML 

activity diagram. Each software component is elaborated through a number of 

iterations that apply the stepwise refi nement concept (Chapter 12). 

 The fi rst iteration defi nes each operation as part of the design class. In every 

case, the operation should be characterized in a way that ensures high cohesion; 

that is, the operation should perform a single targeted function or subfunction. 

The next iteration does little more than expand the operation name. For exam-

ple, the operation  computePaperCost()  noted in  Figure 14.1  can be expanded in 

the following manner: 

 computePaperCost (weight, size, color): numeric 

 This indicates that  computePaperCost()  requires the attributes weight, size, and 

color as input and returns a value that is numeric (actually a dollar value) as 

output.     

  If the algorithm required to implement  computePaperCost()  is simple and 

widely understood, no further design elaboration may be necessary. The software 

engineer who does the coding will provide the detail necessary to implement the 

operation. However, if the algorithm is more complex or arcane, further design 

elaboration is required at this stage.  Figure 14.8  depicts a UML activity diagram 

for  computePaperCost().  When activity diagrams are used for component-level 

design specifi cation, they are generally represented at a level of abstraction 

that is somewhat higher than source code. An alternative approach—the use of 

pseudocode for design specifi cation—is discussed in Section 14.5.3.  

   Step 4. Describe persistent data sources (databases and files) and identify the 

classes required to manage them.   Databases and fi les normally transcend the 

design description of an individual component. In most cases, these persistent 

data stores are initially specifi ed as part of architectural design. However, as 

design elaboration proceeds, it is often useful to provide additional detail about 

the structure and organization of these persistent data sources. 

   Use stepwise elabora-
tion as you refi ne the 
component design. 
Always ask, “Is there 
a way this can be 
simplifi ed and yet still 
accomplish the same 
result?” 

pre22126_ch14_285-316.indd   302pre22126_ch14_285-316.indd   302 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  303

   Step 5. Develop and elaborate behavioral representations for a class or 

 component.   UML state diagrams were used as part of the requirements model 

to represent the externally observable behavior of the system and the more lo-

calized behavior of individual analysis classes. During component-level design, it 

is sometimes necessary to model the behavior of a design class. 

 The dynamic behavior of an object (an instantiation of a design class as the 

program executes) is affected by events that are external to it and the current 

state (mode of behavior) of the object. To understand the dynamic behavior of 

an object, you should examine all use cases that are relevant to the design class 

throughout its life. These use cases provide information that helps you to delin-

eate the events that affect the object and the states in which the object resides as 

time passes and events occur. The transitions between states (driven by events) is 

represented using a UML statechart [Ben02] as illustrated in  Figure 14.9 .  

  FIGURE 14.8

 UML activity 
diagram for 
 compute-
PaperCost()    Validate attributes

input

accessPaperDB(weight)

returns baseCostperPage

Size = B paperCostperPage =
paperCostperPage*1.2

Size = C paperCostperPage = 
paperCostperPage*1.4

Size = D paperCostperPage = 
paperCostperPage*1.6

Color is custom paperCostperPage =   
paperCostperPage*1.14

Color is standard

paperCostperPage =
    baseCostperPage

Returns 
(paperCostperPage)

pre22126_ch14_285-316.indd   303pre22126_ch14_285-316.indd   303 13/12/13   6:12 PM13/12/13   6:12 PM



304 PART TWO  MODELING

 The transition from one state (represented by a rectangle with rounded 

c orners) to another occurs as a consequence of an event that takes the form: 

 Event-name (parameter-list) [guard-condition] / action expression 

 where event-name identifi es the event, parameter-list incorporates data that are asso-

ciated with the event, guard-condition is written in Object Constraint Language (OCL) 

and specifi es a condition that must be met before the event can occur, and action 

expression defi nes an action that occurs as the transition takes place. 

 Referring to  Figure 14.9 , each state may defi ne  entry/  and  exit/  actions that 

occur as transition into the state occurs and as transition out of the state occurs, 

respectively. In most cases, these actions correspond to operations that are rele-

vant to the class that is being modeled. The  do/  indicator provides a mechanism 

for indicating activities that occur while in the state, and the  include/  indicator 

provides a means for elaborating the behavior by embedding more statechart 

detail within the defi nition of a state. 

  FIGURE 14.9

 Statechart 
fragment for 
PrintJob class   

buildingJobData

entry/readJobData( )
exit/displayJobData( ) 
do/checkConsistency( ) 
include/dataInput

entry/computeJob 
exit/save totalJobCost  

formingJob

entry/buildJob 
exit/save WOnumber 
do/ 

computingJobCost

submittingJob

entry/submitJob 
exit/initiateJob 
do/place on JobQueue 

Behavior within the 
state buildingJobData

dataInputCompleted [all data 
items consistent]/displayUserOptions 

dataInputIncomplete  

deliveryDateAccepted [customer is authorized]/ 
printJobEstimate 

jobCostAccepted [customer is authorized]/ 
getElectronicSignature 

jobSubmitted [all authorizations acquired]/
printWorkOrder 

pre22126_ch14_285-316.indd   304pre22126_ch14_285-316.indd   304 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  305

 It is important to note that the behavioral model often contains information 

that is not immediately obvious in other design models. For example, careful 

examination of the statechart in  Figure 14.9  indicates that the dynamic behavior 

of the  PrintJob  class is contingent upon two customer approvals as costs and 

schedule data for the print job are derived. Without approvals (the guard condi-

tion ensures that the customer is authorized to approve) the print job cannot be 

submitted because there is no way to reach the  submittingJob  state. 

   Step 6. Elaborate deployment diagrams to provide additional implementation 

detail.   Deployment diagrams (Chapter 12) are used as part of architectural de-

sign and are represented in descriptor form. In this form, major system func-

tions (often represented as subsystems) are represented within the context of the 

computing environment that will house them. 

 During component-level design, deployment diagrams can be elaborated to 

represent the location of key packages of components. However, components gen-

erally are not represented individually within a component diagram. The reason 

for this is to avoid diagrammatic complexity. In some cases, deployment diagrams 

are elaborated into instance form at this time. This means that the specifi c hard-

ware and operating system environment(s) that will be used is (are) specifi ed and 

the location of component packages within this environment is indicated. 

   Step 7. Refactor every component-level design representation and always con-

sider alternatives.   Throughout this book, we emphasize that design is an itera-

tive process. The fi rst component-level model you create will not be as complete, 

consistent, or accurate as the  n th iteration you apply to the model. It is essential 

to refactor as design work is conducted. 

 In addition, you should not suffer from tunnel vision. There are always alter-

native design solutions, and the best designers consider all (or most) of them 

before settling on the fi nal design model. Develop alternatives and consider each 

carefully, using the design principles and concepts presented in Chapter 12 and 

in this chapter. 

       14.4 COMPONENT-LEVEL DES IGN FOR WEBAPPS 

  The boundary between content and function is often blurred when Web-based 

systems and applications (WebApps) are considered. Therefore, it is reasonable 

to ask: What is a WebApp component? 

 In the context of this chapter, a WebApp component is (1) a well-defi ned co-

hesive function that manipulates content or provides computational or data pro-

cessing for an end user or (2) a cohesive package of content and functionality 

that provides the end user with some required capability. Therefore, compo-

nent-level design for WebApps often incorporates elements of content design 

and functional design. 

pre22126_ch14_285-316.indd   305pre22126_ch14_285-316.indd   305 13/12/13   6:12 PM13/12/13   6:12 PM



306 PART TWO  MODELING

  14.4.1 Content Design at the Component Level 

 Content design at the component level focuses on content objects and the man-

ner in which they may be packaged for presentation to a WebApp end user. The 

formality of content design at the component level should be tuned to the char-

acteristics of the WebApp to be built. In many cases, content objects need not 

be organized as components and can be manipulated individually. However, as 

the size and complexity (of the WebApp, content objects, and their interrelation-

ships) grows, it may be necessary to organize content in a way that allows eas-

ier reference and design manipulation.  6   In addition, if content is highly dynamic 

(e.g., the content for an online auction site), it becomes important to establish a 

clear structural model that incorporates content components. 

    14.4.2 Functional Design at the Component Level 

 WebApp functionality is delivered as a series of components developed in paral-

lel with the information architecture to ensure consistency. In essence you begin 

by considering both the requirements model and the initial information archi-

tecture and then examining how functionality affects the user’s interaction with 

the application, the information that is presented, and the user tasks that are 

conducted. 

 During architectural design, WebApp content and functionality are combined 

to create a functional architecture. A  functional architecture  is a representation 

of the functional domain of the WebApp and describes the key functional compo-

nents in the WebApp and how these components interact with each other. 

      14.5 COMPONENT-LEVEL DES IGN FOR MOBILE APPS 

  In Chapter 13 we noted that mobile apps are typically structured using multi-

layered architectures, including a user interface layer, a business layer, and a 

data layer. If you are building a mobile app as a thin Web-based client, the only 

components residing on a mobile device are those required to implement the 

user interface. Some mobile apps may incorporate the components required to 

implement the business and/or data layers on the mobile device subjecting these 

layers to the limitations of the physical characteristics of the device. 

 Considering the user interface layer fi rst, it is important to recognize that a 

small display area requires the designer to be more selective in choosing the 

content (text and graphics) to be displayed. It may be helpful to tailor the content 

to a specifi c user group(s) and display only what each group needs. The busi-

ness and data layers are often implemented by composing web or cloud service 

  6  Content components can also be reused in other WebApps. 

pre22126_ch14_285-316.indd   306pre22126_ch14_285-316.indd   306 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  307

components. If the components providing business and data services reside en-

tirely on the mobile device, connectivity issues are not a signifi cant concern. In-

termittent (or missing) Internet connectivity must be considered when designing 

components that require access to current application data that reside on a net-

worked server. 

 If a desktop application is being ported to a mobile device, the business-layer 

components may need to be reviewed to see if they meet nonfunctional require-

ments (e.g., security, performance, accessibility) required by the new platform. 

The target mobile device may lack the necessary processor speed, memory, or 

display real estate. The design of mobile applications is considered in greater 

detail in Chapter 18. 

     14.6 DES IGNING TRADIT IONAL COMPONENTS 

       The foundations of component-level design for traditional software components  7   

were formed in the early 1960s and were solidifi ed with the work of Edsger 

 Dijkstra ([Dij65], [Dij76b]) and others (e.g., [Boh66]. In the late 1960s, Dijkstra and 

others proposed the use of a set of constrained logical constructs from which 

any program could be formed. The constructs emphasized “maintenance of func-

tional domain.” That is, each construct had a predictable logical structure and 

was entered at the top and exited at the bottom, enabling a reader to follow pro-

cedural fl ow more easily. 

  The constructs are sequence, condition, and repetition.  Sequence  implements 

processing steps that are essential in the specifi cation of any algorithm.  Condi-

tion  provides the facility for selected processing based on some logical occur-

rence, and  repetition  allows for looping. These three constructs are fundamental 

to  structured programming —an important component-level design technique. 

 The structured constructs were proposed to limit the procedural design of 

software to a small number of predictable logical structures. Complexity metrics 

(Chapter 30) indicate that the use of the structured constructs reduces program 

complexity and thereby enhances readability, testability, and maintainability. 

The use of a limited number of logical constructs also contributes to a human 

understanding process that psychologists call  chunking.  To understand this pro-

cess, consider the way in which you are reading this page. You do not read indi-

vidual letters but rather recognize patterns or chunks of letters that form words 

or phrases. The structured constructs are logical chunks that allow a reader to 

   Structured 
programming is a 
design technique that 
constrains logic fl ow 
to three constructs: 
sequence, condition, 
and repetition. 

  7  A traditional software component implements an element of processing that addresses a func-

tion or subfunction in the problem domain or some capability in the infrastructure domain. 

Often called modules, procedures, or subroutines, traditional components do not encapsulate 

data in the same way that object-oriented components do. 

pre22126_ch14_285-316.indd   307pre22126_ch14_285-316.indd   307 13/12/13   6:12 PM13/12/13   6:12 PM



308 PART TWO  MODELING

recognize procedural elements of a module, rather than reading the design or 

code line by line. Understanding is enhanced when readily recognizable logical 

patterns are encountered. 

 Any program, regardless of application area or technical complexity, can be 

designed and implemented using only the three structured constructs. It should 

be noted, however, that dogmatic use of only these constructs can sometimes 

cause practical diffi culties. 

     14.7 COMPONENT-BASED DEVELOPMENT 

  In the software engineering context, reuse is an idea both old and new. Pro-

grammers have reused ideas, abstractions, and processes since the earliest 

days of computing, but the early approach to reuse was ad hoc. Today, complex, 

high-quality computer-based systems must be built in very short time periods 

and demand a more organized approach to reuse. 

  Component-based software engineering  (CBSE) is a process that emphasizes 

the design and construction of computer-based systems using reusable software 

“components.” Considering this description, a number of questions arise. Is it 

possible to construct complex systems by assembling them from a catalog of reus-

able software components? Can this be accomplished in a cost- and time-effective 

manner? Can appropriate incentives be established to encourage software engi-

neers to reuse rather than reinvent? Is management willing to incur the added 

expense associated with creating reusable software components? Can the library 

of components necessary to accomplish reuse be created in a way that makes it 

accessible to those who need it? Can existing components be found by those who 

need them? Increasingly, the answer to each of these questions is yes.  

  14.7.1 Domain Engineering 

 The intent of  domain engineering  is to identify, construct, catalog, and dissemi-

nate a set of software components that have applicability to existing and future 

software in a particular application domain.  8   The overall goal is to establish 

mechanisms that enable software engineers to share these components—to 

reuse them—during work on new and existing systems. Domain engineering in-

cludes three major activities—analysis, construction, and dissemination.      

  The overall approach to  domain analysis  is often characterized within the 

context of object-oriented software engineering. The steps in the process are: 

(1) defi ne the domain to be investigated, (2) categorize the items extracted from the 

domain, (3) collect a representative sample of applications in the domain, (4) an-

alyze each application in the sample and defi ne analysis classes, and (5) develop a 

  8  In Chapter 13 we referred to architectural genres that identify specifi c application domains. 

 uote:

   “Domain 
engineering is 
about fi nding 
commonalities 
among systems 
to identify 
components that 
can be applied 
to many systems 
and to identify 
program families 
that are positioned 
to take fullest 
advantage of those 
components.” 

  Paul Clements 

pre22126_ch14_285-316.indd   308pre22126_ch14_285-316.indd   308 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  309

requirements model for the classes. It is important to note that domain analysis is 

applicable to any software engineering paradigm and may be applied for conven-

tional as well as object-oriented development. 

   14.7.2 Component Qualifi cation, Adaptation, and Composition 

 Domain engineering provides the library of reusable components that are re-

quired for CBSE. Some of these reusable components are developed in-house, 

others can be extracted from existing applications, and still others may be ac-

quired from third parties. 

 Unfortunately, the existence of reusable components does not guarantee that 

these components can be integrated easily or effectively into the architecture cho-

sen for a new application. It is for this reason that a sequence of component-based 

development actions is applied when a component is proposed for use. 

  Component Qualification.   Component qualifi cation ensures that a candidate com-

ponent will perform the function required, will properly “fi t” into the architectural 

style (Chapter 13) specifi ed for the system, and will exhibit the quality characteris-

tics (e.g., performance, reliability, usability) that are required for the application. 

  Design by contract  is a technique that focuses on defi ning clear and verifi able 

component interface specifi cations, thereby allowing potential users of the com-

ponent to understand its intent quickly. Assertions, known as  preconditions ,  post 

conditions , and  invariants,  are added to the component specifi cation.  9   Assertions 

let developers know what to expect from the component and how it behaves 

under certain conditions. Assertions make it easier for developers to identify 

qualifi ed components, and as a consequence, be more willing to trust using the 

component in their designs. Design by contract is enhanced when components 

have an “economical interface,” that is, the component interface has the smallest 

set of operations necessary to allow it to fulfi ll its responsibilities (contract). 

  An interface specifi cation provides useful information about the operation 

and use of a software component, but it does not provide all of the information 

required to determine if a proposed component can, in fact, be reused effectively 

in a new application. Among the many factors considered during component 

qualifi cation are [Bro96]: 

         •    Application programming interface (API).  

   •    Development and integration tools required by the component.  

   •    Run-time requirements, including resource usage (e.g., memory or 

 storage), timing or speed, and network protocol.  

 What 
factors are 

considered during 
component 
qualifi cation? 

?

   The analysis process 
we discuss in this 
section focuses on 
reusable components. 
However, the analysis 
of complete COTS 
systems (e.g., 
 e-commerce Apps, 
sales force automation 
Apps) can also be 
a part of domain 
analysis. 

  9   Preconditions  are statements about assumptions that must be verifi ed before using a compo-

nent,  post conditions  statements about guaranteed services a component will deliver, and  in-

variants  are statements about system attributes that will not be changed by components. These 

concepts will be discussed in Chapter 28. 

pre22126_ch14_285-316.indd   309pre22126_ch14_285-316.indd   309 13/12/13   6:12 PM13/12/13   6:12 PM



310 PART TWO  MODELING

   •    Service requirements, including operating system interfaces and support 

from other components.  

   •    Security features, including access controls and authentication protocol.  

   •    Embedded design assumptions, including the use of specifi c numerical or 

nonnumeric algorithms.  

   •    Exception handling.  

  Each of these factors is relatively easy to assess when proposing reusable 

components that have been developed in-house. If good software engineering 

practices were applied during the development of a component, answers to the 

questions implied by the list can be developed. However, it is much more diffi cult 

to determine the internal workings of commercial off-the-shelf (COTS) or third-

party components because the only available information may be the interface 

specifi cation itself. 

   Component Adaptation.   In an ideal setting, domain engineering creates a li-

brary of components that can be easily integrated into an application architec-

ture. The implication of “easy integration” is that consistent methods of resource 

management have been implemented for all components in the library, common 

activities such as data management exist for all components, and interfaces 

within the architecture and with the external environment have been imple-

mented in a consistent manner.     

  In reality, even after a component has been qualifi ed for use within an appli-

cation architecture, confl icts may occur in one or more of the areas just noted. 

To avoid these confl icts, an adaptation technique called  component wrapping  

[Bro96] is sometimes used. When a software team has full access to the internal 

design and code for a component (often not the case unless open-source COTS 

components are used),  white-box wrapping  is applied. Like its counterpart in 

software testing (Chapter 23), white-box wrapping examines the internal pro-

cessing details of the component and makes code-level modifi cations to remove 

any confl ict.  Gray-box wrapping  is applied when the component library provides 

a component extension language or API that enables confl icts to be removed or 

masked.  Black-box wrapping  requires the introduction of pre- and postprocess-

ing at the component interface to remove or mask confl icts. You must deter-

mine whether the effort required to adequately wrap a component is justifi ed or 

whether a custom component (designed to eliminate the confl icts encountered) 

should be engineered instead. 

   Component Composition.   The component composition task assembles qualifi ed, 

adapted, and engineered components to populate the architecture established 

for an application. To accomplish this, an infrastructure must be established to 

bind the components into an operational system. The infrastructure (usually 

a library of specialized components) provides a model for the coordination of 

   In addition to assessing 
whether the cost of 
adaptation for reuse 
is justifi ed, you should 
also assess whether 
achieving required 
functionality and per-
formance can be done 
cost effectively. 

pre22126_ch14_285-316.indd   310pre22126_ch14_285-316.indd   310 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  311

components and specifi c services that enable components to coordinate with 

one another and perform common tasks. 

 Because the potential impact of reuse and CBSE on the software industry is 

enormous, a number of major companies and industry consortia have proposed 

standards for component software.  10   These standards include: CCM (Corba 

Component Model),  11   Microsoft COM and .NET,  12   JavaBeans,  13   and OSGI (Open 

Services Gateway Initiative [OSG13].  14   None of these standards dominate the 

industry. Although many developers have standardized on one, it is likely that 

large software organizations may choose to use a standard based on the applica-

tion categories and platforms that are chosen. 

     14.7.3 Architectural Mismatch 

 One of the challenges facing widespread reuse is  architectural mismatch  

[Gar09a]. The designers of reusable components often make implicit assump-

tions about the environment to which the component is coupled. These assump-

tions often focus on the component control model, the nature of the component 

connections (interfaces), the architectural infrastructure itself, and the nature of 

the construction process. If these assumptions are incorrect, architectural mis-

match occurs. 

 Design concepts such as abstraction, hiding, functional independence, refi ne-

ment, and structured programming, along with object-oriented methods, testing, 

software quality assurance (SQA), and correctness verifi cation methods (Chap-

ter 28), all contribute to the creation of software components that are reusable 

and prevent architectural mismatch. 

 Early detection of architectural mismatch can occur if stakeholder assump-

tions are explicitly documented. In addition, the use of a risk-driven process 

model emphasizes the defi nition of early architectural prototypes and points 

to areas of mismatch. Repairing architectural mismatch is often very diffi cult 

without making use of mechanisms like wrappers or adapters.  15   Sometimes it is 

necessary to completely redesign a component interface or the component itself 

to remove coupling issues. 

  10  Greg Olsen [Ols06] provides an excellent discussion of past and present industry efforts to 

make CBSE a reality. Ivica Crnkovic [Crb11] presents a discussion of more recent industrial 

component models. 

  11  Further information on CCM can be found at:  www.omg.org   

  12  Information on COM and .Net can be found at:   www.microsoft.com/COM and msdn2.microsoft.

com/en-us/netframework/default.aspx   

  13  The latest information on Javabeans can be found at:  java.sun.com/products/javabeans/docs/  

  14  Information on OSGI can be found at:   http://www.osgi.org/Main/HomePage   

  15  An  adapter  is a software device that allows a client with an incompatible interface to access 

a component by translating a request for service into a form that can access the original 

interface. 

pre22126_ch14_285-316.indd   311pre22126_ch14_285-316.indd   311 13/12/13   6:12 PM13/12/13   6:12 PM



312 PART TWO  MODELING

   14.7.4 Analysis and Design for Reuse 

 Elements of the requirements model (Chapters 9–11) are compared to descrip-

tions of reusable components in a process that is sometimes referred to as 

“specifi cation matching” [Bel95]. If specifi cation matching points to an existing 

component that fi ts the needs of the current application, you can extract the 

component from a reuse library (repository) and use it in the design of a new 

system. If components cannot be found (i.e., there is no match), a new component 

is created. It is at this point—when you begin to create a new component—that 

 design for reuse  (DFR) should be considered.     

  As we have already noted, DFR requires that you apply solid software de-

sign concepts and principles (Chapter 12). But the characteristics of the appli-

cation domain must also be considered. Binder [Bin93] suggests a number of 

key issues  16   that form a basis for design for reuse. If the application domain has 

standard global data structures, the component should be designed to make 

use of these standard data structures. Standard interface protocols within an 

application domain should be adopted, and an architectural style (Chapter 13) 

that is appropriate for the domain can serve as a template for the architectural 

design of new software. Once standard data, interfaces, and program templates 

have been established, you have a framework in which to create the design. 

New components that conform to this framework have a higher probability for 

subsequent reuse. 

    14.7.5 Classifying and Retrieving Components 

 Consider a large component repository. Tens of thousands of reusable software 

components reside in it. But how do you fi nd the one that you need? To answer 

this question, another question arises: How do we describe software components 

in unambiguous, classifi able terms? These are diffi cult questions, and no defi ni-

tive answer has yet been developed. 

 A reusable software component can be described in many ways, but an ideal 

description encompasses what Tracz [Tra95] has called the  3C model —concept, 

content, and context—a description of what the component accomplishes, how 

this is achieved with content that may be hidden from casual users and need be 

known only to those who intend to modify or test the component, and where the 

component resides within its domain of applicability. 

 To be of use in a pragmatic setting, concept, content, and context must be 

translated into a concrete specifi cation scheme. Dozens of papers and articles 

have been written about classifi cation schemes for reusable software compo-

nents (e.g., [Nir10], [Cec06]), and all should be implemented within a reuse envi-

ronment that exhibits the following characteristics:     

   DFR can be quite diffi -
cult when components 
must be interfaced 
or integrated with 
legacy systems or 
with multiple systems 
whose architecture and 
interfacing protocols 
are inconsistent. 

  16  In general, DFR preparations should be undertaken as part of domain engineering. 

pre22126_ch14_285-316.indd   312pre22126_ch14_285-316.indd   312 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  313

     •    A component database capable of storing software components and the 

classifi cation information necessary to retrieve them.  

   •    A library management system that provides access to the database.  

   •    A software component retrieval system (e.g., an object request broker) 

that enables a client application to retrieve components and services from 

the library server.  

   •    CBSE tools that support the integration of reused components into a new 

design or implementation.  

  Each of these functions interacts with or is embodied within the confi nes of 

a reuse library, one element of a larger software repository (Chapter 29) that 

provides facilities for the storage of software components and a wide variety of 

reusable work products (e.g., specifi cations, designs, patterns, frameworks, code 

fragments, test cases, user guides).     

 What are 
the key 

characteristics of 
a component reuse 
environment? 

?

  CBSE 
     Objective:   To aid in modeling, design, 
review, and integration of software 

components as part of a larger system. 
   Mechanics:   Tools mechanics vary. In general, CBSE 
tools assist in one or more of the following capabilities: 
specifi cation and modeling of the software architecture, 
browsing and selection of available software 
components; integration of components. 
    Representative Tools  17   
   Component Source  (  www.componentsource.com  ) 

provides a wide array of COTS software components 
(and tools) supported within many different 
component standards. 

  Component Manager,  developed by Flashline 
(  http://www.softlookup.com/download.
asp?id=8204  ), “is an application that enables, 
promotes, and measures software component reuse.” 

  Select Component Factory,  developed by Select Business 
Solutions (  www.selectbs.com  ), “is an integrated 
set of products for software design, design review, 
service/component management, requirements 
management and code generation.” 

  Software Through Pictures-ACD,  distributed by Aonix 
(  www.aonix.com  ), enables comprehensive model-
ing using UML for the OMG model-driven architecture—
an open, vendor-neutral approach for CBSE.   

 SOFTWARE TOOLS 

  17  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

         14.8 SUMMARY 

 The component-level design process encompasses a sequence of activities that 

slowly reduces the level of abstraction with which software is represented. Com-

ponent-level design ultimately depicts the software at a level of abstraction that 

is close to code. 

 Three different views of component-level design may be taken, depend-

ing on the nature of the software to be developed. The object-oriented view 

pre22126_ch14_285-316.indd   313pre22126_ch14_285-316.indd   313 13/12/13   6:12 PM13/12/13   6:12 PM



314 PART TWO  MODELING

focuses on the elaboration of design classes that come from both the problem 

and infrastructure domain. The traditional view refi nes three different types of 

components or modules: control modules, problem domain modules, and infra-

structure modules. In both cases, basic design principles and concepts that lead 

to high-quality software are applied. When considered from a process viewpoint, 

component-level design draws on reusable software components and design pat-

terns that are pivotal elements of component-based software engineering. 

 A number of important principles and concepts guide the designer as classes are 

elaborated. Ideas encompassed in the Open-Closed Principle and the Dependency 

Inversion Principle and concepts such as coupling and cohesion guide the software 

engineer in building testable, implementable, and maintainable software compo-

nents. To conduct component-level design in this context, classes are elaborated by 

specifying messaging details, identifying appropriate interfaces, elaborating attri-

butes and defi ning data structures to implement them, describing processing fl ow 

within each operation, and representing behavior at a class or component level. In 

every case, design iteration (refactoring) is an essential activity. 

 Traditional component-level design requires the representation of data 

structures, interfaces, and algorithms for a program module in suffi cient detail 

to guide in the generation of programming language source code. To accom-

plish this, the designer uses one of a number of design notations that represent 

 component-level detail in either graphical, tabular, or text-based formats. 

 Component-level design for WebApps considers both content and function-

ality as it is delivered by a Web-based system. Content design at the component 

level focuses on content objects and the manner in which they may be packaged 

for presentation to a WebApp end user. Functional design for WebApps focuses 

on processing functions that manipulate content, perform computations, query 

and access a database, and establish interfaces with other systems. All compo-

nent-level design principles and guidelines apply. 

 Component-level design for mobile apps makes use of a multilayered archi-

tecture that includes a user interface layer, a business layer, and a data layer. If 

the mobile app requires the design of components that implement the business 

and/or data layers on the mobile device, the limitations of the physical charac-

teristics of the device become important constraints on the design. 

 Structured programming is a procedural design philosophy that constrains the 

number and type of logical constructs used to represent algorithmic detail. The 

intent of structured programming is to assist the designer in defi ning  algorithms 

that are less complex and therefore easier to read, test, and maintain. 

 Component-based software engineering identifi es, constructs, catalogs, and 

disseminates a set of software components in a particular application domain. 

These components are then qualifi ed, adapted, and integrated for use in a new 

system. Reusable components should be designed within an environment that 

establishes standard data structures, interface protocols, and program architec-

tures for each application domain. 

pre22126_ch14_285-316.indd   314pre22126_ch14_285-316.indd   314 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 14  COMPONENT-LEVEL DESIGN  315

     PROBLEMS AND POINTS TO PONDER 
    14.1.  The term  component  is sometimes a diffi cult one to defi ne. First provide a generic 
defi nition, and then provide more explicit defi nitions for object-oriented and traditional 
software. Finally, pick three programming languages with which you are familiar and illus-
trate how each defi nes a component.  

   14.2.  Why are control components necessary in traditional software and generally not re-
quired in object-oriented software?  

   14.3.  Describe the OCP in your own words. Why is it important to create abstractions that 
serve as an interface between components?  

   14.4.  Describe the DIP in your own words. What might happen if a designer depends too 
heavily on concretions?  

   14.5.  Select three components that you have developed recently and assess the types of 
cohesion that each exhibits. If you had to defi ne the primary benefi t of high cohesion, what 
would it be?  

   14.6.  Select three components that you have developed recently and assess the types of 
coupling that each exhibits. If you had to defi ne the primary benefi t of low coupling, what 
would it be?  

   14.7.  Is it reasonable to say that problem domain components should never exhibit external 
coupling? If you agree, what types of component would exhibit external coupling?  

   14.8.  Develop (1) an elaborated design class, (2) interface descriptions, (3) an activity dia-
gram for one of the operations within the class, and (4) a detailed statechart diagram for one 
of the  SafeHome  classes that we have discussed in earlier chapters.  

   14.9.  Are stepwise refi nement and refactoring the same thing? If not, how do they differ?  

   14.10.  What is a WebApp component?  

   14.11.  Select a small portion of an existing program (approximately 50 to 75 source lines). 
Isolate the structured programming constructs by drawing boxes around them in the source 
code. Does the program excerpt have constructs that violate the structured programming 
philosophy? If so, redesign the code to make it conform to structured programming con-
structs. If not, what do you notice about the boxes that you’ve drawn?  

   14.12.  All modern programming languages implement the structured programming con-
structs. Provide examples from three programming languages.  

   14.13.  Select a small coded component and represent it using an activity diagram.  

   14.14.  Why is “chunking” important during the component-level design review process?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Many books on component-based development and component reuse have been pub-
lished in recent years. Szyperski ( Component Software,  2nd ed., Addison-Wesley, 2011) 
emphasizes the importance of software components as building blocks for effective sys-
tems.  Hamlet, ( Composing Software Components , Springer, 2010), Curtis ( Modular Web 

Design , New R iders, 2009), Apperly and his colleagues ( Service- and Component-Based 

Development,  Addison-Wesley, 2004), Heineman and Councill ( Component Based Software 

Engineering,  Addison-Wesley, 2001), Brown ( Large-Scale Component-Based Development,  
Prentice Hall, 2000), Allen ( Realizing e-Business with Components,  Addison-Wesley, 2000), 
and Leavens and  Sitaraman ( Foundations of Component-Based Systems,  Cambridge Uni-
versity Press, 2000) cover many important aspects of the CBSE process. Stevens ( UML Com-

ponents ,  Addison-Wesley, 2006), Apperly and his colleagues ( Service- and Component-Based 

pre22126_ch14_285-316.indd   315pre22126_ch14_285-316.indd   315 13/12/13   6:12 PM13/12/13   6:12 PM



316 PART TWO  MODELING

Development,  2nd ed.,   Addison-Wesley, 2003), Cheesman and Daniels ( UML Components,  
Addison-Wesley, 2000) discussed CBSE with a UML emphasis. 

   Malik ( Component-Based Software Development,  Lap Lambert Publishing, 2013) pres-
ents methods for building effective component repositories. Gross ( Component-Based Soft-

ware Testing with UML,  Springer, 2010) and Gao and his colleagues ( Testing and Quality 

Assurance for Component-Based Software,  Artech House, 2006) discuss testing and SQA 
issues for component-based systems.  

   Dozens of books describing the industry’s component-based standards have been pub-
lished in recent years. These address the inner workings of the standards themselves but 
also consider many important CBSE topics.  

   The work of Linger, Mills, and Witt ( Structured Programming—Theory and Practice,  
 Addison-Wesley, 1979) remains a defi nitive treatment of the subject. The text contains a 
good PDL as well as detailed discussions of the ramifi cations of structured programming. 
Other books that focus on procedural design issues for traditional systems include those 
by Farrell ( A Guide to Programming Logic and Design,  Course Technology, 2010), Robertson 
( Simple Program Design,  5th ed., Course Technology, 2006), Bentley ( Programming Pearls,  
2nd ed., Addison-Wesley, 1999), and Dahl ( Structured Programming,  Academic Press, 1997).  

   Relatively few recent books have been dedicated solely to component-level design. In 
general, programming language books address procedural design in some detail but al-
ways in the context of the language that is introduced by the book. Hundreds of titles are 
available.  

   A wide variety of information sources on component-level design are available on the 
Internet. An up-to-date list of World Wide Web references that are relevant to compo-
nent-level design can be found at the SEPA website:  www.mhhe.com/pressman      

pre22126_ch14_285-316.indd   316pre22126_ch14_285-316.indd   316 13/12/13   6:12 PM13/12/13   6:12 PM



317

  We live in a world of high-technology products, and virtually all of 

them—consumer electronics, industrial equipment, automobiles, 

corporate systems, military systems, personal computer software, 

mobile apps, and WebApps—require human interaction. If a product is to be 

successful, it must exhibit good  usability —a qualitative measure of the ease 

and effi ciency with which a human can employ the functions and features 

 offered by the high-technology product. 

 For the fi rst three decades of the computing era, usability was not a dom-

inant concern among those who built software. In his classic book on design, 

Donald Norman [Nor88] argued that it was time for a change in attitude: 

 To make technology that fi ts human beings, it is necessary to study human beings. 

But now we tend to study only the technology. As a result, people are required to 

conform to technology. It is time to reverse this trend, time to make technology 

that conforms to people. 

 As technologists studied human interaction, two dominant issues arose. 

First, a set of  golden rules  (discussed in Section 15.1) were identifi ed. These 

applied to all human interaction with technology products. Second, a set 

of  interaction mechanisms  were defi ned to enable software designers to 

build systems that properly implemented the golden rules. These inter-

action mechanisms, collectively called the user interface, have eliminated 

some of the most egregious problems associated with human interfaces. 

But even today, we all encounter user interfaces that are diffi cult to learn, 

diffi cult to use, confusing, counterintuitive, unforgiving, and in many cases, 

totally frustrating. Yet, someone spent time and energy building each of 

these interfaces, and it is not likely that the builder created these problems 

purposely. 

   K E Y 
C O N C E P T S 
    accessibility  . . . . . 336  
    command labeling  . 335  
    control  . . . . . . . . . 318  
    design evaluation . . 342  
    error handling . . . . 335  
    golden rules  . . . . . 318  
    help facilities  . . . . 335  
    interface analysis  . 325  
    interface 
consistent. . . . . . . 321  
    interface design  . . 332  
    interface design 
models . . . . . . . . . 322  
    international ization . 336  
    memory load  . . . . 319  
    principles and 
guidelines . . . . . . . 337  
    process. . . . . . . . . 323  
    response time . . . . 335  
    task analysis  . . . . 326  
    task elaboration  . . 327  
    usability . . . . . . . . 322  
    user analysis  . . . . 325  
    webApp and mobile 
interface design  . . 337         

 USER INTERFACE 
DESIGN 15 

    C H A P T E R

 Q U I C K 
L O O K 

  What is it?   User interface design 
creates an effective communication 
medium between a human and a 
computer. Following a set of inter-

face design principles, design identifi es inter-
face objects and actions and then creates a 

screen layout that forms the basis for a user 
interface prototype. 

   Who does it?   A software engineer designs 
the user interface by applying an iterative 
process that draws on predefi ned design 
principles. 

pre22126_ch15_317-346.indd   317pre22126_ch15_317-346.indd   317 13/12/13   10:01 PM13/12/13   10:01 PM



318 PART TWO  MODELING

     15.1 THE GOLDEN RULES 

  In his book on interface design, Theo Mandel [Man97] coins three  golden rules:  

     1.  Place the user in control.  

    2.  Reduce the user’s memory load.  

    3.  Make the interface consistent.    

 These golden rules actually form the basis for a set of user interface design 

principles that guide this important aspect of software design.  

  15.1.1 Place the User in Control 

 During a requirements-gathering session for a major new information system, 

a key user was asked about the attributes of the window-oriented graphical 

interface. 

 “What I really would like,” said the user solemnly, “is a system that reads my 

mind. It knows what I want to do before I need to do it and makes it very easy for 

me to get it done. That’s all, just that.” 

 Your fi rst reaction might be to shake your head and smile, but pause for a mo-

ment. There was absolutely nothing wrong with the user’s request. She wanted a 

system that reacted to her needs and helped her get things done. She wanted to 

control the computer, not have the computer control her. 

 Most interface constraints and restrictions that are imposed by a designer are 

intended to simplify the mode of interaction. But for whom? 

 As a designer, you may be tempted to introduce constraints and limitations 

to simplify the implementation of the interface. The result may be an interface 

   Why is it important?   If software is diffi cult to 
use, if it forces you into mistakes, or if it frus-
trates your efforts to accomplish your goals, 
you won’t like it, regardless of the computa-
tional power it exhibits, the content it delivers, 
or the functionality it offers. The interface has 
to be right because it molds a user’s percep-
tion of the software. 

   What are the steps?   User interface design 
begins with the identifi cation of user, task, 
and environmental requirements. Once user 
tasks have been identifi ed, user scenarios are 
created and analyzed to defi ne a set of inter-
face objects and actions. These form the basis 
for the creation of screen layout that depicts 
graphical design and placement of icons, 

defi nition of descriptive screen text, specifi ca-
tion and titling of windows, and specifi cation 
of major and minor menu items. Tools are 
used to prototype and ultimately implement 
the design model, and the result is evaluated 
for quality. 

   What is the work product?   User scenarios 
are created and screen layouts are generated. 
An interface prototype is developed and mod-
ifi ed in an iterative fashion. 

   How do I ensure that I’ve done it right?  
  An interface prototype is “test driven” by the 
users, and feedback from the test drive is 
used for the next iterative modifi cation of the 
prototype.  

  uote: 

 “It’s better to 
design the user 
experience than 
rectify it.”

Jon Meads 

pre22126_ch15_317-346.indd   318pre22126_ch15_317-346.indd   318 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  319

that is easy to build, but frustrating to use. Mandel [Man97] defi nes a number of 

design principles that allow the user to maintain control: 

      Defi ne interaction modes in a way that does not force a user into unnec-

essary or undesired actions.  An interaction mode is the current state of 

the interface. For example, if  spell check  is selected in a word-processor 

menu, the software moves to a spell-checking mode. There is no reason 

to force the user to remain in spell-checking mode if the user desires to 

make a small text edit along the way. The user should be able to enter and 

exit the mode with little or no effort.  

     Provide for fl exible interaction.  Because different users have different in-

teraction preferences, choices should be provided. For example, software 

might allow a user to interact via keyboard commands, mouse movement, 

a digitizer pen, a multitouch screen, or voice recognition commands. But 

every action is not amenable to every interaction mechanism. Consider, 

for example, the diffi culty of using keyboard command (or voice input) to 

draw a complex shape.  

     Allow user interaction to be interruptible and undoable.  Even when in-

volved in a sequence of actions, the user should be able to interrupt the 

sequence to do something else (without losing the work that had been 

done). The user should also be able to “undo” any action.  

     Streamline interaction as skill levels advance and allow the interaction to 

be customized.  Users often fi nd that they perform the same sequence of 

interactions repeatedly. It is worthwhile to design a “macro” mechanism 

that enables an advanced user to customize the interface to facilitate 

interaction.  

     Hide technical internals from the casual user.  The user interface should 

move the user into the virtual world of the application. The user should 

not be aware of the operating system, fi le management functions, or other 

arcane computing technology.  

     Design for direct interaction with objects that appear on the screen.  The 

user feels a sense of control when able to manipulate the objects that are 

necessary to perform a task in a manner similar to what would occur if the 

object were a physical thing. For example, an application interface that 

allows a user to drag a document into the “trash” is an implementation of 

direct manipulation.    

   15.1.2 Reduce the User’s Memory Load 

 A well-designed user interface does not tax a user’s memory because the more 

a user has to remember, the more error-prone the interaction will be. When-

ever possible, the system should “remember” pertinent information and assist 

  uote: 

 “I have always 
wished that my 
computer would 
be as easy to use 
as my telephone. 
My wish has come 
true. I no longer 
know how to use 
my telephone.” 

 Bjarne 
Stronstrup 
(originator 

of C++) 

pre22126_ch15_317-346.indd   319pre22126_ch15_317-346.indd   319 13/12/13   10:01 PM13/12/13   10:01 PM



320 PART TWO  MODELING

the user with an interaction scenario that assists recall. Mandel [Man97] defi nes 

design principles that enable an interface to reduce the user’s memory load:

      Reduce demand on short-term memory.  When users are involved in complex 

tasks, the demand on short-term memory can be signifi cant. The interface 

should be designed to reduce the requirement to remember past actions, 

inputs, and results. This can be accomplished by providing visual cues that 

enable a user to recognize past actions, rather than having to recall them.  

     Establish meaningful defaults.  The initial set of defaults should make 

sense for the average user, but a user should be able to specify individual 

preferences. However, a “reset” option should be available, enabling the 

redefi nition of original default values.  

     Defi ne shortcuts that are intuitive.  When mnemonics are used to accom-

plish a system function (e.g., alt-P to invoke the  print  function), the mne-

monic should be tied to the action in a way that is easy to remember (e.g., 

fi rst letter of the task to be invoked).  

     The visual layout of the interface should be based on a real-world met-

aphor.  For example, a bill payment system should use a checkbook and 

check register metaphor to guide the user through the bill paying process. 

This enables the user to rely on well-understood visual cues, rather than 

memorizing an arcane interaction sequence.  

     Disclose information in a progressive fashion.  The interface should be 

organized hierarchically. That is, information about a task, an object, or 

some behavior should be presented fi rst at a high level of abstraction. 

More detail should be presented after the user indicates interest.        

  Violating a UI Golden Rule   Violating a UI Golden Rule 

      The scene:  Vinod’s cubicle, as user 
interface design begins.  

     The players:  Vinod and Jamie, members of the 
 SafeHome  software engineering team.  

     The conversation:   

     Jamie:  I’ve been thinking about the surveillance 
 function interface.  

     Vinod (smiling):  Thinking is good.  

     Jamie:  I think maybe we can simplify matters some.  

     Vinod:  Meaning?  

     Jamie:  Well, what if we eliminate the fl oor plan entirely. 
It’s fl ashy, but it’s going to take serious development effort. 
Instead we just ask the user to specify the camera he wants 
to see and then display the video in a video window.  

     Vinod:  How does the homeowner remember how 
many cameras are set up and where they are?  

     Jamie (mildly irritated):  He’s the homeowner; he 
should know.  

     Vinod:  But what if he doesn’t?  

     Jamie:  He should.  

     Vinod:  That’s not the point . . . what if he forgets?  

 SAFEHOME 

pre22126_ch15_317-346.indd   320pre22126_ch15_317-346.indd   320 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  321

    15.1.3 Make the Interface Consistent  

 The interface should present and acquire information in a consistent fashion. 

This implies that (1) all visual information is organized according to design rules 

that are maintained throughout all screen displays, (2) input mechanisms are 

constrained to a limited set that is used consistently throughout the application, 

and (3) mechanisms for navigating from task to task are consistently defi ned and 

implemented. Mandel [Man97] defi nes a set of design principles that help make 

the interface consistent:

      Allow the user to put the current task into a meaningful context.  Many 

interfaces implement complex layers of interactions with dozens of 

screen images. It is important to provide indicators (e.g., window titles, 

graphical icons, consistent color coding) that enable the user to know 

the context of the work at hand. In addition, the user should be able to 

determine where he has come from and what alternatives exist for a 

transition to a new task.  

     Maintain consistency across a complete product line.  A family of applica-

tions (i.e., a product line) should implement the same design rules so that 

consistency is maintained for all interaction.  

     If past interactive models have created user expectations, do not make 

changes unless there is a compelling reason to do so.  Once a particular 

interactive sequence has become a de facto standard (e.g., the use of alt-S 

to save a fi le), the user expects this in every application encountered. A 

change (e.g., using alt-S to invoke scaling) will cause confusion.    

 The interface design principles discussed in this and the preceding sections 

provide you with basic guidance. In the sections that follow, you’ll learn about the 

interface design process itself.     

  uote: 

 “Things that look 
different should act 
different. Things 
that look the same 
should act the 
same.” 

 Larry Marine 

     Jamie:  Uh, we could provide a list of operational 
 cameras and their locations.  

     Vinod:  That’s possible, but why should he have to ask 
for a list?  

     Jamie:  Okay, we provide the list whether he asks or 
not.  

     Vinod:  Better. At least he doesn’t have to remember 
stuff that we can give him.  

     Jamie (thinking for a moment):  But you like the 
fl oor plan, don’t you?  

     Vinod:  Uh huh.  

     Jamie:  Which one will marketing like, do you think?  

     Vinod:  You’re kidding, right?  

     Jamie:  No.  

     Vinod:  Duh … the one with the fl ash … they love sexy 
product features … they’re not interested in which is 
easier to build.  

     Jamie (sighing):  Okay, maybe I’ll prototype both.  

     Vinod:  Good idea … then we let the customer decide.    

pre22126_ch15_317-346.indd   321pre22126_ch15_317-346.indd   321 13/12/13   10:01 PM13/12/13   10:01 PM



322 PART TWO  MODELING

       15.2 USER INTERFACE ANALYS IS  AND DES IGN 

   The overall process for analyzing and designing a user interface begins with the 

creation of different models of system function (as perceived from the outside). 

You begin by delineating the human- and computer-oriented tasks that are re-

quired to achieve system function and then considering the design issues that 

apply to all interface designs. Tools are used to prototype and ultimately imple-

ment the design model, and the result is evaluated by end users for quality. 

  15.2.1 Interface Analysis and Design Models 

 Four different models come into play when a user interface is to be analyzed and 

designed. A human engineer (or the software engineer) establishes a  user model,  

the software engineer creates a  design model,  the end user develops a mental 

image that is often called the user’s  mental model  or the  system perception,  and the 

 WebRef 
 An excellent source of 
UI design information 
can be found at   www
.nngroup.com   

  Usability 
 In an insightful paper on usability, Larry 
Constantine [Con95] asks a question that has 

signifi cant bearing on the subject: “What do users want, 
anyway?” He answers this way: 

 “What users really want are good tools. All software 
systems, from operating systems and languages to 
data entry and decision support applications, are just 
tools. End users want from the tools we engineer for 
them much the same as we expect from the tools we 
use. They want systems that are easy to learn and 
that help them do their work. They want software that 
doesn’t slow them down, that doesn’t trick or confuse 
them, that does make it easier to make mistakes or 
harder to fi nish the job.” 

 Constantine argues that usability is not derived from 
aesthetics, state-of-the-art interaction mechanisms, or 
built-in interface intelligence. Rather, it occurs when the 
architecture of the interface fi ts the needs of the people 
who will be using it. 

 A formal defi nition of usability is somewhat illusive. 
Donahue and his colleagues [Don99] defi ne it in the 
following manner: “Usability is a measure of how well 
a computer system … facilitates learning; helps learners 
remember what they’ve learned; reduces the likelihood 
of errors; enables them to be effi cient, and makes them 
satisfi ed with the system.” 

 The only way to determine whether “usability” 
exists within a system you are building is to conduct 
usability assessment or testing. Watch users interact 

with the  system and answer the following questions 
[Con95]:

    •  Is the system usable without continual help or 
instruction?  

   •  Do the rules of interaction help a knowledgeable user 
to work effi ciently?  

   •  Do interaction mechanisms become more fl exible as 
users become more knowledgeable?  

   •  Has the system been tuned to the physical and social 
environment in which it will be used?  

   •  Is the user aware of the state of the system? Does the 
user know where she is at all times?  

   •  Is the interface structured in a logical and consistent 
manner?  

   •  Are interaction mechanisms, icons, and procedures 
consistent across the interface?  

   •  Does the interaction anticipate errors and help the 
user correct them?  

   •  Is the interface tolerant of errors that are made?  
   •  Is the interaction simple?    

 If each of these questions is answered yes, it is likely that 
usability has been achieved. 

  Among the many measurable benefi ts derived from 
a usable system are [Don99]: increased sales and cus-
tomer satisfaction, competitive advantage, better reviews 
in the media, better word of mouth, reduced support 
costs, improved end-user productivity, reduced training 
costs, reduced documentation costs, reduced likelihood 
of litigation from unhappy customers.  

 INFO 

pre22126_ch15_317-346.indd   322pre22126_ch15_317-346.indd   322 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  323

implementers of the system create an  implementation model . Unfortunately, each 

of these models may differ signifi cantly. Your role, as an interface designer, is to 

reconcile these differences and derive a consistent representation of the interface.  

 The user model establishes the profi le of end users of the system. In his intro-

ductory column on “user-centric design,” Jeff Patton [Pat07] notes:

  The truth is, designers and developers—myself included—often think about users. 

However, in the absence of a strong mental model of specifi c users, we self-substitute. 

Self-substitution isn’t user centric—it’s self-centric.       

  To build an effective user interface, “all design should begin with an under-

standing of the intended users, including profi les of their age, gender, physical 

abilities, education, cultural or ethnic background, motivation, goals and person-

ality” [Shn04]. In addition, users can be categorized as novices, knowledgeable, 

intermittent users, or knowledgeable frequent users. 

 The user’s  mental model  (system perception) is the image of the system that 

end users carry in their heads. For example, if the user of a mobile app that rates 

restaurants were asked to describe its operation, the system perception would 

guide the response. The accuracy of the description will depend on the user’s 

profi le (e.g., novices would provide a sketchy response at best) and overall famil-

iarity with software in the application domain. A user who understands restau-

rant rating apps fully but has worked with the specifi c app only a few times might 

actually be able to provide a more complete description of its function than the 

novice who has spent days trying to apply the app effectively.  

 The  implementation model  combines the outward manifestation of the com-

puter-based system (the look and feel of the interface), coupled with all support-

ing information (books, manuals, videotapes, help fi les) that describes interface 

syntax and semantics. When the implementation model and the user’s mental 

model are coincident, users generally feel comfortable with the software and 

use it effectively. To accomplish this “melding” of the models, the design model 

must have been developed to accommodate the information contained in the 

user model, and the implementation model must accurately refl ect syntactic and 

semantic information about the interface. 

   15.2.2  The Process      

 The analysis and design process for user interfaces is iterative and can be repre-

sented using a spiral model similar to the one discussed in Chapter 4. Referring to 

 Figure 15.1 , the user interface analysis and design process begins at the interior of the 

spiral and encompasses four distinct framework activities [Man97]: (1) interface anal-

ysis and modeling, (2) interface design, (3) interface construction, and (4) interface 

validation. The spiral shown in  Figure 15.1  implies that each of these tasks will occur 

more than once, with each pass around the spiral representing additional elabora-

tion of requirements and the resultant design. In most cases, the construction activity 

involves prototyping—the only practical way to validate what has been designed.  

   Even a novice user 
wants shortcuts; even 
knowledgeable, fre-
quent users sometimes 
need guidance. Give 
them what they need. 

  uote: 

 “If there’s a ‘trick’ 
to it, the UI is 
broken.” 

 Douglas 
Anderson 

  uote: 

 “[P]ay attention to 
what users do, not 
what they say.” 

 Jakob Nielsen 

pre22126_ch15_317-346.indd   323pre22126_ch15_317-346.indd   323 13/12/13   10:01 PM13/12/13   10:01 PM



324 PART TWO  MODELING

  Interface analysis  focuses on the profi le of the users who will interact with 

the system. Skill level, business understanding, and general receptiveness to the 

new system are recorded; and different user categories are defi ned. For each 

user category, requirements are elicited. In essence, you work to understand the 

system perception (Section 15.2.1) for each class of users. 

 Once general requirements have been defi ned, a more detailed  task  analysis  

is conducted. Those tasks that the user performs to accomplish the goals of the 

 system are identifi ed, described, and elaborated (over a number of iterative passes 

through the spiral). Task analysis is discussed in more detail in Section 15.3.  Finally, 

analysis of the user environment focuses on the characteristics of the physical 

work environment (e.g., location, lighting, position constraints). 

 The information gathered as part of the analysis action is used to create an 

analysis model for the interface. Using this model as a basis, the design activity 

commences. 

 The goal of  interface design  is to defi ne a set of interface objects and actions 

(and their screen representations) that enable a user to perform all defi ned tasks 

in a manner that meets every usability goal defi ned for the system. Interface de-

sign is discussed in more detail in Section 15.4. 

  Interface construction  normally begins with the creation of a prototype that 

enables usage scenarios to be evaluated. As the iterative design process contin-

ues, a user interface tool kit (Section 15.5) may be used to complete the construc-

tion of the interface. 

  Interface validation  focuses on (1) the ability of the interface to implement 

every user task correctly, to accommodate all task variations, and to achieve all 

general user requirements; (2) the degree to which the interface is easy to use 

and easy to learn, and (3) the user’s acceptance of the interface as a useful tool 

in his or her work. 

 As we have already noted, the activities described in this section occur itera-

tively. Therefore, there is no need to attempt to specify every detail (for the analysis 

  uote: 

 “It’s better to 
design the user 
experience than 
rectify it.” 

 Jon Meads 

Interface designInterface construction

Interface analysis and modelingInterface validation

 FIGURE 15.1

 The user in-
terface design 
process

pre22126_ch15_317-346.indd   324pre22126_ch15_317-346.indd   324 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  325

or design model) on the fi rst pass. Subsequent passes through the process elabo-

rate task detail, design information, and the operational features of the interface. 

      15.3 INTERFACE ANALYS IS   1   

   A key tenet of all software engineering process models is this:  understand the 

problem before you attempt to design a solution.  In the case of user interface de-

sign, understanding the problem means understanding (1) the people (end users) 

who will interact with the system through the interface, (2) the tasks that end 

users must perform to do their work, (3) the content that is presented as part of 

the interface, and (4) the environment in which these tasks will be conducted. In 

the sections that follow, we examine each of these elements of interface analysis 

with the intent of establishing a solid foundation for the design tasks that follow. 

  15.3.1 User Analysis 

 The phrase  user interface  is probably all the justifi cation needed to spend some 

time understanding the user before worrying about technical matters. Earlier we 

noted that each user has a mental image of the software that may be different 

from the mental image developed by other users. In addition, the user’s mental 

image may be vastly different from the software engineer’s design model. The 

only way that you can get the mental image and the design model to converge 

is to work to understand the users themselves as well as how these people will 

use the system. Information from a broad array of sources (user interviews, sales 

input, marketing input, support input) can be used to accomplish this.     

  The following set of questions (adapted from [Hac98]) will help you to better 

understand the users of a system:

    •  Are users trained professionals, technicians, clerical, or manufacturing 

workers?  

   •  What level of formal education does the average user have?  

   •  Are the users capable of learning from written materials or have they 

 expressed a desire for classroom training?  

   •  Are users expert typists or keyboard phobic?  

   •  What is the age range of the user community?  

   •  Will the users be represented predominately by one gender?  

   •  How are users compensated for the work they perform?  

   •  Do users work normal offi ce hours or do they work until the job is done?  

   How do we learn 
about the demograph-
ics and characteristics 
of end users? 

  1  It is reasonable to argue that this section should be placed in Chapter 8, 9, 10, or 11, since 

 requirements analysis issues are discussed there. It has been positioned here because inter-

face analysis and design are intimately connected to one another, and the boundary between 

the two is often fuzzy. 

pre22126_ch15_317-346.indd   325pre22126_ch15_317-346.indd   325 13/12/13   10:01 PM13/12/13   10:01 PM



326 PART TWO  MODELING

   •  Is the software to be an integral part of the work users do or will it be used 

only occasionally?  

   •  What is the primary spoken language among users?  

   •  What are the consequences if a user makes a mistake using the system?  

   •  Are users experts in the subject matter that is addressed by the system?  

   •  Do users want to know about the technology that sits behind the interface?    

 Once these questions are answered, you’ll know who the end users are, what 

is likely to motivate and please them, how they can be grouped into different 

user classes or profi les, what their mental models of the system are, and how the 

user interface must be characterized to meet their needs. 

   15.3.2 Task Analysis and Modeling     

  The goal of task analysis is to answer the following questions:

    •  What work will the user perform in specifi c circumstances?  

   •  What tasks and subtasks will be performed as the user does the work?  

   •  What specifi c problem domain objects will the user manipulate as work is 

performed?  

   •  What is the sequence of work tasks—the workfl ow?  

   •  What is the hierarchy of tasks?    

 To answer these questions, you must draw upon techniques that we have dis-

cussed earlier in this book, but in this instance, these techniques are applied to 

the user interface.     

   Use Cases.   In previous chapters you learned that the use case describes the man-

ner in which an actor (in the context of user interface design, an actor is always a 

person) interacts with a system. When used as part of task analysis, the use case is 

developed to show how an end user performs some specifi c work-related task. In 

most instances, the use case is written in an informal style (a simple paragraph) in 

the fi rst person. For example, assume that a small software company wants to build 

a computer-aided design system explicitly for interior designers. To get a better 

understanding of how they do their work, actual interior designers are asked to 

describe a specifi c design function. When asked: “How do you decide where to put 

furniture in a room?” an interior designer writes the following informal use case:

  I begin by sketching the fl oor plan of the room, the dimensions and the location of 

windows and doors. I’m very concerned about light as it enters the room, about the 

view out of the windows (if it’s beautiful, I want to draw attention to it), about the run-

ning length of an unobstructed wall, about the fl ow of movement through the room. 

I then look at the list of furniture my customer and I have chosen. . . . Then, I draw a 

rendering (a 3-D picture) of the room to give my customer a feel for what it’ll look like.   

   The user’s goal is to 
accomplish one or 
more tasks via the UI. 
To accomplish this, 
the UI must provide 
mechanisms that allow 
the user to achieve 
her goal. 

 WebRef 
 An excellent source 
of information on 
user modeling can be 
found at   http://
web.eecs.umich.
edu/~kieras/
docs/GOMS/   

pre22126_ch15_317-346.indd   326pre22126_ch15_317-346.indd   326 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  327

  Use Cases for UI Design   Use Cases for UI Design 

      The scene:  Vinod’s cubicle, as user 
interface design continues.  

     The players:  Vinod and Jamie, members of the 
  SafeHome  software engineering team.  

     The conversation:   

     Jamie:  I pinned down our marketing contact and had 
her write a use case for the surveillance interface.  

     Vinod:  From whose point of view?  

     Jamie:  The homeowner, who else is there?  

     Vinod:  There’s also the system administrator role, even 
if it’s the homeowner playing the role, it’s a  different point 
of view. The administrator sets the system up, confi gures 
stuff, lays out the fl oor plan, places the cameras . . .  

     Jamie:  All I had her do was play the role of the home-
owner when he wants to see video.  

     Vinod:  That’s okay. It’s one of the major behaviors of 
the surveillance function interface. But we’re going to 
have to examine the system administration behavior 
as well.  

     Jamie (irritated):  You’re right.  

    [Jamie leaves to fi nd the marketing person. She returns 
a few hours later.]  

     Jamie:  I was lucky, I found her and we worked 
through the administrator use case together. Basically, 
we’re going to defi ne “administration” as one function 

that’s applicable to all other  SafeHome  functions. Here’s 
what we came up with.  

  [Jamie shows the informal use case to Vinod.] 

      Informal use case:  I want to be able to set or edit the 
system layout at any time. When I set up the system, I se-
lect an administration function. It asks me whether I want 
to do a new setup or whether I want to edit an existing 
setup. If I select a new setup, the system displays a draw-
ing screen that will enable me to draw the fl oor plan onto 
a grid. There will be icons for walls, windows, and doors 
so that drawing is easy. I just stretch the icons to their 
appropriate lengths. The system will display the lengths in 
feet or meters (I can select the measurement system). I can 
select from a library of sensors and cameras and place 
them on the fl oor plan. I get to label each, or the system 
will do automatic labeling. I can establish settings for sen-
sors and cameras from appropriate menus. If I select edit, 
I can move sensors or cameras, add new ones or delete 
existing ones, edit the fl oor plan, and edit the setting for 
cameras and sensors. In every case, I expect the system to 
do consistency checking and to help me avoid mistakes.  

     Vinod (after reading the scenario):  Okay, there 
are probably some useful design patterns [Chapter 12] 
or reusable components for GUIs for drawing  programs. 
I’ll betcha 50 bucks we can implement some or most of 
the administrator interface using them.  

     Jamie:  Agreed. I’ll check it out.    

 SAFEHOME 

 This use case provides a basic description of one important work task for the 

computer-aided design system. From it, you can extract tasks, objects, and the 

overall fl ow of the interaction. In addition, other features of the system that 

would please the interior designer might also be conceived. For example, a dig-

ital photo could be taken looking out each window in a room. When the room is 

rendered, the actual outside view could be represented through each window.     

    Task Elaboration.   In Chapter 12, we discussed stepwise elaboration (also called 

functional decomposition or stepwise refi nement) as a mechanism for refi ning the 

processing tasks that are required for software to accomplish some desired func-

tion. Task analysis for interface design uses an elaborative approach that assists 

in understanding the human activities the user interface must accommodate. 

 First, you should defi ne and classify the human tasks that are required to 

accomplish the goal of the system or app. For example, let’s reconsider the 

pre22126_ch15_317-346.indd   327pre22126_ch15_317-346.indd   327 13/12/13   10:01 PM13/12/13   10:01 PM



328 PART TWO  MODELING

computer-aided design system for interior designers discussed earlier. By ob-

serving an interior designer at work, you notice that interior design comprises 

a number of major activities: furniture layout (note the use case discussed ear-

lier), fabric and material selection, wall and window coverings selection, pre-

sentation (to the customer), costing, and shopping. Each of these major tasks 

can be elaborated into subtasks. For example, using information contained in 

the use case, furniture layout can be refi ned into the following tasks: (1) draw 

a fl oor plan based on room dimensions, (2) place windows and doors at appro-

priate locations, (3a) use furniture templates to draw scaled furniture outlines 

on the fl oor plan, (3b) use accents templates to draw scaled accents on the fl oor 

plan, (4) move furniture outlines and accent outlines to get the best placement, 

(5) label all furniture and accent outlines, (6) draw dimensions to show location, 

and (7) draw a perspective-rendering view for the customer. A similar approach 

could be used for each of the other major tasks. 

 Subtasks 1 to 7 can each be refi ned further. Subtasks 1 to 6 will be performed 

by manipulating information and performing actions within the user interface. 

On the other hand, subtask 7 can be performed automatically in software and 

will result in little direct user interaction.  2   The design model of the interface 

should accommodate each of these tasks in a way that is consistent with the user 

model (the profi le of a “typical” interior designer) and system perception (what 

the interior designer expects from an automated system).      

    Object Elaboration.   Rather than focusing on the tasks that a user must per-

form, you can examine the use case and other information obtained from the 

user and extract the physical objects that are used by the interior designer. These 

objects can be categorized into classes. Attributes of each class are defi ned, and 

an evaluation of the actions applied to each object provides a list of operations. 

For example, the furniture template might translate into a class called  Furniture  

with attributes that might include size, shape, location and others. The interior 

designer would  select  the object from the  Furniture  class,  move  it to a position on 

the fl oor plan (another object in this context),  draw  the furniture outline, and so 

forth. The tasks  select, move,  and  draw  are operations. The user interface analysis 

model would not provide a literal implementation for each of these operations. 

However, as the design is elaborated, the details of each operation are defi ned. 

   Workflow Analysis.   When a number of different users, each playing different 

roles, makes use of a user interface, it is sometimes necessary to go beyond task 

analysis and object elaboration and apply  workfl ow analysis.  This technique 

 allows you to understand how a work process is completed when several people 

   Although object 
elaboration is useful, 
it should not be used 
as a stand-alone 
approach. The user’s 
voice  must  be con-
sidered during task 
analysis. 

  2  However, this may not be the case. The interior designer might want to specify the perspective 

to be drawn, the scaling, the use of color, and other information. The use case related to draw-

ing perspective renderings would provide the information you need to address this task. 

pre22126_ch15_317-346.indd   328pre22126_ch15_317-346.indd   328 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  329

  3  This example has been adapted from [Hac98]. 

(and roles) are involved. Consider a company that intends to fully automate the 

process of prescribing and delivering prescription drugs. The entire process  3   will 

revolve around a Web-based application that is accessible by physicians (or their 

assistants), pharmacists, and patients. Workfl ow can be represented effectively 

with a UML swimlane diagram (a variation on the activity diagram).   

 We consider only a small part of the work process: the situation that occurs 

when a patient asks for a refi ll.  Figure 15.2  presents a swimlane diagram that 

indicates the tasks and decisions for each of the three roles noted earlier. This 

information may have been elicited via interview or from use cases written by 

each actor. Regardless, the fl ow of events (shown in the fi gure) enables you to 

recognize a number of key interface characteristics: 

     1.  Each user implements different tasks via the interface; therefore, the look 

and feel of the interface designed for the patient will be different than the 

one defi ned for pharmacists or physicians.  

    2.  The interface design for pharmacists and physicians must accommodate 

access to and display of information from secondary information sources 

(e.g., access to inventory for the pharmacist and access to information 

about alternative medications for the physician).  

    3.  Many of the activities noted in the swimlane diagram can be further elab-

orated using task analysis and/or object elaboration (e.g.,  Fills prescription  

could imply a mail-order delivery, a visit to a pharmacy, or a visit to a spe-

cial drug distribution center).    

   Hierarchical Representation.   A process of elaboration occurs as you begin to 

analyze the interface. Once workfl ow has been established, a task hierarchy can 

be defi ned for each user type. The hierarchy is derived by a stepwise elaboration 

of each task identifi ed for the user. For example, consider the user task  requests 

that a prescription be refi lled.  The following task hierarchy is developed:

   Requests that a prescription be refi lled  

   •   Provide identifying information.  

    •   Specify name.   

   •   Specify userid.   

   •   Specify PIN and password.     

   •   Specify prescription number.   

   •   Specify date refi ll is required.     

 To complete the   task, three subtasks are defi ned. One of these subtasks,  provide 

identifying information,  is further elaborated in three additional sub-subtasks. 

  uote: 

 “It is far better 
to adapt the 
technology to the 
user than to force 
the user to adapt 
to the technology.” 

 Larry Marine 

pre22126_ch15_317-346.indd   329pre22126_ch15_317-346.indd   329 13/12/13   10:01 PM13/12/13   10:01 PM



330 PART TWO  MODELING

Patient Pharmacist Physician

Requests that a 
prescription be refilled

No refills 
remaining

Checks patient
records

Determines status of 
prescription

Refills 
remaining

Refill not 
allowed

Approves refill 

Evaluates alternative
medication

None

Receives request to
contact physician

Alternative
available

Checks inventory for
refill or alternative

Out of stockReceives out of stock
notification

Receives time/date
to pick up

In stock

Picks up
prescription

Fills
prescription

  FIGURE 15.2  Swimlane diagram for prescription refi ll function   

pre22126_ch15_317-346.indd   330pre22126_ch15_317-346.indd   330 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  331

    15.3.3 Analysis of Display Content 

 The user tasks identifi ed in Section 15.3.2 lead to the presentation of a variety of 

different types of content. Analysis modeling techniques discussed in Chapters 9 

through 11 identify the output data objects that are produced by an application. 

These data objects may be (1) generated by components (unrelated to the inter-

face) in other parts of an application, (2) acquired from data stored in a database 

that is accessible from the application, or (3) transmitted from systems external 

to the application in question.     

  During this interface analysis step, the format and aesthetics of the content 

(as it is displayed by the interface) are considered. Among the questions that are 

asked and answered are:

    •  Are different types of data assigned to consistent geographic locations on 

the screen (e.g., photos always appear in the upper right-hand corner)?  

   •  Can the user customize the screen location for content?  

   •  Is proper on-screen identifi cation assigned to all content?  

   •  If a large report is to be presented, how should it be partitioned for ease of 

understanding?  

   •  Will mechanisms be available for moving directly to summary information 

for large collections of data?  

   •  Will graphical output be scaled to fi t within the bounds of the display 

 device that is used?  

   •  How will color be used to enhance understanding?  

   •  How will error messages and warnings be presented to the user?    

 The answers to these (and other) questions will help you to establish require-

ments for content presentation. 

   15.3.4 Analysis of the Work Environment 

 Hackos and Redish [Hac98] make the following statement about work environment 

analysis when they state: “People do not perform their work in isolation. They are 

infl uenced by the activity around them, the physical characteristics of the work-

place, the type of equipment they are using, and the work relationships they have 

with other people.” In some applications the user interface for a computer-based 

system is placed in a “user-friendly location” (e.g., proper lighting, good display 

height, easy keyboard access), but in others (e.g., a factory fl oor or an airplane cock-

pit), lighting may be suboptimal, noise may be a factor, a keyboard or mouse or 

touch screen may not be an option, display placement may be less than ideal. The 

interface designer may be constrained by factors that mitigate against ease of use. 

 In addition to physical environmental factors, the workplace culture also 

comes into play. Will system interaction be measured in some manner (e.g., time 

per transaction or accuracy of a transaction)? Will two or more people have to 

 How do we 
determine 

the format and 
aesthetics of 
content displayed 
as part of the UI? 

?

pre22126_ch15_317-346.indd   331pre22126_ch15_317-346.indd   331 13/12/13   10:01 PM13/12/13   10:01 PM



332 PART TWO  MODELING

share information before an input can be provided? How will support be pro-

vided to users of the system? These and many related questions should be an-

swered before the interface design commences. 

      15.4 INTERFACE DES IGN STEPS   

 Once interface analysis has been completed, all tasks (or objects and actions) 

required by the end user have been identifi ed in detail and the interface design 

activity commences. Interface design, like all software engineering design, is an 

iterative process. Each user interface design step occurs a number of times, elab-

orating and refi ning information developed in the preceding step. 

 Although many different user interface design models (e.g., [Nor86], [Nie00]) 

have been proposed, all suggest some combination of the following steps: (1) de-

fi ne interface objects and actions (operations), (2) identify events (user actions) 

that will cause the state of the user interface to change, (3) depict the repre-

sentation of each state, and (4) indicate how the user interprets each state from 

information provided through the interface. 

  15.4.1 Applying Interface Design Steps 

 The defi nition of interface objects and the actions that are applied to them is an 

important step in interface design. To accomplish this, user scenarios are parsed in 

much the same way as described in Chapter 9. That is, a use case is written. Nouns 

(objects) and verbs (actions) are isolated to create a list of objects and actions. 

 Once the objects and actions have been defi ned and elaborated iteratively, they 

are categorized by type. Target, source, and application objects are identifi ed. A 

 source object  (e.g., a report icon) is dragged and dropped onto a  target object  (e.g., 

a printer icon). The implication of this action is to create a hard-copy report. An 

 application object  represents application-specifi c data that are not directly ma-

nipulated as part of screen interaction. For example, a mailing list is used to store 

names for a mailing. The list itself might be sorted, merged, or purged (menu-

based actions), but it is not dragged and dropped via user interaction. 

 When you are satisfi ed that all important objects and actions have been defi ned 

(for one design iteration), screen layout is performed. Like other interface design 

activities, screen layout is an interactive process in which graphical design and 

placement of icons, defi nition of descriptive screen text, specifi cation and titling 

for windows, and defi nition of major and minor menu items are conducted. If a 

real-world metaphor is appropriate for the application, it is specifi ed at this time, 

and the layout is organized in a manner that complements the metaphor. 

 To provide a brief illustration of the design steps noted previously, consider a 

user scenario for the  SafeHome  system (discussed in earlier chapters). A prelim-

inary use case (written by the homeowner) for the interface follows:

   Preliminary use case:  I want to gain access to my  SafeHome  system from any re-

mote location via the Internet. Using browser software operating on my notebook 

  uote: 

 “Interactive design 
[is] a seamless 
blend of graphic 
arts, technology, 
and psychology.” 

 Brad Wieners 

pre22126_ch15_317-346.indd   332pre22126_ch15_317-346.indd   332 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  333

computer (while I’m at work or traveling), I can determine the status of the alarm sys-

tem, arm or disarm the system, reconfi gure security zones, and view different rooms 

within the house via preinstalled video cameras. 

 To access  SafeHome  from a remote location, I provide an identifi er and a pass-

word. These defi ne levels of access (e.g., all users may not be able to reconfi gure the 

system) and provide security. Once validated, I can check the status of the system and 

change the status by arming or disarming  SafeHome.  I can reconfi gure the system by 

displaying a fl oor plan of the house, viewing each of the security sensors, displaying 

each currently confi gured zone, and modifying zones as required. I can view the in-

terior of the house via strategically placed video cameras. I can pan and zoom each 

camera to provide different views of the interior.   

 Based on this use case, the following homeowner tasks, objects, and data items 

are identifi ed:

    •   Accesses  the  SafeHome  system  

   •   Enters  an  ID  and  password  to allow remote access  

   •   Checks   system status   

   •   Arms  or  disarms   SafeHome  system  

   •   Displays   fl oor plan  and  sensor locations   

   •   Displays   zones  on fl oor plan  

   •   Changes   zones  on fl oor plan  

   •   Displays   video camera locations  on fl oor plan  

   •   Selects   video camera  for viewing  

   •   Views   video images  (four frames per second)  

   •   Pans  or  zooms  the  video camera     

 Objects (boldface) and actions (italics) are extracted from this list of  homeowner 

tasks. The majority of objects noted are application objects. However,  video cam-

era location  (a source object) is dragged and dropped onto  video camera  (a target 

object) to create a  video image  (a window with video display).          

  A preliminary sketch of the screen layout for video monitoring is created 

 ( Figure 15.3 ).  4   To invoke the video image, a video camera location icon,  C,  located 

in the fl oor plan displayed in the monitoring window is selected. In this case a 

camera location in the living room (LR) is then dragged and dropped onto the 

video camera icon in the upper left-hand portion of the screen. The video image 

window appears, displaying streaming video from the camera located in the LR. 

The zoom and pan control slides are used to control the magnifi cation and direc-

tion of the video image. To select a view from another camera, the user simply 

   Although automated 
tools can be useful 
in developing layout 
prototypes, sometimes 
a pencil and paper are 
all that are needed. 

  4  Note that this differs somewhat from the implementation of these features in earlier chapters. 

This might be considered a fi rst draft design and represents one alternative that might be 

considered. 

pre22126_ch15_317-346.indd   333pre22126_ch15_317-346.indd   333 13/12/13   10:01 PM13/12/13   10:01 PM



334 PART TWO  MODELING

drags and drops a different camera location icon into the camera icon in the 

upper left-hand corner of the screen. 

  The layout sketch shown would have to be supplemented with an expansion 

of each menu item within the menu bar, indicating what actions are available for 

the video monitoring mode (state). A complete set of sketches for each home-

owner task noted in the user scenario would be created during the interface 

design. 

   15.4.2 User Interface Design Patterns 

 Graphical user interfaces have become so common that a wide variety of user 

interface design patterns has emerged. A  design pattern  is an abstraction that 

prescribes a design solution to a specifi c, well-bounded design problem. 

 As an example of a commonly encountered interface design problem, con-

sider a situation in which a user must enter one or more calendar dates, some-

times months in advance. There are many possible solutions to this simple 

problem, and a number of different patterns that might be proposed. Laakso 

[Laa00] suggests a pattern called  CalendarStrip  that produces a continuous, 

scrollable calendar in which the current date is highlighted and future dates 

may be selected by picking them from the calendar. The calendar metaphor 

 FIGURE 15.3

 Preliminary 
screen layout

Access   Configure  System Status   View   Monitoring

Monitoring

First Floor

SS S

S

S

S

S

S

M

M

Video Image—LR

LR

DR

KIT
C

C

C

SafeHome
Connect

Status

Video Camera

In Out

RL

S
M
C

door/window sensor
motion detector (beam shown)
video camera location

pre22126_ch15_317-346.indd   334pre22126_ch15_317-346.indd   334 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  335

is well known to every user and provides an effective mechanism for placing a 

future date in context. 

 A vast array of interface design patterns has been proposed over the past de-

cade. A more detailed discussion of user interface design patterns is presented 

in Chapter 16. In addition, Erickson [Eri08] provides pointers to many Web-based 

collections. 

   15.4.3 Design Issues     

  As the design of a user interface evolves, four common design issues almost 

 always surface: system response time, user help facilities, error information 

handling, and command labeling. Unfortunately, many designers do not address 

these issues until relatively late in the design process (sometimes the fi rst inkling 

of a problem doesn’t occur until an operational prototype is available). Unneces-

sary iteration, project delays, and end-user frustration often result. It is far better 

to establish each as a design issue to be considered at the beginning of software 

design, when changes are easy and costs are low.  

  Response Time.   System response time has two important characteristics: length 

and variability. If system response is too long, user frustration and stress are in-

evitable.   Variability  refers to the deviation from average response time, and in 

many ways, it is the most important response time characteristic. Low variability 

enables the user to establish an interaction rhythm, even if response time is rela-

tively long. For example, a 1-second response to a command will often be prefera-

ble to a response that varies from 0.1 to 2.5 seconds. When variability is signifi cant, 

the user is always off balance, always wondering whether something “different” 

has occurred behind the scenes. 

   Help Facilities.   Almost every user of an interactive, computer-based system re-

quires help now and then. Modern software should provide online help facilities 

that enable a user to get a question answered or resolve a problem without leav-

ing the interface.  

   Error Handling.   In general, every error message or warning produced by an 

interactive system should have the following characteristics: (1) describes the 

problem in jargon that the user can understand; (2) provides constructive ad-

vice for recovering from the error; (3) indicates any negative consequences of the 

error (e.g., potentially corrupted data fi les) so that the user can check to ensure 

that they have not occurred (or correct them if they have); be accompanied by 

an audible or visual cue; and should never place blame for the error on the user. 

   Menu and Command Labeling.   The typed command was once the most com-

mon mode of interaction between user and system software and was commonly 

used for applications of every type. Today, the use of window-oriented, point-and-

pick  interfaces has reduced reliance on typed commands, but some power-users 

 WebRef 
 A wide variety of UI 
 design patterns has 
been proposed. For 
pointers to a variety 
of patterns sites, visit 
  http://www.
hcipatterns.org/
patterns/
borchers/
patternIndex.html  . 

  uote: 

 “A common 
mistake that 
people make 
when trying to 
design something 
completely 
foolproof is to 
underestimate 
the ingenuity of 
complete fools.” 

 Douglas Adams 

  uote: 

 “The interface 
from hell—‘to 
correct this error 
and continue, enter 
any 11-digit prime 
number . . .’ ” 

 Author unknown 

pre22126_ch15_317-346.indd   335pre22126_ch15_317-346.indd   335 13/12/13   10:01 PM13/12/13   10:01 PM



336 PART TWO  MODELING

continue to prefer a command-oriented mode of interaction. A number of design 

issues arise when typed commands or menu labels are provided as a mode of 

interaction:

    •  Will every menu option have a corresponding command?  

   •  What form will commands take? Options include a control sequence 

(e.g., alt-P), function keys, or a typed word.  

   •  How diffi cult will it be to learn and remember the commands? What can 

be done if a command is forgotten?  

   •  Can commands be customized or abbreviated by the user?  

   •  Are menu labels self-explanatory within the context of the interface?  

   •  Are submenus consistent with the function implied by a master menu item?  

   •  Have appropriate conventions for command usage been established 

across a family of applications?    

   Application Accessibility.   As computing applications become ubiquitous, soft-

ware engineers must ensure that interface design encompasses mechanisms that 

enable easy access for those with special needs.  Accessibility  for users (and soft-

ware engineers) who may be physically challenged is an imperative for ethical, 

legal, and business reasons. A variety of accessibility guidelines (e.g., [W3C03])—

many designed for Web applications but often applicable to all types of soft-

ware—provide detailed suggestions for designing interfaces that achieve varying 

levels of accessibility. Others (e.g., [App13], [Mic13]) provide specifi c guidelines 

for “assistive technology” that addresses the needs of those with visual, hearing, 

mobility, speech, and learning impairments.     

    Internationalization.   Software engineers and their managers invariably under-

estimate the effort and skills required to create user interfaces that accommodate 

the needs of different locales and languages. Too often, interfaces are designed 

for one locale and language and then jury-rigged to work in other countries. The 

challenge for interface designers is to create “globalized” software. That is, user 

interfaces should be designed to accommodate a generic core of functionality 

that can be delivered to all who use the software.  Localization  features enable 

the interface to be customized for a specifi c market. 

 A variety of internationalization guidelines (e.g., [IBM13]) are available to 

software engineers. These guidelines address broad design issues (e.g., screen 

layouts may differ in various markets) and discrete implementation  issues 

(e.g., different alphabets may create specialized labeling and spacing require-

ments). The  Unicode  standard [Uni03] has been developed to address the 

daunting challenge of managing dozens of natural languages with hundreds of 

characters and symbols.     

 WebRef 
 Guidelines for 
developing accessible 
software can be found 
at   http://www-
03.ibm.com/
able/guidelines/
software/access-
software.html  . 

pre22126_ch15_317-346.indd   336pre22126_ch15_317-346.indd   336 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  337

        15.5 WEBAPP AND MOBILE INTERFACE DES IGN 

  Every user interface—whether it is designed for a WebApp, a mobile device, a 

traditional software application, a consumer product, or an industrial device—

should exhibit the usability characteristics that were discussed earlier in this 

chapter. Dix [Dix99] argues that WebApp and mobile interfaces should answer 

three primary questions:  Where am I? What can I do now? Where have I been and 

where can I go?  Answers to these questions allow a user to understand context 

and navigate more effectively through the app. 

  15.5.1  Interface Design Principles and Guidelines 

  The user interface of a Web or mobile app is its “fi rst impression.” Regardless of 

the value of its content, the sophistication of its processing capabilities and ser-

vices, and the overall benefi t of the application itself, a poorly designed interface 

will disappoint the potential user and may, in fact, cause the user to go elsewhere. 

Because of the sheer volume of competing WebApps and mobile apps in virtually 

every subject area, the interface must “grab” a potential user immediately. 

 There are, of course, important differences between WebApps and mobile 

apps. By virtue of the physical constraints imposed by small mobile devices 

  User Interface Development              

  Objective:   These tools enable a software 
engineer to create a sophisticated GUI with 

relatively little custom software development. The tools 
provide access to reusable components and make 
the creation of an interface a matter of selecting from 
predefi ned capabilities that are assembled using the 
tool. 

   Mechanics:   Modern user interfaces are constructed 
using a set of reusable components that are coupled 
with some custom components developed to provide 
specialized features. Most user interface development 
tools enable a software engineer to create an 
interface using “drag and drop” capability. That 
is, the developer selects from many predefi ned 
capabilities (e.g., forms builders, interaction 
mechanisms, command processing capability) and 
places these capabilities within the content of the 
interface to be created. 

    Representative Tools:  5   
   LegaSuite GUI,  developed by Seagull Software (  http://

www-304.ibm.com/partnerworld/gsd/
solutiondetails.do?solution=1020&expand=
true&lc=en  ), enables the creation of browser-
based GUIs and provides facilities for reengineering 
antiquated interfaces. 

  Motif Common Desktop Environment,  developed by 
The Open Group (  www.osf.org/tech/desktop/
cde/  ), is an integrated graphical user interface for 
open systems desktop computing. It delivers a single, 
standard graphical interface for the management 
of data and fi les (the graphical desktop) and 
applications. 

  Altia Design 8.0,  developed by Altia (  www.altia.
com  ), is a tool for creating GUIs on a variety of 
different platforms (e.g., automotive, handheld, 
industrial).  

 SOFTWARE TOOLS 

  5  Tools noted here do not represent an endorsement, but rather a sampling of tools in this 

category. 

  uote: 

 “If a site is 
perfectly usable 
but it lacks an 
elegant and 
appropriate design 
style, it will fail.” 

 Curt Cloninger 

pre22126_ch15_317-346.indd   337pre22126_ch15_317-346.indd   337 13/12/13   10:01 PM13/12/13   10:01 PM



338 PART TWO  MODELING

(e.g.,  smart phones), the mobile interface designer must compress interaction 

in a  focused manner. However, the basic principles discussed in this section con-

tinue to apply. 

 Bruce Tognozzi [Tog01] defi nes a set of fundamental design principles that 

lead to better usability:  6        

   Anticipation.    An application should be designed so that it anticipates the user’s 

next move.  For example, a user has requested a content object that presents 

information about a printer driver for a new version of an operating system. The 

designer of the WebApp should anticipate that the user might request a down-

load of the driver and should provide navigation facilities that allow this to hap-

pen directly. 

   Communication.    The interface should communicate the status of any activity 

initiated by the user.  Communication can be obvious (e.g., a text message) or sub-

tle (e.g., an image of a sheet of paper moving through a printer to indicate that 

printing is under way). 

   Consistency.    The use of navigation controls, menus, icons, and aesthetics (e.g., 

color, shape, layout) should be consistent throughout.  For example, if a mobile 

app uses a set of four icons (to represent major functions) across the bottom of 

the display, these icons should appear on every screen and should not be moved 

to the top of the display. The meaning of the icons should be self-evident within 

the context of the app. 

   Controlled Autonomy.    The interface should facilitate user movement through-

out the application, but it should do so in a manner that enforces navigation con-

ventions that have been established for the application.  For example, navigation 

to content requiring controlled access should be controlled by userID and pass-

word, and there should be no navigation mechanism that enables a user to cir-

cumvent these controls. 

   Efficiency.    The design of the application and its interface should optimize the 

user’s work effi ciency, not the effi ciency of the developer who designs and builds it 

or the client-server environment that executes it.  Tognozzi [Tog01] discusses this 

when he writes: “This simple truth is why it is so important for everyone … to ap-

preciate the importance of making user productivity goal one and to understand 

the vital difference between building an effi cient [application] and empowering 

an effi cient user.” 

   Flexibility.    The interface should be fl exible enough to enable some users to 

accomplish tasks directly and others to explore the application in a somewhat 

 Is there a 
set of basic 

principles that can 
be applied as you 
design a GUI? 

?

  6  Tognozzi’s original principles have been adapted and extended for use this book. See [Tog01] 

for further discussion of these principles. 

pre22126_ch15_317-346.indd   338pre22126_ch15_317-346.indd   338 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  339

random fashion.  In every case, it should enable the user to understand where 

he is and provide the user with functionality that can undo mistakes and retrace 

poorly chosen navigation paths.  

   Focus.    The interface (and the content it presents) should stay focused on the user 

task(s) at hand.  This concept is particularly important for mobile apps which can 

become very cluttered in the designer attempts to do too much. 

   Human Interface Objects.    A vast library of reusable human interface objects has 

been developed for both Web and mobileApps. Use them.  Any interface object that 

can be “seen, heard, touched or otherwise perceived” [Tog01] by an end user can 

be acquired from any one of a number of object libraries. 

   Latency Reduction.    Rather than making the user wait for some internal opera-

tion to complete (e.g., downloading a complex graphical image), the application 

should use multitasking in a way that lets the user proceed with work as if the 

operation has been completed.  In addition to reducing latency, delays must be 

acknowledged so that the user understands what is happening. This includes 

(1) providing audio feedback when a selection does not result in an immediate 

action by the application, (2) displaying an animated clock or progress bar to in-

dicate that processing is under way, and (3) providing some entertainment (e.g., 

an animation or text presentation) while lengthy processing occurs. 

   Learnability.    An application interface should be designed to minimize learning 

time and, once learned, to minimize relearning required when the app is revisited.  

In general the interface should emphasize a simple, intuitive design that orga-

nizes content and functionality into categories that are obvious to the user.     

    Metaphors.    An interface that uses an interaction metaphor is easier to learn 

and easier to use, as long as the metaphor is appropriate for the application and 

the user.  A metaphor should call on images and concepts from the user’s experi-

ence, but it does not need to be an exact reproduction of a real-world experience. 

   Readability.    All information presented through the interface should be readable 

by young and old.  The interface designer should emphasize readable type styles, 

user-controllable font sizes, and color background choices that enhance contrast. 

   Track State.    When appropriate, the state of the user interaction should be 

tracked and stored so that a user can logoff and return later to pick up where she 

left off.  In general, cookies can be designed to store state information. However, 

cookies are a controversial technology, and other design solutions may be more 

palatable for some users. 

   Visible Navigation.    A well-designed interface provides “the illusion that users are 

in the same place, with the work brought to them”  [Tog01]. When this approach is 

used, navigation is not a user concern. Rather, the user retrieves content object 

and selects functions that are displayed and executed through the interface. 

   Metaphors are an 
excellent idea because 
they mirror real-world 
experience. Just be 
sure that the metaphor 
you choose is well 
known to end users. 

 Quote: 

 “The best journey 
is the one with 
the fewest steps. 
Shorten the 
distance between 
the user and their 
goal.” 

 Author unknown 

pre22126_ch15_317-346.indd   339pre22126_ch15_317-346.indd   339 13/12/13   10:01 PM13/12/13   10:01 PM



340 PART TWO  MODELING

      Nielsen and Wagner [Nie96] suggest a few pragmatic “don’ts” for interface 

 design (based on their redesign of a major WebApp). These provide a nice com-

plement to the principles suggested earlier in this section.  

    •  Don’t force the user to read voluminous amounts of text, particularly when 

the text explains the operation of the WebApp or assists in navigation.  

   •  Don’t make users scroll unless it is absolutely unavoidable.  

   •  Don’t rely on browser functions to assist in navigation.  

   •  Don’t allow aesthetics to supersede functionality.  

  Interface Design Review   Interface Design Review 

        The scene:  Doug Miller’s offi ce.  

       The players:  Doug Miller (manager of the  SafeHome  
software engineering group) and Vinod Raman, a 
member of the  SafeHome  product software engineering 
team.  

       The conversation:   

       Doug:  Vinod, have you and the team had a chance 
to review the   SafeHomeAssured.com   e-commerce 
interface prototype?  

       Vinod:  Yeah . . . we all went through it from a 
technical point of view, and I have a bunch of notes. 
I e-mailed ‘em to Sharon [manager of the WebApp 
team for the outsourcing vendor for the  SafeHome  
e-commerce website] yesterday.  

       Doug:  You and Sharon can get together and discuss 
the small stuff . . . give me a summary of the important 
issues.  

       Vinod:  Overall, they’ve done a good job, nothing 
ground breaking, but it’s a typical e-commerce inter-
face, decent aesthetics, reasonable layout, they’ve hit 
all the important functions . . .  

       Doug (smiling ruefully):  But?  

       Vinod:  Well, there are a few things. . . .  

       Doug:  Such as . . . ?  

       Vinod (showing Doug a sequence of story-
boards for the interface prototype):  Here’s the 
major functions menu that’s displayed on the home 
page: 

      Learn about   SafeHome.   
     Describe your home.   

     Get   SafeHome   component recommendations.   
     Purchase a   SafeHome   system.   
     Get technical support.     

       The problem isn’t with these functions. They’re all okay, 
but the level of abstraction isn’t right.  

       Doug:  They’re all major functions, aren’t they?  

       Vinod:  They are, but here’s the thing . . . you can pur-
chase a system by inputting a list of components . . . no 
real need to describe the house if you don’t want to. I’d 
suggest only four menu options on the home page: 

      Learn about   SafeHome.   
     Specify the   SafeHome   system you need.   
     Purchase a   SafeHome   system.   
     Get technical support.     

       When you select  Specify the   SafeHome   system 
you need , you’ll then have the following options: 

      Select   SafeHome   components.   
     Get   SafeHome   component recommendations.     

       If you’re a knowledgeable user, you’ll select compo-
nents from a set of categorized pull-down menus for 
sensors, cameras, control panels, and more. If you need 
help, you’ll ask for a recommendation and that will 
require that you describe your house. I think it’s a bit 
more logical.  

       Doug:  I agree. Have you talked with Sharon about 
this?  
       Vinod:  No, I want to discuss this with marketing fi rst; 
then I’ll give her a call.    

 SAFEHOME 

  uote: 

 “People have very 
little patience for 
poorly designed 
WWW sites.” 

 Jakob Nielsen 
and Annette 

Wagner 

pre22126_ch15_317-346.indd   340pre22126_ch15_317-346.indd   340 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  341

   •  Don’t force the user to search the display to determine how to link to 

other content or services.    

 A well-designed interface improves the user’s perception of the content or 

services provided by the site. It need not necessarily be fl ashy, but it should al-

ways be well structured and ergonomically sound. 

    15..5.2  Interface Design Workfl ow for Web and Mobile Apps  7   

  Earlier in this chapter we noted that user interface design begins with the iden-

tifi cation of user, task, and environmental requirements. Once user tasks have 

been identifi ed, user scenarios (use cases) are created and analyzed to defi ne a 

set of interface objects and actions. 

 Information contained within the requirements model forms the basis for the 

creation of a screen layout that depicts graphical design and placement of icons, 

defi nition of descriptive screen text, specifi cation and titling for windows, and 

specifi cation of major and minor menu items. Tools are then used to prototype 

and ultimately implement the interface design model. The following tasks repre-

sent a rudimentary workfl ow:

     1.   Review information contained in the requirements model and refi ne as 

required.   

    2.   Develop a rough sketch of the WebApp interface layout.  If the interface 

layout (a prototype developed during requirements modeling) already ex-

ists, it should be reviewed and refi ned as required.  

    3.   Map user objectives into specifi c interface actions.  For the vast majority of 

Web and mobile apps, the user will have a relatively small set of primary 

objectives. These should be mapped into specifi c interface. In essence, you 

must answer the following question: “How does the interface enable the 

user to accomplish each objective?”  

    4.   Defi ne a set of user tasks that are associated with each action.  Each in-

terface action (e.g., “buy a product”) is associated with a set of user tasks. 

These tasks have been identifi ed during requirements modeling. During 

design, they must be mapped into specifi c interactions that encompass 

navigation issues, content objects, and application functions.  

    5.   Storyboard screen images for each interface action.  As each action is 

considered, a sequence of storyboard images (screen images) should be 

created to depict how the interface responds to user interaction. Content 

objects should be identifi ed (even if they have not yet been designed and 

developed), and navigation links should be indicated.  

  7  More detailed discussions of design for WebApps and mobile applications are presented in 

Chapters 17 and 18, respectively. 

pre22126_ch15_317-346.indd   341pre22126_ch15_317-346.indd   341 13/12/13   10:01 PM13/12/13   10:01 PM



342 PART TWO  MODELING

    6.   Refi ne interface layout and storyboards using input from aesthetic design.  

In most cases, you’ll be responsible for rough layout and storyboarding, 

but the aesthetic look and feel for a major commercial website is often 

 developed by graphic designers, rather than technical professionals.  

    7.   Identify user interface objects that are required to implement the inter-

face.  This task may require a search through an existing object library to 

fi nd those reusable objects (classes) that are appropriate for the interface. 

In addition, any custom classes are specifi ed at this time.  

    8.   Develop a procedural representation of the user’s interaction with the 

interface.  This optional task uses UML sequence diagrams and/or activity 

diagrams (Appendix 1) to depict the fl ow of activities (and decisions) that 

occur as the user interacts with the WebApp.  

    9.   Develop a behavioral representation of the interface.  This optional task 

makes use of UML state diagrams (Appendix 1) to represent state tran-

sitions and the events that cause them. Control mechanisms (i.e., the 

objects and actions available to the user to alter the state of an app) are 

defi ned.  

    10.   Describe the interface layout for each state.  Using design information de-

veloped in Tasks 2 and 5, associate a specifi c layout or screen image with 

each WebApp state described in Task 8.  

    11.   Refi ne and review the interface design model.  Review of the interface 

should focus on usability.    

 It is important to note that the fi nal task set you choose should be adapted to 

the special requirements of the application that is to be built. 

      15.6 DES IGN EVALUATION 

  Once you create an operational user interface prototype, it must be evaluated to 

determine whether it meets the needs of the user. Evaluation can span a formal-

ity spectrum that ranges from an informal “test drive,” in which a user provides 

impromptu feedback to a formally designed study that uses statistical methods 

for the evaluation of questionnaires completed by a population of end users. 

 The user interface evaluation cycle takes the form shown in  Figure 15.4 . After 

the design model has been completed, a fi rst-level prototype is created. The pro-

totype is evaluated by the user,  8   who provides you with direct comments about 

the effi cacy of the interface. In addition, if formal evaluation techniques are used 

(e.g., questionnaires, rating sheets), you can extract information from these data 

  8  It is important to note that experts in ergonomics and interface design may also conduct re-

views of the interface. These reviews are called  heuristic evaluations  or  cognitive walkthroughs . 

pre22126_ch15_317-346.indd   342pre22126_ch15_317-346.indd   342 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  343

(e.g., 80 percent of all users did not like the mechanism for saving data fi les). 

Design modifi cations are made based on user input, and the next level prototype 

is created. The evaluation cycle continues until no further modifi cations to the 

interface design are necessary.       

  The prototyping approach is effective, but is it possible to evaluate the qual-

ity of a user interface before a prototype is built?  9   If you identify and correct 

 potential problems early, the number of loops through the evaluation cycle will 

be reduced and development time will shorten. If a design model of the interface 

has been created, a number of evaluation criteria [Mor81] can be applied during 

early design reviews:

     1.  The length and complexity of the requirements model or written specifi -

cation of the system and its interface provide an indication of the amount 

of learning required by users of the system.  

    2.  The number of user tasks specifi ed and the average number of actions per 

task provide an indication of interaction time and the overall effi ciency of 

the system.  

    3.  The number of actions, tasks, and system states indicated by the design 

model imply the memory load on users of the system.  

List of user objectives

Objective #1
Objective #2
Objective #3
Objective #4
Objective #5

Objective #n

Navigation
menu

Menu bar
major functions

Graphic, logo, and company name

Graphic

Home page text copy

 FIGURE 15.4

 The  interface 
design 
 evaluation 
cycle

  9  Some software engineers prefer to develop a low-fi delity mockup of the user interface (UI) 

called a paper prototype to allow stakeholder to test the UI concept before committing any 

programming resources. The process is described here http://www.paperprototyping.com/

what_examples.html 

pre22126_ch15_317-346.indd   343pre22126_ch15_317-346.indd   343 13/12/13   10:01 PM13/12/13   10:01 PM



344 PART TWO  MODELING

    4.  Interface style, help facilities, and error handling protocol provide a gen-

eral indication of the complexity of the interface and the degree to which 

it will be accepted by the user.    

 Once the fi rst prototype is built, you can collect a variety of qualitative and 

quantitative data that will assist in evaluating the interface. To collect qualitative 

data, questionnaires that allow users to assess the interface prototype can be 

distributed. If quantitative data are desired, a form of time-study analysis can be 

conducted. Users are observed during interaction, and data—such as number 

of tasks correctly completed over a standard time period, frequency of actions, 

sequence of actions, time spent “looking” at the display, number and types of 

errors, error recovery time, time spent using help, and number of help refer-

ences per standard time period—are collected and used as a guide for interface 

modifi cation. 

 A complete discussion of user interface evaluation methods is beyond the 

scope of this book. For further information, see [Hac98] and [Sto05]. 

       15.7 SUMMARY 

 The user interface is arguably the most important element of a computer-based 

system or product. If the interface is poorly designed, the user’s ability to tap 

the computational power and informational content of an application may be se-

verely hindered. In fact, a weak interface may cause an otherwise well-designed 

and solidly implemented application to fail. 

 Three important principles guide the design of effective user interfaces: 

(1) place the user in control, (2) reduce the user’s memory load, and (3) make the 

interface consistent. To achieve an interface that abides by these principles, an 

organized design process must be conducted. 

 The development of a user interface begins with a series of analysis tasks. User 

analysis defi nes the profi les of various end users and is gathered from a variety 

of business and technical sources. Task analysis defi nes user tasks and actions 

using either an elaborative or object-oriented approach, applying use cases, task 

and object elaboration, workfl ow analysis, and hierarchical task representations 

to fully understand the human-computer interaction. Environmental analysis 

identifi es the physical and social structures in which the interface must operate. 

 Once tasks have been identifi ed, user scenarios are created and analyzed to 

defi ne a set of interface objects and actions. This provides a basis for the cre-

ation of a screen layout that depicts graphical design and placement of icons, 

defi nition of descriptive screen text, specifi cation and titling for windows, and 

specifi cation of major and minor menu items. Design issues such as response 

time, command and action structure, error handling, and help facilities are con-

sidered as the design model is refi ned. A variety of implementation tools are 

used to build a prototype for evaluation by the user. 

pre22126_ch15_317-346.indd   344pre22126_ch15_317-346.indd   344 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 15  USER INTERFACE DESIGN  345

 Like interface design for conventional software, the design of Web and mobile 

app interfaces describes the structure and organization of the user interface and 

includes a representation of screen layout, a defi nition of the modes of interac-

tion, and a description of navigation mechanisms. A set of interface design prin-

ciples and an interface design workfl ow guide a WebApp or mobile app designer 

when layout and interface control mechanisms are designed. 

 The user interface is the window into the software. In many cases, the inter-

face molds a user’s perception of the quality of the system. If the “window” is 

smudged, wavy, or broken, the user may reject an otherwise powerful computer- 

based system. 

     PROBLEMS AND POINTS TO PONDER 
    15.1.  Describe the worst interface that you have ever worked with and critique it relative 
to the concepts introduced in this chapter. Describe the best interface that you have ever 
worked with and critique it relative to the concepts introduced in this chapter.  

   15.2.  Develop two additional design principles that “place the user in control.”  

   15.3.  Develop two additional design principles that “reduce the user’s memory load.”  

   15.4.  Develop two additional design principles that “make the interface consistent.”  

   15.5.  Consider one of the following interactive applications (or an application assigned by 
your instructor): 

     a.  A desktop publishing system  
    b.  A computer-aided design system  
    c.  An interior design system (as described in Section 15.3.2)  
    d.  An automated course registration system for a university  
    e.  A library management system  
    f.  An Internet-based polling booth for public elections  
    g.  A home banking system  
    h.  An interactive application assigned by your instructor    

       Develop a user model, design model, mental model, and an implementation model, for any 
one of these systems.  

   15.6.  Perform a detailed task analysis for any one of the systems listed in Problem 15.5. Use 
either an elaborative or object-oriented approach.  

   15.7.  Add at least fi ve additional questions to the list developed for content analysis in Sec-
tion 15.3.3.  

   15.8.  Continuing Problem 15.5, defi ne interface objects and actions for the application you 
have chosen. Identify each object type.  

   15.9.  Develop a set of screen layouts with a defi nition of major and minor menu items for the 
system you chose in Problem 15.5.  

   15.10.  Develop a set of screen layouts with a defi nition of major and minor menu items for 
the  SafeHome  system. You may elect to take a different approach than the one shown for 
the screen layout in  Figure 15.3 .  

   15.11.  Describe your approach to user help facilities for the task analysis design model and 
task analysis you have performed as part of Problems 15.5, 15.7, and 15.8.  

   15.12.  Provide a few examples that illustrate why response time variability can be an issue.  

pre22126_ch15_317-346.indd   345pre22126_ch15_317-346.indd   345 13/12/13   10:01 PM13/12/13   10:01 PM



346 PART TWO  MODELING

   15.13.  Develop an approach that would automatically integrate error messages and a user 
help facility. That is, the system would automatically recognize the error type and provide 
a help window with suggestions for correcting it. Perform a reasonably complete software 
design that considers appropriate data structures and algorithms.  

   15.14.  Develop an interface evaluation questionnaire that contains 20 generic questions 
that would apply to most interfaces. Have 10 classmates complete the questionnaire for an 
interactive system that you all use. Summarize the results and report them to your class.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Although his book is not specifi cally about human-computer interfaces, much of what 
 Donald Norman ( The Design of Everyday Things,  reissue edition, Basic Books, 2002) has to 
say about the psychology of effective design applies to the user interface. It is recommended 
reading for anyone who is serious about doing high-quality interface design. Weinschenk 
( 100 Things Every Designer Should Know About People,  New Riders, 2011) does not specifi -
cally focus on software but presents insightful discussion of user-centered design. Johnson 
( Designing with the Mind in Mind,  Morgan Kaughman, 2010) uses cognitive psychology to 
develop rules for the design of effective interfaces. 

   Graphical user interfaces are ubiquitous in the modern world of computing. Whether it’s 
an ATM, a mobile phone, an electronic dashboard in an automobile, a website, or a business 
application, the user interface provides a window into the software. It is for this reason that 
books addressing interface design abound. Among many that are worth considering are: 

   Ballard  (Designing the Mobile User Experience,  Wiley, 2007). 

   Butow ( User Interface Design for Mere Mortals,  Addison-Wesley, 2007). 

   Cooper and his colleagues ( About Face 3: The Essentials of Interaction Design,  3rd ed., 
Wiley, 2007). 

   Galitz ( The Essential Guide to User Interface Design,  3rd ed., Wiley, 2007). 

   Goodwin and Cooper ( Designing for the Digital Age: How to Create Human-Centered 

Products and Services , Wiley, 2009). 

   Hartson and Pyla ( The UX Book: Process and Guidelines for Ensuring a Quality User 

Experience , Morgan Kaufman, 2012). 

   Lehikonen and colleagues ( Personal Content Experience: Managing Digital Life in the 

Mobile Age,  Wiley-Interscience, 2007). 

   Nielsen ( Coordinating User Interfaces for Consistency,  Morgan-Kaufmann, 2006). 

   Pratt and Nunes ( Interactive Design,  Rockport, 2013). 

   Rogers and colleagues ( Interaction Design: Beyond Human-Computer Interaction , 
3rd ed., Wiley, 2011). 

   Shneiderman and colleagues ( Designing the User Interface: Strategies for Effective 

 Human-Computer Interaction , 5th ed., Addison-Wesley, 2009). 

   Tidwell ( Designing Interfaces , O’Reilly Media, 2nd ed., 2011). 

   Johnson ( GUI Bloopers: Common User Interface Design Don’ts and Do’s,  2nd  ed.,  
 Morgan-Kaufmann, 2007) and ( GUI Bloopers: Don’ts and Do’s for Software Developers and 

Web Designers,  Morgan-Kaufmann, 2000) provides useful guidance for those that learn more 
effectively by examining counterexamples. An enjoyable book by Cooper ( The Inmates Are 

Running the Asylum,  Sams Publishing, 2004) discusses why high-tech products drive us 
crazy and how to design ones that don’t. 

   A wide variety of information sources on user interface design are available on the 
 Internet. An up-to-date list of World Wide Web references that are relevant to user interface 
design can be found at the SEPA website:   www.mhhe.com/pressman  .     

pre22126_ch15_317-346.indd   346pre22126_ch15_317-346.indd   346 13/12/13   10:01 PM13/12/13   10:01 PM



347

 PATTERN-BASED 
DESIGN 

        Each of us has encountered a design problem and silently thought:  I won-

der if anyone has developed a solution for this?  The answer is almost 

always— yes!  The problem is fi nding the solution; ensuring that it does, 

in fact, fi t the problem you’ve encountered; understanding the constraints that 

may restrict the manner in which the solution is applied; and fi nally, translat-

ing the proposed solution into your design environment. 

 But what if the solution were codifi ed in some manner? What if there was 

a standard way of describing a problem (so you could look it up), and an orga-

nized method for representing the solution to the problem? It turns out that 

software problems have been codifi ed and described using a standardized 

template, and solutions to them (along with constraints) have been proposed. 

Called  design patterns,  this codifi ed method for describing problems and their 

solution allows the software engineering community to capture design knowl-

edge in a way that enables it to be reused. 

    C H A P T E R

16 

  What is it?   Pattern-based design 
creates a new application by fi nding 
a set of proven solutions to a clearly 
delineated set of problems. Each 

problem and its solution is described by a de-
sign pattern that has been cataloged and vetted 
by other software engineers who have encoun-
tered the problem and implemented the solution 
while designing other applications. Each design 
pattern provides you with a proven approach to 
one part of the problem to be solved. 

   Who does it?   A software engineer examines 
each problem encountered for a new applica-
tion and then attempts to fi nd a relevant solution 
by searching one or more patterns repositories. 

   Why is it important?   Have you ever heard 
the phrase “reinventing the wheel”? It happens 
all the time in software development, and it’s 
a waste of time and energy. By using exist-
ing design patterns, you can acquire a proven 
solution for a specifi c problem. As each pat-
tern is applied, solutions are integrated and 
the application to be built moves closer to a 
complete design. 

   What are the steps?   The requirements model is 
examined in order to isolate the hierarchical set 
of problems to be solved. The problem space is 
partitioned so that subsets of problems associated 
with specifi c software functions and features can 
be identifi ed. Problems can also be organized by 
type: architectural, component-level, algorithmic, 
user interface, and so forth. Once a subset of 
problems is defi ned, one or more pattern reposi-
tories are searched to determine if an existing de-
sign pattern, represented at an appropriate level 
of abstraction, exists. Patterns that are applicable 
are adapted to the specifi c needs of the software 
to be built. Custom problem solving is applied 
in situations for which no patterns can be found.  

   What is the work product?   A design model 
that depicts the architectural structure, user inter-
face, and component-level detail is developed. 

   How do I ensure that I’ve done it right?   As 
each design pattern is translated into some 
element of the design model, work products 
are reviewed for clarity, correctness, complete-
ness, and consistency with requirements and 
with one another.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    architectural 
patterns . . . . . . . . 359  
    behavioral 
patterns . . . . . . . . 350  
    component-level design 
patterns . . . . . . . . 360  
    creational 
patterns . . . . . . . . 350  
    design mistakes  . . 359  
    design patterns. . . 348  
    frameworks  . . . . . . .351  
    granularity . . . . . . 365  
    kinds of patterns. . 349  
    pattern languages . 353  
    pattern-organizing 
table  . . . . . . . . . . 358  

pre22126_ch16_347-370.indd   347pre22126_ch16_347-370.indd   347 16/12/13   6:22 PM16/12/13   6:22 PM



348 PART TWO  MODELING

 The early history of software patterns begins not with a computer scientist but 

a building architect, Christopher Alexander, who recognized that a recurring set 

of problems was encountered whenever a building was designed. He character-

ized these recurring problems and their solutions as  patterns,  describing them 

in the following manner [Ale77]:

  Each pattern describes a problem that occurs over and over again in our environment 

and then describes the core of the solution to that problem in such a way that you can 

use the solution a million times over without ever doing it the same way twice.   

 Alexander’s ideas were fi rst translated into the software world in books by 

Gamma [Gam95], Buschmann [Bus96], and their many colleagues.  1   Today, dozens 

of pattern repositories exist, and pattern-based design can be applied in many 

different application domains. 

       16.1  DES IGN PATTERNS 

       A  design pattern  can be characterized as “a three-part rule which expresses a 

relation between a certain context, a problem, and a solution” [Ale79]. For soft-

ware design,  context  allows the reader to understand the environment in which 

the problem resides and what solution might be appropriate within that envi-

ronment. A set of requirements, including limitations and constraints, acts as a 

 system of forces  that infl uences how the problem can be interpreted within its 

context and how the solution can be effectively applied.  

 It is reasonable to argue that most problems have multiple solutions, but 

that a solution is effective only if it is appropriate within the context of the ex-

isting problem. It is the system of forces that causes a designer to choose a spe-

cifi c solution. The intent is to provide a solution that best satisfi es the system 

of forces, even when these forces are contradictory. Finally, every solution has 

consequences that may have an impact on other aspects of the software and may 

themselves become part of the system of forces for other problems to be solved 

within the larger system. 

 Coplien [Cop05] characterizes an effective design pattern in the following way:

    •   It solves a problem : Patterns capture solutions, not just abstract principles 

or strategies.  

   •   It is a proven concept : Patterns capture solutions with a track record, not 

theories or speculation.  

   •   The solution isn’t obvious : Many problem-solving techniques (such as 

software design paradigms or methods) try to derive solutions from 

    Forces  are those 
characteristics of the 
problem and attributes 
of the solution that 
constrain the way in 
which the design can 
be developed. 

    structural patterns. 350  
    system of forces . . 348  
    user interface design 
patterns . . . . . . . . 362  
    WebApp design 
patterns . . . . . . . . 364  
  

  1  Earlier discussions of software patterns do exist, but these two classic books were the fi rst 

cohesive treatments of the subject. 

  uote: 

 “Our responsibility 
is to do what we 
can, learn what we 
can, improve the 
solutions, and pass 
them on.” 

 Richard P. 
Feynman 

pre22126_ch16_347-370.indd   348pre22126_ch16_347-370.indd   348 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  349

fi rst principles. The best patterns  generate  a solution to a problem 

indirectly—a necessary approach for the most diffi cult problems of design.  

   •   It describes a relationship : Patterns don’t just describe modules, but de-

scribe deeper system structures and mechanisms.  

   •   The pattern has a signifi cant human component (minimize human inter-

vention).  All software serves human comfort or quality of life; the best pat-

terns explicitly appeal to aesthetics and utility.    

 A design pattern saves you from “reinventing the wheel,” or worse, inventing a 

“new wheel” that is slightly out of round, too small for its intended use, and too 

narrow for the ground it will roll over. Design patterns, if used effectively, will 

invariably make you a better software designer. 

  16.1.1  Kinds of Patterns 

 One of the reasons that software engineers are interested in (and intrigued by) 

design patterns is that human beings are inherently good at pattern recogni-

tion. If we weren’t, we’d be frozen in space and time—unable to learn from past 

experience, unwilling to venture forward because of our inability to recognize 

situations that might lead to high risk, unhinged by a world that seems to have 

no regularity or logical consistency. Luckily, none of this occurs because we do 

recognize patterns in virtually every aspect of our lives. 

 In the real world, the patterns we recognize are learned over a lifetime of 

experience. We recognize them instantly and inherently understand what they 

mean and how they might be used. Some of these patterns provide us with in-

sight into recurring phenomenon. For example, you’re on your way home from 

work on the interstate when your navigation system (or car radio) informs you 

that a serious accident has occurred on the interstate in the opposing direction. 

You’re 4 miles from the accident, but already you begin to see traffi c slowing, 

recognizing a pattern that we’ll call  RubberNecking.  People in the travel lanes 

moving in your direction are slowing at the sight of the accident to get a better 

view of what happened on the opposite side of the highway. The  RubberNecking  

pattern yields remarkably predictable results (a traffi c jam), but it does nothing 

more than describe a phenomenon. In patterns jargon, it might be called a  non-

generative  pattern because it describes a context and a problem but it does not 

provide any clear-cut solution. 

 When software design patterns are considered, we strive to identify and doc-

ument  generative  patterns. That is, we identify a pattern that describes an im-

portant and repeatable aspect of a system and that provides us with a way to 

build that aspect within a system of forces that are unique to a given context. In 

an ideal setting, a collection of generative design patterns could be used to “gen-

erate” an application or computer-based system whose architecture enables it 

to adapt to change. Sometimes called  generativity,  “the successive application of 

   A “generative” pattern 
describes the problem, 
a context, and forces, 
but it also describes a 
pragmatic solution to 
the problem. 

pre22126_ch16_347-370.indd   349pre22126_ch16_347-370.indd   349 16/12/13   6:22 PM16/12/13   6:22 PM



350 PART TWO  MODELING

several patterns, each encapsulating its own problem and forces, unfolds a larger 

solution which emerges indirectly as a result of the smaller solutions” [App00].          

  Design patterns span a broad spectrum of abstraction and application.  Archi-

tectural patterns  describe broad-based design problems that are solved using a 

structural approach.  Data patterns  describe recurring data-oriented problems 

and the data modeling solutions that can be used to solve them.  Component pat-

terns  (also referred to as  design patterns ) address problems associated with the 

development of subsystems and components, the manner in which they com-

municate with one another, and their placement within a larger architecture. 

 Interface design patterns  describe common user interface problems and their 

solution with a system of forces that includes the specifi c characteristics of end 

users.  WebApp patterns  address a problem set that is encountered when build-

ing WebApps and often incorporates many of the other patterns categories just 

mentioned.  Mobile patterns  describe commonly encountered problems when de-

veloping solutions for mobile platforms. At a lower level of abstraction,  idioms  

describe how to implement all or part of a specifi c algorithm or data structure for 

a software component within the context of a specifi c programming language.     

  In their seminal book on design patterns, Gamma and his colleagues  2   [Gam95] 

focus on three types of patterns that are particularly relevant to object-oriented 

design: creational patterns, structural patterns, and behavioral patterns. 

   Creational patterns  focus on the “creation, composition, and representation” 

of objects and provide mechanisms that make the instantiation of objects easier 

within a system and enforce “constraints on the type and number of objects that 

can be created within a system” [Maa07].  Structural patterns  focus on problems 

and solutions associated with how classes and objects are organized and inte-

grated to build a larger structure.  Behavioral patterns  address problems asso-

ciated with the assignment of responsibility between objects and the manner in 

which communication is effected between objects.     

   Don’t force a pattern, 
even if it addresses the 
problem at hand. If 
the context and forces 
are wrong, look for 
another pattern. 

 Is there 
a way to 

categorize pattern 
types? 

?

  2  Gamma and his colleagues [Gam95] are often referred to as the “Gang of Four” (GoF) in 

patterns literature. 

  Creational, Structural, and 
Behavioral Patterns 
 A wide variety of design patterns that fi t into 

creational, structural, and behavioral categories have 
been proposed and can be found on the Web. Wikipe-
dia  ( http://en.wikipedia.org/wiki/Software_
design_pattern)   notes the following sampling: 

   Creational Patterns 
    •   Abstract factory pattern:  centralize decision of 

what factory to instantiate.  

   •   Factory method pattern:  centralize creation of 
an object of a specifi c type choosing one of several 
implementations.  

   •   Builder pattern:  separate the construction of 
a complex object from its representation so that 
the same construction process can create different 
representations.  

    Structural Patterns 
    •   Adapter pattern:  “adapts” one interface for a 

class into one that a client expects.  

 INFO 

pre22126_ch16_347-370.indd   350pre22126_ch16_347-370.indd   350 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  351

    16.1.2  Frameworks 

      Patterns themselves may not be suffi cient to develop a complete design. In some 

cases it may be necessary to provide an implementation-specifi c skeletal infra-

structure, called a  framework,  for design work. That is, you can select a “ reusable 

mini-architecture  that provides the generic structure and behavior for a family of 

software abstractions, along with a context . . . which specifi es their collaboration 

and use within a given domain” [Amb98]. 

 A framework is not an architectural pattern, but rather a skeleton with a col-

lection of “plug points” (also called  hooks  and  slots ) that enable it to be adapted 

to a specifi c problem domain. The plug points enable you to integrate problem-

specifi c classes or functionality within the skeleton. In an object-oriented con-

text, a framework is a collection of cooperating classes. 

 Gamma and his colleagues [Gam95] describe the differences between design 

patterns and frameworks in the following manner:

    1.    Design patterns are more abstract than frameworks . Frameworks can be embod-

ied in code, but only  examples  of patterns can be embodied in code. A strength of 

frameworks is that they can be written down in programming languages and not 

only studied but executed and reused directly . . .  

   2.    Design patterns are smaller architectural elements than frameworks . A typical 

framework contains several design patterns but the reverse is never true.  

   3.    Design patterns are less specialized than frameworks . Frameworks always have a 

particular application domain. In contrast, design patterns can be used in nearly 

any kind of application. While more specialized design patterns are certainly pos-

sible, even these wouldn’t dictate an application architecture.    

   A  framework  is a 
reusable “mini-
architecture” that 
serves as a foundation 
from which other 
design patterns can be 
applied. 

   •   Aggregate pattern:  a version of the composite 
pattern with methods for aggregation of children.  

   •   Composite pattern:  a tree structure of objects 
where every object has the same interface.  

   •   Container pattern:  create objects for the sole 
purpose of holding other objects and managing 
them.  

   •   Proxy pattern:  a class functioning as an interface 
to another thing.  

   •   Pipes and fi lters:  a chain of processes where the 
output of each process is the input of the next.  

    Behavioral Patterns 

    •   Chain of responsibility pattern:  Command 
objects are handled or passed on to other objects by 
logic-containing processing objects.  

   •   Command pattern:  Command objects 
encapsulate an action and its parameters.  

   •   Iterator pattern:  Iterators are used to access the 
elements of an aggregate object sequentially without 
exposing its underlying representation.  

   •   Mediator pattern:  Provides a unifi ed interface to 
a set of interfaces in a subsystem.  

   •   Visitor pattern:  A way to separate an algorithm 
from an object.  

   •   Hierarchical visitor pattern:  Provide a way to 
visit every node in a hierarchical data structure such 
as a tree.  

  Comprehensive descriptions of each of these patterns 
can be obtained via links at   www.wikipedia.org  .  

pre22126_ch16_347-370.indd   351pre22126_ch16_347-370.indd   351 16/12/13   6:22 PM16/12/13   6:22 PM



352 PART TWO  MODELING

 In essence, the designer of a framework will argue that one reusable mini-

architecture is applicable to all software to be developed within a limited domain 

of application. To be most effective, frameworks are applied with no changes. 

Additional design elements may be added, but only via the plug points that allow 

the designer to fl esh out the framework skeleton. 

   16.1.3  Describing a Pattern 

 Pattern-based design begins with the recognition of patterns within the appli-

cation you intend to build, continues with a search to determine whether others 

have addressed the pattern, and concludes with the application of an appropri-

ate pattern to the problem at hand. The second of these three tasks is often the 

most diffi cult. How do you fi nd patterns that fi t your needs? 

 An answer to this question must rely on effective communication of the prob-

lem the pattern addresses, the context in which the pattern resides, the system 

of forces that mold the context, and the solution that is proposed. To communi-

cate this information unambiguously, a standard form or template for pattern 

descriptions is required. Although a number of different pattern templates have 

been proposed, almost all contain a major subset of the content suggested by 

Gamma and his colleagues [Gam95]. A simplifi ed pattern template is shown in 

the sidebar.     

  Design Pattern Template 
        Pattern name —describes the essence of 
the pattern in a short but expressive 

name  

       Problem— describes the problem that the pattern 
addresses  

       Motivation —provides an example of the problem  

       Context— describes the environment in which the 
problem resides including the application domain  

       Forces— lists the system of forces that affect the manner 
in which the problem must be solved; includes a 
discussion of limitation and constraints that must be 
considered  

       Solution— provides a detailed description of the solution 
proposed for the problem  

       Intent —describes the pattern and what it does  

       Collaborations —describes how other patterns contribute 
to the solution  

       Consequences —describes the potential trade-offs that 
must be considered when the pattern is implemented 
and the consequences of using the pattern  

       Implementation —identifi es special issues that should be 
considered when implementing the pattern  

       Known uses —provides examples of actual uses of the 
design pattern in real applications  

       Related patterns —cross-references related design patterns    

 INFO 

   The names of design patterns should be chosen with care. One of the key tech-

nical problems in pattern-based design is the inability to fi nd existing patterns 

when hundreds or thousands of candidate patterns exist. The search for the 

“right” pattern is aided immeasurably by a meaningful pattern name. 

  uote: 

 “Patterns are half-
baked—meaning 
you always have 
to fi nish them 
yourself and adapt 
them to your own 
environment.” 

 Martin Fowler 

pre22126_ch16_347-370.indd   352pre22126_ch16_347-370.indd   352 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  353

 A pattern template provides a standardized means for describing a design 

pattern. Each of the template entries represents characteristics of the design 

pattern that can be searched (e.g., via a database) so that the appropriate pattern 

can be found. 

   16.1.4  Pattern Languages and Repositories 

 When we use the term  language,  the fi rst thing that comes to mind is either a 

natural language (e.g., English, Spanish, Chinese) or a programming language 

(e.g., C++, Java). In both cases the language has a syntax and semantics that are 

used to communicate ideas or procedural instructions is an effective manner.     

  When the term  language  is used in the context of design patterns, it takes 

on a slightly different meaning. A  pattern language  encompasses a collection 

of patterns, each described using a standardized template (Section 16.1.3) and 

interrelated to show how these patterns collaborate to solve problems across an 

application domain.  3   

  In a natural language, words are organized into sentences that impart mean-

ing. The structure of sentences is described by the language’s syntax. In a pattern 

language, design patterns are organized in a way that provides a “structured 

method of describing good design practices within a particular domain.”  4       

  In a way, a pattern language is analogous to a hypertext instruction manual 

for problem solving in a specifi c application domain. The problem domain under 

consideration is fi rst described hierarchically, beginning with broad design prob-

lems associated with the domain and then refi ning each of the broad problems 

into lower levels of abstraction. In a software context, broad design problems 

tend to be architectural in nature and address the overall structure of the appli-

cation and the data or content that serve it. Architectural problems are refi ned 

to lower levels of abstraction, leading to design patterns that solve subproblems 

and collaborate with one another at the component (or class) level. Rather than 

a sequential list of patterns, a pattern language represents an interconnected 

collection in which the user can begin with a broad design problem and “burrow 

down” to uncover specifi c problems and their solutions. 

 An extensive list of pattern languages have been proposed for software de-

sign [Hil13] which contains pointers to design patterns that are part of pattern 

languages in a Web-accessible patterns repositories. The repository provides an 

index of all design patterns and contains hypermedia links that enable the user 

to understand the collaborations between patterns. 

   If you can’t fi nd a 
pattern language that 
addresses your prob-
lem domain, look for 
analogies in another 
set of patterns. 

 WebRef 
 For a listing of useful 
patterns languages 
see  c2.com/ppr/
titles.html .  Additional 
information can be 
obtained at hillside.
net/patterns/ . 

  3  Christopher Alexander originally proposed pattern languages for building architecture and 

urban planning. Today, pattern languages have been developed for everything from the social 

sciences to the software engineering process. 

  4  This Wikipedia description can be found at  http://en.wikipedia.org/wiki/Pattern_language . 

pre22126_ch16_347-370.indd   353pre22126_ch16_347-370.indd   353 16/12/13   6:22 PM16/12/13   6:22 PM



354 PART TWO  MODELING

       16.2  PATTERN-BASED SOFTWARE DES IGN 

  The best designers in any fi eld have an uncanny ability to see patterns that char-

acterize a problem and corresponding patterns that can be combined to create 

a solution. Throughout the design process, you should look for every opportunity 

to apply existing design patterns (when they meet the needs of the design) rather 

than creating new ones. 

  16.2.1  Pattern-Based Design in Context 

 Pattern-based design is not used in a vacuum. The concepts and techniques 

discussed for architectural, component-level, and user interface design (Chap-

ters 13 through 15 are all used in conjunction with a pattern-based approach. 

 In Chapter 12, we noted that a set of quality guidelines and attributes serve 

as the basis for all software design decisions. The decisions themselves are in-

fl uenced by a set of fundamental design concepts (e.g., separation of concerns, 

stepwise refi nement, functional independence) that are achieved using heuris-

tics that have evolved over many decades, and best practices (e.g., techniques, 

modeling notation) that have been proposed to make design easier to perform 

and more effective as a basis for construction. 

 The role of pattern-based design in all of this is illustrated in  Figure 16.1 . A 

software designer begins with a requirements model (either explicit or implied) 

that presents an abstract representation of the system. The requirements model 

describes the problem set, establishes the context, and identifi es the system of 

forces that hold sway. It may imply the design in an abstract manner, but the re-

quirements model does little to represent the design explicitly.      

 As you begin your work as a designer, it’s always important to keep quality at-

tributes (Chapter 12) in mind. These attributes establish a way to assess software 

quality but do little to help you actually achieve it. Therefore, you should apply 

proven techniques for translating the abstractions contained in the require-

ments model into a more concrete form that is the software design. To accom-

plish this, you’ll use the methods and modeling tools available for architectural, 

component-level, and interface design. But only when you’re faced with a prob-

lem, context, and system of forces that have not been solved before. If a solution 

already exists, use it! And that means applying a pattern-based design approach. 

   16.2.2  Thinking in Patterns 

 Pattern-based design implies with a “new way of thinking” [Sha05] that begins by 

considering context—the big picture. As context is evaluated, you extract a hier-

archy of problems that must be solved. Some of these problems will be global in 

nature, while others will address specifi c features and functions of the software. 

All will be affected by a system of forces that will infl uence the nature of the solu-

tion that is proposed. 

pre22126_ch16_347-370.indd   354pre22126_ch16_347-370.indd   354 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  355

 Shalloway and Trott [Sha05] suggest the following approach  5   that enables a 

designer to think in patterns:     

      1.  Be sure you understand the big picture—the context in which the software 

to be built resides. The requirements model should communicate this 

to you.  

    2.  Examining the big picture, extract the patterns that are present at that 

level of abstraction.  

    3.  Begin your design with “big picture” patterns that establish a context or 

skeleton for further design work.  

    4.  “Work inward from the context” [Sha05] looking for patterns at lower 

levels of abstraction that contribute to the design solution.  

    5.  Repeat steps 1 to 4 until the complete design is fl eshed out.  

    6.  Refi ne the design by adapting each pattern to the specifi cs of the software 

you’re trying to build.  

  5  Based on the work of Christopher Alexander [Ale79]. 

 Pattern-
based design 

looks interesting 
for the problem 
I have to solve. 
How do I get 
started? 

?

 FIGURE 16.1

 Pattern-based 
design in 
context

Design begins

Consider
design concepts

Extract
problem, context

forces

Requirements
model

Consider
design quality

attributes

Begin
pattern-based
design tasks

Apply other
design methods

and notation

yes no

Addressed by
pattern?

Design
model

pre22126_ch16_347-370.indd   355pre22126_ch16_347-370.indd   355 16/12/13   6:22 PM16/12/13   6:22 PM



356 PART TWO  MODELING

  It’s important to note that patterns are not independent entities. Design pat-

terns that are present at a high level of abstraction will invariably infl uence the 

manner in which other patterns are applied at lower levels of abstraction. In ad-

dition, patterns often collaborate with one another. The implication—when you 

select an architectural pattern, it may very well infl uence the component-level 

design patterns you choose. Likewise, when you select a specifi c interface de-

sign pattern, you are sometimes forced to use other patterns that collaborate 

with it. 

 To illustrate, consider the  SafeHomeAssured.com  WebApp. If you consider 

the big picture, the WebApp must address how to provide information about 

 SafeHome  products and services, how to sell  SafeHome  products and services 

to customers, and how to establish Internet-based monitoring and control of an 

installed security system. Each of these fundamental problems can be further 

refi ned into a set of subproblems. 

 For example,  How to sell  via the Internet implies an  E-commerce  pattern 

that itself implies a large number of patterns at lower levels of abstraction. The  

E-commerce  pattern (likely, an architectural pattern) implies mechanisms for 

setting up a customer account, displaying the products to be sold, selecting prod-

ucts for purchase, and so forth. Hence, if you think in patterns, it is important to 

determine whether a pattern for setting up an account exists. If  SetUpAccount  

is available as a viable pattern for the problem context, it may collaborate with 

other patterns such as  BuildInputForm, ManageFormsInput,  and  ValidateForms-

Entry . Each of these patterns delineates problems to be solved and solutions that 

may be applied. 

   16.2.3  Design Tasks 

 The following design tasks are applied when a pattern-based design philosophy 

is used:

     1.   Examine the requirements model and develop a problem hierarchy.  

Describe each problem and subproblem by isolating the problem, the 

context, and the system of forces that apply. Work from broad problems 

(high level of abstraction) to smaller subproblems (at lower levels of 

abstraction).  

    2.   Determine if a reliable pattern language has been developed for the 

problem domain.  As we noted in Section 16.1.4, a pattern language 

addresses problems associated with a specific application domain. 

The  SafeHome  software team would look for a pattern language de-

veloped specifically for home security products. If that level of pattern 

language specificity could not be found, the team would partition the 

 SafeHome  software problem into a series of generic problem domains 

(e.g., digital device monitoring problems, user interface problems, 

pre22126_ch16_347-370.indd   356pre22126_ch16_347-370.indd   356 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  357

digital video management problems) and search for appropriate pat-

tern languages.  

    3.   Beginning with a broad problem, determine whether one or more archi-

tectural patterns are available for it.  If an architectural pattern is avail-

able, be certain to examine all collaborating patterns. If the pattern is 

appropriate, adapt the design solution proposed and build a design model 

element that adequately represents it. For example, a broad problem for 

the  SafeHomeAssured.com  WebApp is addressed with an  E-commerce  

pattern (Section 16.2.2). This pattern will suggest a specifi c architecture 

for addressing e-commerce requirements.  

    4.   Using the collaborations provided for the architectural pattern, exam-

ine subsystem or component-level problems and search for appropriate 

patterns to address them.  It may be necessary to search through other 

pattern repositories as well as the list of patterns that corresponds to the 

architectural solution. If an appropriate pattern is found, adapt the design 

solution proposed and build a design model element that adequately rep-

resents it. Be certain to apply step 7.  

    5.   Repeat steps 2 through 4 until all broad problems have been addressed.  

The implication is to begin with the big picture and elaborate to solve 

problems at increasingly more detailed levels.  

    6.   If user interface design problems have been isolated (this is almost always 

the case), search the many user interface design pattern repositories for 

appropriate patterns.  Proceed in a manner similar to steps 3, 4, and 5.  

    7.   Regardless of its level of abstraction, if a pattern language and/or 

patterns repository or individual pattern shows promise, compare the 

problem to be solved against the existing pattern(s) presented.  Be certain 

to examine context and forces to ensure that the pattern does, in fact, 

provide a solution that is amenable to the problem.  

    8.   Be certain to refi ne the design as it is derived from patterns using design 

quality criteria as a guide.     

 Although this design approach is top-down, real-life design solutions are some-

times more complex. Gillis [Gil06] comments on this when he writes: 

  Design patterns in software engineering are meant to be used in a deductive, ration-

alistic fashion. So you have this general problem or requirement, X, design pattern Y 

solves X, therefore use Y. Now, when I refl ect on my own process—and I’ve got reason 

to believe that I’m not alone here—I fi nd that it’s more organic than that, more induc-

tive than deductive, more bottom-up than top-down.  

 In addition, the pattern-based approach must be used in conjunction with other 

software design concepts and techniques. 

pre22126_ch16_347-370.indd   357pre22126_ch16_347-370.indd   357 16/12/13   6:22 PM16/12/13   6:22 PM



358 PART TWO  MODELING

   16.2.4  Building a Pattern-Organizing Table 

 As pattern-based design proceeds, you may encounter trouble organizing and 

categorizing candidate patterns from multiple pattern languages and reposito-

ries. To help organize your evaluation of candidate patterns, Microsoft [Mic13] 

suggests the creation of a  pattern-organizing table  that takes the general form 

shown in  Figure 16.2 . 

      A pattern-organizing table can be implemented as a spreadsheet model using 

the form shown in the fi gure. An abbreviated list of problem statements, orga-

nized by data/content, architecture, component level, and user interface issues, 

is presented in the left-hand (shaded) column. Four pattern types—database, ap-

plication, implementation, and infrastructure—are listed across the top row. The 

names of candidate patterns are noted in the cells of the table. 

 To provide entries for the organizing table, you’ll search through pattern 

languages and repositories for patterns that address a particular problem 

statement. When one or more candidate patterns is found, it is entered in 

the row corresponding to the problem statement and the column that corre-

sponds to the pattern type. The name of the pattern is entered as a hyperlink 

to the URL of the Web address that contains a complete description of the 

pattern. 

 FIGURE 16.2

 A pattern-
organizing 
table 
 Source:   Adapted 
from [Mic04]. 

Problem statement ...

Problem statement ...

Problem statement ...

User interface

Problem statement ...

Problem statement ...

Problem statement ...

Component-level

Problem statement ...

Problem statement ...

Problem statement ...

Architecture

Problem statement ...

Problem statement ...

Problem statement ... PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

Database

Data/Content

Application Implementation Infrastructure

pre22126_ch16_347-370.indd   358pre22126_ch16_347-370.indd   358 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  359

   16.2.5  Common Design Mistakes     

  A number of common mistakes occur when pattern-based design is used. In 

some cases, not enough time has been spent to understand the underlying 

problem and its context and forces, and as a consequence, you select a pat-

tern that looks right but is inappropriate for the solution required. Once the 

wrong pattern is selected, you refuse to see your error and force-fi t the pattern. 

In other cases, the problem has forces that are not considered by the pattern 

you’ve chosen, resulting in a poor or erroneous fi t. Sometimes a pattern is ap-

plied too literally and the required adaptations for your problem space are not 

implemented. 

 Can these mistakes be avoided? In most cases the answer is yes. Every good 

designer looks for a second opinion and welcomes review of her work. The review 

techniques discussed in Chapter 20 can help to ensure that the pattern-based 

design you’ve developed will result in a high-quality solution for the software 

problem to be solved. 

       16.3  ARCHITECTURAL PATTERNS 

       If a house builder decides to construct a center-hall colonial, there is a single 

architectural style that can be applied. The details of the style (e.g., number of 

fi replaces, façade of the house, placement of doors and windows) can vary con-

siderably, but once the decision on the overall architecture of the house is made, 

the style is imposed on the design.  6   

  Architectural patterns are a bit different. For example, every house (and 

every architectural style for houses) employs a  Kitchen  pattern. The  Kitchen  

pattern and patterns it collaborates with address problems associated with the 

storage and preparation of food, the tools required to accomplish these tasks, 

and rules for placement of these tools relative to workfl ow in the room. In addi-

tion, the pattern might address problems associated with countertops, lighting, 

wall switches, a central island, fl ooring, and so on. Obviously, there is more than 

a single design for a kitchen, often dictated by the context and system of forces. 

But every design can be conceived within the context of the “solution” suggested 

by the  Kitchen  pattern. 

 Before a representative architectural pattern can be chosen in a particular do-

main, it must be assessed for its appropriateness for the application and the overall 

architectural style, as well as the context and system of forces that it specifi es. 

   Don’t force a pattern, 
even if it addresses the 
problem at hand. If 
the context and forces 
are wrong, look for 
another pattern. 

   A software architecture 
may have a number of 
architectural patterns 
that address issues 
such as concurrency, 
persistence, and 
distribution. 

  6  This implies that there will be a central foyer and hallway, that rooms will be placed to the left 

and right of the foyer, that the house will have two (or more) stories, that the bedrooms of the 

house will be upstairs, and so on. These “rules” are imposed once the decision is made to use 

the center-hall colonial style. 

pre22126_ch16_347-370.indd   359pre22126_ch16_347-370.indd   359 16/12/13   6:22 PM16/12/13   6:22 PM



360 PART TWO  MODELING

           16.4  COMPONENT-LEVEL DES IGN PATTERNS 

  Component-level design patterns provide you with proven solutions that address 

one or more subproblems extracted from the requirements model. In many 

cases, design patterns of this type focus on some functional element of a system. 

For example, the  SafeHomeAssured.com  application must address the following 

design subproblem:  How do I get product specifi cations and related information 

for any SafeHome device?  

 Having enunciated the subproblem that must be solved, you should now con-

sider context and the system of forces that affect the solution. Examining the 

appropriate requirements model use case, you learn that the consumer uses the 

specifi cation for a  SafeHome  device (e.g., a security sensor or camera) for infor-

mational purposes. However, other information that is related to the specifi ca-

tion (e.g., pricing) may be used when e-commerce functionality is selected. 

 The solution to the subproblem involves a search. Since searching is a very com-

mon problem, it should come as no surprise that there are many search-related 

  Design Pattern Repositories 
 There are many sources for design patterns 
available on the Web. Some patterns can be 

obtained from individually published pattern languages, 
while others are available as part of a patterns portal 
or patterns repository. The following Web sources are 
worth a look: 
        Hillside.net     http://hillside.net/patterns/          One of 

the Web’s most comprehensive collections of patterns 
and pattern languages  

       Portland Pattern Repository  
  http://c2.com/ppr/index.html          Contains 
pointers to a wide variety of patterns resources and 
collections  

       Pattern Index   
  http://c2.com/cgi/wiki?PatternIndex   
      An “eclectic collection of patterns”  

       Handbook of Software Architecture  
  http://researcher.watson.ibm.com/
researcher/view_project.php?id=3206/   
      Bibliographic reference to hundreds of architectural 
and component design patterns  

    UI Patterns Collections 
        UI/HCI Patterns  

  http://www.hcipatterns.org/patterns/
borchers/patternIndex.html   

       Jennifer Tidwell’s UI patterns  
  http://designinginterfaces.com/patterns/   

       Mobile UI Design Patterns  
  http://profs.info.uaic.ro/~evalica/patterns/   

       Pattern Language for UI Design  
  www.maplefi sh.com/todd/papers/
Experiences.html   

       Interaction Design Library for Games  
  http://www.eelke.com/fi les/pubs/
usabilitypatternsingames.pdf   

       UI Design Patterns  
  www.cs.helsinki.fi /u/salaakso/patterns/   

    Specialized Design Patterns: 
        Aircraft Avionics  

  http://g.oswego.edu/dl/acs/acs/acs.html   

       Business Information Systems  
  www.objectarchitects.de/arcus/cookbook/   

       Distributed Processing  
  www.cs.wustl.edu/~schmidt/   

       IBM Patterns for e-Business  
  www-128.ibm.com/developerworks/patterns/   

       Yahoo! Design Pattern Library  
  http://developer.yahoo.com/ypatterns/   

       WebPatterns.org  
  http://www.welie.com/index.php     

 INFO 

pre22126_ch16_347-370.indd   360pre22126_ch16_347-370.indd   360 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  361

patterns. Looking through a number of patterns repositories, you fi nd the follow-

ing patterns, along with the problem that each solves:

        AdvancedSearch.  Users must fi nd a specifi c item in a large collection of items.  

       HelpWizard.  Users need help on a certain topic related to the website or 

when they need to fi nd a specifi c page within the site.  

       SearchArea.  Users must fi nd a page.  

       SearchTips.  Users need to know how to control the search engine.  

       SearchResults.  Users have to process a list of search results.  

       SearchBox.  Users have to fi nd an item or specifi c information.    

 For  SafeHomeAssured.com  the number of products is not particularly large, and 

each has a relatively simple categorization, so  AdvancedSearch  and  HelpWizard  

are probably not necessary. Similarly, the search is simple enough not to require 

 SearchTips . The description of  SearchBox , however, is given (in part) as:     

  Search Box 
  (Adapted from    www.welie.com/patterns/showPattern.php?patternID=search)   

  Problem:  The users need to fi nd an item or specifi c information. 

  Motivation:  Any situation in which a keyword search is applied across a 

collection of content objects organized as Web pages. 

  Context:  Rather than using navigation to acquire information or con-

tent, the user wants to do a direct search through content 

contained on multiple Web pages. Any website that already 

has primary navigation. User may want to search for an item 

in a category. User might want to further specify a query. 

  Forces:  The website already has primary navigation. Users may 

want to search for an item in a category. Users might want to 

further specify a query using simple Boolean operators. 

  Solution:  Offer search functionality consisting of a search label, a key-

word fi eld, a fi lter if applicable and a “go” button. Pressing 

the return key has the same function as selecting the go 

button. Also provide Search Tips and examples in a separate 

page. A link to that page is placed next to the search func-

tionality. The edit box for the search term is large enough to 

accommodate three typical user queries (typically around 

20 characters). If the number of fi lters is more than 2, use a 

combo box for fi lters selection, otherwise a radio button. 

  The search results are presented on a new page with a clear 

label containing at least “Search results” or similar. The search 

function is repeated in the top part of the page with the entered 

keywords, so that the users know what the keywords were. 

  The pattern description continues with other entries as described in Section 16.1.3.  

pre22126_ch16_347-370.indd   361pre22126_ch16_347-370.indd   361 16/12/13   6:22 PM16/12/13   6:22 PM



362 PART TWO  MODELING

  The pattern goes on to describe how the search results are accessed, pre-

sented, matched, and so on. Based on this, the  SafeHomeAssured.com  team can 

design the components required to implement the search or (more likely) ac-

quire existing reusable components. 

   Applying Patterns     Applying Patterns  

        The scene:  Informal discussion 
during the design of a software incre-

ment that implements sensor control via the Internet for 
 SafeHomeAssured.com .  

   The players:  Jamie (responsible for design) and Vinod 
( SafeHomeAssured.com  chief system architect). 

  The conversation:  

  Vinod:  So how is the design of the camera control 
interface coming along? 

  Jamie:  Not too bad. I’ve designed most of the capabil-
ity to connect to the actual sensors without too many prob-
lems. I’ve also started thinking about the interface for the 
users to actually move, pan, and zoom the cameras from 
a remote Web page, but I’m not sure I’ve got it right yet. 

  Vinod:  What have you come up with? 

  Jamie:  Well, the requirements are that the camera 
control needs to be highly interactive—as the user 
moves the control, the camera should move as soon as 
possible. So, I was thinking of having a set of buttons 
laid out like a normal camera, but when the user clicks 
them, it controls the camera. 

  Vinod:  Hmmm. Yeah, that would work, but I’m not 
sure it’s right—for each click of a control you need to 
wait for the whole client-server communication to occur, 
and so you won’t get a good sense of quick feedback. 

  Jamie:  That’s what I thought—and why I wasn’t very 
happy with the approach, but I’m not sure how else 
I might do it. 

  Vinod:  Well, why not just use the  InteractiveDevice-
Control  pattern? 

  Jamie:  Uhmmm—what’s that? I haven’t heard of it. 

  Vinod:  It’s basically a pattern for exactly the problem 
you are describing. The solution it proposes is basically 
to create a control connection to the server with the 
device, through which control commands can be sent. 
That way you don’t need to send normal HTTP requests. 
And the pattern even shows how you can implement 
this using some simple AJAX techniques. You have some 
simple client-side JavaScript that communicates directly 
with the server and sends the commands as soon as the 
user does anything. 

  Jamie:  Cool! That’s just what I needed to solve this 
thing. Where do I fi nd it? 

  Vinod:  It’s available in an online repository. Here’s 
the URL. 

  Jamie:  I’ll go check it out. 

  Vinod:  Yep—but remember to check the consequences 
fi eld for the pattern. I seem to remember that there was 
something in there about needing to be careful about 
issues of security. I think it might be because you are 
creating a separate control channel and so bypassing 
the normal Web security mechanisms. 

  Jamie:  Good point. I probably wouldn’t have thought 
of that! Thanks.  

 SAFEHOME 

            16.5  USER INTERFACE DES IGN PATTERNS 

  Hundreds of user interface (UI) patterns have been proposed in recent years. 

Most fall within one of 10 categories of patterns as described by Tidwell [Tid02] 

and vanWelie [Wel01]. A few representative categories (discussed with a simple 

example  7  ) follow: 

  7  An abbreviated pattern template is used here. Full pattern descriptions (along with dozens of 

other patterns) can be found at [Tid02] and [Wel01]. 

pre22126_ch16_347-370.indd   362pre22126_ch16_347-370.indd   362 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  363

   Whole UI.  Provide design guidance for top-level structure and navigation 

throughout the entire interface. 

       Pattern:   Top-level navigation  

  Brief description:  Used when a site or application implements a number 

of major functions. Provides a top-level menu, often coupled with a logo or 

identifying graphic, that enables direct navigation to any of the system’s 

major functions. 

  Details:  Major functions (generally limited to between four and seven 

function names) are listed across the top of the display (vertical column 

formats are also possible) in a horizontal line of text. Each name provides 

a link to the appropriate function or information source. Often used with 

the  bread crumbs  pattern discussed later. 

  Navigation elements:  Each function/content name represents a link to the 

appropriate function or content. 

   Page layout.  Address the general organization of pages (for websites) or dis-

tinct screen displays (for interactive applications). 

       Pattern:   Card stack  

  Brief description:  Used when a number of specifi c subfunctions or content 

categories related to a feature or function must be selected in random 

order. Provides the appearance of a stack of tabbed cards, each selectable 

with a mouse click and each representing specifi c subfunctions or content 

categories. 

  Details:  Tabbed cards are a well-understood metaphor and are easy for 

the user to manipulate. Each tabbed card (divider) may have a slightly 

different format. Some may require input and have buttons or other nav-

igation mechanisms; others may be informational. May be combined with 

other patterns such as  drop-down list, fi ll-in-the-blanks,  and others. 

  Navigation elements:  A mouse click on a tab causes the appropriate card 

to appear. Navigation features within the card may also be present, but in 

general, these should initiate a function that is related to card data, not 

cause an actual link to some other display. 

   Forms and input.  Consider a variety of design techniques for completing form-

level input.     

   Pattern:   Fill-in-the-blanks  

  Brief description:  Allow alphanumeric data to be entered in a “text box.” 

  Details:  Data may be entered within a text box. In general, the data are 

validated and processed after some text or graphic indicator (e.g., a but-

ton containing “go,” “submit,” “next”) is picked. In many cases this pattern 

can be combined with drop-down list or other patterns (e.g., SEARCH 

< drop down list > FOR < fi ll-in-the-blanks  text box>). 

pre22126_ch16_347-370.indd   363pre22126_ch16_347-370.indd   363 16/12/13   6:22 PM16/12/13   6:22 PM



364 PART TWO  MODELING

  Navigation elements:  A text or graphic indicator that initiates validation 

and processing. 

   Navigation.  Assist the user in navigating through hierarchical menus, Web 

pages, and interactive display screens.     

   Pattern:   Edit-in-place  

  Brief description:  Provide simple text editing capability for certain types 

of content in the location that it is displayed. No need for the user to enter 

a text editing function or mode explicitly. 

  Details:  The user sees content on the display that must be changed. A 

mouse double-click on the content indicates to the system that editing is 

desired. The content is highlighted to signify that editing mode is available 

and the user makes appropriate changes. 

  Navigation elements:  None. 

   E-commerce.  Specifi c to websites, these patterns implement recurring ele-

ments of e-commerce applications.     

   Pattern:   Shopping cart  

  Brief description:  Provides a list of items selected for purchase. 

  Details:  Lists item, quantity, product code, availability (in stock, out of 

stock), price, delivery information, shipping costs, and other relevant 

purchase information. Also provides ability to edit (e.g., remove, change 

quantity). 

  Navigation elements:  Contains ability to proceed with shopping or go to 

checkout. 

  Each of the preceding example patterns (and all patterns within each category) 

would also have a complete component-level design, including design classes, 

attributes, operations, and interfaces. 

 A comprehensive discussion of user interface patterns is beyond the scope 

of this book. If you have further interest, see [Yah13], [UXM10], [Gub09], [Duy02], 

[Tid02], and [Bor01] for further information. 

      16.6  WEBAPP DES IGN PATTERNS 

  Throughout this chapter you’ve learned that there are different types of patterns 

and many different ways they can be categorized. When you consider the design 

problems that must be solved when a WebApp is to be built, it’s worth consid-

ering pattern categories by focusing on two dimensions: the design focus of the 

pattern and its level of granularity.  Design focus  identifi es which aspect of the 

design model is relevant (e.g., information architecture, navigation, interaction). 

 Granularity  identifi es the level of abstraction that is being considered (e.g., does 

pre22126_ch16_347-370.indd   364pre22126_ch16_347-370.indd   364 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  365

the pattern apply to the entire WebApp, to a single Web page, to a subsystem, or 

an individual WebApp component?). 

  16.6.1  Design Focus 

 In earlier chapters we emphasized a design progression that begins by consid-

ering architecture, component-level issues, and user interface representations. 

Design focus becomes “narrower” as you move further into design. The problems 

(and solutions) you will encounter when designing an information architecture 

for a WebApp are different from the problems (and solutions) that are encoun-

tered when performing interface design. Therefore, it should come as no sur-

prise that patterns for WebApp design can be developed for different levels of 

design focus, so that you can address the unique problems (and related solutions) 

that are encountered at each level. WebApp patterns can be categorized using 

the following levels of design focus:

    •   Information architecture patterns    relate to the overall structure of the 

information space, and the ways in which users will interact with the 

information.  

   •   Navigation patterns  defi ne navigation link structures, such as hierarchies, 

rings, tours, and so on.  

   •   Interaction patterns  address how the interface informs the user of the 

consequences of a specifi c action.  

   •   Presentation patterns  address how to organize user interface control 

functions for better usability, how to show the relationship between an in-

terface action and the content objects it affects, and how to establish effec-

tive content hierarchies.  

   •   Functional patterns  defi ne the workfl ows, behaviors, processing, commu-

nications, and other algorithmic elements within a WebApp.    

 In most cases, it would be fruitless to explore the collection of  information ar-

chitecture patterns  when a problem in interaction design is encountered. You 

would examine  interaction patterns,  because that is the design focus that is rele-

vant to the work being performed. 

   16.6.2  Design Granularity 

 When a problem involves “big picture” issues, you should attempt to develop 

solutions (and use relevant patterns) that focus on the big picture. Conversely, 

when the focus is very narrow (e.g., uniquely selecting one item from a small set 

of fi ve or fewer items), the solution (and the corresponding pattern) is targeted 

quite narrowly. In terms of the level of granularity, WebApp patterns follow the 

same levels of abstraction that were discussed earlier in this chapter. 

pre22126_ch16_347-370.indd   365pre22126_ch16_347-370.indd   365 16/12/13   6:22 PM16/12/13   6:22 PM



366 PART TWO  MODELING

 Architectural patterns defi ne the overall structure of the WebApp, indicate 

the relationships among different components or increments, and defi ne the 

rules for specifying relationships among the elements (pages, packages, com-

ponents, subsystems) of the architecture. Design patterns address a specifi c ele-

ment of the WebApp design such as an aggregation of components to solve some 

design problem, relationships among elements on a page, or the mechanisms for 

effecting component-to-component communication. Component patterns relate 

to small-scale elements of a WebApp. Examples include individual interaction 

elements (e.g., radio buttons, textbooks), navigation items (e.g., how might you 

format links?) or functional elements (e.g., specifi c algorithms).     

  Hypermedia Design Patterns 
Repositories 
 There are a number of useful hypermedia pat-

terns catalogs and repositories on the Internet. Hundreds of 
design patterns are represented in these representative sites:

        InteractionPatterns by Tom Erickson  
  www.pliant.org/personal/Tom_Erickson/
InteractionPatterns.html   

       Web Design Patterns by Martijn vanWelie  
  www.welie.com/patterns/   

       Web Patterns for UI Design  
  http://www.onextrapixel.
com/2010/11/03/15-ui-design-patterns-
web-designers-should-keep-handy/   

       Improving Web Information Systems with Navigational 
Patterns   
  http://www8.org/w8-papers/5b-
hypertext-media/improving/improving.html   

      UI and Related Patterns compiled at Uzilla.net 
  http://uzilla.net/uzilla/blog/hci_directory/
searchresultde45.html   

       Common Ground—A Pattern Language for HCI Design  
  www.mit.edu/~jtidwell/interaction_
patterns.html   

       Patterns for Personal Websites  
   www.rdrop.com/~half/Creations/Writings/
Web.patterns/index.html      

 INFO 

        16.7  PATTERNS FOR MOBILE APPS 

  By their nature, mobile applications are all about the interface. In many cases, 

mobile UI patterns [Mob12] are represented as a collection of “best of breed” 

screen images for apps in a variety of different categories. Typical examples 

might include:

        Check-in screens.  How do I check in from a specifi c location, make a 

comment, and share comments with friends and followers on a social 

network?  

       Maps.  How do I display a map within the context of an app that ad-

dresses some other subject? For example, review a restaurant and repre-

sent its location within a city.  

       Popovers.  How do I represent a message or information (from the app or 

another user) that arises in real time or as the consequence of a user action?  

pre22126_ch16_347-370.indd   366pre22126_ch16_347-370.indd   366 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  367

       Sign-up Flows.  How do I provide a simple way to sign in or register for 

information or functionality?  

       Custom Tab Navigation.  How do I represent a variety of different content 

objects in a manner that enables the user to select the one she wants?  

       Invitations.  How do I inform the user that he must participate in some 

action or dialog? Typical examples are illustrated in  Figure 16.3 .         

 Additional information about mobile UI patterns can be found in [Nei12] and 

[Hoo12]. In addition to UI patterns, Meier and his colleagues [Mei12] propose a 

variety of more general pattern descriptions for mobile apps. Further informa-

tion on mobile patterns, including an extensive pattern library  8   has been devel-

oped by Nokia [Nok13]. 

        16.8 SUMMARY 

 Design patterns provide a codifi ed mechanism for describing problems and their 

solution in a way that allows the software engineering community to capture de-

sign knowledge for reuse. A pattern describes a problem, indicates the context 

enabling the user to understand the environment in which the problem resides, 

and lists a system of forces that indicate how the problem can be interpreted 

  8   Pointers to a variety of mobile pattern libraries can also be found at:  http://4ourth.com/wiki/

Other%20Mobile%20Pattern%20Libraries  

 FIGURE 16.3

 Examples of 
mobile invita-
tion patterns 
[Nei11]

Dialog Tip Tour Demo

Transparency Embedded Persistent Discoverable

Add a
cord

OK 0.00/459

Pvt to refresh

pre22126_ch16_347-370.indd   367pre22126_ch16_347-370.indd   367 16/12/13   6:22 PM16/12/13   6:22 PM



368 PART TWO  MODELING

within its context and how the solution can be applied. In software engineering 

work, we identify and document generative patterns. These patterns describe an 

important and repeatable aspect of a system and then provide us with a way to 

build that aspect within a system of forces that is unique to a given context. 

 Architectural patterns describe broad-based design problems that are solved 

using a structural approach. Data patterns describe recurring data-oriented 

problems and the data modeling solutions that can be used to solve them. Com-

ponent patterns (also referred to as design patterns) address problems associ-

ated with the development of subsystems and components, the manner in which 

they communicate with one another, and their placement within a larger archi-

tecture. Interface design patterns describe common user interface problems and 

their solution with a system of forces that includes the specifi c characteristics 

of end users. WebApp patterns address a problem set that is encountered when 

building WebApps and often incorporates many of the other patterns categories 

just mentioned. Mobile patterns address the unique nature of the mobile inter-

face and functionality and control elements that are specifi c to mobile platforms. 

 A framework provides an infrastructure in which patterns may reside and 

idioms describe programming language–specifi c implementation detail for all 

or part of a specifi c algorithm or data structure. A standard form or template is 

used for pattern descriptions. A pattern language encompasses a collection of 

patterns, each described using a standardized template and interrelated to show 

how these patterns collaborate to solve problems across an application domain. 

 Pattern-based design is used in conjunction with architectural, compo-

nent-level, and user interface design methods. The design approach begins with 

an examination of the requirements model to isolate problems, defi ne context, 

and describe the system of forces. Next, pattern languages for the problem do-

main are searched to determine if patterns exist for the problems that have been 

isolated. Once appropriate patterns have been found, they are used as a design 

guide. 

     PROBLEMS AND POINTS TO PONDER 
    16.1.  Discuss the three “parts” of a design pattern and provide a concrete example of each 
from some fi eld other than software.  

   16.2.  What is the difference between a nongenerative and a generative pattern?  

   16.3.  How do architectural patterns differ from component patterns?  

   16.4.  What is a framework and how does it differ from a pattern? What is an idiom and how 
does it differ from a pattern?  

   16.5.  Using the design pattern template presented in Section 16.1.3, develop a complete 
pattern description for a pattern suggested by your instructor.  

   16.6.  Develop a skeletal pattern language for a sport with which you are familiar. You can 
begin by addressing the context, the system of forces, and the broad problems that a coach 

pre22126_ch16_347-370.indd   368pre22126_ch16_347-370.indd   368 16/12/13   6:22 PM16/12/13   6:22 PM



CHAPTER 16  PATTERN-BASED DESIGN  369

and team must solve. You need only specify pattern names and provide a one-sentence 
description for each pattern.  

   16.7.  Find fi ve patterns repositories and present an abbreviated description of the types of 
patterns contained in each.  

   16.8.  When Christopher Alexander says “good design cannot be achieved simply by adding 
together performing parts,” what do you think he means?  

   16.9.  Using the pattern-based design tasks noted in Section 16.2.3, develop a skeletal design 
for the “interior design system” described in Section 15.3.2.  

   16.10.  Build a pattern-organizing table for the patterns you used in Problem 16.9.  

   16.11.  Using the design pattern template presented in Section 16.1.3, develop a complete 
pattern description for the  Kitchen  pattern mentioned in Section 16.3.  

   16.12.  The gang of four [Gam95] have proposed a variety of component patterns that are 
applicable to object-oriented systems. Select one (these are available on the Web) and dis-
cuss it.  

   16.13.  Find three patterns repositories for user-interface patterns. Select one pattern from 
each and present an abbreviated description of it.  

   16.14.  Find three patterns repositories for WebApp patterns. Select one pattern from each 
and present an abbreviated description of it.  

   16.15.   Find three patterns repositories for mobile patterns. Select one pattern from each 
and present an abbreviated description of it.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Many books on pattern-based design have been written for software engineers. Gamma 
and his colleagues [Gam95] have written the seminal book on the subject. More recent con-
tributions include books by Burris ( Programming in the Large with Design Patterns,  Pretty 
Print Press, 2012), Smith ( Elemental Design Patterns,  Addison-Wesley, 2012). Lasater ( Design 

Patterns,  Wordware Publishing, 2007), Holzner ( Design Patterns for Dummies,  For Dummies, 
2006), Freeman and her colleagues ( Head First Design Patterns,  O’Reilly Media, 2005), and 
Shalloway and Trott ( Design Patterns Explained,  2nd. ed., Addison-Wesley, 2004). Kent Beck 
( Implementation Patterns,  Addison-Wesley, 2008) addresses patterns for coding and imple-
mentation issues that are encountered during the construction activity. 

   Other books focus on design patterns as they are supplied in specifi c application de-
velopment and language environments. Contributions in this area include: Bowers and his 
colleagues ( Pro HTML5 and CSS3 Design Patterns,  Apress, 2011), Scott and Neil ( Designing 

Web Interfaces: Principles and Patterns for Rich Interactions , O’Reilly, 2009), Tropashko 
and Burleson ( SQL Design Patterns: Expert Guide to SQL Programming,  Rampant Tech-
press, 2007), Mahemoff ( Ajax Design Patterns,  O’Reilly Media, 2006), Bevis ( Java Design 

Pattern Essentials,  Ability First Limited, 2010), Metsker and Wake ( Design Patterns in 

Java,  Addison-Wesley, 2006), Millett ( Professional ASP.NET Design Patterns,  Wrox, 2010), 
Nilsson ( Applying Domain-Driven Design and Patterns: With Examples in C# and .NET,  
Addison-Wesley, 2006), Stefanov ( JavaScript Patterns,  O’Reilly, 2010), Sweat ( PHP | Architect’s 

Guide to PHP Design Patterns,  Marco Tabini & Associates, 2005), Paul ( Design Patterns in 

C# ), Metsker ( Design Patterns C#,  Addison-Wesley, 2004), Grand and Merrill ( Visual Basic 

.NET Design Patterns,  Wiley, 2003), Crawford and Kaplan ( J2EE Design Patterns,  O’Reilly 
Media, 2003), Juric et al. ( J2EE Design Patterns Applied,  Wrox Press, 2002), and Marinescu 
and Roman ( EJB Design Patterns,  Wiley, 2002), 

   Still other books address specifi c application domains. These include contributions by 
Kuchana ( Software Architecture Design Patterns in Java,  Auerbach, 2004), Joshi ( C++ Design 

pre22126_ch16_347-370.indd   369pre22126_ch16_347-370.indd   369 16/12/13   6:22 PM16/12/13   6:22 PM



370 PART TWO  MODELING

Patterns and Derivatives Pricing,  Cambridge University Press, 2004), Douglass ( Real-Time 

Design Patterns,  Addison-Wesley, 2002), and Schmidt and Rising ( Design Patterns in Com-

munication Software,  Cambridge University Press, 2001). 
   Classic books by the architect Christopher Alexander ( Notes on the Synthesis of Form,  

Harvard University Press, 1964, and  A Pattern Language: Towns, Buildings, Construction,  
Oxford University Press, 1977) are worthwhile reading for a software designer who intends 
to fully understand design patterns. 

   A wide variety of information sources on pattern-based design are available on the In-
ternet. An up-to-date list of World Wide Web references that are relevant to pattern-based 
design can be found at the SEPA website:    www.mhhe.com/pressman .      

pre22126_ch16_347-370.indd   370pre22126_ch16_347-370.indd   370 16/12/13   6:22 PM16/12/13   6:22 PM



371

        In his authoritative book on Web design, Jakob Nielsen [Nie00] states: 

“There are essentially two basic approaches to design: the artistic ideal of 

expressing yourself and the engineering ideal of solving a problem for a 

customer.” During the fi rst decade of Web development, the artistic idea was 

the approach that many developers chose. Design occurred in an ad hoc man-

ner and was usually conducted as HTML was generated. Design evolved out of 

an artistic vision that evolved as WebApp construction occurred.  

 Even today, many Web developers use WebApps as poster children for 

“limited design.” They argue that WebApp immediacy and volatility mitigate 

against formal design; that design evolves as an application is built (coded), 

and that relatively little time should be spent on creating a detailed design 

model. This argument has merit, but only for relatively simple WebApps. When 

content and function are complex; when the size of the WebApp encompasses

 WEBAPP DESIGN 

    C H A P T E R

17 

  What is it?   Design for WebApps 
encompasses technical and nontech-
nical activities that include: establish-
ing the look and feel of the WebApp, 

creating the aesthetic layout of the user inter-
face, defi ning the overall architectural structure, 
developing the content and functionality that 
reside within the architecture, and planning the 
navigation that occurs within the WebApp. 

   Who does it?   Web engineers, graphic 
designers, content developers, and other 
stakeholders all participate in the creation of 
a WebApp design model. 

   Why is it important?   Design allows you to 
create a model that can be assessed for qual-
ity and improved before content and code are 
generated, tests are conducted, and end users 
become involved in large numbers. Design is 
the place where WebApp quality is established. 

   What are the steps?   WebApp design en-
compasses six major steps that are driven 
by information obtained during requirements 
modeling. Content design uses the content 
model (developed during analysis) as the basis 

for establishing the design of content objects. 
Aesthetic design (also called graphic design) 
establishes the look and feel that the end user 
sees. Architectural design focuses on the over-
all hypermedia structure of all content objects 
and functions. Interface design establishes the 
layout and interaction mechanisms that defi ne 
the user interface. Navigation design defi nes 
how the end user navigates through the hy-
permedia structure, and component design 
represents the detailed internal structure of 
functional elements of the WebApp. 

   What is the work product?   A design model 
that encompasses content, aesthetics, architec-
ture, interface, navigation, and component-level 
design issues is the primary work product that 
is produced during WebApp design. 

   How do I ensure that I’ve done it 
right?   Each element of the design model is 
reviewed in an effort to uncover errors, incon-
sistencies, or omissions. In addition, alterna-
tive solutions are considered, and the degree 
to which the current design model will lead to 
an effective implementation is also assessed.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    aesthetic 
design . . . . 377  
    architecture 
design . . . . 381  
    component-level 
design . . . . 387  
    content 
architecture  381  
    content 
design . . . . 379  
    content 
objects . . . . 379  
    design 
goals . . . . . 374  
    design 
pyramid. . . 375  

pre22126_ch17_371-390.indd   371pre22126_ch17_371-390.indd   371 13/12/13   6:13 PM13/12/13   6:13 PM



372 PART TWO  MODELING

hundreds or thousands of content objects, functions, and analysis classes; and 

when the success of the WebApp will have a direct impact on the success of the 

business, design cannot and should not be taken lightly. 

 This reality leads us to Nielsen’s second approach—“the engineering ideal 

of solving a problem for a customer.” Web engineering  1   adopts this philoso-

phy, and a more rigorous approach to WebApp design enables developers to 

achieve it. 

       17.1  WEBAPP DES IGN QUALITY 

  Every person who has surfed the Web has an opinion about what makes a “good” 

WebApp. Individual viewpoints vary widely. Some users enjoy fl ashy graphics; 

others want simple text. Some demand copious information; others desire an 

abbreviated presentation. Some like sophisticated analytical tools or database 

access; others like to keep it simple. In fact, the user’s perception of “goodness” 

(and the resultant acceptance or rejection of the WebApp as a consequence) 

might be more important than any technical discussion of WebApp quality. 

 But how is WebApp quality perceived? What attributes must be exhibited to 

achieve goodness in the eyes of end users and at the same time exhibit the tech-

nical characteristics of quality that will enable you to correct, adapt, enhance, 

and support the WebApp over the long term? 

 In reality, all of the technical characteristics of design quality discussed in 

Chapter 12 and the generic quality attributes presented in Chapter 19 apply 

to WebApps. However, the most relevant of these generic attributes—usability, 

functionality, reliability, effi ciency, and maintainability—provide a useful basis 

for assessing the quality of Web-based systems. 

 Olsina and his colleagues [Ols99] have prepared a “quality requirement tree” 

that identifi es a set of technical attributes—usability, functionality, reliability, 

effi ciency, and maintainability—that lead to high-quality WebApps.  2    Figure 17.1  

summarizes their work. The criteria noted in the fi gure are of particular interest 

if you design, build, and maintain WebApps over the long term.      

  Offutt [Off02] extends the fi ve major quality attributes noted in  Figure 17.1  by 

adding the following attributes:

        Security.   WebApps have become heavily integrated with critical cor-

porate and government databases. E-commerce applications extract 

 What are 
the major 

attributes of 
quality for 
WebApps? 

?

    design 
quality . . . . 372  
    graphic 
design . . . . 378  
    model-view-
controller . . 384  
    navigation 
design . . . . 385  
    quality 
checklist. . . 374  
    webApp 
architecture  384  
  

  1   Web engineering  [Pre08] is an adapted version of the software engineering approach that is 

presented throughout this book. It proposes an agile, yet disciplined framework for building 

industry-quality Web-based systems and applications. 

  2  These quality attributes are quite similar to those presented in Chapters 12 and 19. The impli-

cation: quality characteristics are universal for all software. 

pre22126_ch17_371-390.indd   372pre22126_ch17_371-390.indd   372 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  373

and then store sensitive customer information. For these and many 

other reasons, WebApp security is paramount in many situations. The 

key measure of security is the ability of the WebApp and its server en-

vironment to rebuff unauthorized access and/or thwart an outright 

malevolent attack. Security engineering is discussed in Chapter 27. 

For additional information on WebApp see [Web13], [Pri10], [Vac06], 

and [Kiz05].  

       Availability.   Even the best WebApp will not meet users’ needs if it is un-

available. In a technical sense, availability is the measure of the percent-

age of time that a WebApp is available for use. But Offutt [Off02] suggests 

that “using features available on only one browser or one platform” makes 

the WebApp unavailable to those with a different browser/platform confi g-

uration. The user will invariably go elsewhere.  

       Scalability.   Can the WebApp and its server environment be scaled 

to handle 100, 1,000, 10,000, or 100,000 users? Will the WebApp and 

the systems with which it is interfaced handle signifi cant variation in 

volume or will responsiveness drop dramatically (or cease altogether)? 

It is important to design a WebApp that can accommodate the burden 

of success (i.e., signifi cantly more end users) and become even more 

successful.  

       Time-to-Market.   Although time-to-market is not a true quality attribute 

in the technical sense, it is a measure of quality from a business point of 

view. The fi rst WebApp to address a specifi c market segment often cap-

tures a disproportionate number of end users.  

Web
application

quality

Usability

Global site understandability
Online feedback and help features
Interface and aesthetic features
Special features

Searching and retrieving capability
Navigation and browsing features
Application domain-related features

Correct link processing
Error recovery
User input validation and recovery

Ease of correction
Adaptability
Extensibility

Response time performance
Page generation speed
Graphics generation speed

Functionality

Reliability

Efficiency

Maintainability

  FIGURE 17.1

 Quality 
requirements 
tree.    
  Source: [Ols99].  

pre22126_ch17_371-390.indd   373pre22126_ch17_371-390.indd   373 13/12/13   6:13 PM13/12/13   6:13 PM



374 PART TWO  MODELING

        Billions of Web pages are available for those in search of information. Even 

well-targeted Web searches result in an avalanche of content. With so many sources 

of information to choose from, how does the user assess the quality (e.g., veracity, ac-

curacy, completeness, timeliness) of the content that is presented within a WebApp? 

      Tillman [Til00] suggests a useful set of criteria for assessing the quality of con-

tent: Can the scope and depth of content be easily determined to ensure that it 

meets the user’s needs? Can the background and authority of the content’s au-

thors be easily identifi ed? Is it possible to determine the currency of the content, 

the last update, and what was updated? Are the content and its location stable 

(i.e., will they remain at the referenced URL)? Is content credible? Is content 

unique? That is, does the WebApp provide some unique benefi t to those who use 

it? Is content valuable to the targeted user community? Is content well orga-

nized? Indexed? Easily accessible? These questions represent only a small sam-

pling of the issues that should be addressed as the design of a WebApp evolves. 

      17.2  DES IGN GOALS 

  In her regular column on Web design, Jean Kaiser [Kai02] suggests a set of design 

goals that are applicable to virtually every WebApp regardless of application 

domain, size, or complexity:

         Simplicity.   Although it may seem old-fashioned, the aphorism “all things 

in moderation” applies to WebApps. There is a tendency among some 

designers to provide the end user with “too much”—exhaustive content, 

extreme visuals, intrusive animation, enormous Web pages, complex navi-

gation, the list is long. Better to strive for moderation and simplicity.  

       Consistency.   This design goal applies to virtually every element of the design 

model. Content should be constructed consistently (e.g., text formatting and 

 What should 
we consider 

when assessing 
content quality? 

?

  uote: 

 “Just because you 
can doesn’t mean 
you should.” 

 Jean Kaiser 

  WebApp Design—Quality Checklist 
 The following checklist, adapted from infor-
mation presented at   Webreference.com  , 

provides a set of questions that will help both Web engi-
neers and end users assess overall WebApp quality:

    •  Can content and/or function and/or navigation 
options be tailored to the user’s preferences?  

   •  Can content and/or functionality be customized to 
the bandwidth at which the user communicates?  

   •  Have graphics and other nontext media been used 
appropriately? Are graphics fi le sizes optimized for 
display effi ciency?  

   •  Are tables organized and sized in a manner that 
makes them understandable and displayed effi ciently?  

   •  Is HTML optimized to eliminate ineffi ciencies?  

   •  Is the overall page design easy to read and navigate?  

   •  Do all pointers provide links to information that is of 
interest to users?  

   •  Is it likely that most links have persistence on the Web?  

   •  Is the WebApp instrumented with site management 
utilities that include tools for usage tracking, link 
testing, local searching, and security?     

 INFO 

pre22126_ch17_371-390.indd   374pre22126_ch17_371-390.indd   374 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  375

font styles should be the same across all text documents; graphic art should 

have a consistent look, color scheme, and style). Graphic design (aesthetics) 

should present a consistent look across all parts of the WebApp. Navigation 

mechanisms should be used consistently across all WebApp elements. As 

Kaiser [Kai02] notes: “Remember that to a visitor, a website is a physical place. 

It is confusing if pages within a site are not consistent in design.“  

       Identity.   The aesthetic, interface, and navigational design of a WebApp 

must be consistent with the application domain for which it is to be built. 

A website for a music company will undoubtedly have a different look and 

feel than a WebApp designed for a fi nancial services company.   

       Robustness.   Based on the identity that has been established, a WebApp 

often makes an implicit “promise” to a user. The user expects robust con-

tent and functions that are relevant to the user’s needs. If these elements 

are missing or insuffi cient, it is likely that the WebApp will fail.  

       Navigability.   Navigation should be designed in a manner that is intuitive 

and predictable. That is, the user should understand how to move about 

the WebApp without having to search for navigation links or instructions. 

For example, if a fi eld of graphic icons or images contains selected icons 

or images that will be used as navigation mechanisms, these must be iden-

tifi ed visually. Nothing is more frustrating than trying to fi nd the appropri-

ate live link among many graphical images.  

       Visual Appeal.   Of all software categories, Web applications are unques-

tionably the most visual, the most dynamic, and the most unapologetically 

aesthetic. Beauty (visual appeal) is undoubtedly in the eye of the beholder, 

but many design characteristics (e.g., the look and feel of content; inter-

face layout; color coordination; the balance of text, graphics, and other 

media; navigation mechanisms) do contribute to visual appeal.  

       Compatibility.   A WebApp will be used in a variety of environments (e.g., 

different hardware, Internet connection types, operating systems, brows-

ers) and must be designed to be compatible with each.    

      17.3  A DESIGN PYRAMID FOR WEBAPPS 

   What is design in the context of Web engineering? This simple question is more 

diffi cult to answer than one might believe. Pressman and Lowe [Pre08] discuss 

this when they write:

  The creation of an effective design will typically require a diverse set of skills. Some-

times, for small projects, a single developer may need to be multi-skilled. For larger 

projects, it may be advisable and/or feasible to draw on the expertise of specialists: 

Web engineers, graphic designers, content developers, programmers, database spe-

cialists, information architects, network engineers, security experts, and testers. 

  uote: 

 “To some, Web 
design focuses on 
visual look and 
feel . . . To others, 
Web design is 
about structuring 
information 
and navigation 
through the 
document space. 
Others might even 
consider Web 
design to be about 
the technology 
used to build 
interactive Web 
applications. In 
reality, design 
includes all of these 
things and maybe 
more.” 

 Thomas Powell 

pre22126_ch17_371-390.indd   375pre22126_ch17_371-390.indd   375 13/12/13   6:13 PM13/12/13   6:13 PM



376 PART TWO  MODELING

Drawing on these diverse skills allows the creation of a model that can be assessed 

for quality and improved  before  content and code are generated, tests are conducted, 

and end-users become involved in large numbers. If analysis is where  WebApp quality 

is established,  then design is where the  quality is truly embedded.  

   The appropriate mix of design skills will vary depending upon the nature of 

the WebApp.  Figure 17.2  depicts a design pyramid for WebApps. Each level of the 

pyramid represents a design action that is described in the sections that follow.  

      17.4  WEBAPP INTERFACE DES IGN 

  When a user interacts with a computer-based system, a set of fundamental 

principles and overriding design guidelines apply. These have been discussed 

in Chapter 15.  3   Although WebApps present a few special user interface design 

challenges, the basic principles and guidelines are applicable.  

 One of the challenges of interface design for WebApps is the indeterminate 

nature of the user’s entry point. That is, the user may enter the WebApp at a 

“home” location (e.g., the home page) or may be linked into some lower level of 

the WebApp architecture. In some cases, the WebApp can be designed in a way 

that reroutes the user to a home location, but if this is undesirable, the WebApp 

design must provide interface navigation features that accompany all content 

objects and are available regardless of how the user enters the system. 

 The objectives of a WebApp interface are to: (1) establish a consistent window 

into the content and functionality provided by the interface, (2) guide the user 

through a series of interactions with the WebApp, and (3) organize the navigation 

options and content available to the user. To achieve a consistent interface, you 

  uote: 

 “If a site is 
perfectly usable 
but it lacks an 
elegant and 
appropriate design 
style, it will fail.” 

 Curt Cloninger 

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

  FIGURE 17.2

 A design 
pyramid for 
WebApps   

  3  Section 15.5 is dedicated to WebApp interface design. If you have not already done so, read it 

at this time. 

pre22126_ch17_371-390.indd   376pre22126_ch17_371-390.indd   376 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  377

should fi rst use aesthetic design (Section 17.5) to establish a coherent “look.” This 

encompasses many characteristics, but must emphasize the layout and form of 

navigation mechanisms. To guide user interaction, you may draw on an appro-

priate metaphor  4   that enables the user to gain an intuitive understanding of the 

interface. To implement navigation options, you can select  navigation menus  po-

sitioned consistently on Web pages,  graphic icons  represented in a manner that 

enable a user to recognize that the icon is a navigation element, and/or  graphic 

images  that provide a link to a content object or WebApp functionality.   It is im-

portant to note that one or more of these navigation mechanisms should be pro-

vided at every level of the content hierarchy.  

       17.5 AESTHETIC DES IGN 

       Aesthetic design, also called  graphic design,  is an artistic endeavor that com-

plements the technical aspects of WebApp design. Without it, a WebApp may be 

functional, but unappealing. With it, a WebApp draws its users into a world that 

embraces them on a visceral, as well as an intellectual level. 

 But what is aesthetic? There is an old saying, “beauty exists in the eye of the 

beholder.” This is particularly appropriate when aesthetic design for WebApps is 

considered. To perform effective aesthetic design, return to the user hierarchy 

developed as part of the requirements model (Chapter 8) and ask,   “Who are the 

WebApp’s users and what “look” do they desire?”          

 What 
interaction 

mechanisms 
are available 
to WebApp 
designers? 

?

  4  In this context, a  metaphor  is a representation (drawn from the user’s real-world experience) 

that can be modeled within the context of the interface. A simple example might be a slider 

switch that is used to control the auditory volume of an .mpg fi le. 

 Not every Web 
engineer (or software 
engineer) has artistic 
(aesthetic) talent. 
If you fall into this 
category, hire an 
experienced graphic 
designer for aesthetic 
design work. 

  Graphic Design   Graphic Design 

  The scene:  Doug Miller’s offi ce after 
the fi rst web interface prototype review. 

  The players:  Doug Miller (SafeHome software engi-
neering project manager) and Vinod Raman member of 
the  SafeHome  software engineering team. 

  The conversation:  

  Doug:  What’s your impression of new Web page design? 

  Vinod:  I like it, but more importantly, our customers 
like it. 

  Doug:  How much help did you get from the graphic 
designer we borrowed from marketing? 

  Vinod:  A lot, actually. She has a great eye for page 
layout and suggested an awesome graphic theme for 

the pages. Much better than what we came up with on 
our own. 

  Doug:  That’s good. Any issues? 

  Vinod:  We still have to create alternate pages to take 
accessibility issues into account for some of our visually 
impaired users. But we would have had to do that for 
any Web page design we had. 

  Doug:  Do we need graphic design help on the alterna-
tive pages as well? 

  Vinod:  Sure. The designer has a good understanding 
of usability and accessibility issues. 

  Doug:  OK, I‘ll ask marketing if we can borrow her a 
little longer.  

 SAFEHOME 

pre22126_ch17_371-390.indd   377pre22126_ch17_371-390.indd   377 13/12/13   6:13 PM13/12/13   6:13 PM



378 PART TWO  MODELING

   17.5.1  Layout Issues 

 Every Web page has a limited amount of “real estate” that can be used to sup-

port nonfunctional aesthetics, navigation features, informational content, and 

user-directed functionality. The development of this real estate is planned during 

aesthetic design. 

 Like all aesthetic issues, there are no absolute rules when screen layout is de-

signed. However, a number of general layout guidelines are worth considering:  

        Don’t be afraid of open space.   It is inadvisable to pack every square inch 

of a Web page with information. The resulting clutter makes it diffi cult 

for the user to identify needed information or features and create visual 

chaos that is not pleasing to the eye.  

       Emphasize content.   After all, that’s the reason the user is there. 

Nielsen [Nie00] suggests that the typical Web page user should be 80 per-

cent content with the remaining real estate dedicated to navigation and 

other features.  

      Organize layout elements from top left to bottom right.   The vast majority 

of users will scan a Web page in much the same way as they scan the page 

of a book—top left to bottom right.  5   If layout elements have specifi c prior-

ities, high-priority elements should be placed in the upper-left portion of 

the page real estate.   

       Group navigation, content, and function geographically within the page.     

Humans look for patterns in virtually all things. If there are no discernible 

patterns within a Web page, user frustration is likely to increase (owing to 

unnecessary searching for needed information).  

       Don’t extend your real estate with the scrolling bar.   Although scrolling 

is often necessary, most studies indicate that users would prefer not to 

scroll. It is often better to reduce page content or to present necessary 

content on multiple pages.  

       Consider resolution and browser window size when designing layout.   

Rather than defi ning fi xed sizes within a layout, the design should specify 

all layout items as a percentage of available space [Nie00]. With the grow-

ing use of mobile devices with different screen sizes, this concept becomes 

increasingly important.  

    17.5.2  Graphic Design Issues 

 Graphic design considers every aspect of the look and feel of a WebApp. The 

graphic design process begins with layout (Section 17.5.1) and proceeds into a 

consideration of global color schemes; type fonts, sizes, and styles; the use of 

  uote: 

 “We fi nd that 
people quickly 
evaluate a site 
by visual design 
alone.” 

  Stanford 
Guidelines for 

Web Credibility  

      5  There are exceptions that are cultural and language-based, but this rule holds for most users. 

pre22126_ch17_371-390.indd   378pre22126_ch17_371-390.indd   378 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  379

supplementary media (e.g., audio, video, animation); and all other aesthetic ele-

ments of an application. 

 A comprehensive discussion of graphic design issues for WebApps is beyond 

the scope of this book. You can obtain design tips and guidelines from many 

websites that are dedicated to the subject (e.g.,    www.graphic-design.com  ,  www

.webdesignfromscratch.com ,   www.wpdfd.com  ) or from one or more print re-

sources (e.g., [Bea11], [McN10], [Lup08], and [Roc06]).     

  Well-Designed Websites 
 Sometimes, the best way to understand good 
WebApp design is to look at a few exam-

ples. In his article “The Top Twenty Web Design Tips,” 
Marcelle Toor (  www.graphic-design.com/Web/
feature/tips.html  ) suggests the following websites as 
examples of good graphic design:

         http://www.marcelletoordesigns.com/  —ILR 
Website Design is a cutting-edge resource for clients 
developing their websites and other Internet ventures.  

        www.workbook.com  —this site showcases work by 
illustrators and designers  

        www.pbs.org/riverofsong  —a television series for 
public TV and radio about American music  

        www.RKDINC.com  —a design fi rm with online 
portfolio and good design tips  

        http://www.creativehotlist.com/  —a good source 
for well-designed sites developed by ad agencies, 
graphics arts fi rms, and other communications specialists  

        www.btdnyc.com  —a design fi rm headed by Beth 
Toudreau     

 INFO 

         17.6  CONTENT DES IGN 

  Content design focuses on two different design tasks, each addressed by individ-

uals with different skill sets. First, you should develop a design representation 

for content objects and the mechanisms required to establish their relationship 

to one another. Second, the information within a specifi c content object is cre-

ated. The latter task may be conducted by copywriters, graphic designers, and 

others who generate the content to be used within a WebApp. 

  17.6.1  Content Objects 

 In the context of WebApp design, a content object is more closely aligned with a data 

object for traditional software. A  content object  has attributes that include content-

specifi c information (normally defi ned during WebApp requirements modeling) 

and implementation-specifi c attributes that are specifi ed as part of design.  

 As an example, consider an analysis class,  ProductComponent,  developed 

for the  SafeHome  e-commerce system .  The analysis class attribute,  descrip-

tion , is represented as a design class named  CompDescription  composed of 

fi ve content objects:  MarketingDescription, Photograph, TechDescription, 

Schematic,  and  Video  shown as shaded objects noted in  Figure 17.3 . Informa-

tion contained within the content object is noted as attributes. For example, 

  uote: 

 “Good designers 
can create 
normalcy out 
of chaos; they 
can clearly 
communicate 
ideas through 
the organizing 
and manipulating 
of words and 
pictures.” 

 Jeffery Veen 

pre22126_ch17_371-390.indd   379pre22126_ch17_371-390.indd   379 13/12/13   6:13 PM13/12/13   6:13 PM



380 PART TWO  MODELING

 Photograph  (a .jpg image) has the attributes horizontal dimension, vertical dimension, 

and border style. 

 UML association and an aggregation  6   may be used to represent relationships 

between content objects. For example, the UML association shown in  Figure 17.3  

indicates that one  CompDescription  is used for each instance of the  ProductCom-

ponent  class.  CompDescription  is composed on the fi ve content objects shown. 

However, the multiplicity notation shown indicates that  Schematic  and  Video  are 

optional (0 occurrences are possible), one  MarketingDescription  and one  Tech-

Description  are required, and one or more instances of  Photograph  are used.  

   17.6.2  Content Design Issues 

 Once all content objects are modeled, the information that each object is to deliver 

must be authored and then formatted to best meet the customer’s needs. Content 

authoring is the job of specialists in the relevant area who design the content ob-

ject by providing an outline of information to be delivered and an indication of 

the types of generic content objects (e.g., descriptive text, graphic images, photo-

graphs) that will be used to deliver the information. Aesthetic design (Section 17.5) 

may also be applied to represent the proper look and feel for the content. 

ProductComponent

partNumber
partName
partType
description
price

createNewItem( )
displayDescription( )
display TechSpec

MarketingDescription

text color
font style
font size
line spacing
text usage size
background color

Photograph

horizontal dimension
vertical dimension
border style

Schematic

horizontal dimension
vertical dimension
border style

TechDescription

text color
font style
font size
line spacing
text image size
background color

Video

horizontal dimension
vertical dimension
border style
audio volume

CompDescription

1

1

1

1

Is part of

0..1

0..1 0..11 1..*

Sensor Camera Control Panel SoftFeature

  FIGURE 17.3

 Design 
representation 
of content 
objects 

  

  6  Both of these representations are discussed in Appendix 1. 

pre22126_ch17_371-390.indd   380pre22126_ch17_371-390.indd   380 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  381

      As content objects are designed, they are “chunked” [Pow02] to form WebApp 

pages. The number of content objects incorporated into a single page is a func-

tion of user needs, constraints imposed by download speed of the Internet con-

nection, and restrictions imposed by the amount of scrolling that the user will 

tolerate. 

       17.7  ARCHITECTURE DES IGN 

   Architecture design is tied to the goals established for a WebApp, the content 

to be presented, the users who will visit, and the navigation philosophy that has 

been established. As an architectural designer, you must identify content archi-

tecture and WebApp architecture.  Content architecture   7   focuses on the manner 

in which content objects (or composite objects such as Web pages) are structured 

for presentation and navigation.  WebApp architecture  addresses the manner in 

which the application is structured to manage user interaction, handle internal 

processing tasks, effect navigation, and present content.  

 In most cases, architecture design is conducted in parallel with interface de-

sign, aesthetic design, and content design. Because the WebApp architecture 

may have a strong infl uence on navigation, the decisions made during this design 

action will infl uence work conducted during navigation design. 

  17.7.1  Content Architecture 

 The design of content architecture focuses on the defi nition of the overall hy-

permedia structure of the WebApp. Although custom architectures are some-

times created, you always have the option of choosing from four different content 

structures [Pow02]:      

   Linear structures  ( Figure 17.4 ) are encountered when a predictable sequence 

of interactions (with some variation or diversion) is common. A classic example 

might be a tutorial presentation in which pages of information along with related 

graphics, short videos, or audio are presented only after prerequisite informa-

tion has been presented. The sequence of content presentation is predefi ned and 

generally linear. Another example might be a product order entry sequence in 

which specifi c information must be specifi ed in a specifi c order. In such cases, 

the structures shown in  Figure 17.4  are appropriate. As content and processing 

become more complex, the purely linear fl ow shown on the left of the fi gure gives 

way to more sophisticated linear structures in which alternative content may be 

invoked or a diversion to acquire complementary content (structure shown on 

the right side of  Figure 17.4 ) occurs. 

 What types 
of content 

architectures 
are commonly 
encountered? 

?

 Users tend to tolerate 
vertical scrolling more 
readily than horizontal 
scrolling. Avoid wide 
page formats. 

  uote: 

 ”[T]he architectural 
structure of a well 
designed site is not 
always apparent 
to the user—nor 
should it be.” 

 Thomas Powell 

  7  The term  information architecture  is also used to connote structures that lead to better organi-

zation, labeling, navigation, and searching of content objects. 

pre22126_ch17_371-390.indd   381pre22126_ch17_371-390.indd   381 13/12/13   6:13 PM13/12/13   6:13 PM



382 PART TWO  MODELING

   Grid structures  ( Figure 17.5 ) are an architectural option that you can apply 

when WebApp content can be organized categorically in two (or more) dimen-

sions. For example, consider a situation in which an e-commerce site sells golf 

clubs. The horizontal dimension of the grid represents the type of club to be sold 

(e.g., woods, irons, wedges, putters). The vertical dimension represents the offer-

ings provided by various golf club manufacturers. Hence, a user might navigate 

the grid horizontally to fi nd the putters column and then vertically to examine 

the offerings provided by those manufacturers that sell putters. This WebApp 

architecture is useful only when highly regular content is encountered [Pow02]. 

   Hierarchical structures  ( Figure 17.6 ) are undoubtedly the most common 

WebApp architecture. Unlike the partitioned software hierarchies discussed in 

Chapter 13 that encourage fl ow of control only along vertical branches of the 

Linear Linear
with

optional flow

Linear
with

diversions

  FIGURE 17.4

 Linear 
structures    

  FIGURE 17.5

 Grid structure   

pre22126_ch17_371-390.indd   382pre22126_ch17_371-390.indd   382 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  383

hierarchy, a WebApp hierarchical structure can be designed in a manner that 

enables (via hypertext branching) fl ow of control horizontally, across vertical 

branches of the structure. Hence, content presented on the far left-hand branch 

of the hierarchy can have hypertext links that lead directly to content that exists 

in the middle or right-hand branch of the structure. It should be noted, however, 

that although such branching allows rapid navigation across WebApp content, it 

can lead to confusion on the part of the user.  

 A  networked  or  “pure web” structure  ( Figure 17.7 ) is similar in many ways to 

the architecture that evolves for object-oriented systems. Architectural compo-

nents (in this case, Web pages) are designed so that they may pass control (via 

hypertext links) to virtually every other component in the system. This approach 

allows considerable navigation fl exibility, but at the same time, can be confusing 

to a user. 

  FIGURE 17.6

 Hierarchical 
structure 

  

  FIGURE 17.7

 Network 
structure 

  

pre22126_ch17_371-390.indd   383pre22126_ch17_371-390.indd   383 13/12/13   6:13 PM13/12/13   6:13 PM



384 PART TWO  MODELING

 The architectural structures discussed in the preceding paragraphs can be 

combined to form  composite structures.  The overall architecture of a WebApp 

may be hierarchical, but part of the structure may exhibit linear characteris-

tics, while another part of the architecture may be networked. Your goal as an 

architectural designer is to match the WebApp structure to the content to be 

presented and the processing to be conducted. 

   17.7.2  WebApp Architecture 

 WebApp architecture describes an infrastructure that enables a Web-based sys-

tem or application to achieve its business objectives. Jacyntho and his colleagues 

[Jac02b] describe the basic characteristics of this infrastructure in the following 

manner:

  Applications should be built using layers in which different concerns are taken into 

account; in particular, application data should be separated from the page’s contents 

(navigation nodes) and these contents, in turn, should be clearly separated from the 

interface look-and-feel (pages).   

 The authors suggest a three-layer design architecture that decouples inter-

face from navigation and from application behavior. They argue that keeping 

interface, application, and navigation separate simplifi es implementation and 

enhances reuse.     

  The  Model-View-Controller  (MVC) architecture [Kra88]  8   is one of a number of 

suggested WebApp infrastructure models that decouple the user interface from 

the WebApp functionality and informational content. The  model  (sometimes re-

ferred to as the “model object”) contains all application-specifi c content and pro-

cessing logic, including all content objects, access to external data/information 

sources, and all processing functionality that is application specifi c. The  view  

contains all interface-specifi c functions and enables the presentation of con-

tent and processing logic, including all content objects, access to external data/

information sources, and all processing functionality required by the end user. 

The  controller  manages access to the model and the view and coordinates the 

fl ow of data between them. In a WebApp, “the view is updated by the controller 

with data from the model based on user input” [WMT02]. A schematic represen-

tation of the MVC architecture is shown in  Figure 17.8 .   

 Referring to the fi gure, user requests or data are handled by the controller. 

The controller also selects the view object that is applicable based on the user 

request. Once the type of request is determined, a behavior request is transmit-

ted to the model, which implements the functionality or retrieves the content re-

quired to accommodate the request. The model object can access data stored in 

   The MVC architecture 
decouples the user 
interface from WebApp 
functionality and 
information content. 

  8  It should be noted that MVC is actually an architectural design pattern developed for the Small-

talk environment (see   www.smalltalk.org  ) and can be used for any interactive application. 

pre22126_ch17_371-390.indd   384pre22126_ch17_371-390.indd   384 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  385

a corporate database, as part of a local data store, or as a collection of indepen-

dent fi les. The data developed by the model must be formatted and organized 

by the appropriate view object and then transmitted from the application server 

back to the client-based browser for display on the customer’s machine. 

 In many cases, WebApp architecture is defi ned within the context of the de-

velopment environment in which the application is to be implemented. If you 

have further interest, see [Fow03] for a discussion of development environments 

and their role in the design of Web application architectures.  

       17.8  NAVIGATION DES IGN 

  Once the WebApp architecture has been established and the components (pages, 

scripts, applets, and other processing functions) of the architecture have been 

identifi ed, you must defi ne navigation pathways that enable users to access 

WebApp content and functions. To accomplish this, identify the semantics of nav-

igation for different users of the site, and defi ne the mechanics (syntax) of achiev-

ing the navigation. 

  17.8.1  Navigation Semantics 

      Like many WebApp design actions, navigation design begins with a consider-

ation of the user hierarchy and related use cases (Chapter 9) developed for each 

category of user (actor). Each actor may use the WebApp somewhat differently 

and therefore have different navigation requirements. In addition, the use cases 

developed for each actor will defi ne a set of classes that encompass one or more 

Browser

Client

HTML data

User
request
or data

Controller
Manages user requests
Selects model behavior
Selects view response

View
Prepares data from model
Request updates from model
Presents view selected by
controller

Model
Encapsulates functionality
Encapsulates content objects
Incorporates all WebApp states

View selection

Behavior request
(state change)

Update request

Server

External data

Data from
model

  FIGURE 17.8

 The MVC 
architecture 
    Source: Adapted 
from [Jac02b].  

  uote: 

 “Just wait, Gretel, 
until the moon 
rises, and then 
we shall see the 
crumbs of bread 
which I have 
strewn about, they 
will show us our 
way home again.” 

  Hansel and 
Gretel  

pre22126_ch17_371-390.indd   385pre22126_ch17_371-390.indd   385 13/12/13   6:13 PM13/12/13   6:13 PM



386 PART TWO  MODELING

content objects or WebApp functions. As each user interacts with the WebApp, 

she encounters a series of  navigation semantic units  (NSUs)—“a set of informa-

tion and related navigation structures that collaborate in the fulfi llment of a sub-

set of related user requirements” [Cac02]. 

 An NSU is composed of a set of navigation elements called  ways of navigat-

ing  (WoN) [Gna99]. A WoN represents the best navigation pathway to achieve a 

navigational goal for a specifi c type of user. Each WoN is organized as a set of  

navigational nodes  (NN) that are connected by navigational links. In some cases, 

a navigational link may be another NSU. Therefore, the overall navigation struc-

ture for a WebApp may be organized as a hierarchy of NSUs. 

 To illustrate the development of an NSU, consider the use case  Select Safe-

Home Components :

  Use Case: Select SafeHome Components 

      The WebApp will recommend  product components  (e.g., control panels, sen-

sors, cameras) and other features (e.g., PC-based functionality implemented in 

software) for each  room  and  exterior entrance . If I request alternatives, the 

WebApp will provide them, if they exist. I will be able to get  descriptive and

pricing information  for each product component. The WebApp will create and 

display a  bill-of-materials  as I select various components. I’ll be able to give 

the bill-of-materials a name and save it for future reference (see use case  Save 

Confi guration ).  

   The underlined items in the use-case description represent classes and con-

tent objects that will be incorporated into one or more NSUs that will enable a 

new customer to perform the scenario described in the  Select SafeHome Com-

ponents  use case. 

  Figure 17.9  depicts a partial semantic analysis of the navigation implied 

by the  Select SafeHome Components    use case. Using the terminology in-

troduced earlier, the fi gure also represents a way of navigating (WoN) for the  

  SafeHomeAssured.com   WebApp. Important problem domain classes are shown 

along with selected content objects (in this case the package of content objects 

named CompDescription, an attribute of the  ProductComponent  class). These items 

are navigation nodes. Each of the arrows represents a navigation link  9   and is 

labeled with the user-initiated action that causes the link to occur.    

 You can create an NSU for each use case associated with each user role. For 

example, a  new customer  for    SafeHomeAssured.com   may have three different 

use cases, all resulting in access to different information and WebApp functions. 

An NSU is created for each goal. 

 During the initial stages of navigation design, the WebApp content archi-

tecture is assessed to determine one or more WoN for each use case. As noted 

   An NSU describes 
the navigation 
requirements for each 
use case. In essence, 
the NSU shows how an 
actor moves between 
content objects or 
WebApp functions. 

  uote: 

 ”The problem of 
website navigation 
is conceptual, 
technical, spatial, 
philosophical 
and logistic. 
Consequently, 
solutions tend to 
call for complex 
improvisational 
combinations of 
art, science and 
organizational 
psychology.” 

 Tim Horgan 

  9  These are sometimes referred to as  navigation semantic links  (NSL) [Cac02]. 

pre22126_ch17_371-390.indd   386pre22126_ch17_371-390.indd   386 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  387

earlier, a WoN identifi es navigation nodes (e.g., content) and then links that en-

able navigation between them. The WoN are then organized into NSUs. 

   17.8.2  Navigation Syntax     

  As design proceeds, your next task is to defi ne the mechanics of navigation. Most 

websites make use of one or more of the following navigation options for imple-

menting each NSU: individual navigation links, horizontal or vertical navigation 

bars (lists), tabs, or access to a complete site map. 

      In addition to choosing the mechanics of navigation, you should also es-

tablish appropriate navigation conventions and aids. For example, icons and 

graphical links should look “clickable” by beveling the edges to give the image a 

three-dimensional look. Audio or visual feedback should be designed to provide 

the user with an indication that a navigation option has been chosen. For text-

based navigation, color should be used to indicate navigation links and to provide 

an indication of links already traveled. These are but a few of dozens of design 

conventions that make navigation user-friendly. 

        17.9 COMPONENT-LEVEL DES IGN 

  Modern WebApps deliver increasingly sophisticated processing functions that 

(1) perform localized processing to generate content and navigation capability in 

a dynamic fashion, (2) provide computation or data processing capability that are 

appropriate for the WebApp’s business domain, (3) provide sophisticated data-

base query and access, and (4) establish data interfaces with external corporate 

systems. To achieve these (and many other) capabilities, you must design and 

<<navigation link>>
select Room

<<navigation link>>
view BillOfMaterials

<<navigation link>>
return to Room

<<navigation link>>
purchase ProductComponent

<<navigation link>>
recommend component(s)

<<navigation link>>
request alternative

<<navigation link>>
show ProductComponent

<<navigation link>>
show description<<navigation link>>

purchase ProductComponent

Room

BillOfMaterials

ProductComponent

CompDescription

techDescription photograph

schematic video

MarketingDescription

  FIGURE 17.9  Creating an NSU   

   In most situations, 
choose either 
horizontal or 
vertical navigation 
mechanisms, but 
not both. 

   The site map should be 
accessible from every 
page. The map itself 
should be organized 
so that the structure of 
WebApp information is 
readily apparent. 

pre22126_ch17_371-390.indd   387pre22126_ch17_371-390.indd   387 13/12/13   6:13 PM13/12/13   6:13 PM



388 PART TWO  MODELING

construct program components that are identical in form to software compo-

nents for traditional software. 

 The design methods discussed in Chapter 14 apply to WebApp components 

with little, if any, modifi cation. The implementation environment, programming 

languages, and design patterns, frameworks, and software may vary somewhat, 

but the overall design approach remains the same. 

       17.10 SUMMARY 

 The quality of a WebApp—defi ned in terms of usability, functionality, reliability, 

effi ciency, maintainability, security, scalability, and time-to-market—is intro-

duced during design. To achieve these quality attributes, a good WebApp design 

should exhibit the following characteristics: simplicity, consistency, identity, ro-

bustness, navigability, and visual appeal. WebApp design activity focuses on six 

different elements of the design. 

 Interface design describes   the structure and organization of the user inter-

face and includes a representation of screen layout, a defi nition of the modes 

of interaction, and a description of navigation mechanisms. A set of interface 

design principles and an interface design workfl ow guide you when layout and 

interface control mechanisms are designed. 

 Aesthetic design, also called graphic design, describes the “look and feel” of 

the WebApp and includes color schemes; geometric layout; text size, font, and 

placement; the use of graphics; and related aesthetic decisions. A set of graphic 

design guidelines provides the basis for a design approach. 

 Content design defi nes the layout, structure, and outline for all content that is 

presented as part of the WebApp and establishes the relationships between con-

tent objects. Content design begins with the representation of content objects, 

their associations, and relationships. A set of browsing primitives establishes the 

basis for navigation design. 

 Architecture design identifi es the overall hypermedia structure for the 

WebApp and encompasses both content architecture and WebApp architecture. 

Architectural styles for content include linear, grid, hierarchical, and network 

structures. WebApp architecture describes an infrastructure that enables a Web-

based system or application to achieve its business objectives. 

 Navigation design represents the navigational fl ow between content objects 

and for all WebApp functions. Navigation semantics are defi ned by describing 

a set of navigation semantic units. Each unit is composed of ways of navigations 

and navigational links and nodes. Navigation syntax depicts the mechanisms 

used for effecting the navigation described as part of the semantics. 

 Component design develops the detailed processing logic required to im-

plement functional components that implement a complete WebApp function. 

pre22126_ch17_371-390.indd   388pre22126_ch17_371-390.indd   388 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 17  WEBAPP DESIGN  389

Design techniques described in Chapter 14 are applicable for the engineering of 

WebApp components. 

     PROBLEMS AND POINTS TO PONDER 
    17.1.  Why is the “artistic ideal” an insuffi cient design philosophy when modern WebApps 
are built? Is there ever a case in which the artistic ideal is the philosophy to follow?  

   17.2.  In this chapter we select a broad array of quality attributes for WebApps. Select the 
three that you believe are most important, and make an argument that explains why each 
should be emphasized in WebApp design work.  

   17.3.  Add at least fi ve additional questions to the WebApp Design—Quality Checklist pre-
sented in Section 17.1.  

   17.4.  You are a WebApp designer for FutureLearning Corporation, a distance learning com-
pany. You intend to implement an Internet-based “learning engine” that will enable you to 
deliver course content to a student. The learning engine provides the basic infrastructure 
for delivering learning content on any subject (content designers will prepare appropriate 
content). Develop a prototype interface design for the learning engine.  

   17.5.  What is the most aesthetically pleasing website you have ever visited and why?  

   17.6.  Consider the content object  Order,  generated once a user of   SafeHomeAssured.com   
has completed the selection of all components and is ready to fi nalize his purchase. Develop 
a UML description for  Order  along with all appropriate design representations.  

   17.7.  What is the difference between content architecture and WebApp architecture?  

   17.8.  Reconsidering the FutureLearning “learning engine” described in Problem 17.4, select 
a content architecture that would be appropriate for the WebApp. Discuss why you made 
the choice.  

   17.9.  Use UML to develop three or four design representations for content objects that 
would be encountered while the “learning engine” described in Problem 17.4 is designed.  

   17.10.  Do a bit of additional research on the MVC architecture and decide whether it would 
be an appropriate WebApp architecture for the “learning engine” discussed in Problem 17.4.  

   17.11.  What is the difference between navigation syntax and navigation semantics?  

   17.12.  Defi ne two or three NSUs for the   SafeHomeAssured.com   WebApp. Describe each in 
some detail.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Van Duyne and his colleagues ( The Design of Sites,  2nd ed., Prentice Hall, 2007) have writ-
ten a comprehensive book that covers most important aspects of the WebApp design pro-
cess. Design process models and design patterns are covered in detail. Johnson ( Designing 

with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules,  Morgan 
Kaufman, 2010) has written a book on user interaction design with many examples appli-
cable to web design. Wodtke and Gavella ( Information Architecture: Blueprints for the Web,  
2nd ed., New Riders Publishing, 2009), Rosenfeld and Morville ( Information Architecture for 

the World Wide Web,  3rd ed.,   O’Reilly & Associates, 2006), and Reiss ( Practical Information 

Architecture,  Addison-Wesley, 2000) address content architecture and other topics. 
   Although hundreds of books have been written on “Web design,” very few of these dis-

cuss any meaningful technical methods for doing design work. At best, a variety of useful 

pre22126_ch17_371-390.indd   389pre22126_ch17_371-390.indd   389 13/12/13   6:13 PM13/12/13   6:13 PM



390 PART TWO  MODELING

guidelines for WebApp design is presented, worthwhile examples of Web pages and Java 
programming are shown, and the technical details important for implementing modern 
WebApps are discussed. Among the many offerings in this category are books by Butler ( The 

Strategic Web Designer,  How Books, 2013), Campos ( Web Design Source Book,  PromoPress, 
2013), DeFederici ( The Web Designer’s Roadmap,  Sitepoint, 2012), Robbins ( Learning Web 

Design,  O’Reilly Media, 2012), Sklar ( Principles of Web Design,  5th ed., Course Technology, 
2011), Cederholm ( Bulletproof Web Design , 3rd ed., New Riders Press, 2011), and Shelly and 
his colleagues ( Web Design,  4th ed., Course Technology, 2011). Offerings by Zeldman and 
Marcotte ( Designing with Web Standards,  3rd ed., New Riders Publishing, 2009), McIntire 
( Visual Design for the Modern Web,  New Riders Press, 2007), Watrall and Siarto  (Head First 

Web Design , O-Reilly, 2008), Niederst  (Web Design in a Nutshell,  3rd ed., O-Reilly, 2006), and 
Eccher ( Professional Web Design,  Course Technology, 2010) and ( Advanced Professional Web 

Design,  Charles River Media, 2006) are also worthy of consideration. 
   Books by Beaird ( The Principles of Beautiful Web Design,  2nd ed., SitePoint, 2010), Clarke 

and Holzschlag ( Transcending CSS: The Fine Art of Web Design,  New Riders Press, 2006), and 
Golbeck ( Art Theory for Web Design,  Addison-Wesley, 2005) emphasize aesthetic design and 
are worthwhile reading for practitioners who have little background in the subject. 

   The agile view of design (and other topics) for WebApps is presented by Wallace and his 
colleagues ( Extreme Programming for Web Projects,  Addison-Wesley, 2003). Conallen ( Build-

ing Web Applications with UML,  2nd ed., Addison-Wesley, 2002) and Rosenberg and Scott 
( Applying Use-Case Driven Object Modeling with UML,  Addison-Wesley, 2001) present de-
tailed examples of WebApps modeled using UML. 

   A wide variety of information sources on design for WebApps is available on the Internet. 
An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch17_371-390.indd   390pre22126_ch17_371-390.indd   390 13/12/13   6:13 PM13/12/13   6:13 PM



391

 MOBILEAPP 
DESIGN 

     Mobile devices—smartphones, tablets, wearable devices, and other 

specialized products—have become the next wave of computing. 

In August 2012,  The Los Angeles Times  [Rod12] reported:

  For the fi rst time ever more Americans own smartphones than regular phones or 

feature phones, a new report says. 

 The report, put out by Chetan Sharma Consulting  1  , shows smartphone penetra-

tion has crossed the 50% mark for the fi rst time in the U.S.   

 K E Y 
C O N C E P T S 
    challenges. . . . . . . 392  
    cloud computing  . . .405  
    context-aware 
apps. . . . . . . . . . . 399  
    design  

    best practices. . 401  
    goals . . . . . . . . 396  
    mistakes  . . . . . 401  

    C H A P T E R

18 

 Q U I C K 
L O O K 

  What is it?   MobileApp design 
encompasses technical and non-
technical activities that include: 
establishing the look and feel of 

the mobile application, creating the aesthetic 
layout of the user interface, establishing the 
rhythm of user interaction, defi ning the overall 
architectural structure, developing the content 
and functionality that reside within the architec-
ture, and planning the navigation that occurs 
within the MobileApp. Special attention needs 
to be given to the elements that add context 
awareness to the MobileApp. 

   Who does it?   Software engineers, graphic 
 designers, content developers, security spe-
cialists, and other stakeholders all participate 
in the creation of a MobileApp design model. 

   Why is it important?   Design allows you to 
create a model that can be assessed for quality 
and improved before content and code are gen-
erated, tests are conducted, and end users be-
come involved in large numbers. Design is the 
place where MobileApp quality is established. 

   What are the steps?   MobileApp design is sim-
ilar to WebApp design and encompasses six 
major steps that are driven by information ob-
tained during requirements modeling. Content 

design addresses the same issues for both 
 WebApp and MobileApp design. During archi-
tectural design, MobileApp developers deter-
mine which functions will be implemented in the 
native app running on the mobile device and 
which will be implemented as Web or cloud 
services. Interface design establishes the lay-
out and interaction mechanisms that defi ne the 
user experience. Ensuring that the MobileApp 
makes appropriate use of context affects both 
interface design and content design. Naviga-
tion design defi nes how the end user navigates 
through the content structure, and component 
design represents the detailed internal structure 
of functional elements of the MobileApp. 

   What is the work product?   A design model 
that encompasses content, aesthetics, architec-
ture, interface, navigation, and component-level 
design issues is the primary work product that 
is produced during MobileApp design. 

   How do I ensure that I’ve done it 
right?   Each element of the design model is 
reviewed in an effort to uncover errors, incon-
sistencies, or omissions. In addition, alterna-
tive solutions are considered, and the degree 
to which the current design model will lead to 
an effective implementation is also assessed.  

  1  See  http://www.chetansharma.com/USmarketupdateQ22012.htm  

pre22126_ch18_391-410.indd   391pre22126_ch18_391-410.indd   391 16/12/13   6:23 PM16/12/13   6:23 PM



392 PART TWO  MODELING

 And the trend is not exclusive to the United State’s top four carriers. As GigaOM  2   

points out, regional operators and other small carriers are also “tapping into the 

trove of cheaper smartphones in the market.”    

 The GartnerGroup [Gar12] reports that in that same business quarter, 419 mil-

lion smartphones were sold globally and projected annual sales of 119 million 

tablet computers, nearly a 100 percent increase over the previous year. Mobile 

computing has become a dominant force. 

      18.1  THE CHALLENGES 

  While mobile devices have many features in common with each other, their users 

often have very different perceptions of what features they expect to be bundled 

in each. Some users expect the same features that are provided on their per-

sonal computers. Others focus on the freedom that portable devices give them 

and gladly accept the reduced functionality in the mobile version of a familiar 

software product. Still others expect unique experiences not possible on tradi-

tional computing or entertainment devices. The user’s perception of “goodness” 

might be more important than any of the technical quality dimensions of the 

MobileApp itself. 

  18.1.1  Development Considerations 

 Like all computing devices, mobile platforms are differentiated by the software 

they deliver—a combination of operating system (e.g., Android or iOS) and a 

small subset of the hundreds of thousands of MobileApps that provide a very 

wide range of functionality. New tools allow individuals with little formal training 

to create and sell apps alongside other apps developed by large teams of soft-

ware developers. 

   Even though apps can be developed by amateurs, many software engineers 

think that MobileApps are among the most challenging software systems being 

built today [Voa12]. Mobile platforms are very complex. Both the Android and iOS 

operating systems contain over 12 million lines of code. Mobile devices often have 

mini browsers that will not display the full set of content available on a Web page. 

Different mobile devices use different operating systems and platform dependent 

development environments. Mobile devices tend to have smaller and more varied 

screen sizes than personal computers. This may require greater attention to user 

interface design issues, including decisions to limit display of some content. In 

addition, MobileApps must be designed to take into account intermittent connec-

tivity outages, limitations on battery life, and other device constraints  3   [Whi08].  

 What makes 
MobileApp 

development 
different and 
challenging? 

?

  2  See  http://gigaom.com/mobile/carrier-data-confi rms-it-half-of-us-now-owns-a-smartphone/  

  3  Available at   http://www.devx.com/SpecialReports/Article/37693   

    developing 
MobileApps  . . . . . 395  
    mobility 
environments  . . . . 403  
    quality checklist  . . 397  
    technical 
considerations. . . . 393  
    user interface 
design  . . . . . . . . . 398    

pre22126_ch18_391-410.indd   392pre22126_ch18_391-410.indd   392 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  393

 System components in mobile computing environments are likely to change 

their locations while MobileApps are running. In order to maintain connectiv-

ity in nomadic networks,  4   coordination mechanisms for discovering devices, ex-

changing information, maintaining security and communication integrity, and 

synchronizing actions must be developed.   

   In addition, software engineers must identify the proper design trade-offs be-

tween the expressive power of the MobileApp and stakeholder security concerns. 

Developers must seek to discover algorithms (or adapt existing algorithms) that 

are energy effi cient in order to conserve battery power when possible. Middle-

ware may have to be created to allow different types of mobile devices to commu-

nicate    with each other in the same mobile networks [Gru00]. 

 Software engineers should craft a user experience that takes advantage of de-

vice characteristics and context-aware applications. The nonfunctional require-

ments (e.g., security, performance, usability) are a bit different from those for either 

WebApps or desktop software applications. Testing MobileApps (Chapter  26) 

provides additional challenges because the user expects that they will work in 

a large number of physically different environments. Because MobileApps often 

execute on a variety of device platforms, portability is a important consideration. 

In addition, the time and effort associated with accommodating multiple platforms 

often increases overall project cost [Was10]. 

   18.1.2  Technical Considerations 

 The low cost of adding Web capabilities to everyday devices such as phones, 

cameras, and TVs is transforming the way people access information and use 

network services [Sch11]. Among the many technical considerations that Mobile-

Apps should address are the following: 

    Multiple hardware and software platforms.   It is not at all unusual for a 

MobileApp to run on many different platforms (both mobile and station-

ary) with a range of differing levels of functionality. The reasons for these 

differences are in part because the hardware and software available are 

quite different from device to device. This increases both development 

cost and time. It also can make confi guration management (Chapter 29) 

more diffi cult. 

  Many development frameworks and programming languages.   MobileApps 

are currently being written in at least three distinct programming languages 

(Java, Objective C, and C#) for at least fi ve popular development frame-

works (Android, iOS, BlackBerry, Windows, Symbian) [Was10]. Very few mo-

bile devices allow direct development on a device itself. Instead, MobileApp 

developers use emulators running on desktop development systems. These 

   There is always a 
trade-off between 
 security and other 
elements of the 
 MobileApp design. 

 What are 
the primary 

technical 
considerations 
when building a 
MobileApp? 

?

  4    Nomadic networks  have changing connections to mobile devices or servers. 

pre22126_ch18_391-410.indd   393pre22126_ch18_391-410.indd   393 16/12/13   6:23 PM16/12/13   6:23 PM



394 PART TWO  MODELING

emulators may or may not accurately refl ect the limitations of the device it-

self. Thin-client applications are often easier to port to multiple devices than 

applications designed to run exclusively on the mobile device. 

  Many app stores with different rules and tools.   Each mobile platform has 

its own app store and its own standards for accepting apps (e.g., Apple,  5   

Google,  6   RIM,  7   Microsoft,  8   and Nokia  9   publish their own standards). Devel-

opment of a MobileApp for multiple platforms must proceed separately, 

and each version of the MobileApp needs its own standards expert.   

  Very short development cycles.   Software engineers often use of agile 

development processes when building MobileApps in an effort to reduce 

development time [Was10]. 

  UI limitations and complexities of interaction with sensors and cameras.   

Mobile devices have smaller screen sizes than personal computers and a richer 

set of interaction possibilities (e.g., voice, touch, gesture, eye tracking) and 

usage scenarios based on context awareness. The style and appearance of the 

user interface is often dictated by the nature of platform-specifi c development 

tools [Rot02]. Allowing smart devices to interact with smart spaces offers the 

potential to create personalized, networked, high-fi delity application platforms 

such as those seen by merging smartphones and car infotainment systems.  10   

  Effective use of context.   Users expect MobileApps to deliver personalized 

user experiences based on the physical location of a device in relation to 

the available network features. User interface design and  context-aware 

applications are discussed in greater detail in Section 18.2. 

  Power management.   Battery life is often one of the most limiting con-

straints on MobileApps. Backlighting, reading and writing to memory, 

using wireless connections, making use of specialized hardware, and pro-

cessor speed all impact power usage and need to be taken into account by 

software developers [Mei09]. 

  Security and privacy models and policies.   Wireless communication is diffi -

cult to protect from eavesdropping. Indeed preventing  man-in-the-middle-

attacks   11   in automotive applications can be critical to the safety of the users 

[Bos11]. Data stored on a mobile device is subject to theft if a device is lost 

or a malicious app is downloaded. Software policies that increase the level 

  5    https://developer.apple.com/appstore/guidelines.html   

  6    http://developer.android.com/distribute/googleplay/publish/preparing.html   

  7    https://appworld.blackberry.com/isvportal/guidelines.do   

  8    http://msdn.microsoft.com/en-us/library/ff941089%28v=vs.92%29.aspx   

  9    http://support.publish.nokia.com/?p=64\   

  10  When used in an automotive setting, smart devices should be able to restrict access to services 

that may distract the driver and allow hands-free operation when a vehicle is moving [Bos11]. 

  11  These attacks involve a third party intercepting communications between two trusted sources 

and impersonating one or both of the parties. 

pre22126_ch18_391-410.indd   394pre22126_ch18_391-410.indd   394 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  395

of confi dence in the security and privacy of a MobileApp often reduce the 

usability of the app and the spontaneity of the communication among users 

[Rot02].  

  Computational and storage limitations.   There is great interest in using 

mobile devices to control home environmental and security services. When 

MobileApps are allowed to interact with devices and services in their en-

vironment, it is easy to overwhelm the mobile device (storage, processing 

speed, power consumed) with the sheer volume of information [Spa11]. 

Developers may need to look for programming shortcuts and means of 

 reducing the demands made on processor and memory resources. 

  Applications that depend on external services.   Building thin   mobile 

 clients suggests the need to rely on Web service providers and cloud stor-

age facilities. This increases concerns for both data or service accessibility 

and security [Rot02]. 

  Testing complexity.   Thin-client MobileApps are particularly challeng-

ing to test.  12   They exhibit many of the same testing challenges found in 

 WebApps (Chapter 25), but they have the additional concerns associated 

with transmission of data through Internet gateways and telephone net-

works [Was10]. Testing of MobileApps will be discussed in Chapter 26.  

       18.2  DEVELOPING MOBILEAPPS 

  Andreu [And05] describes a spiral engineering process model for MobileApp de-

sign containing six activities: 

    Formulation.  Involves architectural design, navigation design, the goals, fea-

tures, and functions of the MobileApp are identifi ed to determine the scope and 

the size of the fi rst increment. Developers must be conscious of human, social, 

cultural, and organizational activities that may reveal hidden aspects of the 

users’ needs and affect the business targets and functionality of the proposed 

MobileApp. 

  Planning.  The total project costs and risks are determined. The detailed 

schedule is set and the process for the next increments is documented. 

  Analysis.  All mobile user requirements are specifi ed and the content items 

that will be needed are identifi ed. Actions include content analysis, interaction 

analysis, functional analysis, and confi guration analysis. It is at this stage that 

developers identify whether they will build a thin or fat client. Identifying the 

nature of the user goals (informational or transactional) will help to determine 

the type of MobileApp that needs to be developed. 

   WebApp development 
makes use of an agile, 
spiral engineering 
process model. 

  12  MobileApps that run entirely on the device can be tested using traditional software testing 

methods (Chapter 23) or using emulators running on personal computers. 

pre22126_ch18_391-410.indd   395pre22126_ch18_391-410.indd   395 16/12/13   6:23 PM16/12/13   6:23 PM



396 PART TWO  MODELING

  Engineering.  Involves architectural design, navigation design, interface de-

sign, content design, and content production. Software engineers examine the 

constraints imposed by the targeted mobile devices, including considerations 

imposed by the wireless network technologies chosen and the nature of the 

Web services required to implement the MobileApp. 

  Implementation and Testing.  During this activity, the MobileApp is coded 

and tested. Among the issues that can make testing a challenge are: (1) high 

loss rates due to radio interference and frequent disconnection due to network 

coverage issues, (2) frequent data transmission delays due to relatively low 

bandwidth, and (3) security concerns because mobile devices are less secure 

and relatively easy to attack. 

  User Evaluation.  The MobileApp is assessed for usability and accessibility 

then the formulation process begins for the next increment. 

   Andreou [And05] suggests that ubiquity, personalization, fl exibility, and localiza-

tion should be overriding design goals for every MobileApp. Mobile users expect to 

have the ability to receive information and conduct transactions in real time regard-

less of their physical location or the number of concurrent users. Mobile applications 

should present services and applications that are customized according to the pref-

erences of the user. Users of mobile devices should be able to engage in activities 

such as receiving information or conducting transactions with ease. Mobile users 

should have access to local information and services. This implies recognizing the 

importance or context when designing the MobileApp user experience. 

 What should 
we consider 

when assessing 
MobileApp 
quality? 

?

  Formulating MobileApp Requirements   Formulating MobileApp Requirements 

  The scene:  A meeting room. The 
fi rst meeting to identify requirements 

for a mobile version of the  SafeHome  WebApp. 

  The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member; Doug Miller, software engineering 
manager; three members of marketing; a product engi-
neering representative; and a facilitator. 

  The conversation:  

  Facilitator (pointing at whiteboard):  So that’s the 
current list of objects and services for the home security 
function present in the WebApp. 

  Vinod (interrupting):  My understanding is that people 
want  SafeHome  functionality to be accessible from mobile 
devices as well . . . including the home security function? 

  Marketing person:  Yes, that’s right . . . we’ll have to 
add that functionality and try to make it context aware 
to help personalize the user experience. 

  Facilitator:  Context aware in what sense? 

  Marketing person:  People might want to use a 
smartphone instead of the control panel and avoid 
logging on to a website when they are in the driveway 
at home. Or they might not want all family members 
to have access to the master control dashboard for the 
system from their phones. 

  Facilitator:  Do you have specifi c mobile devices in 
mind? 

  Marketing person:  Well, all smartphones would be 
nice. We will have a Web version done, so won’t the 
MobileApp run on all of them? 

 SAFEHOME 

pre22126_ch18_391-410.indd   396pre22126_ch18_391-410.indd   396 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  397

    18.2.1  MobileApp Quality 

 In reality, almost every quality dimension and factor discussed in Chapter 19 ap-

plies to MobileApps. However, Andreou [And05] suggests that end-user satisfac-

tion with a MobileApp is dictated by six important quality factors: functionality, 

reliability, usability, effi ciency, maintainability, and portability. 

  Jamie:  Not quite. If we took a mobile phone browser 
approach we might be able to reuse a lot of our 
 WebApps. But remember, smartphone screen sizes vary 
and they may or may not all have the same touch capa-
bilities. So at the very least we would have to create a 
mobile website that takes the device features into account. 

  Ed:  Perhaps we should build the mobile version of the 
website fi rst. 

  Marketing person:  OK, but a mobile website solu-
tion wasn’t what we had in mind. 

  Vinod:  Each mobile platform seems to have its own 
unique development environment too. 

  Production rep:  Can we restrict MobileApp develop-
ment to only one or two types of smartphones? 

  Marketing person:  I think that might work. Unless 
I’m mistaken, the smartphone market is dominated by 
two smartphone platforms right now. 

  Jamie:  There’s also security to worry about. We bet-
ter make sure an outsider can’t hack into the system, 

disarm it, and rob the place or worse. Also a phone 
could get lost or stolen more easily than a laptop. 

  Doug:  Very true. 

  Marketing:  But we still need the same level of secu-
rity . . . just also be sure to stop an outsider from getting 
in with a stolen phone. 

  Ed:  That’s easier said than done and . . . 

  Facilitator (interrupting):  Let’s not worry about 
those details yet. 
 (Doug, serving as the recorder for the meeting, makes 
an appropriate note.) 

  Facilitator:  As a starting point, can we identify which 
elements of WebApp security function are needed in the 
MobileApp and which will need to be newly created? 
Then we can decide how many mobile platforms we 
can support and when we can move forward on this 
project. 

 (The group spends the next 20 minutes refi ning and 
expanding the details of the home security function.)  

  MobileApp —Quality Checklist 
 The following checklist provides a set of ques-
tions that will help both software engineers 

and end users assess overall MobileApp quality:

    •  Can content and/or function and/or navigation 
options be tailored to the user’s preferences?  

   •  Can content and/or functionality be customized to 
the bandwidth at which the user communicates? 
Does the app account for weak or lost signals in an 
acceptable manner?  

   •  Can content and/or function and/or navigation 
options be made context aware according to the 
user’s preferences?  

   •  Has adequate consideration been given to the power 
availability on the target device(s)?  

   •  Have graphics, media (audio, video), and other Web 
or cloud services been used appropriately?  

   •  Is the overall page design easy to read and navigate? 
Does the app take screen-size differences into account?  

   •  Does the user interface conform to the display and 
interaction standards adopted for the targeted mobile 
device(s)?  

   •  Does the app conform to the reliability, security, and 
privacy expectations of its users?  

   •  What provisions have been made to ensure an app 
remains current?  

   •  Has the MobileApp been tested in all targeted user 
environments and for all targeted devices?     

 INFO 

pre22126_ch18_391-410.indd   397pre22126_ch18_391-410.indd   397 16/12/13   6:23 PM16/12/13   6:23 PM



398 PART TWO  MODELING

     18.2.2  User Interface Design 

 Mobile device users expect that minimal learning time will be required to master 

a MobileApp. To achieve this, MobileApp designers use consistent icon repre-

sentations and placement across multiple platforms. In addition, designers must 

be sensitive to the user’s expectation of privacy with regard to the display of 

personal information on the screen of the mobile device. Touch and gesture in-

terfaces, along with sophisticated voice input, are maturing rapidly [Shu12] and 

have already become part of the user interface designer’s toolbox. 

   Legal and ethical pressure to provide for access by all persons suggest that 

mobile device interfaces need to account for brand differences, cultural differ-

ences, differences in computing experience, elderly users, and users with dis-

abilities (e.g., visual, aural, mobility). The effects of poor usability may mean that 

users cannot complete their tasks or will not be satisfi ed with the results. This 

suggests the importance of user-centered design activities in each of the usabil-

ity areas (user interface, external accessory interface, and service interface). 

In trying to meet stakeholder usability expectations, MobileApp developers 

should attempt to answer these questions to assess the out-of-the-box readiness 

of the device:

    •  Is the user interface consistent across applications?  

   •  Is the device interoperable with different network services?  

   •  Is the device acceptable in terms of stakeholder values  13   in the target 

 market area?     

 Eisenstein [Eis01] claims that the use of abstract, platform-neutral models 

to describe a user interface greatly facilitates the development of consistent, 

usable multiplatform user interfaces for mobile devices. Called  model based 

design,  this approach uses three different models. A  platform model  describes 

the constraints imposed by each platform to be supported. A  presentation 

model  describes the appearance of the user interface. The  task model  is a 

structured representation of the tasks a user needs to perform to meet her task 

goals. In the best case, model-based design (Chapter 12) involves the creation 

of databases that contain the models and has tool support for generating user 

interfaces for multiple devices automatically. Utilizing model-based design 

techniques can also help designers recognize and accommodate the unique 

contexts and context changes that are present in mobile computing. Without 

an abstract description of a user interface, the development of mobile user in-

terfaces can be error-prone and time-consuming. 

   Accessibility is an 
important design 
issue and must be 
considered when 
user-centered design is 
applied. 

  13  Brand, ethical preferences, moral preferences, cognitive beliefs. 

  uote: 

 “Mobile apps 
force designers to 
deeply understand 
user needs so as 
to provide just the 
right functions in 
a learnable and 
useable interface.” 

 Ben 
Schneiderman 

pre22126_ch18_391-410.indd   398pre22126_ch18_391-410.indd   398 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  399

     18.2.3  Context-Aware Apps 

 Context allows the creation of new applications based on the location of the mo-

bile device and the functionality to be delivered by the device. Context can also 

help tailor personal computer applications for mobile devices (e.g., downloading 

patient information to a device carried by a home health care worker as he ar-

rives at the patient’s house). 

 Using highly adaptive, contextual interfaces is a good way to deal with de-

vice limitations (e.g., screen size and memory). To facilitate the development 

of context-aware user interaction requires support of corresponding software 

architectures. 

   In an early discussion of context-aware applications, Rodden [Rod98] points 

out that mobile computing merges the real and virtual worlds by providing func-

tionality that allows a device to be aware of its location, time, and other objects in 

its surroundings. The device could be in a fi xed location like an alarm sensor, 

embedded in an autonomous device, or be carried around by a human. Because 

the device can be designed to be used by individuals, groups, or the public, it must 

detect the presence and identity of the user, as well as the attributes of the context 

that are relevant or permitted for that user (even if the user is another device). 

 To achieve context awareness, mobile systems must produce reliable infor-

mation in the presence of uncertain and rapidly changing data from a variety 

 How does 
a design 

achieve context 
awareness? 

?

  MobileApp User Interface Design Considerations 
 Design choices affect performance and 
should be examined early in the UI design 

process. Ivo Weevers [Wee11] posted several mobile 
user–interface design practices that have proven to be 
helpful when designing mobile applications:  

     •   Defi ne user interface brand signatures . 
Differentiate the app from its competitors. Make 
the core signature elements of the brand the most 
responsive, since users will use them over and over.  

   •   Focus the portfolio of products . Target the 
platforms that are most important to the success of 
the app and the company. Not all platforms have the 
same number of users.  

   •   Identify the core user stories . Make use of 
techniques such as quality function deployment 
(Chapter 8) to reduce a lengthy list of requirements to 
implement using the constrained resources available 
on mobile devices.  

   •   Optimize UI fl ows and elements . Users do not 
like to wait. Identify potential bottlenecks in user work 

fl ow and make sure the user is given indication of 
progress when delays occur. Make sure that the time 
to display screen elements is justifi ed in terms of user 
benefi ts.  

   •   Defi ne scaling rules.  Determine the options that 
will be used when information to be displayed is too 
large to fi t on the screen. Managing functionality, 
aesthetics, usability, and performance is a continual 
balancing act.  

   •   Use a performance dashboard.  Used to 
communicate the product’s current state of completion 
(e.g., number of use stories implemented), its 
performance relative to its targets, and perhaps 
comparisons to its competitors.  

   •   Champion dedicated UI engineering skills.  
It is important to understand that the implementation 
of layout, graphics, and animation has performance 
implications. Techniques to interleave rendering of 
display items and program execution can be helpful.    

 INFO 

pre22126_ch18_391-410.indd   399pre22126_ch18_391-410.indd   399 16/12/13   6:23 PM16/12/13   6:23 PM



400 PART TWO  MODELING

of heterogeneous sources. Extracting relevant context information by combing 

data from several sensors proves challenging because of problems with noise, 

miscalibration, wear and tear, and weather. Event-based communication is pref-

erable to the management of continuous streams of high-abstraction-level data 

in  context-aware applications [Kor03]. 

 In ubiquitous computing environments, multiple users work with a wide range 

of different devices. The confi guration of the devices should be fl exible enough to 

change frequently because of the demands of mobile work practices. It is import-

ant for the software infrastructure to support different styles of interaction (e.g., 

gestures, voice, and pen) and store them in abstractions that can be shared easily. 

 There are times when one user may desire to work with more than one device 

simultaneously on the same product (e.g., use a touch-screen device to edit a 

document image and a personal keyboard to edit document text). It is challeng-

ing to integrate mobile devices that are not always connected to the network 

and have a variety of device constraints [Tan01]. Networked, multiplayer games 

have had to deal with these problems by storing the game state on each device 

and sharing change information among other game players’ devices in real time. 

   18.2.4  Lessons Learned 

 Earlier in this chapter we noted a number of important differences between Mobile-

Apps and conventional software. As a consequence of these differences, software 

engineers should modify and extend conventional techniques in order to analyze, 

design, build, and test mobile applications. de Sá and Carrico [Des08] suggest a 

number of lessons learned. 

   Usage scenarios (Chapter 15) for MobileApps must consider context variables 

(location, user, and device) and transitions between contextual scenarios (e.g., 

user moves from bedroom to kitchen or switches from stylus to a fi nger). de Sá 

and Carriço have identifi ed a set of scenario-variable types that should be con-

sidered in developing the user scenarios—locations and settings, movement and 

posture, devices and usages, workloads and distractions, user preferences. 

  Ethnographic observation   14   is a widely used method for gathering informa-

tion about representative users of a software product as it is being designed. It 

is often diffi cult to observe users as they change contexts, because the observer 

must follow users for long periods of time, something that could raise privacy 

concerns.  15   A complicating factor is that users sometimes complete tasks  dif-

ferently in private settings than in social settings. The same users may need to 

be observed performing tasks in multiple contexts while monitoring transitions, 

as well as recording user reactions to the changes.   

  14   Ethnographic observation  is a means determining the nature of user tasks by watching users in 

their work environment. 

  15  Asking users to fi ll out anonymous questionnaires may have to suffi ce when direct observation 

is not possible. 

   Use cases can work 
well in the develop-
ment of MobilApps, but 
context variables must 
be considered when 
developing them. 

pre22126_ch18_391-410.indd   400pre22126_ch18_391-410.indd   400 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  401

 Early user interface prototypes for MobileApps can be created on paper, using 

sketches or a combination of index cards and/or post-it notes to emulate import-

ant interaction mechanisms. The key is to allow all interaction mechanisms to 

be assessed, all usage contexts to be examined, and all user interaction mech-

anisms to be specifi ed. In addition, the use of interaction widgets and overall 

screen placement and location can also be emulated. These early rough paper 

prototypes can assist in uncovering errors, inconsistencies, and omissions before 

targeted mobile devices come into play. Later prototypes may then be created to 

run on targeted mobile devices once the layout and placement issues have been 

resolved. 

  MobileApp Design Mistakes 
  Joh Koester [Koe12] posts several examples 
of MobileApp design practices that should 
be avoided: 

    •   Kitchen Sink . Avoid adding too many features to 
the app and too many widgets on the screen. Simple 
is understandable. Simple is marketable.  

   •   Inconsistency . To avoid this, set standards for page 
navigation, menu use, buttons, tabs, and other user-
interface elements. Stick to a uniform look and feel.  

   •   Overdesigning.  Be ruthless when designing a 
MobileApp. Remove unnecessary elements and 
wasteful graphics. Do not be tempted to add 
elements just because you think you should.  

   •   Lack of Speed . Users do not care about device 
constraints—they want to view things quickly. Preload 
what you can. Eliminate what is not needed.  

   •   Verbiage . Unnecessarily long, wordy menus and 
screen displays are indications of a MobileApp that 
has not been tested with users and developers who 
have not spent enough time understanding the user’s 
task.  

   •   Nonstandard Interaction.  One reason for 
targeting a platform is to take advantage of the user’s 
experience with the ways things are done on that 
platform. Where standards exist use them. This needs 
to be balanced with the need to have an application 
appear and behave the same way on multiple 
devices when possible.  

   •   Help-and-FAQ-itis.  Adding online help is not 
the way to repair a poorly designed user interface. 
Make sure you have tested your app with your 
targeted users and repaired the identifi ed defects.    

 INFO 

         18.3  MOBILEAPP DES IGN—BEST PRACTICES 

  There are several guidelines for developing MobileApps  16   and for developing 

apps for specifi c platforms like Apple’s iOS  17   or Google’s Android.  18   Schumacher 

[Sch09] has collected many best practice ideas and has posted several specially 

adapted to the design of a mobile application as Web pages.  19   Some important 

  16    http://www.w3.org/TR/mwabp/   

  17    https://developer.apple.com/library/iOS/navigation/   

  18    http://developer.android.com/guide/components/index.html   

  19    http://www.usercentric.com/news/2011/06/15/best-practices-designing-mobile-touch-screen-

applications   

pre22126_ch18_391-410.indd   401pre22126_ch18_391-410.indd   401 16/12/13   6:23 PM16/12/13   6:23 PM



402 PART TWO  MODELING

 considerations when designing mobile touch-screen applications listed by 

Schumacher include:      

      •   Identify your audience.  The application must be written with the expecta-

tions and backgrounds of its users in mind. Experienced users want to do 

things quickly. Less experienced users will appreciate a handholding 

 approach when they are fi rst using the app.  

   •   Design for context of use.  It is important to consider how the user will 

 interact with the real world while using the MobileApp. Watching a movie 

on an airplane calls for a different user interface than checking the 

weather before you leave the offi ce.  

   •   There is a fi ne line between simplicity and laziness.  Creating an intuitive 

user interface on a mobile device is much harder than simply removing 

features found in the user interface for the application running on a larger 

device. The user interface should provide all the information that enables 

a user to make her next decision.  

   •   Use the platform as an advantage.  Touch-screen navigation is not intuitive 

and must be learned by all new users. This learning task will be easier if 

the user interface designers adhere to standards that have been set for 

the platform.  

   •   Make scrollbars and selection highlighting more salient.  Scrollbars are 

often hard to locate on touch devices because they are too small. Make 

sure that menu or icon borders are wide enough for color changes to 

catch the users’ attention. When color coding is used, make sure there is 

suffi cient contrast between foreground and background colors to allow 

them to be distinguishable by any colorblind users.  

   •   Increase discoverability of advanced functionality.  Hot keys and other 

shortcuts are sometimes included in MobileApps to allow experienced 

users to complete their tasks more quickly. You can increase the discov-

erability of features like these by including visual design clues in the user 

interface.  

   •   Use clear and consistent labels.  Widget labels should be recognized by all 

app users, regardless of standards used by specifi c platforms. Use abbre-

viations cautiously and avoid them if possible.  

   •   Clever icons should never be developed at the expense of user under-

standing.  Icons sometimes only make sense to their designers. Users must 

be able to learn their meaning quickly. It is hard to guarantee that icons 

are meaningful across all languages and user groups. A good strategy to 

 enhance recognition is to add a text label beneath a novel icon.  

 What are 
the things I 

should think about 
when designing 
mobile touch-
screen apps? 

?

pre22126_ch18_391-410.indd   402pre22126_ch18_391-410.indd   402 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  403

   •   Support user expectations for personalization.  Mobile device users expect 

to be able to personalize everything. At the very least, developers should 

try to allow users to set their location (or detect it automatically) and  select 

content options that may be available at that location. It is important to 

indicate to users what features can be personalized and how users can 

 personalize them.  

   •   Long scrolling forms trump multiple screens on mobile devices.  Experi-

enced mobile device users want all information on a single input screen 

even if this requires scrolling. Novice users often become experienced 

quickly and will grow tired of multiple input screens.  

  Developing native applications for multiple device platforms can be costly and 

time-consuming. Development costs can be reduced by using technologies fa-

miliar to Web developers (e.g., JavaScript, CSS, and HTML) to create MobileApps 

that will be accessed using a Web browser on the mobile device. Open webOS  20   is 

a device-independent platform intended to allow this type of development.   

      18.4  MOBIL ITY ENVIRONMENTS 

  The sidebar contains pointers to several tools that can be used to develop 

 MobileApps for popular platforms. Each has its own advantages and disadvan-

tages.  21   Some use technologies that are restricted to a single manufacturer’s 

 devices (e.g., iOS and Objective C). Some platforms are licensed to several man-

ufacturers (e.g., Android and Java or Windows 8 and C#). Some are open source 

and designed to work on many devices (e.g., webOS and Enyo). Each platform has 

its own rules for marketing and distribution and each varies in the degree to 

which it supports specifi c application technologies such as gaming.      

 Choosing a platform (or platforms) requires careful thought by mobile devel-

opers. Sometimes the platform(s) chosen will be dictated by the customer’s busi-

ness goals. In other situations platform choices will be determined by the device 

features they support or hardware limitations that exist. Yuan [Yua02] uses the 

following criteria to assess several  mobile interactive development environments  

(MIDEs):

    •   General productivity features . The MIDE should contain tools to support 

editing, project management, debugging, architectural design, documen-

tation, and unit testing.  

 How should 
I go about 

choosing mobility 
environments and 
platforms? 

?

  20  Information on webOS can be found at   https://developer.palm.com   

  21  Further discussion can be found at   http://www.cs.colorado.edu/~kena/classes/5828/s10/

presentations/software_engineering_mobile.pdf   

pre22126_ch18_391-410.indd   403pre22126_ch18_391-410.indd   403 16/12/13   6:23 PM16/12/13   6:23 PM



404 PART TWO  MODELING

   •   Third-party SDK integration . Each network or cloud service is likely to 

require the use of a specifi c API or SDK. It is easier to continue working in 

the one IDE, rather than several.  

   •   Post-compilation tools . An effective MIDE contains tools that allow the 

source code for a completed app to be optimized for a specifi c mobile 

 device or service.  

   •   Over-the-air deployment support . A good MIDE should allow the testing of 

the deployed app within the development environment. This can be tricky 

when the MobileApp needs to access Web services or other applications.  

   •   End-to-end mobile application development . Mobile devices are often not 

powerful enough to process or store large amounts of information locally. 

It is important to allow developers to create, test, and deploy entire mo-

bile projects using a desktop MIDE.  

   •   Documentation and tutorials . Even free development tools need to be easy 

to learn and easy to use. Having adequate support materials is essential.  

   •   Graphical user interface builders . If the MIDE supports visual construc-

tion of user screens, prototypes can be constructed and tested quickly.    

 As we have already noted, it is diffi cult to design and implement one 

 MobileApp that runs seamlessly on multiple platforms. This is especially true for 

  MobileApp Development Tools 
 Many of the tools to develop MobileApps for 
popular devices are available as free down-

loads from the World Wide Web:  22    

   https://developer.apple.com/resources  —Apple’s 
iOS Dev Center contains tools that can be used to 
develop apps for the iPod, iPad, and iPhone. 

   http://developer.android.com/index.html  —This 
site provides a plug-in to allow Android development 
using the Eclipse programming environment. 

   https://developer.blackberry.com/java/
download/eclipse/  —This site provides a plug-in 
to allow BlackBerry development using the Eclipse 
programming environment. 

   http://eclipse.org/  —Download site for the Eclipse 
Programming Environment. 

   http://create.msdn.com/en-US/  —Microsoft tools 
to develop Windows Phone apps and Xbox games. 

   http://www.developer.nokia.com/Develop/
Java/Tools/Series_40_platform_SDKs/  —
Download site for several Java-based Nokia 
development tools. 

   https://developer.palm.com/content/
resources/  —Download site for HP webOS 
development environment. 

   http://enyojs.com/  —Download site for the Enyo 
cross platform development environment. 

   http://www.scirra.com/construct2  —Download 
site for the Construct2 cross platform game 
development environment.  

 INFO 

  22  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch18_391-410.indd   404pre22126_ch18_391-410.indd   404 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  405

applications in mobile game development (a multibillion-dollar industry). Most 

popular games are developed in parallel for several mobile devices. This type of 

development fragmentation drives up costs and underscores the need for bet-

ter standardization of development tools and APIs. Galavas [Gal11] notes that 

portability, functionality, development speed, and performance are key selection 

criteria when considering which mobile development platforms to use. 

 Mobile computing middleware can be used to facilitate the communication 

and coordination of distributed system components. This can allow mobile ap-

plication developers to rely on abstractions that hide the details of some of the 

complexities of mobile environments. For middleware to be useful in MobileApp 

development, both the mobile client and the mobile service provider must allow 

for asynchronous intermittent connections. The middleware components run-

ning on the mobile client must not consume signifi cant computational resources 

on the mobile device. The middleware must also help the mobile application 

achieve the level of context awareness required by its users [Mas02]. 

        18.5  THE CLOUD 

   Services computing  23   and cloud computing  24   enable the rapid development of 

large-scale distributed applications [Yau11]. These computing paradigms have 

made it easier and more economical to create applications on many different 

devices (personal computers, smartphones, and tablets). The two paradigms 

  MobileApp Middleware 
 The following middleware products are rep-
resentative of those developed specifi cally for 

mobile applications: 

   http://www.infrae.com/products/mobi  —Mobi 
mobile middleware is a set of libraries and WSGI 
components that interact between a Web server and 
applications that make mobile data available. 

   http://smartsoftmobile.com/  —SmartSoft Mobile 
Solutions provides cloud-based and enterprise (e.g., 
SAP) solutions for mobile device platforms. 

   http://www.sybase.com/  —Sybase provides a 
Mobile Enterprise Application Platform (MEAP) that 

provide tools and client-server middleware for mobile 
and enterprise application development. See also: 
  http://scn.sap.com/community/mobile   

   http://code.google.com/p/skeenzone/  —
SkeenZone is lightweight and extensible Java 
middleware that enables development of distributed 
mobile applications. 

   http://modolabs.com/platform  —Kurogo is an 
open-source platform designed to power content-
rich, multifaceted mobile websites and iPhone and 
Android apps.  

 INFO 

  23   Services computing  focuses on architectural design and enables application development 

through service discovery and composition. 

  24   Cloud computing  focuses on the effective delivery of services to users through fl exible and 

scalable resource virtualization and load balancing, 

pre22126_ch18_391-410.indd   405pre22126_ch18_391-410.indd   405 16/12/13   6:23 PM16/12/13   6:23 PM



406 PART TWO  MODELING

allow resource outsourcing and transfer information of information technology 

management to service providers while at the same time mitigating the impact 

of resource limitations on some mobile devices. A service-oriented architecture 

provides the architectural style (e.g., REST),  25   standard protocols (e.g., XML  26  , 

SOAP  27  ), and interfaces (e.g., WSDL)  28   needed for MobileApp development. Cloud 

computing enables convenient, on-demand network access to a shared pool of 

confi gurable computing resources (servers, storage, applications, and services).        

  Services computing  allows MobileApp developers to avoid the need to inte-

grate service source code into the client running on a mobile device. Instead, 

the service runs out of the provider’s server and is loosely coupled with the ap-

plications that make use of it through messaging protocols. A service typically 

provides an API (application programming interface) to allow it to be treated like 

an abstract black box.  

  Cloud computing  lets the client (either a user or program) request computing 

capabilities as needed, across network boundaries anywhere or any time. The 

cloud architecture has three layers, each of which can be called as a service. 

The  software as service  layer consists of software components and applications 

hosted by third-party service providers. The  platform as service  layer provides a 

collaborative development platform to assist with design, implementation, and 

testing by geographically distributed team members.  Infrastructure as a service  

provides virtual computing resources (storage, processing power, network con-

nectivity) on the cloud. 

 Mobile devices can access cloud services from any location at any time. The 

risks of identity theft and service hijacking require providers of mobile services 

and cloud computing to employ rigorous security engineering techniques to pro-

tect their users. Security and privacy concerns associated with cloud computing 

are discussed in Chapter 27. Using a vendor-neutral cloud service may make it 

easier to create cross-platform applications [Rat12]. 

 Taivalsaari [Tai12] points out that making use of cloud storage can allow any 

mobile device or software features to be updated easily on millions of devices 

worldwide. In fact, it is possible to virtualize the entire mobile user experience 

so that all applications are downloaded from the cloud. 

 uote:

   “Service-oriented 
software 
engineering 
incorporates the 
best features 
of both the 
services and 
cloud computing 
paradigms.” 

 Stephan Yau 

  25   Representation State Transfer  describes a networked web architectural style where the re-

source representation (e.g. a Web page) places the client in a new state. The client changes or 

transfers state with each resource representation. 

  26   Extensible Markup Language  XML is designed to store and transport data, while HTML is de-

signed to display data. 

  27   Simple Object Access Protocol  is a  protocol  specifi cation for exchanging structured information 

in the implementation of  Web Services  in  computer networks . 

  28   Web Services Description Language  is an XML-based language for describing Web services and 

how to access them. 

 uote: 

 “Because users’ 
businesses rely 
heavily on third-
party service 
providers, there 
are serious 
concerns about how 
threats to service 
reliability could 
affect a service 
and consequently 
a cloud user’s 
business.” 

 Stephan Yau 

pre22126_ch18_391-410.indd   406pre22126_ch18_391-410.indd   406 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  407

      18.6  THE APPL ICABIL ITY OF CONVENTIONAL SOFTWARE ENGINEERING 

  There are no guarantees that a desktop program or a WebApp can be easily 

adapted for implementation as a MobileApp. However, many of the agile soft-

ware engineering practices (Chapter 5) used to create desktop computer appli-

cations can be used to create standalone MobileApps or mobile client software, 

and many of the practices used to create quality WebApps apply to the creation 

of Web services used by MobileApps. 

 During formulation a set of goals and user stories are assembled following 

practices used in many agile process models. These will defi ne the required user 

experience and determine stakeholder needs that must be satisfi ed and the con-

textual variables that must be taken into account by the MobileApp. The role of 

context and location awareness is not likely to be considered when establishing 

goals for a desktop or Web application. 

 During the planning activity, the diffi culties of developing for more than one 

device or platform must be factored into the project budget and timeline so that 

the resources needed to satisfy all stakeholder concerns are appropriately al-

located. The diffi culties of conducting meaningful usability testing and ade-

quate fi eld testing add to the development costs of MobileApps. Risk analysis 

should consider the impact of losses if security incidents or privacy violations 

occur. Planning for a security review of the requirements might also be desirable 

(Chapter 27). 

 In MobileApp development, time to market is critical. In addition,  new 

technology elements and changing user requirements are often introduced as 

development proceeds. As we noted earlier, an iterative agile process model 

(Chapters 4 and 5) provides opportunities for developers to make adjustments to 

requirements based on assessments of the evolving product prototype. 

 During product engineering, content analysis and design are similar to ac-

tions applied when a WebApp (Chapter 17) is built. The content to be included in 

the MobileApp needs to be selected and chunked subject to the limitations of the 

targeted devices and platforms. 

 Design of the MobileApp can be expedited by using rapidly expanding set de-

sign patterns (Chapter 13) and component-based design (Chapter 14) oriented 

toward MobileApps [Mes08].  A composition strategy using component-based 

and object-oriented design is applied when existing services are incorporated 

into a MobileApp. Reuse without compromising the quality of services is a core 

objective in MobileApp development [Zha05]. 

 User interface design draws heavily on the lessons learned in the graphic 

and aesthetic design for Web pages (Chapter 17) to support the branding goals 

for the MobileApp. User-centered design, with its emphasis on usability and 

accessibility is important to creating quality user interfaces for MobileApps 

(Chapter 15). 

pre22126_ch18_391-410.indd   407pre22126_ch18_391-410.indd   407 16/12/13   6:23 PM16/12/13   6:23 PM



408 PART TWO  MODELING

 The most important architectural design decision is often whether to build a 

thin or fat client. The model-view-controller (MVC) architecture (Chapter 17) is 

commonly used in MobileApps.. Because the MobileApp architecture may have 

a strong infl uence on navigation, the decisions made during this design action 

will infl uence work conducted during navigation design. The architectural de-

sign must take device resources in to account (storage, processor speed, and 

network connectivity). The design should include provisions for discoverable 

services and movable devices. 

 Usability testing and deployment testing take place during each prototype de-

velopment cycle. Code reviews that focus on security issues should be included 

as part of the implementation activities. These code reviews should be based on 

the appropriate security objectives and threats identifi ed in the system design 

activities. Security testing is a routine part of system testing (Chapter 22). 

       18.7 SUMMARY 

 The quality of a MobileApp—defi ned in terms of functionality, reliability, usabil-

ity, effi ciency, security, maintainability, scalability, and portability—is introduced 

during design. A good MobileApp should be based on the following design goals: 

simplicity, ubiquity, personalization, fl exibility, and localization. 

 Interface design describes the structure and organization of the user inter-

face and includes a representation of screen layout, a defi nition of the modes 

of interaction, and a description of navigation mechanisms. In addition, the in-

terface for a good MobileApp will promote the brand signature and focus on its 

targeted device platform(s). A set of core user stories is used to trim unnecessary 

features from the app to manage its resources requirements. Context-aware de-

vices make use of discoverable services to help personalize the user experience. 

 Content design is critically important and takes the screen and other limita-

tions of mobile devices into account. Aesthetic design, also called graphic de-

sign, describes the “look and feel” of the MobileApp and includes color schemes; 

graphic layout; the use of graphics; and related aesthetic decisions. Aesthetic 

design must also take device limitations into account. 

 Architecture design identifi es the overall hypermedia structure for the Mo-

bileApp and encompasses both content architecture and MobileApp architec-

ture. It is critical to determine how much of the MobileApp functionality will 

reside on the mobile device and how much will be provided by Web or cloud 

services. 

 Navigation design represents the navigational fl ow between content objects 

and for all MobileApp functions. Navigation syntax is defi ned by the widgets 

available on the targeted mobile device(s) and the semantics are often deter-

mined by the mobile platform. Content chunking must take intermittent service 

interruptions into account and user demands for fast performance. 

pre22126_ch18_391-410.indd   408pre22126_ch18_391-410.indd   408 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 18  MOBILEAPP DESIGN  409

 Component design develops the detailed processing logic required to imple-

ment the components that are used to build a complete MobileApp function. De-

sign techniques described in Chapter 14 may be applicable for the engineering 

of MobileApp components. 

     PROBLEMS AND POINTS TO PONDER 
    18.1  Explain why deciding to develop MobileApp for several devices can be a costly design 
decision. Is there a way to mitigate the risks of supporting the wrong platform?  

   18.2  In this chapter we listed many quality attributes for MobileApps. Select the three that 
you believe are most important, and make an argument that explains why each should be 
emphasized in MobileApp design work.  

   18.3  Add at least fi ve additional questions to the MobileApp Design—Quality Checklist pre-
sented in Section 18.2.  

   18.4  You are a MobileApp designer for  Project Planning   Corporation , a company that builds 
productivity software. You want to implement the equivalent of a digital three-ring binder 
that allows tablet users to organize and categorize electronic documents of several types 
under user-defi ned tabs. For example, a kitchen remodeling project might require a pdf 
catalog, a jpg or dfx layout drawing, an MS Word proposal, and an Excel spreadsheet stored 
under a Cabinetry tab. Once defi ned, the binder and its tab content can be stored either 
on the tablet or on some cloud storage. The application needs to provide fi ve key func-
tions: binder and tab defi nition, digital document acquisition from a Web location or the 
device, binder management functions, page display functions, and a notes function to allow 
a Post-it note to be added to any page. Develop an interface design for the three-ring appli-
cation and implement it as a paper prototype.  

   18.5  What is the most aesthetically pleasing MobileApp you have ever used and why?  

   18.6  Create user stories for the three-ring application described in Problem 18.4.  

   18.7  What might be considered to make the three-ring application a context-aware 
MobileApp?  

   18.8  Reconsidering the  ProjectPlanning  three-ring application described in Problem 18.4, 
select a development platform for the fi rst working prototype. Discuss why you made the 
choice.  

   18.9  Use UML to develop design representations for the interface objects that would be 
 encountered as the three-ring application described in Problem 18.4 is designed.  

   18.10  Do a bit of additional research on the MVC architecture and decide whether it would 
be an appropriate MobileApp architecture for the three-ring discussed in Problem 18.4.  

   18.11  Describe three context-aware features that would be desirable to add to a  SafeHome  
MobileApp.  

   18.12  Do some Internet research to identify a middleware product designed to support 
 MobileApps. Describe the middleware features and the platform(s) it supports.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Kumar and Xie ( Handbook of Mobile Systems Applications and Services,  Auerbach Pub-
lications, 2012) have edited a book that covers mobile services and the role of service-
oriented architectures in mobile computing. Books on pervasive computing by Adelstein 

pre22126_ch18_391-410.indd   409pre22126_ch18_391-410.indd   409 16/12/13   6:23 PM16/12/13   6:23 PM



410 PART TWO  MODELING

( Fundamentals of Mobile and Pervasive Computing , McGraw-Hill, 2004 ),  Hansmann ( Per-

vasive Computing: The Mobile World , 2nd ed., Springer, 2003 reprinted 2013) defi ne the 
principles of context in mobile computing. Books by Kuniavsky ( Smart Things: Ubiqui-

tous Computing User Experience Design , Morgan Kaufman, 2010) and Polstad ( Ubiquitous 

Computing: Smart Devices, Environments and Interactions , Wiley, 2009) describes the 
context-aware computing in terms of the interactions among smart devices, smart envi-
ronments, and smart interactions. Neil ( Mobile Design Pattern Gallery , O’Reilly, 2012) docu-
ments mobile design patterns illustrated by examples from six mobile platforms. 

   Interface design books are plentiful. A good general reference is the book edited by 
Schumacher ( Handbook of Global User Research , Morgan-Kaufmann, 2009). Hoober 
 ( Designing Mobile Interfaces , O’Reilly, 2011) describes device-independent best practices 
for composing pages, displaying information, and using sensors. Nielsen ( Mobile Usability , 
New Riders, 2012) offers advice on how to design usable interfaces that take mobile-device 
screen size into account. Colborne ( Simple and Usable Web, Mobile, and Interaction Design , 
New Riders, 2010) describes the process of simplifying user interaction. Ginsburg ( Design-

ing the iPhone User Experience: A User-Centered Approach to Sketching and Prototyping 

iPhone Apps , Addison-Wesley, 2010) discusses the importance of differentiating your app 
from the competition by taking a user-centric approach to designing a high-quality user 
experience. 

   The  Microsoft Application Architecture Guide  (Microsoft Press, 2009)   contains useful in-
formation about mobile application design and architecture. Architecture design for tab-
let devices is discussed in a book by Lee ( Mobile Applications: Architecture, Design, and 

 Development , Prentice Hall, 2004). Esposito ( Architecting Mobile Solutions for the Enterprise , 
Microsoft Press, 2012) describes the process of developing a cross-platform application by 
building an effective mobile website. Mobile middleware is discussed in a book edited by 
Garbinato ( Middleware for Network Eccentric and Mobile Applications , Springer, 2009). 

   There are many books on MobileApp programming that focus on a specifi c platform. 
Books by Firtman ( Programming the Mobile Web,  O’Reilly, 2010). Mednieke ( Programming 

Android,  O’Reilly, 2011) or Lee ( Test-Driven iOS Development,  Addison-Wesley, 2012) are 
representative. 

   A wide variety of information sources on design for MobileApps is available on the 
 Internet. An up-to-date list of World Wide Web references can be found under “software 
engineering resources” at the SEPA website:   www.mhhe.com/pressman  .      

pre22126_ch18_391-410.indd   410pre22126_ch18_391-410.indd   410 16/12/13   6:23 PM16/12/13   6:23 PM



411

 In this part of  Software Engineering: A Practitioner’s Approach  

you’ll learn about the principles, concepts, and techniques 

that are applied to manage and control software quality. 

These questions are addressed in the chapters that follow:

    •  What are the generic characteristics of high-quality 

software?  

   •  How do we review quality and how are effective reviews 

conducted?  

   •  What is software quality assurance?  

   •  What strategies are applicable for software testing?  

   •  What methods are used to design effective test cases?  

   •  Are there realistic methods that will ensure that software 

is correct?  

   •  How can we manage and control changes that always occur 

as software is built?  

   •  What measures and metrics can be used to assess the qual-

ity of requirements and design models, source code, and 

test cases?    

 Once these questions are answered you’ll be better prepared to 

ensure that high-quality software has been produced. 

 QUALITY 
MANAGEMENT 

   P A R T

Three 

pre22126_ch19_411-430.indd   411pre22126_ch19_411-430.indd   411 13/12/13   6:13 PM13/12/13   6:13 PM



412

   The drumbeat for improved software quality began in earnest as software 

became increasingly integrated in every facet of our lives. By the 1990s, 

major corporations recognized that billions of dollars each year were 

being wasted on software that didn’t deliver the features and functionality that 

were promised. Worse, both government and industry became increasingly 

concerned that a major software fault might cripple important infrastructure, 

costing tens of billions more. By the turn of the century,  CIO Magazine  trum-

peted the headline, “Let’s Stop Wasting $78 Billion a Year,” lamenting the fact 

that “American businesses spend billions for software that doesn’t do what it’s 

supposed to do” [Lev01].  InformationWeek  [Ric01] echoed the same concern:

   Despite good intentions, defective code remains the hobgoblin of the software 

indus try, accounting for as much as 45% of computer-system downtime and cost-

ing U.S. companies about $100 billion last year in lost productivity and repairs, says 

the Standish Group, a market research fi rm. That doesn’t include the cost of losing 

angry customers. Because IT shops write applications that rely on packaged infra-

structure software, bad code can wreak havoc on custom apps as well . . . 

 Just how bad is bad software? Defi nitions vary, but experts say it takes only 

three or four defects per 1,000 lines of code to make a program perform poorly. 

Factor in that most programmers inject about one error for every 10 lines of code 

   K E Y 
C O N C E P T S 
    cost of quality. . . . 422  
    good enough . . . . . 421  
    liability. . . . . . . . . 425  
    management 
actions . . . . . . . . . 426  
    quality . . . . . . . . . 413  
    quality 
dilemma . . . . . . . . 420  
    quality 
dimensions . . . . . . 415  
    quality factors  . . . 416  
    quantitative 
view  . . . . . . . . . . 420  
    risks. . . . . . . . . . . 424  
    security  . . . . . . . . 425  

 QUALITY 
CONCEPTS 19 

  C H A P T E R 

      Q U I C K 
L O O K 

  What is it?   The answer isn’t as 
easy as you might think. You know 
quality when you see it, and yet, it 
can be an elusive thing to defi ne. 

But for computer software, quality is something 
that we must defi ne, and that’s what we’ll do 
in this chapter. 

   Who does it?   Everyone—software engineers, 
managers, all stakeholders—involved in the 
software process is responsible for quality. 

   Why is it important?   You can do it right, or 
you can do it over again. If a software team 
stresses quality in all software engineering ac-
tivities, it reduces the amount of rework that it 
must do. That results in lower costs, and more 
importantly, improved time to market. 

   What are the steps?   To achieve high-quality 
software, four activities must occur: proven 
software engineering process and practice, 
solid project management, comprehensive 
quality control, and the presence of a quality 
assurance infrastructure. 

   What is the work product?   Software that 
meets its customer’s needs, performs accu-
rately and reliably, and provides value to all 
who use it. 

   How do I ensure that I’ve done it right?  
 Track quality by examining the results of all 
quality control activities, and measure quality 
by examining errors before delivery and de-
fects released to the fi eld. 

pre22126_ch19_411-430.indd   412pre22126_ch19_411-430.indd   412 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  413

      19.1  WHAT IS  QUALITY? 

  In his mystical book  Zen and the Art of Motorcycle Maintenance,  Robert Persig 

[Per74] commented on the thing we call  quality :

   Quality  .  .  . you know what it is, yet you don’t know what it is. But that’s self- 

contradictory. But some things are better than others; that is, they have more quality. 

But when you try to say what the quality is, apart from the things that have it, it all 

goes poof! There’s nothing to talk about. But if you can’t say what Quality is, how do 

you know what it is, or how do you know that it even exists? If no one knows what it 

is, then for all practical purposes it doesn’t exist at all. But for all practical purposes 

it really does exist. What else are the grades based on? Why else would people pay 

fortunes for some things and throw others in the trash pile? Obviously some things 

are better than others . . . but what’s the betterness? . . . So round and round you go, 

spinning mental wheels and nowhere fi nding anyplace to get traction. What the hell 

is Quality? What is it? 

   Indeed—what is it? 

   At a somewhat more pragmatic level, David Garvin [Gar84] of the Harvard 

Business School suggests that “quality is a complex and multifaceted concept” that 

can be described from fi ve different points of view. The  transcendental view  argues 

(like Persig) that quality is something you immediately recognize, but cannot ex-

plicitly defi ne. The  user view  sees quality in terms of an end user’s specifi c goals. If 

a product meets those goals, it exhibits quality. The  manufacturer’s view  defi nes 

quality in terms of the original specifi cation of the product. If the product conforms 

 What are 
the different 

ways in which 
quality can be 
viewed? 

?

they write, multiply that by the millions of lines of code in many commercial products, 

then fi gure it costs software vendors at least half their development budgets to fi x 

errors while testing. Get the picture?   

 In 2005,  ComputerWorld  [Hil05] lamented that “bad software plagues nearly 

every organization that uses computers, causing lost work hours during com-

puter downtime, lost or corrupted data, missed sales opportunities, high IT 

support and maintenance costs, and low customer satisfaction. A year later, 

  InfoWorld  [Fos06] wrote about the “the sorry state of software quality” reporting 

that the quality problem had not gotten any better. As the emphasis on software 

quality grew, a survey of 100,000 white-collar professionals [Rog12] indicated that 

software quality engineers were “the happiest workers in America”! 

 Today, software quality remains an issue, but who is to blame? Customers blame 

developers, arguing that sloppy practices lead to low-quality software. Develop-

ers blame customers (and other stakeholders), arguing that irrational delivery 

dates and a continuing stream of changes force them to deliver software before 

it has been fully validated. Who’s right?  Both —and that’s the problem. In this 

 chapter, we consider software quality as a concept and examine why it’s worthy 

of serious consideration whenever software engineering practices are applied. 

pre22126_ch19_411-430.indd   413pre22126_ch19_411-430.indd   413 13/12/13   6:13 PM13/12/13   6:13 PM



414 PART THREE  QUALITY MANAGEMENT

to the spec, it exhibits quality. The  product view  suggests that quality can be tied to 

inherent characteristics (e.g., functions and features) of a product. Finally, the 

  value-based view  measures quality based on how much a customer is willing to pay 

for a product. In reality, quality encompasses all of these views and more. 

  Quality of design  refers to the characteristics that designers specify for a 

product. The grade of materials, tolerances, and performance specifi cations all 

contribute to the quality of design. As higher-grade materials are used, tighter 

tolerances and greater levels of performance are specifi ed, the design quality of 

a product increases if the product is manufactured according to specifi cations.  

 In software development, quality of design encompasses the degree to which 

the design meets the functions and features specifi ed in the requirements 

model.  Quality of conformance  focuses on the degree to which the implemen-

tation  follows the design and the resulting system meets its requirements and 

performance goals. 

 But are quality of design and quality of conformance the only issues that 

 software engineers must consider? Robert Glass [Gla98] argues that a more 

 “intuitive” relationship is in order:

user satisfaction 5 compliant product 1 good quality 1 delivery within budget and schedule 

 At the bottom line, Glass contends that quality is important, but if the user 

isn’t satisfi ed, nothing else really matters. DeMarco [DeM98] reinforces this view 

when he states: “A product’s quality is a function of how much it changes the 

world for the better.” This view of quality contends that if a software product 

provides substantial benefi t to its end users, they may be willing to tolerate occa-

sional reliability or performance problems. 

        19.2  SOFTWARE QUALITY 

  Even the most jaded software developers will agree that high-quality software is 

an important goal. But how do we defi ne  software  quality? In the most general 

sense, software quality can be defi ned as:  An effective software process applied in 

a manner that creates a useful product that provides measurable value for those 

who produce it and those who use it.   1    

 There is little question that the preceding defi nition could be modifi ed or 

extended and debated endlessly. For the purposes of this book, the defi nition 

serves to emphasize three important points:

     1.  An  effective software process  establishes the infrastructure that supports 

any effort at building a high-quality software product. The management 

 How can I 
best defi ne 

software quality? 
?

  uote: 

 “People forget 
how fast you did 
a job—but they 
always remember 
how well you 
did it.” 

 Howard Newton 

 1 This defi nition has been adapted from [Bes04] and replaces a more manufacturing-oriented 

view presented in earlier editions of this book. 

pre22126_ch19_411-430.indd   414pre22126_ch19_411-430.indd   414 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  415

aspects of process create the checks and balances that help avoid project 

chaos—a key contributor to poor quality. Software engineering practices 

allow the developer to analyze the problem and design a solid solution—

both critical to building high-quality software. Finally, umbrella activities 

such as change management and technical reviews have as much to do 

with quality as any other part of software engineering practice.   

    2.  A  useful product  delivers the content, functions, and features that the 

end user desires, but as important, it delivers these assets in a reliable, 

error-free way. A useful product always satisfi es those requirements that 

have been explicitly stated by stakeholders. In addition, it satisfi es a set 

of implicit requirements (e.g., ease of use) that are expected of all high- 

quality software.  

    3.  By  adding value for both the producer and user  of a software product, 

high-quality software provides benefi ts for the software organization and 

the end-user community. The software organization gains added value 

because high-quality software requires less maintenance effort, fewer bug 

fi xes, and reduced customer support. This enables software engineers to 

spend more time creating new applications and less on rework. The user 

community gains added value because the application provides a useful 

capability in a way that expedites some business process. The end result 

is (1) greater software product revenue, (2) better profi tability when an 

 application supports a business process, and/or (3) improved availability 

of information that is crucial for the business.    

   19.2.1   Garvin’s Quality Dimensions 

 David Garvin [Gar87] suggests that quality should be considered by taking a 

multidimensional viewpoint that begins with an assessment of conformance 

and terminates with a transcendental (aesthetic) view. Although Garvin’s eight 

 dimensions of quality were not developed specifi cally for software, they can be 

applied when software quality is considered: 

    Performance Quality.  Does the software deliver all content, functions, and 

features that are specifi ed as part of the requirements model in a way that 

provides value to the end user? 

  Feature quality.  Does the software provide features that surprise and 

 delight fi rst-time end users? 

  Reliability.  Does the software deliver all features and capability without 

failure? Is it available when it is needed? Does it deliver functionality that 

is error free? 

  Conformance.  Does the software conform to local and external software 

standards that are relevant to the application? Does it conform to de facto 

    uote: 

 “Be a yardstick 
of quality. Some 
people aren’t used 
to an environment 
where excellence is 
expected.” 

 Steve Jobs 

   You can use a radar 
diagram to provide a 
visual representation of 
each of Garvin’s quality 
dimensions as they are 
applied to an app. 

pre22126_ch19_411-430.indd   415pre22126_ch19_411-430.indd   415 13/12/13   6:13 PM13/12/13   6:13 PM



416 PART THREE  QUALITY MANAGEMENT

design and coding conventions? For example, does the user interface con-

form to accepted design rules for menu selection or data input? 

  Durability.  Can the software be maintained (changed) or corrected 

 (debugged) without the inadvertent generation of unintended side effects? 

Will changes cause the error rate or reliability to degrade with time? 

  Serviceability.  Can the software be maintained (changed) or corrected 

(debugged) in an acceptably short time period? Can support staff acquire 

all information they need to make changes or correct defects? Douglas 

Adams [Ada93] makes a wry comment that seems appropriate here: “The 

difference between something that can go wrong and something that can’t 

possibly go wrong is that when something that can’t possibly go wrong 

goes wrong it usually turns out to be impossible to get at or repair.” 

  Aesthetics.  There’s no question that each of us has a different and very 

subjective vision of what is aesthetic. And yet, most of us would agree that 

an aesthetic entity has a certain elegance, a unique fl ow, and an obvious 

“presence” that are hard to quantify but are evident nonetheless. Aes-

thetic software has these characteristics. 

  Perception.  In some situations, you have a set of prejudices that will in-

fl uence your perception of quality. For example, if you are introduced 

to a software product that was built by a vendor who has produced poor 

quality in the past, your guard will be raised and your perception of the 

current software product quality might be infl uenced negatively. Similarly, 

if a vendor has an excellent reputation, you may perceive quality, even 

when it does not really exist. 

 Garvin’s quality dimensions provide you with a “soft” look at software quality. 

Many (but not all) of these dimensions can only be considered subjectively. For 

this reason, you also need a set of “hard” quality factors that can be categorized 

in two broad groups: (1) factors that can be directly measured (e.g., defects un-

covered during testing) and (2) factors that can be measured only indirectly (e.g., 

usability or maintainability). In each case measurement must occur. You should 

compare the software to some datum and arrive at an indication of quality. 

    19.2.2   McCall’s Quality Factors 

 McCall, Richards, and Walters [McC77] propose a useful categorization of factors 

that affect software quality. These software quality factors, shown in  Figure 19.1 , 

focus on three important aspects of a software product: its operational charac-

teristics, its ability to undergo change, and its adaptability to new environments. 

  Referring to the factors noted in  Figure 19.1 , McCall and his colleagues pro-

vide the following descriptions:

    Correctness.  The extent to which a program satisfi es its specifi cation and fulfi lls the 

customer’s mission objectives. 

pre22126_ch19_411-430.indd   416pre22126_ch19_411-430.indd   416 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  417

  Reliability.  The extent to which a program can be expected to perform its intended 

function with required precision. [It should be noted that other, more complete defi -

nitions of reliability have been proposed (see Chapter 21).] 

  Effi ciency.  The amount of computing resources and code required by a program to 

perform its function. 

  Integrity.  Extent to which access to software or data by unauthorized persons can be 

controlled. 

  Usability.  Effort required to learn, operate, prepare input for, and interpret output of 

a program. 

  Maintainability.  Effort required to locate and fi x an error in a program. [This is a very 

limited defi nition.] 

  Flexibility.  Effort required to modify an operational program. 

  Testability.  Effort required to test a program to ensure that it performs its intended 

function. 

  Portability.  Effort required to transfer the program from one hardware and/or soft-

ware system environment to another. 

  Reusability.  Extent to which a program [or parts of a program] can be reused in other 

applications—related to the packaging and scope of the functions that the program 

performs. 

  Interoperability.  Effort required to couple one system to another. 

 It is diffi cult, and in some cases impossible, to develop direct measures  2   of these 

quality factors. In fact, many of the metrics defi ned by McCall and  colleagues 

can be measured only indirectly. However, assessing the quality of an application 

using these factors will provide you with a solid indication of software quality.

PRODUCT OPERATION

PRODUCT TRANSITIONPRODUCT REVISION

Correctness                              Usability                              Efficiency
Reliability                              Integrity

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

  FIGURE 19.1

 McCall’s 
 software 
 quality factors   

 2 A  direct measure  implies that there is a single countable value that provides a direct indication 

of the attribute being examined. For example, the “size” of a program can be measured directly 

by counting the number of lines of code. 

    uote: 

 “The bitterness 
of poor quality 
remains long after 
the sweetness 
of meeting the 
schedule has been 
forgotten.” 

 Karl Weigers 
(unattributed 

quote) 

pre22126_ch19_411-430.indd   417pre22126_ch19_411-430.indd   417 13/12/13   6:13 PM13/12/13   6:13 PM



418 PART THREE  QUALITY MANAGEMENT

         19.2.3   ISO 9126 Quality Factors 

 The ISO 9126 standard was developed in an attempt to identify the key qual-

ity  attributes for computer software. The standard identifi es six key quality 

attributes: 

    Functionality.  The degree to which the software satisfi es stated needs as 

indicated by the following subattributes: suitability, accuracy, interopera-

bility, compliance, and security. 

  Reliability.    The amount of time that the software is available for use 

as indicated by the following subattributes: maturity, fault tolerance, 

recoverability. 

  Usability  .  The degree to which the software is easy to use as indicated by 

the following subattributes: understandability, learnability, operability. 

  Effi ciency.    The degree to which the software makes optimal use of  system 

resources as indicated by the following subattributes: time behavior, 

 resource behavior. 

  Maintainability.  The ease with which repair may be made to the software 

as indicated by the following subattributes: analyzability, changeability, 

stability, testability. 

  Portability.    The ease with which the software can be transposed from one 

environment to another as indicated by the following subattributes: adapt-

ability, installability, conformance, replaceability. 

 Like other software quality factors discussed in the preceding subsections, 

the ISO 9126 factors do not necessarily lend themselves to direct measurement. 

However, they do provide a worthwhile basis for indirect measures and an excel-

lent checklist for assessing the quality of a system.  

    19.2.4   Targeted Quality Factors 

 The quality dimensions and factors presented in Sections 19.2.1 and 19.2.2 focus 

on the software as a whole and can be used as a generic indication of the quality 

of an application. A software team can develop a set of quality characteristics 

and associated questions that would probe the degree to which each factor has 

been satisfi ed.  3   For example, McCall identifi es  usability  as an important qual-

ity factor. If you were asked to review a user interface and assess its usability, 

how would you proceed? You might start with the subattributes suggested by 

 McCall— understandability, learnability, and operability—but what do these 

mean in a pragmatic sense?  

    uote: 

 “Any activity 
becomes creative 
when the doer 
cares about doing 
it right, or better.” 

 John Updike 

   Although it’s tempting 
to develop quantitative 
measures for the qual-
ity factors noted here, 
you can also create 
a simple checklist of 
attributes that provide 
a solid indication that 
the factor is present. 

 3 These characteristics and questions would be addressed as part of a software review 

(Chapter 20). 

pre22126_ch19_411-430.indd   418pre22126_ch19_411-430.indd   418 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  419

 To conduct your assessment, you’ll need to address specifi c, measurable (or at 

least, recognizable) attributes of the interface. For example [Bro03]: 

  Intuitiveness.   The degree to which the interface follows expected usage  patterns 

so that even a novice can use it without signifi cant training.

    •  Is the interface layout conducive to easy understanding?  

   •  Are interface operations easy to locate and initiate?  

   •  Does the interface use a recognizable metaphor?  

   •  Is input specifi ed to economize key strokes or mouse clicks?  

   •  Does the interface follow the three golden rules? (Chapter 15)  

   •  Do aesthetics aid in understanding and usage?    

   Efficiency.   The degree to which operations and information can be located or 

initiated.

    •  Does the interface layout and style allow a user to locate operations and 

information effi ciently?  

   •  Can a sequence of operations (or data input) be performed with an econ-

omy of motion?  

   •  Are output data or content presented so that it is understood immediately?  

   •  Have hierarchical operations been organized in a way that minimizes the 

depth to which a user must navigate to get something done?    

   Robustness.   The degree to which the software handles bad input data or inap-

propriate user interaction.

    •  Will the software recognize the error if data values are at or just outside 

prescribed input boundaries? More importantly, will the software con-

tinue to operate without failure or degradation?  

   •  Will the interface recognize common cognitive or manipulative mistakes 

and explicitly guide the user back on the right track?  

   •  Does the interface provide useful diagnosis and guidance when an error 

condition (associated with software functionality) is uncovered?    

   Richness.   The degree to which the interface provides a rich feature set.

    •  Can the interface be customized to the specifi c needs of a user?  

   •  Does the interface provide a macro capability that enables a user to iden-

tify a sequence of common operations with a single action or command? 

   As the interface design is developed, the software team would review 

the design prototype and ask the questions noted. If the answer to most of 

these questions is yes, it is likely that the user interface exhibits high quality. 

pre22126_ch19_411-430.indd   419pre22126_ch19_411-430.indd   419 13/12/13   6:13 PM13/12/13   6:13 PM



420 PART THREE  QUALITY MANAGEMENT

A collection of questions similar to these would be developed for each quality 

factor to be assessed.    

     19.2.5   The Transition to a Quantitative View 

 In the preceding subsections, we have presented a set of qualitative factors for the 

“measurement” of software quality. The software engineering community strives to 

develop precise measures for software quality and is sometimes frustrated by the 

subjective nature of the activity. Cavano and McCall [Cav78] discuss this situation: 

  The determination of quality is a key factor in everyday events—wine tasting contests, 

sporting events [e.g., gymnastics], talent contests, etc. In these situations, quality is 

judged in the most fundamental and direct manner: side by side comparison of ob-

jects under identical conditions and with predetermined concepts. The wine may be 

judged according to clarity, color, bouquet, taste, etc. However, this type of judgment 

is very subjective; to have any value at all, it must be made by an expert.  

   Subjectivity and specialization also apply to determining software quality. To help 

solve this problem, a more precise defi nition of software quality is needed as well as a 

way to derive quantitative measurements of software quality for objective  analysis . . . 

Since there is no such thing as absolute knowledge, one should not expect to mea-

sure software quality exactly, for every measurement is partially imperfect. Jacob 

 Bronkowski described this paradox of knowledge in this way: “Year by year we  devise 

more precise instruments with which to observe nature with more fi neness. And 

when we look at the observations we are discomfi ted to see that they are still fuzzy, 

and we feel that they are as uncertain as ever.” 

 In Chapter 30, we’ll present a set of software metrics that can be applied to the 

quantitative assessment of software quality. In all cases, the metrics represent 

indirect measures; that is, we never really measure  quality  but rather some man-

ifestation of quality. The complicating factor is the precise relationship between 

the variable that is measured and the quality of software. 

       19.3  THE SOFTWARE QUALITY DILEMMA 

  In an interview [Ven03] published on the Web, Bertrand Meyer discusses what I 

call the  quality dilemma:  

   If you produce a software system that has terrible quality, you lose because no one will 

want to buy it. If on the other hand you spend infi nite time, extremely large effort, and 

huge sums of money to build the absolutely perfect piece of software, then it’s going 

to take so long to complete and it will be so expensive to produce that you’ll be out of 

business anyway. Either you missed the market window, or you simply exhausted all 

your resources. So people in industry try to get to that magical middle ground where 

the product is good enough not to be rejected right away, such as during evaluation, 

but also not the object of so much perfectionism and so much work that it would take 

too long or cost too much to complete. 

   When you’re faced 
with the quality 
 dilemma (and every-
one is faced with it at 
one time or another), 
try to achieve 
 balance—enough 
effort to produce 
acceptable quality 
without burying the 
project. 

   Although it’s tempting 
to develop quantitative 
measures for the qual-
ity factors noted here, 
you can also create 
a simple checklist of 
attributes that provide 
a solid indication that 
the factor is present. 

pre22126_ch19_411-430.indd   420pre22126_ch19_411-430.indd   420 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  421

 It’s fi ne to state that software engineers should strive to produce high-quality 

systems. It’s even better to apply good practices in your attempt to do so. But the 

situation discussed by Meyer is real life and represents a dilemma for even the 

best software engineering organizations. 

   19.3.1   “Good Enough” Software 

 Stated bluntly, if we are to accept the argument made by Meyer, is it acceptable 

to produce “good enough” software? The answer to this question must be   yes, 

because major software companies do it every day. They create software with 

known bugs and deliver it to a broad population of end users. They recognize 

that some of the functions and features delivered in Version 1.0 may not be of the 

highest quality and plan for improvements in Version 2.0. They do this knowing 

that some customers will complain, but they recognize that time to market may 

trump better quality as long as the delivered product is “good enough.” 

 Exactly what is “good enough”? Good enough software delivers high-quality 

functions and features that end users desire, but at the same time it delivers 

other more obscure or specialized functions and features that contain known 

bugs. The software vendor hopes that the vast majority of end users will overlook 

the bugs because they are so happy with other application functionality. 

 This idea may resonate with many readers. If you’re one of them, we can only 

ask you to consider some of the arguments against “good enough.” 

 It is true that “good enough” may work in some application domains and for 

a few major software companies. After all, if a company has a large marketing 

budget and can convince enough people to buy version 1.0, it has succeeded in 

locking them in. As we noted earlier, it can argue that it will improve quality in 

subsequent versions. By delivering a good enough version 1.0, it has cornered 

the market. 

 If you work for a small company be wary of this philosophy. When you deliver 

a good enough (buggy) product, you risk permanent damage to your company’s 

reputation. You may never get a chance to deliver version 2.0 because bad buzz 

may cause your sales to plummet and your company to fold. 

 If you work in certain application domains (e.g., real-time embedded software) 

or build application software that is integrated with hardware (e.g., automotive 

software, telecommunications software), delivering software with known bugs 

can be negligent and open your company to expensive litigation. In some cases, 

it can even be criminal. No one wants good enough aircraft avionics software! 

 So, proceed with caution if you believe that “good enough” is a shortcut that 

can solve your software quality problems. It can work, but only for a few and only 

in a limited set of application domains.  4    

 4 A worthwhile discussion of the pros and cons of “good enough” software can be found in [Bre02]. 

pre22126_ch19_411-430.indd   421pre22126_ch19_411-430.indd   421 13/12/13   6:13 PM13/12/13   6:13 PM



422 PART THREE  QUALITY MANAGEMENT

    19.3.2   The Cost of Quality 

 The argument goes something like this— we know that quality is important, but 

it costs us time and money—too much time and money to get the level of software 

quality we really want.  On its face, this argument seems reasonable (see Meyer’s 

comments earlier in this section). There is no question that quality has a cost, but 

lack of quality also has a cost—not only to end users who must live with buggy 

software, but also to the software organization that has built and must maintain 

it. The real question is this:  which cost should we be worried about?  To answer 

this question, you must understand both the cost of achieving quality and the cost 

of low-quality software. 

 The  cost of quality  includes all costs incurred in the pursuit of quality or 

in performing quality-related activities and the downstream costs of lack of 

quality. To understand these costs, an organization should collect metrics to 

provide a baseline for the current cost of quality, identify opportunities for 

reducing these costs, and provide a normalized basis of comparison. The cost 

of quality can be divided into costs associated with prevention, appraisal, and 

failure. 

    Prevention costs  include (1) the cost of management activities required to 

plan and coordinate all quality control and quality assurance activities, (2) the 

cost of added technical activities to develop complete requirements and design 

 models, (3) test planning costs, and (4) the cost of all training associated with 

these activities. 

  Appraisal costs  include activities to gain insight into product condition the 

“fi rst time through” each process. Examples of appraisal costs include: (1) the 

cost of conducting technical reviews (Chapter 20) for software engineering work 

products, (2) the cost of data collection and metrics evaluation (Chapter 30), and 

(3) the cost of testing and debugging (Chapters 22 through 26).  

  Failure costs  are those that would disappear if no errors appeared before 

shipping a product to customers. Failure costs may be subdivided into internal 

failure costs and external failure costs.  Internal failure costs  are incurred when 

you detect an error in a product prior to shipment. Internal failure costs include: 

(1) the cost required to perform rework (repair) to correct an error, (2) the cost 

that occurs when rework inadvertently generates side effects that must be miti-

gated, and (3) the costs associated with the collection of quality metrics that allow 

an organization to assess the modes of failure.  External failure costs  are asso-

ciated with defects found after the product has been shipped to the customer. 

Examples of external failure costs are complaint resolution, product return and 

replacement, help line support, and labor costs associated with warranty work. 

A poor reputation and the resulting loss of business is another external failure 

cost that is diffi cult to quantify but nonetheless very real. Bad things happen 

when low-quality software is produced. 

   Don’t be afraid to incur 
signifi cant prevention 
costs. Rest assured 
that your investment 
will provide an 
 excellent return. 

    uote: 

 “It takes less time 
to do a thing right 
than to explain 
why you did it 
wrong.” 

 H. W. 
Longfellow 

pre22126_ch19_411-430.indd   422pre22126_ch19_411-430.indd   422 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  423

 In an indictment of software developers who refuse to consider external fail-

ure costs, Cem Kaner [Kan95] states:

   Many of the external failure costs, such as goodwill, are diffi cult to quantify, and 

many companies therefore ignore them when calculating their cost-benefi t tradeoffs. 

Other external failure costs can be reduced (e.g. by providing cheaper, lower-quality, 

post-sale support, or by charging customers for support) without increasing customer 

satisfaction. By ignoring the costs to our customers of bad products, quality engineers 

encourage quality-related decision-making that victimizes our customers, rather 

than delighting them.   

 As expected, the relative costs to fi nd and repair an error or defect increase 

dramatically as we go from prevention to detection to internal failure to external 

failure costs.  Figure 19.2 , based on data collected by Boehm and Basili [Boe01b] 

and illustrated by Cigital Inc. [Cig07], illustrates this phenomenon.  

 The industry average cost to correct a defect during code generation is 

 approximately $977 per error. The industry average cost to correct the same error 

if it is discovered during system testing is $7,136 per error. Cigital Inc. [Cig07] 

considers a large application that has 200 errors introduced during coding. 

  According to industry average data, the cost of fi nding and correcting defects during 

the coding phase is $977 per defect. Thus, the total cost for correcting the 200 “criti-

cal” defects during this phase (200 3 $977) is approximately $195,400. 

 Industry average data shows that the cost of fi nding and correcting defects during 

the system testing phase is $7,136 per defect. In this case, assuming that the sys-

tem testing phase revealed approximately 50 critical defects (or only 25% of those 

found by Cigital in the coding phase), the cost of fi nding and fi xing those defects 

(50 3 $7,136) would have been approximately $356,800. This would also have resulted 

Requirements

$139 $455 $977

$7,136

$14,102

Design Coding Testing Maintenance

$16,000.00

$14,000.00

$12,000.00

$10,000.00

$8,000.00

$6,000.00

$4,000.00

$2,000.00

$-

  FIGURE 19.2

 Relative cost 
of correcting 
errors and 
defects   
 Source: Adapted 
from [Boe01b]. 

pre22126_ch19_411-430.indd   423pre22126_ch19_411-430.indd   423 13/12/13   6:13 PM13/12/13   6:13 PM



424 PART THREE  QUALITY MANAGEMENT

in 150 critical errors going undetected and uncorrected. The cost of fi nding and fi xing 

these remaining 150 defects in the maintenance phase (150 3 $14,102) would have 

been $2,115,300. Thus, the total cost of fi nding and fi xing the 200 defects after the 

 coding phase would have been $2,472,100 ($2,115,300 1 $356,800).  

 Even if your software organization has costs that are half of industry average 

(most have no idea what their costs are!), the cost savings associated with early 

quality control and assurance activities (conducted during requirements analy-

sis and design) are compelling. 

  Quality Issues   Quality Issues 

  The scene:  Doug Miller’s offi ce 
as the  SafeHome  software project 

begins. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and other members of the 
product software engineering team. 

  The conversation:  

  Doug:  I was looking at an industry report on the costs 
of repairing software defects. They are pretty sobering. 

  Jamie:  We are already working on developing test 
cases for each functional requirement. 

  Doug:  That’s good, but I was noticing that it costs eight 
times as much to repair a defect that is discovered in 
testing than it does if the defect is caught and repaired 
during coding. 

  Vinod:  We are using pairs programming so we should 
be able to catch most of the defects during coding. 

  Doug:  I think you are missing the point. Quality is 
more than simply removing coding errors. We need 
to look at the project quality goals and ensure that the 
evolving software products are meeting them. 

  Jamie:  Do you mean things like usability, security, and 
reliability? 

  Doug:  Yes, I do. We need to build checks into the soft-
ware process to monitor our progress toward meeting 
our quality goals. 

  Vinod:  Can’t we fi nish the fi rst prototype and then 
check it for quality? 

  Doug:  I am afraid not. We must establish a culture of 
quality early in the project. 

  Vinod:  What do you want us to do, Doug? 

  Doug:  I think we will need to fi nd a technique that will 
allow us to monitor the quality of the  SafeHome   products. 
Let’s think about this and revisit this again tomorrow.  

 SAFEHOME 

      19.3.3   Risks 

 In Chapter 1 of this book, we wrote “people bet their jobs, their comforts, their 

safety, their entertainment, their decisions, and their very lives on computer soft-

ware. It better be right.” The implication is that low-quality software increases 

risks for both the developer and the end user. In the preceding subsection, we 

discussed one of these risks (cost). But the downside of poorly designed and im-

plemented applications does not always stop with dollars and time. An extreme 

example [Gag04] might serve to illustrate. 

 Throughout the month of November 2000 at a hospital in Panama, 28 patients 

received massive overdoses of gamma rays during treatment for a variety of can-

cers. In the months that followed, 5 of these patients died from radiation poison-

ing and 15 others developed serious complications. What caused this tragedy? 

pre22126_ch19_411-430.indd   424pre22126_ch19_411-430.indd   424 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  425

A software package, developed by a U.S. company, was modifi ed by hospital tech-

nicians to compute modifi ed doses of radiation for each patient. 

 The three Panamanian medical physicists, who tweaked the software to provide 

additional capability, were charged with second-degree murder. The U.S. company 

was faced with serious litigation in two countries. Gage and  McCormick comment:

   This is not a cautionary tale for medical technicians, even though they can fi nd them-

selves fi ghting to stay out of jail if they misunderstand or misuse technology. This 

also is not a tale of how human beings can be injured or worse by poorly designed or 

poorly explained software, although there are plenty of examples to make the point. 

This is a warning for any creator of computer programs: that software quality mat-

ters, that applications must be foolproof, and that—whether embedded in the engine 

of a car, a robotic arm in a factory or a healing device in a hospital—poorly deployed 

code can kill.   

 Poor quality leads to risks, some of them very serious. 

    19.3.4   Negligence and Liability 

 The story is all too common. A governmental or corporate entity hires a major soft-

ware developer or consulting company to analyze requirements and then design 

and construct a software-based “system” to support some major activity. The sys-

tem might support a major corporate function (e.g., pension management) or some 

governmental function (e.g., health care administration or homeland security). 

 Work begins with the best of intentions on both sides, but by the time the sys-

tem is delivered, things have gone bad. The system is late, fails to deliver de-

sired features and functions, is error-prone, and does not meet with customer 

approval. Litigation ensues. 

 In most cases, the customer claims that the developer has been negligent (in 

the manner in which it has applied software practices) and is therefore not en-

titled to payment. The developer often claims that the customer has repeatedly 

changed its requirements and has subverted the development partnership in 

other ways. In every case, the quality of the delivered system comes into question. 

    19.3.5   Quality and Security 

 As the criticality of Web-based and mobile systems grows, application security 

has become increasingly important. Stated simply, software that does not exhibit 

high quality is easier to hack, and as a consequence, low-quality software can 

indirectly increase the security risk with all of its attendant costs and problems. 

 In an interview in  ComputerWorld,  author and security expert Gary McGraw 

comments [Wil05]:

   Software security relates entirely and completely to quality. You must think about 

security, reliability, availability, dependability—at the beginning, in the design, 

 architecture, test, and coding phases, all through the software life cycle [process]. 

pre22126_ch19_411-430.indd   425pre22126_ch19_411-430.indd   425 13/12/13   6:13 PM13/12/13   6:13 PM



426 PART THREE  QUALITY MANAGEMENT

Even people aware of the software security problem have focused on late life-cycle 

stuff. The earlier you fi nd the software problem, the better. And there are two kinds 

of software problems. One is bugs, which are implementation problems. The other is 

software fl aws—architectural problems in the design. People pay too much attention 

to bugs and not enough on fl aws.   

 To build a secure system, you must focus on quality, and that focus must begin 

during design. The concepts and methods discussed in Part 2 of this book lead 

to a software architecture that reduces “fl aws.” A more detailed discussion of 

security engineering is presented in Chapter 27. 

    19.3.6   The Impact of Management Actions 

 Software quality is often infl uenced as much by management decisions as it is by 

technology decisions. Even the best software engineering practices can be sub-

verted by poor business decisions and questionable project management actions. 

 In Part 4 of this book we discuss project management within the context of 

the software process. As each project task is initiated, a project leader will make 

decisions that can have a signifi cant impact on product quality. 

  Estimation decisions.   A software team is rarely given the luxury of providing an 

estimate for a project  before  delivery dates are established and an overall budget 

is specifi ed. Instead, the team conducts a “sanity check” to ensure that deliv-

ery dates and milestones are rational. In many cases there is enormous time-

to-market pressure that forces a team to accept unrealistic delivery dates. As a 

consequence, shortcuts are taken, activities that lead to higher-quality software 

may be skipped, and product quality suffers. If a delivery date is irrational, it is 

important to hold your ground. Explain why you need more time, or alternatively, 

suggest a subset of functionality that can be delivered (with high quality) in the 

time allotted. 

   Scheduling decisions.   When a software project schedule is established (Chap-

ter 34), tasks are sequenced based on dependencies. For example, because com-

ponent  A  depends on processing that occurs within components  B, C,  and  D,  

component  A  cannot be scheduled for testing until components  B, C,  and  D  are 

fully tested. A project schedule would refl ect this. But if time is very short, and  A  

must be available for further critical testing, you might decide to test  A  without 

its subordinate components (which are running slightly behind schedule), so that 

you can make it available for other testing that must be done before delivery. 

After all, the deadline looms. As a consequence,  A  may have defects that are 

hidden, only to be discovered much later. Quality suffers. 

   Risk-oriented decisions.   Risk management (Chapter 35) is one of the key attri-

butes of a successful software project. You really do need to know what might go 

wrong and establish a contingency plan if it does. Too many software teams pre-

fer blind optimism, establishing a development schedule under the assumption 

pre22126_ch19_411-430.indd   426pre22126_ch19_411-430.indd   426 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  427

that nothing will go wrong. Worse, they don’t have a way of handling things that 

do go wrong. As a consequence, when a risk becomes a reality, chaos reigns, and 

as the degree of craziness rises, the level of quality invariably falls. 

 The software quality dilemma can best be summarized by stating Meskimen’s 

law — There's never time to do it right, but always time to do it over again.  Our 

advice: taking the time to do it right is almost never the wrong decision. 

        19.4  ACHIEVING SOFTWARE QUALITY 

  Software quality doesn’t just appear. It is the result of good project management 

and solid software engineering practice. Management and practice are applied 

within the context of four broad activities that help a software team achieve 

high software quality: software engineering methods, project management tech-

niques, quality control actions, and software quality assurance. 

   19.4.1   Software Engineering Methods 

 If you expect to build high-quality software, you must understand the problem 

to be solved. You must also be capable of creating a design that conforms to the 

problem while at the same time exhibiting characteristics that lead to software 

that exhibits the quality dimensions and factors discussed in Section 19.2. 

 In Part 2 of this book, we presented a wide array of concepts and methods that 

can lead to a reasonably complete understanding of the problem and a compre-

hensive design that establishes a solid foundation for the construction activity. If 

you apply those concepts and adopt appropriate analysis and design methods, 

the likelihood of creating high-quality software will increase substantially. 

    19.4.2   Project Management Techniques 

   The impact of poor management decisions on software quality has been dis-

cussed in Section 19.3.6. The implications are clear: if (1) a project manager uses 

estimation to verify that delivery dates are achievable, (2) schedule dependen-

cies are understood and the team resists the temptation to use shortcuts, (3) risk 

planning is conducted so problems do not breed chaos, software quality will be 

affected in a positive way. 

 In addition, the project plan should include explicit techniques for quality and 

change management. Techniques that lead to good project management prac-

tices are discussed in Part 4 of this book. 

    19.4.3   Quality Control 

   Quality control encompasses a set of software engineering actions that help 

to ensure that each work product meets its quality goals. Models are reviewed to 

ensure that they are complete and consistent. Code may be inspected in order 

to uncover and correct errors before testing commences. A series of testing steps 

 What do I 
need to do to 

affect quality in a 
positive way? 

?

 What is 
software 

quality control? 
?

pre22126_ch19_411-430.indd   427pre22126_ch19_411-430.indd   427 13/12/13   6:13 PM13/12/13   6:13 PM



428 PART THREE  QUALITY MANAGEMENT

is applied to uncover errors in processing logic, data manipulation, and interface 

communication. A combination of measurement and feedback allows a software 

team to tune the process when any of these work products fail to meet quality 

goals. Quality control activities are discussed in detail throughout the remainder 

of Part 3 of this book. 

    19.4.4   Quality Assurance 

   Quality assurance establishes the infrastructure that supports solid soft-

ware  engineering methods, rational project management, and quality control 

 actions—all pivotal if you intend to build high-quality software. In addition, qual-

ity assurance consists of a set of auditing and reporting functions that assess 

the effectiveness and completeness of quality control actions. The goal of quality 

assurance is to provide management and technical staff with the data necessary 

to be informed about product quality, thereby gaining insight and confi dence that 

actions to achieve product quality are working. Of course, if the data provided 

through quality assurance identifi es problems, it is management’s responsibility 

to address the problems and apply the necessary resources to resolve quality 

issues. Software quality assurance is discussed in detail in Chapter 21. 

        19.5 SUMMARY 

 Concern for the quality of the software-based systems has grown as software be-

comes integrated into every aspect of our daily lives. But it is diffi cult to develop 

a comprehensive description of software quality. In this chapter quality has been 

defi ned as an effective software process applied in a manner that creates a use-

ful product that provides measurable value for those who produce it and those 

who use it. 

 A wide variety of software quality dimensions and factors has been proposed 

over the years. All try to defi ne a set of characteristics that, if achieved, will lead 

to high software quality. McCall’s and the ISO 9126 quality factors establish char-

acteristics such as reliability, usability, maintainability, functionality, and porta-

bility as indicators that quality exists. 

 Every software organization is faced with the software quality dilemma. In es-

sence, everyone wants to build high-quality systems, but the time and effort re-

quired to produce “perfect” software are simply unavailable in a market-driven 

world. The question becomes, should we build software that is “good enough”? 

Although many companies do just that, there is a signifi cant downside that must 

be considered. 

 Regardless of the approach that is chosen, quality does have a cost that can 

be discussed in terms of prevention, appraisal, and failure. Prevention costs in-

clude all software engineering actions that are designed to prevent defects in the 

fi rst place. Appraisal costs are associated with those actions that assess software 

 WebRef 
 Useful links to SQA 
 resources can be found at 
  www.niwotridge
.com/Resources/
PM- SWEResources/
SoftwareQuality
Assurance.htm  . 

pre22126_ch19_411-430.indd   428pre22126_ch19_411-430.indd   428 13/12/13   6:13 PM13/12/13   6:13 PM



CHAPTER 19  QUALITY CONCEPTS  429

work products to determine their quality. Failure costs encompass the internal 

price of failure and the external effects that poor quality precipitates. 

 Software quality is achieved through the application of software engineering 

methods, solid management practices, and comprehensive quality control—all 

supported by a software quality assurance infrastructure. In the chapters that 

follow, quality control and assurance are discussed in some detail. 

     PROBLEMS AND POINTS TO PONDER 
    19.1   Describe how you would assess the quality of a university before applying to it. What 
factors would be important? Which would be critical?  

   19.2   Garvin [Gar84] describes fi ve different views of quality. Provide an example of each 
using one or more well-known electronic products with which you are familiar.  

   19.3   Using the defi nition of software quality proposed in Section 19.2, do you think it’s pos-
sible to create a useful product that provides measurable value without using an effective 
process? Explain your answer.  

   19.4   Add two additional questions to each of Garvin’s quality dimensions presented in Sec-
tion 19.2.1.  

   19.5   McCall’s quality factors were developed during the 1970s. Almost every aspect of com-
puting has changed dramatically since the time that they were developed, and yet, McCall’s 
factors continue to apply to modern software. Can you draw any conclusions based on this 
fact?  

   19.6   Using the subattributes noted for the ISO 9126 quality factor “maintainability” in Sec-
tion 19.2.3, develop a set of questions that explore whether or not these attributes are pres-
ent. Follow the example shown in Section 19.2.4.  

   19.7   Describe the software quality dilemma in your own words.  

   19.8   What is “good enough” software? Name a specifi c company and specifi c products that 
you believe were developed using the good enough philosophy.  

   19.9   Considering each of the four aspects of the cost of quality, which do you think is the 
most expensive and why?  

   19.10   Do a Web search and fi nd three other examples of “risks” to the public that can be 
directly traced to poor software quality. Consider beginning your search at   http://catless
.ncl.ac.uk/risks  .  

   19.11   Are  quality  and  security  the same thing? Explain.  

   19.12   Explain why it is that many of us continue to live by Meskimen’s law. What is it about 
the software business that causes this?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Basic software quality concepts are considered in books by Chemutri ( Master Software 

 Quality Assurance: Best Practices, Tools and Techniques for Software Developers , Ross 
 Publishing, 2010), Henry and Hanlon ( Software Quality Assurance,  Prentice Hall, 2008), Khan 
and his colleagues ( Software Quality: Concepts and Practice,  Alpha Science International, 
Ltd., 2006), O’Regan ( A Practical Approach to Software Quality,  Springer, 2002), and Daughtrey 
 ( Fundamental Concepts for the Software Quality Engineer,  ASQ Quality Press, 2001). 

pre22126_ch19_411-430.indd   429pre22126_ch19_411-430.indd   429 13/12/13   6:13 PM13/12/13   6:13 PM



430 PART THREE  QUALITY MANAGEMENT

   Duvall and his colleagues ( Continuous Integration: Improving Software Quality and 

Reducing Risk,  Addison-Wesley, 2007), Tian ( Software Quality Engineering,  Wiley-IEEE 
Computer Society Press, 2005), Kandt ( Software Engineering Quality Practices,  Auerbach, 
2005), Godbole ( Software Quality Assurance: Principles and Practice,  Alpha Science Interna-
tional, Ltd., 2004), and Galin ( Software Quality Assurance: From Theory to Implementation,  
 Addison-Wesley, 2003) present detailed treatments of SQA. Quality assurance in the context 
of the agile process is considered by Sterling ( Managing Software Debt, Addison-Wesley, 

2010 ) and Stamelos and Sfetsos ( Agile Software Development Quality Assurance,  IGI Global, 
2007). 

   Solid design leads to high software quality. Jayasawal and Patton ( Design for Trustworthy 

Software,  Prentice Hall, 2006) and Ploesch ( Contracts, Scenarios and Prototypes,  Springer, 
2004) discuss tools and techniques for developing “robust” software. 

   Measurement is an important component of software quality engineering. Jones and 
Bonsignour ( The Economic of Software Quality,  Addison-Wesley, 2011), Ejiogu ( Software 

Metrics: The Discipline of Software Quality,  BookSurge Publishing, 2005), Kan ( Metrics and 

Models in Software Quality Engineering,  Addison-Wesley, 2002), and Nance and Arthur 
( Managing Software Quality,  Springer, 2002) discuss important quality-related metrics and 
models. The team-oriented aspects of software quality are considered by Evans ( Achieving 

Software Quality through Teamwork,  Artech House Publishers, 2004). 
   A wide variety of information sources on software quality is available on the Internet. 

An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:   www.mhhe.com/pressman  .      

pre22126_ch19_411-430.indd   430pre22126_ch19_411-430.indd   430 13/12/13   6:13 PM13/12/13   6:13 PM



431

 REVIEW 
TECHNIQUES 

        Software reviews are a “fi lter” for the software process. That is, reviews 

are applied at various points during software engineering and serve to 

uncover errors and defects that can then be removed. Software reviews 

“purify” software engineering work products, including requirements and de-

sign models, code, and testing data. Freedman and Weinberg [Fre90] discuss 

the need for reviews this way:

  Technical work needs reviewing for the same reason that pencils need erasers:  To 

err is human.  The second reason we need technical reviews is that although peo-

ple are good at catching some of their own errors, large classes of errors escape 

the originator more easily than they escape anyone else. The review process is, 

therefore, the answer to the prayer of Robert Burns:

         O wad some power the giftie give us   

        to see ourselves as other see us     

 A review—any review—is a way of using the diversity of a group of people to:

     1.  Point out needed improvements in the product of a single person or team;  

    2.   Confi rm those parts of a product in which improvement is either not de-

sired or not needed;  

 K E Y 
C O N C E P T S 
    bugs. . . . . . . . . . . 432  
    cost-effectiveness . 436  
    defect 
amplifi cation. . . . . 433  
    defects . . . . . . . . . 432  
    error density. . . . . 435  
    errors. . . . . . . . . . 432  
    informal reviews. . 439  
    record keeping  . . . 442  
    review reporting. . 442  
    sample-driven 
reviews  . . . . . . . . 444  
    technical reviews  . 441    

    C H A P T E R

20 

  What is it?   You’ll make mistakes 
as you develop software engineer-
ing work products. There’s no shame 
in that—as long as you try hard, 

very hard, to fi nd and correct the mistakes be-
fore they are delivered to end users. Technical 
reviews are the most effective mechanism for 
fi nding mistakes early in the software process. 

   Who does it?   Software engineers perform 
technical reviews, also called peer reviews, 
with their colleagues. 

   Why is it important?   If you fi nd an error early 
in the process, it is less expensive to correct. In 
addition, errors have a way of amplifying as the 
process proceeds. So a relatively minor error left 
untreated early in the process can be amplifi ed 
into a major set of errors later in the project. 
Finally, reviews save time by reducing the amount 
of rework that will be required late in the project. 

   What are the steps?   Your approach to re-
views will vary depending on the degree 
of formality you select. In general, six steps 
are employed, although not all are used for 
every type of review: planning, preparation, 
structuring the meeting, noting errors, making 
corrections (done outside the review), and ver-
ifying that corrections have been performed 
properly. 

   What is the work product?   The output of 
a review is a list of issues and/or errors that 
have been uncovered. In addition, the techni-
cal status of the work product is also indicated. 

   How do I ensure that I’ve done it 
right?   First, select the type of review that is 
appropriate for your development culture. Fol-
low the guidelines that lead to successful re-
views. If the reviews that you conduct lead to 
higher quality software, you’ve done it right.  

 Q U I C K 
L O O K 

pre22126_ch20_431-447.indd   431pre22126_ch20_431-447.indd   431 13/12/13   10:01 PM13/12/13   10:01 PM



432 PART THREE  QUALITY MANAGEMENT

   3.   Achieve technical work of more uniform, or at least more predictable, quality than 

can be achieved without reviews, in order to make technical work more manageable.  

     Many different types of reviews can be conducted as part of software engi-

neering. Each has its place. An informal meeting around the coffee machine is 

a form of review, if technical problems are discussed. A formal presentation of 

software architecture to an audience of customers, management, and technical 

staff is also a form of review. In this book, however, we focus on  technical or peer 

reviews,  exemplifi ed by  casual reviews,   walkthroughs,  and  inspections.  A tech-

nical review (TR) is the most effective fi lter from a quality control standpoint. 

Conducted by software engineers (and others) for software engineers, the TR is 

an effective means for uncovering errors and improving software quality.     

 20.1        COST IMPACT OF SOFTWARE DEFECTS 

  Within the context of the software process, the terms  defect  and  fault  are synony-

mous. Both imply a quality problem that is discovered  after  the software has been 

released to end users (or to another framework activity in the software process). 

In earlier chapters, we used the term  error  to depict a quality problem that is dis-

covered by software engineers (or others)  before  the software is released to the 

end user (or to another framework activity in the software process).     

   Reviews are like a fi lter 
in the software process 
workfl ow. Too few, and 
the fl ow is “dirty.” Too 
many, and the fl ow 
slows to a trickle. Use 
metrics to determine 
which reviews work 
and emphasize them. 
Remove ineffective re-
views from the fl ow to 
accelerate the process. 

  Bugs, Errors, and Defects 
 The goal of software quality control, and 
in a broader sense, quality management in 

general, is to remove quality problems in the software. 
These problems are referred to by various names— bugs, 
faults, errors,  or  defects  to name a few. Are each of 
these terms synonymous, or are there subtle differences 
between them? 

 In this book we make a clear distinction between an 
 error  (a quality problem found  before  the software is 
released to end users) and a  defect  (a quality problem 
found only  after  the software has been released to end 
users).  1    We make this distinction because errors and de-
fects have very different economic, business, psychologi-
cal, and human impact. As software engineers, we want 
to fi nd and correct as many errors as possible before the 
customer and/or end user encounter them. We want to 
avoid defects—because defects (justifi ably) make soft-
ware people look bad. 

 It is important to note, however, that the temporal dis-
tinction made between errors and defects in this book is 
 not  mainstream thinking. The general consensus within the 
software engineering community is that defects and errors, 
faults, and bugs are synonymous. That is, the point in time 
that the problem was encountered has no bearing on the 
term used to describe the problem. Part of the argument in 
favor of this view is that it is sometimes diffi cult to make a 
clear distinction between pre- and postrelease (e.g., con-
sider an incremental process used in agile development). 

 Regardless of how you choose to interpret these terms, 
recognize that the point in time at which a problem is dis-
covered does matter and that software engineers should 
try hard— very  hard—to fi nd problems before their cus-
tomers and end users encounter them. If you have further 
interest in this issue, a reasonably thorough discussion 
of the terminology surrounding “bugs” can be found at 
  www.softwaredevelopment.ca/bugs.shtml  .  

 INFO 

  1  If software process improvement is considered, a quality problem that is propagated from one 

process framework activity (e.g.,  modeling ) to another (e.g.,  construction ) can also be called a 

“defect” (because the problem should have been found before a work product (e.g., a design 

model) was “released” to the next activity. 

pre22126_ch20_431-447.indd   432pre22126_ch20_431-447.indd   432 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  433

       The primary objective of technical reviews is to fi nd errors during the process 

so that they do not become defects after release of the software. The obvious 

benefi t of technical reviews is the early discovery of errors so that they do not 

propagate to the next step in the software process. 

 A number of industry studies indicate that design activities introduce between 

50 and 65 percent of all errors (and ultimately, all defects) during the software 

process. However, review techniques have been shown to be up to 75 percent 

effective [Jon86] in uncovering design fl aws. By detecting and removing a large 

percentage of these errors, the review process substantially reduces the cost of 

subsequent activities in the software process. 

       20.2 DEFECT AMPLIF ICATION AND REMOVAL 

   A  defect amplifi cation model  [IBM81] can be used to illustrate the generation and 

detection of errors during the design and code generation actions of a software 

process. The model is illustrated schematically in  Figure 20.1 . A box represents 

a software engineering action. During the action, errors may be inadvertently 

generated. Review may fail to uncover newly generated errors and errors from 

previous steps, resulting in some number of errors that are passed through. In 

some cases, errors passed through from previous steps are amplifi ed (amplifi -

cation factor,  x ) by current work. The box subdivisions represent each of these 

characteristics and the percent of effi ciency for detecting errors, a function of 

the thoroughness of the review.      

  Figure 20.2  illustrates a hypothetical example of defect amplifi cation for a soft-

ware process in which no reviews are conducted. Referring to the fi gure, each 

test step is assumed to uncover and correct 50 percent of all incoming errors 

without introducing any new errors (an optimistic assumption). Ten preliminary 

design defects are amplifi ed to 94 errors before testing commences. Twelve la-

tent errors are released to the fi eld.  Figure 20.3  considers the same conditions 

except that design and code reviews are conducted as part of each software en-

gineering action. In this case, 10 initial preliminary (architectural) design errors 

are amplifi ed to 24 errors before testing commences. Only three latent errors 

   The primary objective 
of an FTR is to fi nd 
errors before they are 
passed on to another 
software engineering 
activity or released to 
the end user. 

  uote: 

 “Some maladies, 
as doctors say, at 
their beginning 
are easy to cure 
but diffi cult to 
recognize . . . but 
in the course of 
time when they 
have not at fi rst 
been recognized 
and treated, 
become easy to 
recognize but 
diffi cult to cure.” 

 Niccolo 
Machiavelli 

Errors passed through

Development step
Defects Detection

Errors from
previous step

Amplified errors 1 : x

Newly generated errors

Percent
efficiency
for error
detection

Errors passed
to next step

 FIGURE 20.1

 Defect 
amplifi cation 
model

pre22126_ch20_431-447.indd   433pre22126_ch20_431-447.indd   433 13/12/13   10:01 PM13/12/13   10:01 PM



434 PART THREE  QUALITY MANAGEMENT

exist. The relative costs associated with the discovery and correction of errors, 

overall cost (with and without review for our hypothetical example) can be es-

tablished. The number of errors uncovered during each of the steps noted in 

Figures 20.2 and 20.3 is multiplied by the cost to remove an error (1.5 cost units 

for design, 6.5 cost units before test, 15 cost units during test, and 67 cost units 

after release).  2    Using these data, the total cost for development and maintenance 

when reviews are conducted is 783 cost units. When no reviews are conducted, 

total cost is 2177 units—nearly three times more costly.           

Preliminary design 

0

10

0 Detail design

25

Code/unit test

25

To integration

Integration test

0

0

50%

Validation test

0

0

50%

System test

0

0

50%

Latent errors
(defects)

3 2

1

70%

50%

2

1   1.5

24

6

3

2460%

5

10  3

•

•

15 5

10

12

 FIGURE 20.3

 Defect 
amplifi cation—
reviews 
conducted

6

Preliminary design

0

10

0

0% 10
6

4

Detail design

4 × 1.5
   x = 1.5

25

0% 3710

27

Code/unit test

10

25

27 × 3
     x = 3 20% 94

To integration

94 Integration test

0

0

50% 47
Validation test

0

0

50%
24

System test

0

0

50% 12

Latent errors
(defects)

 FIGURE 20.2

 Defect 
amplifi cation—
no reviews

  2  These multipliers are somewhat different from the data presented in Figure 19.2, which is more 

current. However, they serve to illustrate the costs of defect amplifi cation nicely. 

pre22126_ch20_431-447.indd   434pre22126_ch20_431-447.indd   434 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  435

 To conduct reviews, you must expend time and effort, and your development 

organization must spend money. However, the results of the preceding example 

leave little doubt that you can pay now or pay much more later. 

       20.3 REVIEW METRICS AND THEIR USE 

  Technical reviews are one of many actions that are required as part of good soft-

ware engineering practice. Each action requires dedicated human effort. Since 

available project effort is fi nite, it is important for a software engineering organi-

zation to understand the effectiveness of each action by defi ning a set of metrics 

(Chapter 30) that can be used to assess their effi cacy. 

 Although many metrics can be defi ned for technical reviews, a relatively small 

subset can provide useful insight. The following review metrics can be collected 

for each review that is conducted:

    •   Preparation effort, E
p
 —the effort (in person-hours) required to review a 

work product prior to the actual review meeting  

   •   Assessment effort, E
a
 — the effort (in person-hours) that is expended 

during the actual review  

   •   Rework effort, E
r
 — the effort (in person-hours) that is dedicated to the 

correction of those errors uncovered during the review  

   •   Work product size, WPS —a measure of the size of the work product that 

has been reviewed (e.g., the number of UML models, or the number of 

document pages, or the number of lines of code)  

   •   Minor errors found, Err
minor

 —the number of errors found that can be cate-

gorized as minor (requiring less than some prespecifi ed effort to correct)  

   •   Major errors found, Err
major

 —the number of errors found that can be cate-

gorized as major (requiring more than some prespecifi ed effort to correct)    

 These metrics can be further refi ned by associating the type of work product that 

was reviewed for the metrics collected. 

   20.3.1   Analyzing Metrics 

 Before analysis can begin, a few simple computations must occur. The total re-

view effort and the total number of errors discovered are defi ned as:

 E review 5  E
p
  1  E

a
  1  E

r
 

Errtot 5 Errminor 1 Errmajor 

  Error density  represents the errors found per unit of work product reviewed. 

 Error density 5   
Errtot ______ 
WPS

   

pre22126_ch20_431-447.indd   435pre22126_ch20_431-447.indd   435 13/12/13   10:01 PM13/12/13   10:01 PM



436 PART THREE  QUALITY MANAGEMENT

 For example, if a requirements model is reviewed to uncover errors, incon-

sistencies, and omissions, it would be possible to compute the error density 

in a number of different ways. The requirements model contains 18 UML 

diagrams as part of 32 overall pages of descriptive materials. The review un-

covers 18 minor errors and 4 major errors. Therefore, Errtot 5 22. Error den-

sity is 1.2 errors per UML diagram or 0.68 errors per requirements model 

page. 

 If reviews are conducted for a number of different types of work products (e.g., 

requirements model, design model, code, test cases), the percentage of errors 

uncovered for each review can be computed against the total number of errors 

found for all reviews. In addition, the error density for each work product can be 

computed. 

 Once data are collected for many reviews conducted across many proj-

ects, average values for error density enable you to estimate the number of 

errors to be found in a new (as yet unreviewed document). For example, if 

the average error density for a requirements model is 0.6 errors per page, 

and a new requirement model is 32 pages long, a rough estimate suggests 

that your software team will find about 19 or 20 errors during the review of 

the document. If you find only 6 errors, you’ve done an extremely good job in 

developing the requirements model or your review approach was not thor-

ough enough. 

 Once testing has been conducted (Chapters 22 through 26), it is possible to 

collect additional error data, including the effort required to fi nd and correct 

errors uncovered during testing and the error density of the software. The costs 

associated with fi nding and correcting an error during testing can be compared 

to those for reviews. This is discussed in Section 20.3.2. 

    20.3.2   Cost-Effectiveness of Reviews 

 It is diffi cult to measure the cost-effectiveness of any technical review in real time. 

A software engineering organization can assess the effectiveness of reviews and 

their cost benefi t only after reviews have been completed, review metrics have 

been collected, average data have been computed, and then the downstream 

quality of the software is measured (via testing). 

 Returning to the example presented in Section 20.3.1, the average error 

density for requirements models was determined to be 0.6 per page. The 

effort required to correct a minor model error (immediately after the re-

view) was found to require 4 person-hours. The effort required for a major 

requirement error was found to be 18 person-hours. Examining the review 

data collected, you find that minor errors occur about 6 times more fre-

quently than major errors. Therefore, you can estimate that the average 

effort to find and correct a requirements error during review is about 

6 person-hours. 

pre22126_ch20_431-447.indd   436pre22126_ch20_431-447.indd   436 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  437

 Requirements-related errors uncovered during testing require an average of 

45 person-hours to fi nd and correct (no data are available on the relative severity 

of the error). Using the averages noted, we get:

Effort saved per error 5 Etesting 2 Ereviews

 45 2 6 5 30 person-hours/error 

 Since 22 errors were found during the review of the requirements model, a sav-

ing of about 660 person-hours of testing effort would be achieved. And that’s just 

for requirements-related errors. Errors associated with design and code would 

add to the overall benefi t. The bottom line—effort saved leads to shorter delivery 

cycles and improved time to market. 

 In his book on peer reviews, Karl Wiegers [Wie02] discusses anecdotal data 

from major companies that have used  inspections  (a relatively formal type of tech-

nical review) as part of their software quality control activities. Hewlett-Packard 

(HP) reported a 10 to 1 return on investment for inspections and noted that ac-

tual product delivery accelerated by an average of 1.8 calendar months. AT&T 

indicated that inspections reduced the overall cost of software errors by a fac-

tor of 10 and that quality improved by an order of magnitude and productivity 

increased by 14 percent. Others report similar benefi ts. Technical reviews (for 

design and other technical activities) provide a demonstrable cost benefi t and 

actually save time. 

 But for many software people, this statement is counterintuitive. “Reviews 

take time,” software people argue, “and we don’t have the time to spare!” They 

argue that time is a precious commodity on every software project and the ability 

to review “every work product in detail” absorbs too much time. 

 The examples presented previously in this section indicate otherwise. More im-

portantly, industry data for software reviews has been collected for more than two 

decades and is summarized qualitatively using the graphs illustrated in  Figure 20.4 . 

Planning
Requirements

Without
inspections

With
inspections

Deployment

Design Code Test

Effort

Time

  FIGURE 20.4

 Effort 
expended with 
and without 
reviews 
 Source: Adapted 
from [Fag86].   

pre22126_ch20_431-447.indd   437pre22126_ch20_431-447.indd   437 13/12/13   10:01 PM13/12/13   10:01 PM



438 PART THREE  QUALITY MANAGEMENT

  Referring to the fi gure, the effort expended when reviews are used does in-

crease early in the development of a software increment, but this early invest-

ment for reviews pays dividends because testing and corrective effort is reduced. 

As important, the deployment date for development with reviews is sooner than 

the deployment date without reviews. Reviews don’t take time, they save it! 

        20.4 REVIEWS: A FORMALITY SPECTRUM 

  Technical reviews should be applied with a level of formality that is appropriate for 

the product to be built, the project time line, and the people who are doing the work. 

 Figure 20.5  depicts a reference model for technical reviews [Lai02] that identifi es four 

characteristics that contribute to the formality with which a review is conducted.      

 Each of the reference model characteristics helps to defi ne the level of review 

formality. The formality of a review increases when (1) distinct roles are explicitly 

defi ned for the reviewers, (2) there is a suffi cient amount of planning and prepa-

ration for the review, (3) a distinct structure for the review (including tasks and 

internal work products) is defi ned, and (4) follow-up by the reviewers occurs for 

any corrections that are made. 

 To understand the reference model, let’s assume that you’ve decided to re-

view the interface design for   SafeHomeAssured.com  . You can do this in a variety 

of different ways that range from relatively casual to extremely rigorous. If you 

decide that the casual approach is most appropriate, you ask a few colleagues 

(peers) to examine the interface prototype in an effort to uncover potential prob-

lems. All of you decide that there will be no advance preparation, but that you 

will evaluate the prototype in a reasonably structured way—looking at layout 

fi rst, aesthetics next, navigation options after that, and so on. As the designer, 

you decide to take a few notes, but nothing formal. 

 FIGURE 20.5

 Reference 
model for 
technical 
reviews

Review

Planning
& preparation

Roles
individuals

play

Meeting
structure

Correction &
verification

pre22126_ch20_431-447.indd   438pre22126_ch20_431-447.indd   438 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  439

 But what if the interface is pivotal to the success of the entire project? What if 

human lives depended on an interface that was ergonomically sound? You might 

decide that a more rigorous approach was necessary. A review team would be 

formed. Each person on the team would have a specifi c role to play—leading 

the team, recording fi ndings, presenting the material, and so on. Each reviewer 

would be given access to the work product (in this case, the interface prototype) 

before the review and would spend time looking for errors, inconsistencies, and 

omissions. A set of specifi c tasks would be conducted based on an agenda that 

was developed before the review occurred. The results of the review would be 

formally recorded, and the team would decide on the status of the work product 

based on the outcome of the review. Members of the review team might also ver-

ify that the corrections made were done properly. 

 In this book we consider two broad categories of technical reviews: informal 

reviews and more formal technical reviews. Within each broad category, a number 

of different approaches can be chosen. These are presented in the sections that 

follow. 

       20.5 INFORMAL REVIEWS 

  Informal reviews include a simple desk check of a software engineering work 

product with a colleague, a casual meeting (involving more than two people) for 

the purpose of reviewing a work product, or the review-oriented aspects of pair 

programming (Chapter 5). 

 A simple  desk check  or a  casual meeting  conducted with a colleague is a re-

view. However, because there is no advance planning or preparation, no agenda 

or meeting structure, and no follow-up on the errors that are uncovered, the ef-

fectiveness of such reviews is considerably lower than more formal approaches. 

But a simple desk check can and does uncover errors that might otherwise prop-

agate further into the software process. 

 One way to improve the effi cacy of a desk check review is to develop a set 

of simple review checklists for each major work product produced by the soft-

ware team. The questions posed within the checklist are generic, but they will 

serve to guide the reviewers as they check the work product. For example, let’s 

reexamine a desk check of the interface prototype for   SafeHomeAssured.com  . 

Rather than simply playing with the prototype at the designer’s workstation, the 

designer and a colleague examine the prototype using a checklist for interfaces:

    •  Is the layout designed using standard conventions? Left to right? Top to 

bottom?  

   •  Does the presentation need to be scrolled?  

   •  Are color and placement, typeface, and size used effectively?  

pre22126_ch20_431-447.indd   439pre22126_ch20_431-447.indd   439 13/12/13   10:01 PM13/12/13   10:01 PM



440 PART THREE  QUALITY MANAGEMENT

   •  Are all navigation options or functions represented at the same level of 

abstraction?  

   •  Are all navigation choices clearly labeled?    

 and so on. Any errors or issues noted by the reviewers are recorded by the de-

signer for resolution at a later time. Desk checks may be scheduled in an ad hoc 

manner, or they may be mandated as part of good software engineering practice. 

In general, the amount of material to be reviewed is relatively small and the 

overall time spent on a desk check span little more than one or two hours. 

 In Chapter 5, we described  pair programming  in the following manner: XP 

recommends that two people work together at one computer workstation to cre-

ate code for a story. This provides a mechanism for real-time problem solving 

(two heads are often better than one) and real-time quality assurance. 

 Pair programming can be characterized as a continuous desk check. Rather 

than scheduling a review at some point in time, pair programming encourages 

continuous review as a work product (design or code) is created. The benefi t is 

immediate discovery of errors and better work product quality as a consequence. 

 In their discussion of the effi cacy of pair programming, Williams and Kessler 

[Wil00] state:

  Anecdotal and initial statistical evidence indicates that pair programming is a pow-

erful technique for productively generating high quality software products. The pair 

works and shares ideas together to tackle the complexities of software development. 

They continuously perform inspections on each other’s artifacts leading to the earli-

est, most effi cient form of defect removal possible. In addition, they keep each other 

intently focused on the task at hand.   

 Some software engineers argue that the inherent redundancy built into pair 

programming is wasteful of resources. After all, why assign two people to a job that 

one person can accomplish? The answer to this question can be found in Section 

20.3.2. If the quality of the work product produced as a consequence of pair pro-

gramming is signifi cantly better than the work of an individual, the quality-related 

savings can more than justify the “redundancy” implied by pair programming.     

  Review Checklists 
 Even when reviews are well organized and 
properly conducted, it’s not a bad idea to 

provide reviewers with a “crib sheet.” That is, it’s worth-
while to have a checklist that provides each reviewer 
with the questions that should be asked about the spe-
cifi c work product that is undergoing review. 

 One of the most comprehensive collections of review 
checklists has been developed by NASA at the Goddard 
Space Flight Center and is available at     http://

www.hq.nasa.gov/offi ce/codeq/software/
ComplexElectronics/checklists.htm   

 Other useful technical review checklists have also 
been proposed by: 

  Process Impact  

   www.processimpact.com/pr_goodies.shtml   

   Macadamian   

   www.macadamian.com    

 INFO 

pre22126_ch20_431-447.indd   440pre22126_ch20_431-447.indd   440 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  441

        20.6 FORMAL TECHNICAL REVIEWS 

  A  formal technical review  (FTR) is a software quality control activity performed by 

software engineers (and others). The objectives of an FTR are: (1) to uncover er-

rors in function, logic, or implementation for any representation of the software; 

(2) to verify that the software under review meets its requirements; (3) to ensure 

that the software has been represented according to predefi ned standards; (4) to 

achieve software that is developed in a uniform manner; and (5) to make projects 

more manageable. In addition, the FTR serves as a training ground, enabling ju-

nior engineers to observe different approaches to software analysis, design, and 

implementation. The FTR also serves to promote backup and continuity because 

a number of people become familiar with parts of the software that they may not 

have otherwise seen.  

 The FTR is actually a class of reviews that includes  walkthroughs  and  inspec-

tions.  Each FTR is conducted as a meeting and will be successful only if it is prop-

erly planned, controlled, and attended. In the sections that follow, guidelines 

similar to those for a walkthrough are presented as a representative formal tech-

nical review. If you have interest in software inspections, as well as additional 

information on walkthroughs, see [Rad02], [Wie02], or [Fre90]. 

   20.6.1   The Review Meeting 

 Regardless of the FTR format that is chosen, every review meeting should abide 

by the following constraints:     

     •  Between three and fi ve people (typically) should be involved in the review.  

   •  Advance preparation should occur but should require no more than two 

hours of work for each person.  

   •  The duration of the review meeting should be less than two hours.  

  Given these constraints, it should be obvious that an FTR focuses on a specifi c 

(and small) part of the overall software. For example, rather than attempting 

to review an entire design, walkthroughs are conducted for each component or 

small group of components. By narrowing the focus, the FTR has a higher likeli-

hood of uncovering errors.     

  The focus of the FTR is on a work product (e.g., a portion of a requirements 

model, a detailed component design, source code for a component). The indi-

vidual who has developed the work product—the  producer —informs the proj-

ect leader that the work product is complete and that a review is required. The 

project leader contacts a  review leader,  who evaluates the product for readiness, 

generates copies of product materials, and distributes them to two or three  re-

viewers  for advance preparation. Each reviewer is expected to spend between 

one and two hours reviewing the product, making notes, and otherwise becoming 

 WebRef 
 The NASA SATC  Formal 
Inspection Guidebook  
can be downloaded 
from   http://www
.everyspec.com/
NASA/NASA-
General/NASA-
GB-A302_2418/  . 

   An FTR focuses on a 
relatively small portion 
of a work product. 

  uote: 

 “There is no urge 
so great as for 
one man to edit 
another man's 
work.” 

 Mark Twain 

pre22126_ch20_431-447.indd   441pre22126_ch20_431-447.indd   441 13/12/13   10:01 PM13/12/13   10:01 PM



442 PART THREE  QUALITY MANAGEMENT

familiar with the work. Concurrently, the review leader also reviews the product 

and establishes an agenda for the review meeting, which is typically scheduled 

for the next day. 

      The review meeting is attended by the review leader, all reviewers, and the 

producer. One of the reviewers takes on the role of a  recorder,  that is, the indi-

vidual who records (in writing) all important issues raised during the review. The 

FTR begins with an introduction of the agenda and a brief introduction by the 

producer. The producer then proceeds to “walk through” the work product, ex-

plaining the material, while reviewers raise issues based on their advance prepa-

ration. When valid problems or errors are discovered, the recorder notes each. 

 At the end of the review, all attendees of the FTR must decide whether to: 

(1) accept the product without further modifi cation, (2) reject the product due to 

severe errors (once corrected, another review must be performed), or (3) accept 

the product provisionally (minor errors have been encountered and must be cor-

rected, but no additional review will be required). After the decision is made, all 

FTR attendees complete a sign-off, indicating their participation in the review 

and their concurrence with the review team’s fi ndings. 

    20.6.2   Review Reporting and Record Keeping 

 During the FTR, a reviewer (the recorder) actively records all issues that have 

been raised. These are summarized at the end of the review meeting, and a  re-

view issues list  is produced. In addition, a  formal technical review summary re-

port  is completed. A review summary report answers three questions:

     1.  What was reviewed?  

    2.  Who reviewed it?  

    3.  What were the fi ndings and conclusions?    

 The review summary report is a single-page form (with possible attachments). 

It becomes part of the project historical record and may be distributed to the 

project leader and other interested parties. 

 The review issues list serves two purposes: (1) to identify problem areas within 

the product and (2) to serve as an action item checklist that guides the producer as 

corrections are made. An issues list is normally attached to the summary report. 

 You should establish a follow-up procedure to ensure that items on the issues 

list have been properly corrected. Unless this is done, it is possible that issues 

raised can “fall between the cracks.” One approach is to assign the responsibility 

for follow-up to the review leader. 

    20.6.3   Review Guidelines     

  Guidelines for conducting formal technical reviews must be established in ad-

vance, distributed to all reviewers, agreed upon, and then followed. A review 

   In some situations, it’s 
a good idea to have 
someone other than 
the producer walk 
through the product 
undergoing review. 
This leads to a literal 
interpretation of the 
work product and bet-
ter error recognition. 

pre22126_ch20_431-447.indd   442pre22126_ch20_431-447.indd   442 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  443

that is uncontrolled can often be worse than no review at all. The following rep-

resents a minimum set of guidelines for formal technical reviews:

     1.   Review the product, not the producer.  An FTR involves people and egos. 

Conducted properly, the FTR should leave all participants with a warm 

feeling of accomplishment. Conducted improperly, the FTR can take on 

the aura of an inquisition. Errors should be pointed out gently; the tone of 

the meeting should be loose and constructive; the intent should not be to 

embarrass or belittle. The review leader should conduct the review meet-

ing to ensure that the proper tone and attitude are maintained and should 

immediately halt a review that has gotten out of control.   

    2.   Set an agenda and maintain it.  One of the key maladies of meetings of all 

types is drift. An FTR must be kept on track and on schedule. The review 

leader is chartered with the responsibility for maintaining the meeting 

schedule and should not be afraid to nudge people when drift sets in.  

    3.   Limit debate and rebuttal.  When an issue is raised by a reviewer, there may 

not be universal agreement on its impact. Rather than spending time debat-

ing the question, the issue should be recorded for further discussion off-line.  

    4.   Enunciate problem areas, but don't attempt to solve every problem noted.  

A review is not a problem-solving session. The solution of a problem can 

often be accomplished by the producer alone or with the help of only one 

other individual. Problem solving should be postponed until after the re-

view meeting.  

    5.   Take written notes.  It is sometimes a good idea for the recorder to make 

notes on a wall board, so that wording and priorities can be assessed by 

other reviewers as information is recorded. Alternatively, notes may be 

entered directly into a notebook computer.  

    6.   Limit the number of participants and insist upon advance preparation.  

Two heads are better than one, but 14 are not necessarily better than 4. 

Keep the number of people involved to the necessary minimum. However, 

all review team members must prepare in advance. Written comments 

should be solicited by the review leader (providing an indication that the 

reviewer has reviewed the material).  

    7.   Develop a checklist for each product that is likely to be reviewed.  A check-

list helps the review leader to structure the FTR meeting and helps each 

reviewer to focus on important issues. Checklists should be developed for 

analysis, design, code, and even testing work products.  

    8.   Allocate resources and schedule time for FTRs.  For reviews to be effective, 

they should be scheduled as a task during the software process. In addi-

tion, time should be scheduled for the inevitable modifi cations that will 

occur as the result of an FTR.  

   Don’t point out errors 
harshly. One way to be 
gentle is to ask a ques-
tion that enables the 
producer to discover 
the error. 

    uote: 

 “A meeting is too 
often an event in 
which minutes are 
taken and hours 
are wasted.” 

 Author unknown 

pre22126_ch20_431-447.indd   443pre22126_ch20_431-447.indd   443 13/12/13   10:01 PM13/12/13   10:01 PM



444 PART THREE  QUALITY MANAGEMENT

     9.   Conduct meaningful training for all reviewers.  To be effective all re-

view participants should receive some formal training. The training 

should stress both process-related issues and the human psychological 

side of reviews. Freedman and Weinberg [Fre90] estimate a one-month 

learning curve for every 20 people who are to participate effectively in 

reviews.  

    10.   Review your early reviews.  Debriefi ng can be benefi cial in uncovering 

problems with the review process itself. The very fi rst product to be 

reviewed should be the review guidelines themselves.    

 Because many variables (e.g., number of participants, type of work products, 

timing and length, specifi c review approach) have an impact on a successful re-

view, a software organization should experiment to determine what approach 

works best in a local context. 

    20.6.4   Sample-Driven Reviews 

 In an ideal setting, every software-engineering work product would undergo a 

formal technical review. In the real word of software projects, resources are lim-

ited and time is short. As a consequence, reviews are often skipped, even though 

their value as a quality control mechanism is recognized. 

 Thelin and his colleagues [The01] suggest a sample-driven review process in 

which samples of all software engineering work products are inspected to deter-

mine which work products are most error prone. Full FTR resources are then fo-

cused only on those work products that are likely (based on data collected during 

sampling) to be error prone.     

  To be effective, the sample-driven review process must attempt to quantify 

those work products that are primary targets for full FTRs. To accomplish this, 

the following steps are suggested [The01]:

     1.  Inspect a fraction  a
i
  of each software work product  i.  Record the number 

of faults  f
i
  found within  a

i
 .  

    2.  Develop a gross estimate of the number of faults within work product  i  by 

multiplying  f
i
  by 1/ a

i
 .  

    3.  Sort the work products in descending order according to the gross esti-

mate of the number of faults in each.  

    4.  Focus available review resources on those work products that have the 

highest estimated number of faults.    

 The fraction of the work product that is sampled must be representative of the 

work product as a whole and large enough to be meaningful to the reviewers who 

do the sampling. As  a
i
  increases, the likelihood that the sample is a valid repre-

sentation of the work product also increases. However, the resources required to 

    uote: 

 “It is one of the 
most beautiful 
compensations of 
life, that no man 
can sincerely try 
to help another 
without helping 
himself.” 

 Ralph Waldo 
Emerson 

   Reviews take time, but 
it’s time well spent. 
However, if time is 
short and you have no 
other option, do not 
dispense with reviews. 
Rather, use 
sample-driven reviews. 

pre22126_ch20_431-447.indd   444pre22126_ch20_431-447.indd   444 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  445

do sampling also increase. A software engineering team must establish the best 

value for  a
i
  for the types of work products produced.  3        

  3  Thelin and his colleagues have conducted a detailed simulation that can assist in making this 

determination. See [The01] for details. 

  Quality Issues   Quality Issues 

  The scene:  Doug Miller’s offi ce as 
the  SafeHome  software project begins. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and other members of the 
product software engineering team. 

  The conversation:  

  Doug:  I know we didn’t spend time developing a qual-
ity plan for this project, but we’re already into it and we 
have to consider quality . . . right? 

  Jamie:  Sure. We’ve already decided that as we 
develop the requirements model [Chapters 9–11], Ed 
has committed to develop a testing procedure for each 
requirement. 

  Doug:  That’s really good, but we’re not going to wait 
until testing to evaluate quality, are we? 

  Vinod:  No! Of course not. We’ve got reviews sched-
uled into the project plan for this software increment. 
We’ll begin quality control with the reviews. 

  Jamie:  I’m a bit concerned that we won’t have 
enough time to conduct all the reviews. In fact, I know 
we won’t. 

  Doug:  Hmmm. So what do you propose? 

  Jamie:  I say we select those elements of the require-
ments and design model that are most critical to  Safe-
Home  and review them. 

  Vinod:  But what if we miss something in a part of the 
model we don’t review? 

  Shakira:  I read something about a sampling tech-
nique [Section 20.6.4] that might help us target candi-
dates for review. (Shakira explains the approach.) 

  Jamie:  Maybe . . . but I’m not sure we even have time 
to sample every element of the models. 

  Vinod:  What do you want us to do, Doug? 

  Doug:  Let’s steal something from Extreme Program-
ming [Chapter 5]. We’ll develop the elements of each 
model in pairs—two people—and conduct an informal 
review of each as we go. We’ll then target “critical” 
elements for a more formal team review, but keep those 
reviews to a minimum. That way, everything gets looked 
at by more than one set of eyes, but we still maintain 
our delivery dates. 

  Jamie:  That means we’re going to have to revise the 
schedule. 

  Doug:  So be it. Quality trumps schedule on this project.  

 SAFEHOME 

         20.7 POST-MOR TEM EVALUATIONS 

  Many lessons can be learned if a software team takes the time to evaluate the 

results of a software project after the software has been delivered to end users. 

Baaz and his colleagues [Baa10] suggest the use of a  post-mortem evaluation  

(PME) as a mechanism to determine what went right and what went wrong when 

software engineering process and practice are applied in a specifi c project. 

 Unlike an FTR that focuses on a specifi c work product, a PME examines the 

entire software project, focusing on both “ excellences  (that is, achievements 

pre22126_ch20_431-447.indd   445pre22126_ch20_431-447.indd   445 13/12/13   10:01 PM13/12/13   10:01 PM



446 PART THREE  QUALITY MANAGEMENT

and positive experiences) and  challenges  (problems and negative experiences)” 

[Baa10]. Often conducted in a workshop format, a PME is attended by members 

of the software team and stakeholders. The intent is to identify excellences and 

challenges and to extract lessons learned from both. The objective is to suggest 

improvements to both process and practice going forward. 

       20.8 SUMMARY 

 The intent of every technical review is to fi nd errors and uncover issues that 

would have a negative impact on the software to be deployed. The sooner an 

error is uncovered and corrected, the less likely that error will propagate to 

other software engineering work products and amplify itself, resulting in signifi -

cantly more effort to correct it. 

 To determine whether quality control activities are working, a set of metrics 

should be collected. Review metrics focus on the effort required to conduct the 

review and the types and severity of errors uncovered during the review. Once 

metrics data are collected, they can be used to assess the effi cacy of the reviews 

you do conduct. Industry data indicates that reviews provide a signifi cant return 

on investment. 

 A reference model for review formality identifi es the roles people play, plan-

ning and preparation, meeting structure, correction approach, and verifi cation 

as the characteristics that indicate the degree of formality with which a review is 

conducted. Informal reviews are casual in nature, but can still be used effectively 

to uncover errors. Formal reviews are more structured and have the highest 

probability of leading to high-quality software. 

 Informal reviews are characterized by minimal planning and preparation and 

little record keeping. Desk checks and pair programming fall into the informal 

review category. 

 A formal technical review is a stylized meeting that has been shown to be ex-

tremely effective in uncovering errors. Walkthroughs and inspections establish 

defi ned roles for each reviewer, encourage planning and advance preparation, 

require the application of defi ned review guidelines, and mandate record keep-

ing and status reporting. Sample-driven reviews can be used when it is not pos-

sible to conduct formal technical reviews for all work products. 

     PROBLEMS AND POINTS TO PONDER 
    20.1  Explain the difference between an  error  and a  defect.   

   20.2  Why can’t we just wait until testing to fi nd and correct all software errors?  

   20.3  Assume that 10 errors have been introduced in the requirements model and that each 
error will be amplifi ed by a factor of 2:1 into design and an addition 20 design errors are 
introduced and then amplifi ed 1.5:1 into code where an additional 30 errors are introduced. 

pre22126_ch20_431-447.indd   446pre22126_ch20_431-447.indd   446 13/12/13   10:01 PM13/12/13   10:01 PM



CHAPTER 20  REVIEW TECHNIQUES  447

Assume further that all unit testing will fi nd 30 percent of all errors, integration will fi nd 
30 percent of the remaining errors, and validation tests will fi nd 50 percent of the remaining 
errors. No reviews are conducted. How many errors will be released to the fi eld.  

   20.4  Reconsider the situation described in Problem 20.3, but now assume that require-
ments, design, and code reviews are conducted and are 60 percent effective in uncovering 
all errors at that step. How many errors will be released to the fi eld?  

   20.5  Reconsider the situation described in Problems 20.3 and 20.4. If each of the errors re-
leased to the fi eld costs $4,800 to fi nd and correct and each error found in review costs $240 
to fi nd and correct, how much money is saved by conducting reviews?  

   20.6  Describe the meaning of  Figure 20.4  in your own words.  

   20.7  Which of the reference model characteristics do you think has the strongest bearing on 
review formality? Explain why.  

   20.8  Can you think of a few instances in which a desk check might create problems rather 
than provide benefi ts?  

   20.9  A formal technical review is effective only if everyone has prepared in advance. How 
do you recognize a review participant who has not prepared? What do you do if you’re the 
review leader?  

   20.10  Considering all of the review guidelines presented in Section 20.6.3, which do you 
think is most important and why?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Although there have been relatively few new books written on software reviews over the 
past decade, recent additions to the literature include books by McCann ( Cost-Benefi t Anal-

ysis of Quality Practices,  IEEE Press, 2012), Wong ( Modern Software Review,  IRM Press, 2006), 
and Young ( Project Requirements: A Guide to Best Practices,  Management Concepts, 2006). 
Older contributions that provide worthwhile guidance include: Radice ( High Quality, Low 

Cost Software Inspections,  Paradoxicon Publishers, 2002), Wiegers ( Peer Reviews in Soft-

ware: A Practical Guide , Addison-Wesley, 2001) and Gilb and Graham ( Software Inspection,  
Addison-Wesley, 1993). Freedman and Weinberg ( Handbook of Walkthroughs, Inspections 

and Technical Reviews,  Dorset House, 1990) remains a classic text and continues to provide 
worthwhile information about this important subject. 

   Books by Rubin ( Essential Scrum: A Practical Guide to the Most Popular Agile Process,  
Addison-Wesley, 2012) and Adkins ( Coaching Agile Teams: A Companions for ScrumMas-

ters, Agile Coaches, and Project Managers in Transition,  Addison-Wesley, 2010) describe the 
roles of reviews in agile software processes. 

   A wide variety of information sources on software reviews is available on the Internet. 
An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:   www.mhhe.com/pressman  .      

pre22126_ch20_431-447.indd   447pre22126_ch20_431-447.indd   447 13/12/13   10:01 PM13/12/13   10:01 PM



448

    C H A P T E R

21  SOFTWARE QUALITY
ASSURANCE 

        The software engineering approach described in this book works toward 

a single goal: to produce on-time, high-quality software. Yet many read-

ers will be challenged by the question: “What is software quality?” 

 Philip Crosby [Cro79], in his landmark book on quality, provides a wry 

answer to this question:

  The problem of quality management is not what people don't know about it. The 

problem is what they think they do know . . . 

 In this regard, quality has much in common with sex. Everybody is for it. (Under 

certain conditions, of course.) Everyone feels they understand it. (Even though 

they wouldn’t want to explain it.) Everyone thinks execution is only a matter of fol-

lowing natural inclinations. (After all, we do get along somehow.) And, of course, 

most people feel that problems in these areas are caused by other people. (If only 

they would take the time to do things right.)   

  What is it?   It’s not enough to talk 
the talk by saying that software quality 
is important. You have to (1) explicitly 
defi ne what is meant when you say 

“software quality,” (2) create a set of activities that 
will help ensure that every software engineering 
work product exhibits high quality, (3) perform 
quality control and assurance activities on every 
software project, (4) use metrics to develop strat-
egies for improving your software process and, 
as a consequence, the quality of the end product. 

   Who does it?   Everyone involved in the software 
engineering process is responsible for quality. 

   Why is it important?   You can do it right, or 
you can do it over again. If a software team 
stresses quality in all software engineering ac-
tivities, it reduces the amount of rework that it 
must do. That results in lower costs, and more 
importantly, improved time to market. 

   What are the steps?   Before software quality 
assurance (SQA) activities can be initiated, 

it is important to defi ne  software quality  at a 
number of different levels of abstraction. Once 
you understand what quality is, a software 
team must identify a set of SQA activities that 
will fi lter errors out of work products before 
they are passed on. 

   What is the work product?   A Software Qual-
ity Assurance Plan is created to defi ne a soft-
ware team’s SQA strategy. During modeling 
and coding, the primary SQA work product is 
the output of technical reviews (Chapter 20). 
During testing (Chapters 22 through 26), 
test plans and procedures are produced. 
Other work products associated with process 
improvement may also be generated. 

   How do I ensure that I’ve done it right?  
 Find errors before they become defects! That 
is, work to improve your defect removal effi -
ciency (Chapter 30), thereby reducing the 
amount of rework that your software team has 
to perform.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    elements of software 
quality assurance  . 450  
    formal approaches. 456  
    goals  . . . . . . . . . . 454  
    ISO 9001:2008 
standard. . . . . . . . 462  
    quality management 
resources  . . . . . . . 452  
    Six Sigma . . . . . . . 458  
    software 
reliability  . . . . . . . 459  
    software safety  . . 460  
    SQA plan  . . . . . . . 463  
    SQA tasks  . . . . . . 453  
    statistical software 
quality assurance  . 456  
  

pre22126_ch21_448-465.indd   448pre22126_ch21_448-465.indd   448 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  449

 Indeed, quality is a challenging concept—one that we addressed in some de-

tail in Chapter 19.  1    

 Some software developers continue to believe that software quality is some-

thing you begin to worry about after code has been generated. Nothing could be 

further from the truth!  Software quality assurance  (often called  quality manage-

ment ) is an umbrella activity (Chapter 3) that is applied throughout the software 

process. 

 Software quality assurance (SQA) encompasses: (1) an SQA process, (2) spe-

cifi c quality assurance and quality control tasks (including technical reviews 

and a multi-tiered testing strategy), (3) effective software engineering practice 

(methods and tools), (4) control of all software work products and the changes 

made to them (Chapter 29), (5) a procedure to ensure compliance with software 

development standards (when applicable), and (6) measurement and reporting 

mechanisms. 

 In this chapter, we focus on the management issues and the process-specifi c 

activities that enable a software organization to ensure that it does “the right 

things at the right time in the right way.” 

      21.1  BACKGROUND ISSUES 

  Quality control and assurance are essential activities for any business that pro-

duces products to be used by others. Prior to the twentieth century, quality con-

trol was the sole responsibility of the craftsperson who built a product. As time 

passed and mass production techniques became commonplace, quality con-

trol became an activity performed by people other than the ones who built the 

product.  

 The fi rst formal quality assurance and control function was introduced at Bell 

Labs in 1916 and spread rapidly throughout the manufacturing world. During the 

1940s, more formal approaches to quality control were suggested. These relied 

on measurement and continuous process improvement [Dem86] as key elements 

of quality management. 

 The history of quality assurance in software development parallels the his-

tory of quality in hardware manufacturing. During the early days of computing 

(1950s and 1960s), quality was the sole responsibility of the programmer. Stan-

dards for quality assurance for software were introduced in military contract 

software development during the 1970s and have spread rapidly into software 

development in the commercial world [IEE93a]. Extending the defi nition pre-

sented earlier, software quality assurance is a “planned and systematic pattern of 

  1  If you have not read Chapter 19, you should do so now. 

  uote: 

 “You made too 
many wrong 
mistakes.” 

 Yogi Berra 

pre22126_ch21_448-465.indd   449pre22126_ch21_448-465.indd   449 13/12/13   10:02 PM13/12/13   10:02 PM



450 PART THREE  QUALITY MANAGEMENT

actions” [Sch98c] that are required to ensure high quality in software. The scope 

of quality assurance responsibility might best be characterized by paraphrasing 

a once-popular automobile commercial: “Quality Is Job #1.” The implication for 

software is that many different constituencies have software quality assurance 

responsibility — software engineers, project managers, customers, salespeople, 

and the individuals who serve within an SQA group. 

 The SQA group serves as the customer’s in-house representative. That is, the 

people who perform SQA must look at the software from the customer’s point 

of view. Does the software adequately meet the quality factors noted in Chap-

ter 19? Have software engineering practices been conducted according to prees-

tablished standards? Have technical disciplines properly performed their roles 

as part of the SQA activity? The SQA group attempts to answer these and other 

questions to ensure that software quality is maintained. 

      21.2  ELEMENTS OF SOFTWARE QUALITY ASSURANCE 

       Software quality assurance encompasses a broad range of concerns and activi-

ties that focus on the management of software quality. These can be summarized 

in the following manner [Hor03]: 

  Standards.   The IEEE, ISO, and other standards organizations have pro-

duced a broad array of software engineering standards and related doc-

uments. Standards may be adopted voluntarily by a software engineering 

organization or imposed by the customer or other stakeholders. The job of 

SQA is to ensure that standards that have been adopted are followed and 

that all work products conform to them. 

  Reviews and audits.   Technical reviews are a quality control activity per-

formed by software engineers for software engineers (Chapter 20). Their 

intent is to uncover errors. Audits are a type of review performed by SQA 

personnel with the intent of ensuring that quality guidelines are being 

followed for software engineering work. For example, an audit of the 

review process might be conducted to ensure that reviews are being per-

formed in a manner that will lead to the highest likelihood of uncovering 

errors. 

  Testing.   Software testing (Chapters 22 through 26) is a quality control 

function that has one primary goal—to fi nd errors. The job of SQA is to 

ensure that testing is properly planned and effi ciently conducted so that it 

has the highest likelihood of achieving its primary goal. 

  Error/defect collection and analysis.   The only way to improve is to mea-

sure how you’re doing. SQA collects and analyzes error and defect data to 

 WebRef 
 An in-depth discussion 
of SQA, including a 
wide array of defi ni-
tions, can be 
obtained at   http://
www.swqual
.com/images/
FoodforThought_
Jan2011.pdf  . 

pre22126_ch21_448-465.indd   450pre22126_ch21_448-465.indd   450 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  451

better understand how errors are introduced and what software engineer-

ing activities are best suited to eliminating them. 

  Change management.   Change is one of the most disruptive aspects of 

any software project. If it is not properly managed, change can lead to 

confusion, and confusion almost always leads to poor quality. SQA ensures 

that adequate change management practices (Chapter 29) have been 

instituted. 

  Education.   Every software organization wants to improve its software 

engineering practices. A key contributor to improvement is education of 

software engineers, their managers, and other stakeholders. The SQA 

organization takes the lead in software process improvement (Chapter 37) 

and is a key proponent and sponsor of educational programs.  

  Vendor management.   Three categories of software are acquired from 

external software vendors— shrink-wrapped packages  (e.g., Microsoft Of-

fi ce), a  tailored shell  [Hor03] that provides a basic skeletal structure that is 

custom tailored to the needs of a purchaser, and  contracted software  that 

is custom designed and constructed from specifi cations provided by the 

customer organization. The job of the SQA organization is to ensure that 

high-quality software results by suggesting specifi c quality practices that 

the vendor should follow (when possible), and incorporating quality man-

dates as part of any contract with an external vendor. 

  Security management.   With the increase in cyber crime and new govern-

ment regulations regarding privacy, every software organization should 

institute policies that protect data at all levels, establish fi rewall protec-

tion for WebApps, and ensure that software has not been tampered with 

internally. SQA ensures that appropriate process and technology are used 

to achieve software security (Chapter 27). 

  Safety.   Because software is almost always a pivotal component of 

human-rated systems (e.g., automotive or aircraft applications), the 

impact of hidden defects can be catastrophic. SQA may be responsible 

for assessing the impact of software failure and for initiating those steps 

required to reduce risk. 

  Risk management.   Although the analysis and mitigation of risk (Chap-

ter 35) is the concern of software engineers, the SQA organization en-

sures that risk management activities are properly conducted and that 

risk-related contingency plans have been established. 

 In addition to each of these concerns and activities, SQA works to ensure that 

software support activities (e.g., maintenance, help lines, documentation, and 

manuals) are conducted or produced with quality as a dominant concern. 

  uote: 

 “Excellence is the 
unlimited ability to 
improve the quality 
of what you have 
to offer.” 

 Rick Petin 

pre22126_ch21_448-465.indd   451pre22126_ch21_448-465.indd   451 13/12/13   10:02 PM13/12/13   10:02 PM



452 PART THREE  QUALITY MANAGEMENT

           21.3  SQA PROCESSES AND PRODUCT CHARACTERIST ICS 

  As we begin a discussion of software quality assurance, it’s important to note 

that SQA procedures and approaches that work in one software environment 

may not work as well in another. Even within a company that adopts a consis-

tent approach  2   to software engineering, different software products may exhibit 

different levels of quality [Par11].  

 The solution to this dilemma is to understand the specifi c quality requirements 

for a software product and then select the process and specifi c SQA actions and 

tasks that will be used to meet those requirements. The Software Engineering 

Institute’s CMMI and ISO 9000 standards are the most commonly used process 

frameworks. Each proposes “a syntax and semantics” [Par11] that will lead to the 

implementation of software engineering practices that improve product quality. 

Rather than instantiating either framework in its entirety, a software organiza-

tion can “harmonize” the two models by selecting elements of both frameworks 

and matching them to the quality requirements of an individual product. 

      21.4  SQA TASKS,  GOALS,  AND METRICS 

  Software quality assurance is composed of a variety of tasks associated with two 

different constituencies—the software engineers who do technical work and 

  Quality Management Resources 
 Dozens of quality management resources are 
available on the Web, including professional 

societies, standards organizations, and general informa-
tion sources. The sites that follow provide a good starting 
point: 
  American Society for Quality (ASQ) Software Division  

  www.asq.org/software  

 Association for Computer Machinery 
  www.acm.org  

 Cyber Security and Information Systems Information 
Analysis Center (CSIAC)  
  https://sw.thecsiac.com/  

 International Organization for Standardization (ISO) 
  www.iso.ch  

 ISO SPICE    http://www.spiceusergroup.org/  

 Malcolm Baldridge National Quality Award 
  http://www.nist.gov/baldrige/  

 Software Engineering Institute    www.sei.cmu.edu/  

 Software Testing and Quality Engineering 
  www.stickyminds.com  

 Six Sigma Resources     www.isixsigma.com/  
  www.asq.org/sixsigma/  

 TickIT International: Quality certifi cation topics 
  www.tickit.org/international.htm  

 Total Quality Management (TQM) 
  http://www.isixsigma.com/methodology/
total-quality-management-tqm/  
  http://asq.org/learn-about-quality/
total-quality-management/overview/
overview.html   

 INFO 

  2  For example, CMMI-defi ned process and practices (Chapter 37). 

pre22126_ch21_448-465.indd   452pre22126_ch21_448-465.indd   452 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  453

an SQA group that has responsibility for quality assurance planning, oversight, 

record keeping, analysis, and reporting. 

 Software engineers address quality (and perform quality control activities) by 

applying solid technical methods and measures, conducting technical reviews, 

and performing well-planned software testing. 

   21.4.1   SQA Tasks 

 The charter of the SQA group is to assist the software team in achieving a 

high-quality end product. The Software Engineering Institute recommends a 

set of SQA activities that address quality assurance planning, oversight, record 

keeping, analysis, and reporting. These activities are performed (or facilitated) 

by an independent SQA group that:     

   Prepares an SQA plan for a project.   The plan is developed as part of project 

planning and is reviewed by all stakeholders. Quality assurance activities 

performed by the software engineering team and the SQA group are gov-

erned by the plan. The plan identifi es evaluations to be performed, audits and 

reviews to be conducted, standards that are applicable to the project, proce-

dures for error reporting and tracking, work products that are produced by 

the SQA group, and feedback that will be provided to the software team. 

  Participates in the development of the project’s software process 

description.   The software team selects a process for the work to be per-

formed. The SQA group reviews the process description for compliance 

with organizational policy, internal software standards, externally imposed 

standards (e.g., ISO-9001), and other parts of the software project plan. 

  Reviews software engineering activities to verify compliance with the 

defined software process.   The SQA group identifi es, documents, and tracks 

deviations from the process and verifi es that corrections have been made. 

  Audits designated software work products to verify compliance with those 

defined as part of the software process.   The SQA group reviews selected 

work products; identifi es, documents, and tracks deviations; verifi es that 

corrections have been made; and periodically reports the results of its 

work to the project manager. 

  Ensures that deviations in software work and work products are docu-

mented and handled according to a documented procedure.   Deviations 

may be encountered in the project plan, process description, applicable 

standards, or software engineering work products. 

  Records any noncompliance and reports to senior management.   

Noncompliance items are tracked until they are resolved. 

  In addition to these activities, the SQA group coordinates the control and man-

agement of change (Chapter 29) and helps to collect and analyze software metrics.     

 What is the 
role of an 

SQA group? 
?

    uote: 

 “Quality is never 
an accident; it 
is always the 
result of high 
intention, sincere 
effort, intelligent 
direction and 
skillful execution; it 
represents the wise 
choice of many 
alternatives.” 

 William A. 
Foster 

pre22126_ch21_448-465.indd   453pre22126_ch21_448-465.indd   453 13/12/13   10:02 PM13/12/13   10:02 PM



454 PART THREE  QUALITY MANAGEMENT

  Software Quality Assurance   Software Quality Assurance 

  The scene:  Doug Miller’s offi ce as 
the  SafeHome  software project begins. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and other members of the 
product software engineering team. 

  The conversation:  

  Doug:  How are things going with the informal reviews? 

  Jamie:  We’re conducting informal reviews of the 
critical project elements in pairs as we code but before 
testing. It’s going faster than I thought. 

  Doug:  That’s good, but I want to have Bridget Thor-
ton’s SQA group conduct audits of our work products to 
ensure that we’re following our processes and meeting 
our quality goals. 

  Venod:  Aren’t they already doing the bulk of the 
testing? 

  Doug:  Yes, they are. But QA is more than testing. We 
need to be sure that our documents are evolving along 
with our code and that we’re making sure we don’t in-
troduce errors as we integrate new components. 

  Jamie:  I really don’t want to be evaluated based on 
their fi ndings. 

  Doug:  No worries. The audits are focused on confor-
mance of our work products to the requirements and 
process our activities. We’ll only be using audit results 
to try to improve our processes as well as our software 
products. 

  Vinod:  I have to believe it’s going to take more of our 
time. 

  Doug:  In the long run it will save us time when we fi nd 
defects earlier. It also costs less to fi x defects if they’re 
caught early. 

  Jamie:  That sounds like a good thing then. 

  Doug:  It’s also important to identify the activities where 
defects were introduced and add review tasks to catch 
them in the future. 

  Vinod:  That’ll help us determine if we’re sampling 
carefully enough with our review activities. 

  Doug:  I think SQA activities will make us a better team 
in the long run.  

 SAFEHOME 

     21.4.2   Goals, Attributes, and Metrics 

 The SQA activities described in the preceding section are performed to achieve 

a set of pragmatic goals: 

  Requirements quality.  The correctness, completeness, and consistency 

of the requirements model will have a strong infl uence on the quality of all 

work products that follow. SQA must ensure that the software team has 

properly reviewed the requirements model to achieve a high level of quality. 

  Design quality.  Every element of the design model should be assessed 

by the software team to ensure that it exhibits high quality and that the 

design itself conforms to requirements. SQA looks for attributes of the de-

sign that are indicators of quality. 

  Code quality.  Source code and related work products (e.g., other de-

scriptive information) must conform to local coding standards and exhibit 

characteristics that will facilitate maintainability. SQA should isolate 

those attributes that allow a reasonable analysis of the quality of code. 

  Quality control effectiveness.  A software team should apply limited re-

sources in a way that has the highest likelihood of achieving a high-quality 

pre22126_ch21_448-465.indd   454pre22126_ch21_448-465.indd   454 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  455

result. SQA analyzes the allocation of resources for reviews and testing to 

assess whether they are being allocated in the most effective manner. 

  Figure 21.1  (adapted from [Hya96]) identifi es the attributes that are indicators 

for the existence of quality for each of the goals discussed. Metrics that can be 

used to indicate the relative strength of an attribute are also shown.  

         Goal     Attribute     Metric  

      Requirement quality    Ambiguity    Number of ambiguous modifiers (e.g., many, large,
human-friendly)   

    Completeness   Number of TBA, TBD 

      Understandability   Number of sections/subsections 

      Volatility   Number of changes per requirement 

          Time (by activity) when change is requested   

    Traceability    Number of requirements not traceable to design/code   

    Model clarity   Number of UML models 

         Number of descriptive pages per model 

         Number of UML errors 

    Design quality    Architectural integrity   Existence of architectural model 

      Component completeness    Number of components that trace to architectural model 

         Complexity of procedural design 

      Interface complexity    Average number of pick to get to a typical function or content 

         Layout appropriateness 

      Patterns   Number of patterns used 

    Code quality    Complexity   Cyclomatic complexity 

      Maintainability   Design factors (Chapter 8) 

      Understandability   Percent internal comments 

         Variable naming conventions 

      Reusability   Percent reused components 

      Documentation   Readability index 

    QC effectiveness    Resource allocation   Staff hour percentage per activity 

      Completion rate   Actual vs. budgeted completion time 

      Review effectiveness   See review metrics (Chapter 14) 

      Testing effectiveness   Number of errors found and criticality 

         Effort required to correct an error 

         Origin of error       

  FIGURE 21.1  Software quality goals, attributes, and metrics 

   Source: Adapted from [Hya96]. 

pre22126_ch21_448-465.indd   455pre22126_ch21_448-465.indd   455 13/12/13   10:02 PM13/12/13   10:02 PM



456 PART THREE  QUALITY MANAGEMENT

       21.5  FORMAL APPROACHES TO SQA 

  In the preceding sections, we have argued that software quality is everyone’s 

job and that it can be achieved through competent software engineering prac-

tice as well as through the application of technical reviews, a multi-tiered test-

ing strategy, better control of software work products and the changes made 

to them, and the application of accepted software engineering standards and 

process frameworks. In addition, quality can be defi ned in terms of a broad 

array of quality attributes and measured (indirectly) using a variety of indices 

and metrics. 

 Over the past three decades, a small, but vocal, segment of the software engi-

neering community has argued that a more formal approach to software quality 

assurance is required. It can be argued that a computer program is a mathe-

matical object. A rigorous syntax and semantics can be defi ned for every pro-

gramming language, and a rigorous approach to the specifi cation of software 

requirements (Chapter 28) is available. If the requirements model (specifi cation) 

and the programming language can be represented in a rigorous manner, it 

should be possible to apply mathematic proof of correctness to demonstrate that 

a program conforms exactly to its specifi cations. 

 Attempts to prove programs correct are not new. Dijkstra [Dij76a] and Linger, 

Mills, and Witt [Lin79], among others, advocated proofs of program correctness 

and tied these to the use of structured programming concepts (Chapter 14). 

      21.6  STATIST ICAL SOFTWARE QUALITY ASSURANCE 

   Statistical quality assurance refl ects a growing trend throughout the industry to 

become more quantitative about quality. For software, statistical quality assur-

ance implies the following steps:

     1.  Information about software errors and defects is collected and 

categorized.  

    2.  An attempt is made to trace each error and defect to its underlying cause 

(e.g., nonconformance to specifi cations, design error, violation of stan-

dards, poor communication with the customer).  

    3.  Using the Pareto principle (80 percent of the defects can be traced to 

20 percent of all possible causes), isolate the 20 percent (the  vital few ).  

    4.  Once the vital few causes have been identifi ed, move to correct the prob-

lems that have caused the errors and defects.          

 This relatively simple concept represents an important step toward the cre-

ation of an adaptive software process in which changes are made to improve 

those elements of the process that introduce error. 

 What steps 
are required 

to perform 
statistical SQA? 

?

  uote: 

 “20 percent of 
the code has 
80 percent of the 
errors. Find them, 
fi x them!” 

 Lowell Arthur 

pre22126_ch21_448-465.indd   456pre22126_ch21_448-465.indd   456 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  457

   21.6.1   A Generic Example 

 To illustrate the use of statistical methods for software engineering work, assume 

that a software engineering organization collects information on errors and de-

fects for a period of one year. Some of the errors are uncovered as software is 

being developed. Other defects are encountered after the software has been re-

leased to its end users. Although hundreds of different problems are uncovered, 

all can be tracked to one (or more) of the following causes:

    •  Incomplete or erroneous specifi cations (IES).  

   •  Misinterpretation of customer communication (MCC).  

   •  Intentional deviation from specifi cations (IDS).  

   •  Violation of programming standards (VPS).  

   •  Error in data representation (EDR).  

   •  Inconsistent component interface (ICI).  

   •  Error in design logic (EDL).  

   •  Incomplete or erroneous testing (IET).  

   •  Inaccurate or incomplete documentation (IID).  

   •  Error in programming language translation of design (PLT).  

   •  Ambiguous or inconsistent human/computer interface (HCI).  

   •  Miscellaneous (MIS).    

 To apply statistical SQA, the table in  Figure 21.2  is built. The table indicates 

that IES, MCC, and EDR are the vital few causes that account for 53 percent 

of all errors. It should be noted, however, that IES, EDR, PLT, and EDL would 

be selected as the vital few causes if only serious errors are considered. Once 

  uote: 

 “A statistical 
analysis, properly 
conducted, is a 
delicate dissection 
of uncertainties, 
a surgery of 
suppositions.” 

 M. J. Moroney 

  FIGURE 21.2 

Data collection 
for statistical 
SQA 

  

Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22% 34 27% 68 18% 103 24%

MCC 156 17% 12 9% 68 18% 76 17%

IDS 48 5% 1 1% 24 6% 23 5%

VPS 25 3% 0 0% 15 4% 10 2%

EDR 130 14% 26 20% 68 18% 36 8%

ICI 58 6% 9 7% 18 5% 31 7%

EDL 45 5% 14 11% 12 3% 19 4%

IET 95 10% 12 9% 35 9% 48 11%

IID 36 4% 2 2% 20 5% 14 3%

PLT 60 6% 15 12% 19 5% 26 6%

HCI 28 3% 3 2% 17 4% 8 2%

MIS 56 6% 0 0% 15 4% 41 9%

Totals 942 100% 128 100% 379 100% 435 100%

pre22126_ch21_448-465.indd   457pre22126_ch21_448-465.indd   457 13/12/13   10:02 PM13/12/13   10:02 PM



458 PART THREE  QUALITY MANAGEMENT

the vital few causes are determined, the software engineering organization can 

begin corrective action. For example, to correct MCC, you might implement re-

quirements gathering techniques (Chapter 8) to improve the quality of customer 

communication and specifi cations. To improve EDR, you might acquire tools for 

data modeling and perform more stringent data design reviews.  

 It is important to note that corrective action focuses primarily on the vital few. 

As the vital few causes are corrected, new candidates pop to the top of the stack. 

 Statistical quality assurance techniques for software have been shown to pro-

vide substantial quality improvement (e.g., [Rya11], [Art97]). In some cases, soft-

ware organizations have achieved a 50 percent reduction per year in defects 

after applying these techniques. 

 The application of the statistical SQA and the Pareto principle can be summa-

rized in a single sentence:   Spend your time focusing on things that really matter, 

but fi rst be sure that you understand what really matters!  

    21.6.2   Six Sigma for Software Engineering 

 Six Sigma is the most widely used strategy for statistical quality assurance in 

industry today. Originally popularized by Motorola in the 1980s, the Six Sigma 

strategy “is a rigorous and disciplined methodology that uses data and statisti-

cal analysis to measure and improve a company’s operational performance by 

identifying and eliminating defects in manufacturing and service-related pro-

cesses” [ISI08]. The term  Six Sigma  is derived from six standard deviations—3.4 

instances (defects) per million occurrences—implying an extremely high-quality 

standard. The Six Sigma methodology defi nes three core steps:     

     •   Defi ne  customer requirements and deliverables and project goals via 

well-defi ned methods of customer communication.  

   •   Measure  the existing process and its output to determine current quality 

performance (collect defect metrics).  

   •   Analyze  defect metrics and determine the vital few causes.  

  If an existing software process is in place, but improvement is required, Six 

Sigma suggests two additional steps:

    •   Improve  the process by eliminating the root causes of defects.  

   •   Control  the process to ensure that future work does not reintroduce the 

causes of defects.    

 These core and additional steps are sometimes referred to as the DMAIC (de-

fi ne, measure, analyze, improve, and control) method. 

 If an organization is developing a software process (rather than improving an 

existing process), the core steps are augmented as follows:

    •   Design  the process to (1) avoid the root causes of defects and (2) to meet 

customer requirements.  

 What are the 
core steps 

of the Six Sigma 
methodology? 

?

pre22126_ch21_448-465.indd   458pre22126_ch21_448-465.indd   458 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  459

   •   Verify  that the process model will, in fact, avoid defects and meet cus-

tomer requirements.    

 This variation is sometimes called the DMADV (defi ne, measure, analyze, design, 

and verify) method. 

 A comprehensive discussion of Six Sigma is best left to resources dedicated to 

the subject. If you have further interest, see [ISI08], [Pyz03], and [Sne03]. 

       21.7  SOFTWARE REL IABIL ITY 

   There is no doubt that the reliability of a computer program is an important el-

ement of its overall quality. If a program repeatedly and frequently fails to per-

form, it matters little whether other software quality factors are acceptable. 

 Software reliability, unlike many other quality factors, can be measured di-

rectly and estimated using historical and developmental data.  Software reliabil-

ity  is defi ned in statistical terms as “the probability of failure-free operation of a 

computer program in a specifi ed environment for a specifi ed time” [Mus87]. To 

illustrate, program  X  is estimated to have a reliability of 0.999 over eight elapsed 

processing hours. In other words, if program  X  were to be executed 1000 times 

and require a total of eight hours of elapsed processing time (execution time), it 

is likely to operate correctly (without failure) 999 times. 

 Whenever software reliability is discussed, a pivotal question arises: What is 

meant by the term  failure ? In the context of any discussion of software quality 

and reliability, failure is nonconformance to software requirements. Yet, even 

within this defi nition, there are gradations. Failures can be only annoying or cat-

astrophic. One failure can be corrected within seconds, while another requires 

weeks or even months to correct. Complicating the issue even further, the cor-

rection of one failure may in fact result in the introduction of other errors that 

ultimately result in other failures. 

   21.7.1   Measures of Reliability and Availability 

      Early work in software reliability attempted to extrapolate the mathematics of hard-

ware reliability theory to the prediction of software reliability. Most hardware-related 

reliability models are predicated on failure due to wear rather than failure due to de-

sign defects. In hardware, failures due to physical wear (e.g., the effects of tempera-

ture, corrosion, shock) are more likely than a design-related failure. Unfortunately, 

the opposite is true for software. In fact, all software failures can be traced to design 

or implementation problems; wear (see Chapter  1) does not enter into the picture. 

 There has been an ongoing debate over the relationship between key con-

cepts in hardware reliability and their applicability to software. Although an ir-

refutable link has yet to be established, it is worthwhile to consider a few simple 

concepts that apply to both system elements.     

   Software reliability 
problems can almost 
always be traced to 
defects in design or 
implementation. 

  uote: 

 “The unavoidable 
price of reliability 
is simplicity.” 

 C. A. R. Hoare 

pre22126_ch21_448-465.indd   459pre22126_ch21_448-465.indd   459 13/12/13   10:02 PM13/12/13   10:02 PM



460 PART THREE  QUALITY MANAGEMENT

  If we consider a computer-based system, a simple measure of reliability is 

 mean-time-between-failure  (MTBF):

MTBF 5 MTTF 1 MTTR 

 where the acronyms MTTF and MTTR are  mean-time-to-failure  and  mean-time-

to-repair ,  3   respectively.  

 Many researchers argue that MTBF is a far more useful measure than other 

quality-related software metrics discussed in Chapter 30. Stated simply, an end 

user is concerned with failures, not with the total defect count. Because each defect 

contained within a program does not have the same failure rate, the total defect 

count provides little indication of the reliability of a system. For example, consider a 

program that has been in operation for 3000 processor hours without failure. Many 

defects in this program may remain undetected for tens of thousands of hours be-

fore they are discovered. The MTBF of such obscure errors might be 30,000 or even 

60,000 processor hours. Other defects, as yet undiscovered, might have a failure 

rate of 4000 or 5000 hours. Even if every one of the fi rst category of errors (those with 

long MTBF) is removed, the impact on software reliability is negligible.     

  However, MTBF can be problematic for two reasons: (1) it projects a time 

span between failures, but does not provide us with a projected failure rate, and 

(2) MTBF can be misinterpreted to mean average life span even though this is  not  

what it implies. 

 An alternative measure of reliability is  failures-in-time  (FIT)—a statistical mea-

sure of how many failures a component will have over 1 billion hours of operation. 

Therefore, 1 FIT is equivalent to one failure in every billion hours of operation. 

 In addition to a reliability measure, you should also develop a measure of 

availability.  Software availability  is the probability that a program is operating 

according to requirements at a given point in time and is defi ned as

Availability 5   MTTF  _________________  
(MTTF 1 MTTR)

   3 100% 

 The MTBF reliability measure is equally sensitive to MTTF and MTTR. The avail-

ability measure is somewhat more sensitive to MTTR, an indirect measure of the 

maintainability of software. For a comprehensive discussion of software reliabil-

ity measures, see [Laz11]. 

    21.7.2   Software Safety 

   Software safety  is a software quality assurance activity that focuses on the identi-

fi cation and assessment of potential hazards that may affect software negatively 

and cause an entire system to fail. If hazards can be identifi ed early in the soft-

ware process, software design features can be specifi ed that will either eliminate 

or control potential hazards. 

   It is important to note 
that MTBF and related 
measures are based 
on CPU time, not wall 
clock time. 

   Some aspects of avail-
ability (not discussed 
here) have nothing 
to do with failure. For 
example, scheduling 
downtime (for support 
functions) causes 
the software to be 
unavailable. 

    uote: 

 “The safety of the 
people shall be the 
highest law.” 

 Cicero 

  3  Although debugging (and related corrections) may be required as a consequence of failure, in 

many cases the software will work properly after a restart with no other change. 

pre22126_ch21_448-465.indd   460pre22126_ch21_448-465.indd   460 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  461

  A modeling and analysis process is conducted as part of software safety. Initially, 

hazards are identifi ed and categorized by criticality and risk. For example, some 

of the hazards associated with a computer-based cruise control for an automobile 

might be: (1) causes uncontrolled acceleration that cannot be stopped, (2) does not 

respond to depression of brake pedal (by turning off), (3) does not engage when 

switch is activated, and (4) slowly loses or gains speed. Once these system-level 

hazards are identifi ed, analysis techniques are used to assign severity and proba-

bility of occurrence.  4   To be effective, software must be analyzed in the context of the 

entire system. For example, a subtle user input error (people are system compo-

nents) may be magnifi ed by a software fault to produce control data that improperly 

positions a mechanical device. If and only if a set of external environmental condi-

tions is met, the improper position of the mechanical device will cause a disastrous 

failure. Analysis techniques [Eri05] such as fault tree analysis, real-time logic, and 

Petri net models can be used to predict the chain of events that can cause hazards 

and the probability that each of the events will occur to create the chain.  

 Once hazards are identifi ed and analyzed, safety-related requirements can 

be specifi ed for the software. That is, the specifi cation can contain a list of un-

desirable events and the desired system responses to these events. The role of 

software in managing undesirable events is then indicated.     

  Although software reliability and software safety are closely related to one another, 

it is important to understand the subtle difference between them. Software reliability 

uses statistical analysis to determine the likelihood that a software failure will occur. 

However, the occurrence of a failure does not necessarily result in a hazard or mis-

hap. Software safety examines the ways in which failures result in conditions that can 

lead to a mishap. That is, failures are not considered in a vacuum, but are evaluated 

in the context of an entire computer-based system and its environment. 

 A comprehensive discussion of software safety is beyond the scope of this 

book. If you have further interest in software safety and related system issues, 

see [Fir12], [Har12], [Smi05], and [Lev95]. 

       21.8  THE ISO 9000 QUALITY STANDARDS  5   

  A  quality assurance system  may be defi ned as the organizational structure, respon-

sibilities, procedures, processes, and resources for implementing quality manage-

ment [ANS87]. Quality assurance systems are created to help organizations ensure 

their products and services satisfy customer expectations by meeting their specifi -

cations. These systems cover a wide variety of activities encompassing a product’s 

 WebRef 
 A worthwhile collection 
of papers on software 
safety can be found at 
  www.safeware-
eng.com/  . 

    uote: 

 “I cannot imagine 
any condition 
which would 
cause this ship to 
founder. Modern 
shipbuilding has 
gone beyond that.” 

  E. I. Smith, 
captain of the 

 Titanic  

  4  This approach is similar to the risk analysis methods described in Chapter 35. The primary 

difference is the emphasis on technology issues rather than project-related topics. 

  5  This section, written by Michael Stovsky, has been adapted from  Fundamentals of ISO 9000 , 

a workbook developed for  Essential Software Engineering,  a video curriculum developed by 

R. S. Pressman & Associates, Inc. Reprinted with permission. 

pre22126_ch21_448-465.indd   461pre22126_ch21_448-465.indd   461 13/12/13   10:02 PM13/12/13   10:02 PM



462 PART THREE  QUALITY MANAGEMENT

entire life cycle including planning, controlling, measuring, testing and reporting, 

and improving quality levels throughout the development and manufacturing pro-

cess. ISO 9000 describes quality assurance elements in generic terms that can be 

applied to any business regardless of the products or services offered. 

 To become registered to one of the quality assurance system models contained 

in ISO 9000, a company’s quality system and operations are scrutinized by third-

party auditors for compliance to the standard and for effective operation. Upon 

successful registration, a company is issued a certifi cate from a registration body 

represented by the auditors. Semiannual surveillance audits ensure continued 

compliance to the standard.     

  The requirements delineated by ISO 9001:2008 address topics such as manage-

ment responsibility, quality system, contract review, design control, document and 

data control, product identifi cation and traceability, process control, inspection 

and testing, corrective and preventive action, control of quality records, internal 

quality audits, training, servicing, and statistical techniques. In order for a software 

organization to become registered to ISO 9001:2008, it must establish policies and 

procedures to address each of the requirements just noted (and others) and then 

be able to demonstrate that these policies and procedures are being followed. If 

you desire further information on ISO 9001:2008, see [Coc11], [Hoy09], or [Cia09].     

 WebRef 
 Extensive links to ISO 
9000/9001 resources 
can be found at 
  www.tantara
.ab.ca/info.htm  . 

   The ISO 9001:2008 Standard  
 The following outline defi nes the basic el-
ements of the ISO 9001:2000 standard. 

Comprehensive information on the standard can be ob-
tained from the International Organization for Standard-
ization (  www.iso.ch  ) and other Internet sources (e.g., 
 www.praxiom.com ). 

 Establish the elements of a quality management system.
       Develop, implement, and improve the system.  
      Defi ne a policy that emphasizes the importance of 
the system.  

   Document the quality system.
       Describe the process.  
      Produce an operational manual.  
      Develop methods for controlling (updating) 
documents.  
      Establish methods for record keeping.  

   Support quality control and assurance.
       Promote the importance of quality among all 
stakeholders.  
      Focus on customer satisfaction.  

      Defi ne a quality plan that addresses objectives, 
responsibilities, and authority.  
      Defi ne communication mechanisms among 
stakeholders.  

   Establish review mechanisms for the quality management 
system.
       Identify review methods and feedback mechanisms.  
      Defi ne follow-up procedures.  

   Identify quality resources including personnel, training, 
and infrastructure elements. 

 Establish control mechanisms.
       For planning.  
      For customer requirements.  
      For technical activities (e.g., analysis, design, 
testing).  
      For project monitoring and management.  

      Defi ne methods for remediation.  
      Assess quality data and metrics.  
      Defi ne approach for continuous process and quality 
improvement.     

 INFO 

pre22126_ch21_448-465.indd   462pre22126_ch21_448-465.indd   462 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  463

       21.9  THE SQA PLAN 

  The  SQA Plan  provides a road map for instituting software quality assurance. 

Developed by the SQA group (or by the software team if an SQA group does not 

exist), the plan serves as a template for SQA activities that are instituted for each 

software project. 

 A standard for SQA plans has been published by the IEEE [IEE93]. The stan-

dard recommends a structure that identifi es: (1) the purpose and scope of the 

plan, (2) a description of all software engineering work products (e.g., models, 

documents, source code) that fall within the purview of SQA, (3) all applicable 

standards and practices that are applied during the software process, (4) SQA 

actions and tasks (including reviews and audits) and their placement through-

out the software process, (5) the tools and methods that support SQA actions 

and tasks, (6) software confi guration management (Chapter 29) procedures, 

(7) methods for assembling, safeguarding, and maintaining all SQA-related re-

cords, and (8) organizational roles and responsibilities relative to product quality.     

   Software Quality Management  

  Objective:  The objective of SQA tools is 
to assist a project team in assessing and 

improving the quality of software work product. 

  Mechanics:  Tools mechanics vary. In general, the intent 
is to assess the quality of a specifi c work product. Note: 
A wide array of software testing tools (see Chapters 22 
through 26) are often included within the SQA tools 
category. 

  Representative Tools:   6  
    QA Complete,  developed by SmartBear ( http://

smartbear.com/products/qa-tools/test-
management ), QA management ensures complete 

test coverage through every stage of the software 
development process. 

  QPR Suite,  developed by QPR Software ( http://www.
qpr.com ), provides support for Six Sigma and other 
quality management approaches. 

  Quality Tools and Templates,  developed by iSixSigma 
( http://www.isixsigma.com/tools-
templates/ ), describe a wide array of useful tools 
and methods for quality management. 

  NASA Quality Resources,  developed by the Goddard 
Space Flight Center ( http://www.hq.nasa.gov/
offi ce/codeq/software/ComplexElectronics/
checklists.htm ) provides useful forms, templates, 
checklists, and tools for SQA.  

 SOFTWARE TOOLS 

  6  Tools noted here do not represent an endorsement, but rather a sampling of tools in this 

category. In most cases, tool names are trademarked by their respective developers. 

        21.10 SUMMARY 

 Software quality assurance is a software engineering umbrella activity that is 

applied at each step in the software process. SQA encompasses procedures for 

the effective application of methods and tools, oversight of quality control ac-

tivities such as technical reviews and software testing, procedures for change 

pre22126_ch21_448-465.indd   463pre22126_ch21_448-465.indd   463 13/12/13   10:02 PM13/12/13   10:02 PM



464 PART THREE  QUALITY MANAGEMENT

management, procedures for assuring compliance to standards, and measure-

ment and reporting mechanisms. 

 To properly conduct software quality assurance, data about the software en-

gineering process should be collected, evaluated, and disseminated. Statistical 

SQA helps to improve the quality of the product and the software process it-

self. Software reliability models extend measurements, enabling collected defect 

data to be extrapolated into projected failure rates and reliability predictions. 

 In summary, you should note the words of Dunn and Ullman [Dun82]: “Soft-

ware quality assurance is the mapping of the managerial precepts and design 

disciplines of quality assurance onto the applicable managerial and technolog-

ical space of software engineering.” The ability to ensure quality is the measure 

of a mature engineering discipline. When the mapping is successfully accom-

plished, mature software engineering is the result. 

     PROBLEMS AND POINTS TO PONDER 
    21.1.  Some people say that “variation control is the heart of quality control.” Since every 
program that is created is different from every other program, what are the variations that 
we look for and how do we control them?  

   21.2.  Is it possible to assess the quality of software if the customer keeps changing what it 
is supposed to do?  

   21.3.  Quality and reliability are related concepts but are fundamentally different in a num-
ber of ways. Discuss the differences.  

   21.4.  Can a program be correct and still not be reliable? Explain.  

   21.5.  Can a program be correct and still not exhibit good quality? Explain.  

   21.6.  Why is there often tension between a software engineering group and an independent 
software quality assurance group? Is this healthy?  

   21.7.  You have been given the responsibility for improving the quality of software across 
your organization. What is the fi rst thing that you should do? What’s next?  

   21.8.  Besides counting errors and defects, are there other countable characteristics of soft-
ware that imply quality? What are they and can they be measured directly?  

   21.9.  The MTBF concept for software is open to criticism. Explain why.  

   21.10.  Consider two safety-critical systems that are controlled by computer. List at least 
three hazards for each that can be directly linked to software failures.  

   21.11.  Acquire a copy of ISO 9001:2000 and ISO 9000-3. Prepare a presentation that dis-
cusses three ISO 9001 requirements and how they apply in a software context.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Books by Chemuturi ( Mastering Software Quality Assurance,  J. Ross Publishing, 2010), Hoyle 
( Quality Management Essentials,  Butterworth-Heinemann, 2007), Tian ( Software Quality 

Engineering,  Wiley-IEEE Computer Society Press, 2005), El Emam ( The ROI from Software 

Quality,  Auerbach, 2005), Horch ( Practical Guide to Software Quality Management,  Artech 

pre22126_ch21_448-465.indd   464pre22126_ch21_448-465.indd   464 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 21  SOFTWARE QUALITY ASSURANCE  465

House, 2003), and Nance and Arthur ( Managing Software Quality,  Springer, 2002) are excel-
lent management-level presentations on the benefi ts of formal quality assurance programs 
for computer software. Books by Deming [Dem86], Defoe and Juran ( Juran’s Quality Hand-

book,  6th ed., McGraw-Hill, 2010), Juran ( Juran on Quality by Design,  Free Press, 1992), and 
Crosby ([Cro79] and  Quality Is Still Free,  McGraw-Hill, 1995) do not focus on software, but 
are must reading for senior managers with software development responsibility. Gluckman 
and Roome ( Everyday Heroes of the Quality Movement,  Dorset House, 1993) humanizes 
quality issues by telling the story of the players in the quality process. Kan ( Metrics and 

Models in Software Quality Engineering,  Addison-Wesley, 1995) presents a quantitative view 
of software quality. 

   Work by Evans ( Quality & Performance Excellence,  South-Western College Publishing, 
2007) and ( Total Quality: Management, Organization and Strategy,  4th ed., South-Western 
College Publishing, 2004), Bru ( Six Sigma for Managers,  McGraw-Hill, 2005), and Dobb ( ISO 

9001:2000 Quality Registration Step-by-Step,  3rd ed., Butterworth-Heinemann, 2004) are rep-
resentative of the many books written on TQM, Six Sigma, and ISO 9001:2000, respectively. 

   O’Connor and Kleyner ( Practical Reliability Engineering,  Wiley, 2012), Naik and Tripathy 
( Software Testing and Quality Assurance: Theory and Practice,  Wiley-Spektrum, 2008), Pham 
( System Software Reliability , Springer, 2006), Musa ( Software Reliability Engineering: More 

Reliable Software, Faster Development and Testing,  2nd ed., McGraw-Hill, 2004) and Peled 
( Software Reliability Methods , Springer, 2001) have written practical guides that describe 
methods for measuring and analyzing software reliability. 

   Vincoli ( Basic Guide to System Safety,  Wiley, 2006), Dhillon ( Computer System Reliability, 

Safety and Usability , CRC Press, 2013) and ( Engineering Safety,  World Scientifi c Publishing 
Co., 2003), Hermann ( Software Safety and Reliability,  Wiley-IEEE Computer Society Press, 
2010), Verma, Ajit, and Karanki ( Reliability and Safety Engineering , Springer, 2010), Storey 
( Safety-Critical Computer Systems,  Addison-Wesley, 1996), and Leveson [Lev95] are the most 
comprehensive discussions of software and system safety published to date. In addition, 
van der Meulen ( Defi nitions for Hardware and Software Safety Engineers,  Springer-Verlag, 
2000) offers a complete compendium of important concepts and terms for reliability and 
safety; Gardiner ( Testing Safety-Related Software,  Springer-Verlag, 1999) provides special-
ized guidance for testing safety critical systems; Friedman and Voas ( Software Assessment: 

Reliability Safety and Testability,  Wiley, 1995) provide useful models for assessing reliability 
and safety. Ericson ( Hazard Analysis Primer,  CreateSpace Independent Publishing Plat-
form, 2012) and ( Hazard Analysis Techniques for System Safety,  Wiley, 2005) addresses the 
increasingly important domain of hazard analysis. 

   A wide variety of information sources on software quality assurance and related topics 
is available on the Internet. An up-to-date list of World Wide Web references can be found 
under “software engineering resources” at the SEPA website   www.mhhe.com/pressman  .      

pre22126_ch21_448-465.indd   465pre22126_ch21_448-465.indd   465 13/12/13   10:02 PM13/12/13   10:02 PM



466

    C H A P T E R

22  SOFTWARE TESTING
STRATEGIES 

          A strategy for software testing provides a road map that describes the 

steps to be conducted as part of testing, when these steps are planned 

and then undertaken, and how much effort, time, and resources will 

be required. Therefore, any testing strategy must incorporate test planning, 

test-case design, test execution, and resultant data collection and evaluation. 

 A software testing strategy should be fl exible enough to promote a custom-

ized testing approach. At the same time, it must be rigid enough to encour-

age reasonable planning and management tracking as the project progresses. 

Shooman [Sho83] discusses these issues:

  In many ways, testing is an individualistic process, and the number of different 

types of tests varies as much as the different development approaches. For many 

years, our only defense against programming errors was careful design and the 

native intelligence of the programmer. We are now in an era in which modern 

design techniques [and technical reviews] are helping us to reduce the number of 

initial errors that are inherent in the code. Similarly, different test methods are 

beginning to cluster themselves into several distinct approaches and philosophies. 

   These “approaches and philosophies” are what we call  strategy —the topic 

to be presented in this chapter. In Chapters 23 through 26, the testing methods 

and techniques that implement the strategy are presented. 

   22.1  A STRATEGIC APPROACH TO SOFTWARE TEST ING 
  Testing is a set of activities that can be planned in advance and conducted 

systematically. For this reason a template for software testing—a set of steps 

into which we can place specifi c test-case design techniques and testing meth-

ods—should be defi ned for the software process. 

 K E Y 
C O N C E P T S 
    alpha test . . . . . . . 485  
    beta test  . . . . . . . 485  
    bottom-up 
integration  . . . . . . 477  
    class testing . . . . . 481  
    cluster testing. . . . 482  
    completion  . . . . . . 472  
    confi guration 
review . . . . . . . . . 484  
    debugging. . . . . . . 488  
    deployment 
testing . . . . . . . . . 487  
    drivers . . . . . . . . . 475  
    independent test 
group . . . . . . . . . . 469  
    integration 
testing . . . . . . . . . 475  
    object-oriented 
software  . . . . . . . 481  
    performance 
testing . . . . . . . . . 487  
    recovery testing  . . 486  
    regression testing . 478  
    security testing . . . 486  
    smoke testing . . . . 479  
    stress testing  . . . . 487  
    stubs  . . . . . . . . . . 475  
    system testing  . . . 486  
    test strategies for 
MobileApps  . . . . . 483  
    test strategies for 
WebApps  . . . . . . . 482  

  What is it?   Software is tested to 
uncover errors that were made in-
advertently as it was designed and 
constructed. But how do you conduct 

the tests? Should you develop a formal plan for 
your tests? Should you test the entire program 
as a whole or run tests only on a small part 
of it? Should you rerun tests you’ve already 

conducted as you add new components to a 
large system? When should you involve the 
customer? These and many other questions are 
answered when you develop a software testing 
strategy. 

   Who does it?   A strategy for software testing is 
developed by the project manager, software 
engineers, and testing specialists. 

 Q U I C K 
L O O K 

pre22126_ch22_466-495.indd   466pre22126_ch22_466-495.indd   466 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  467

 A number of software testing strategies have been proposed in the literature. 

All provide you with a template for testing and all have the following generic 

characteristics:

    •  To perform effective testing, you should conduct effective technical re-

views (Chapter 20). By doing this, many errors will be eliminated before 

testing commences.  

   •  Testing begins at the component level and works “outward” toward the in-

tegration of the entire computer-based system.  

   •  Different testing techniques are appropriate for different software engi-

neering approaches and at different points in time.  

   •  Testing is conducted by the developer of the software and (for large proj-

ects) an independent test group.  

   •  Testing and debugging are different activities, but debugging must be ac-

commodated in any testing strategy.    

      A strategy for software testing must accommodate low-level tests that are 

necessary to verify that a small source code segment has been correctly imple-

mented as well as high-level tests that validate major system functions against 

customer requirements. A strategy should provide guidance for the practitioner 

and a set of milestones for the manager. Because the steps of the test strategy 

occur at a time when deadline pressure begins to rise, progress must be measur-

able and problems should surface as early as possible. 

 WebRef 
 Useful resources for 
software testing can 
be found at 
  www.mtsu
.edu/˜storm/  . 

    thread-based 
testing . . . . . . . . . 482  
    top-down 
integration  . . . . . . 476  
    unit testing. . . . . . 473  
    validation . . . . . . . 468  
    validation testing  . 483  
    verifi cation . . . . . . 468  
  

   Why is it important?   Testing often accounts 
for more project effort than any other software 
engineering action. If it is conducted hap-
hazardly, time is wasted, unnecessary effort 
is expended, and even worse, errors sneak 
through undetected. It would therefore seem 
reasonable to establish a systematic strategy 
for testing software. 

   What are the steps?   Testing begins “in 
the small” and progresses “to the large.” 
By this we mean that early testing focuses 
on a single component or on a small group 
of related components and applies tests to 
uncover errors in the data and processing 
logic that have been encapsulated by the 
component(s). After components are tested 
they must be integrated until the complete 
system is constructed. At this point, a series 

of high-order tests are executed to uncover er-
rors in meeting customer requirements. As er-
rors are uncovered, they must be diagnosed 
and corrected using a process that is called 
debugging. 

   What is the work product?   A  Test Specifi ca-
tion  documents the software team’s approach 
to testing by defi ning a plan that describes an 
overall strategy and a procedure that defi nes 
specifi c testing steps and the types of tests that 
will be conducted. 

   How do I ensure that I’ve done it right?   By 
reviewing the  Test Specifi cation  prior to testing, 
you can assess the completeness of test cases 
and testing tasks. An effective test plan and 
procedure will lead to the orderly construction 
of the software and the discovery of errors at 
each stage in the construction process.  

pre22126_ch22_466-495.indd   467pre22126_ch22_466-495.indd   467 13/12/13   6:14 PM13/12/13   6:14 PM



468 PART THREE  QUALITY MANAGEMENT

   22.1.1   Verifi cation and Validation 

 Software testing is one element of a broader topic that is often referred to as ver-

ifi cation and validation (V&V).  Verifi cation  refers to the set of tasks that ensure 

that software correctly implements a specifi c function.  Validation  refers to a dif-

ferent set of tasks that ensure that the software that has been built is traceable to 

customer requirements. Boehm [Boe81] states this another way:  

  Verifi cation: “Are we building the product right?” 

 Validation: “Are we building the right product?”  

 The defi nition of V&V encompasses many software quality assurance activities 

(Chapter 21).  1    

 Verifi cation and validation includes a wide array of SQA activities: technical 

reviews, quality and confi guration audits, performance monitoring, simulation, 

feasibility study, documentation review, database review, algorithm analysis, de-

velopment testing, usability testing, qualifi cation testing, acceptance testing, and 

installation testing. Although testing plays an extremely important role in V&V, 

many other activities are also necessary. 

      Testing does provide the last bastion from which quality can be assessed and, 

more pragmatically, errors can be uncovered. But testing should not be viewed 

as a safety net. As they say, “You can’t test in quality. If it’s not there before you 

begin testing, it won’t be there when you’re fi nished testing.” Quality is incor-

porated into software throughout the process of software engineering. Proper 

application of methods and tools, effective technical reviews, and solid manage-

ment and measurement all lead to quality that is confi rmed during testing. 

 Miller [Mil77] relates software testing to quality assurance by stating that 

“the underlying motivation of program testing is to affi rm software quality with 

methods that can be economically and effectively applied to both large-scale and 

small-scale systems.”  

    22.1.2   Organizing for Software Testing 

 For every software project, there is an inherent confl ict of interest that occurs 

as testing begins. The people who have built the software are now asked to test 

the software. This seems harmless in itself; after all, who knows the program 

better than its developers? Unfortunately, these same developers have a vested 

interest in demonstrating that the program is error-free, that it works according 

to customer requirements, and that it will be completed on schedule and within 

budget. Each of these interests mitigates against thorough testing. 

   Don’t get sloppy 
and view testing as 
a “safety net” that 
will catch all errors 
that occurred because 
of weak software 
engineering practices. 
It won’t. Stress quality 
and error detection 
throughout the soft-
ware process. 

    uote: 

 “Optimism is 
the occupational 
hazard of 
programming; 
testing is the 
treatment.” 

 Kent Beck 

    uote: 

 “Testing is the 
unavoidable part 
of any responsible 
effort to develop a 
software system.” 

 William Howden 

  1  It should be noted that there is a strong divergence of opinion about what types of testing con-

stitute “validation.” Some people believe that  all  testing is verifi cation and that validation is 

conducted when requirements are reviewed and approved, and later, by the user when the sys-

tem is operational. Other people view unit and integration testing (Sections 22.3.1 and 22.3.2) as 

verifi cation and higher-order testing (Sections 22.6 and 22.7) as validation. 

pre22126_ch22_466-495.indd   468pre22126_ch22_466-495.indd   468 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  469

 From a psychological point of view, software analysis and design (along with 

coding) are constructive tasks. The software engineer analyzes, models, and 

then creates a computer program and its documentation. Like any builder, the 

software engineer is proud of the edifi ce that has been built and looks askance at 

anyone who attempts to tear it down. When testing commences, there is a subtle, 

yet defi nite, attempt to “break” the thing that the software engineer has built. 

From the point of view of the builder, testing can be considered to be (psycholog-

ically) destructive. So the builder treads lightly, designing and executing tests 

that will demonstrate that the program works, rather than to uncover errors. 

Unfortunately, errors will be nevertheless present. And, if the software engineer 

doesn’t fi nd them, the customer will! 

 There are often a number of misconceptions that you might infer from the 

preceding discussion: (1) that the developer of software should do no testing at 

all, (2) that the software should be “tossed over the wall” to strangers who will test 

it mercilessly, (3) that testers get involved with the project only when the testing 

steps are about to begin. Each of these statements is incorrect. 

      The software developer is always responsible for testing the individual units 

(components) of the program, ensuring that each performs the function or ex-

hibits the behavior for which it was designed. In many cases, the developer also 

conducts integration testing—a testing step that leads to the construction (and 

test) of the complete software architecture. Only after the software architecture 

is complete does an independent test group become involved. 

 The role of an  independent test group  (ITG) is to remove the inherent problems 

associated with letting the builder test the thing that has been built. Independent 

testing removes the confl ict of interest that may otherwise be present. After all, 

ITG personnel are paid to fi nd errors.  
 However, you don’t turn the program over to ITG and walk away. The devel-

oper and the ITG work closely throughout a software project to ensure that thor-

ough tests will be conducted. While testing is conducted, the developer must be 

available to correct errors that are uncovered. 

 The ITG is part of the software development project team in the sense that it 

becomes involved during analysis and design and stays involved (planning and 

specifying test procedures) throughout a large project. However, in many cases 

the ITG reports to the software quality assurance organization, thereby achiev-

ing a degree of independence that might not be possible if it were a part of the 

software engineering team. 

    22.1.3   Software Testing Strategy—The Big Picture 

 The software process may be viewed as the spiral illustrated in  Figure 22.1 . 

Initially, system engineering defi nes the role of software and leads to software 

requirements analysis, where the information domain, function, behavior, per-

formance, constraints, and validation criteria for software are established. Mov-

ing inward along the spiral, you come to design and fi nally to coding. To develop 

   An independent 
test group does not 
have the “confl ict of 
interest” that builders 
of the software might 
experience. 

    uote: 

 “The fi rst mistake 
that people make 
is thinking that 
the testing team 
is responsible for 
assuring quality.” 

 Brian Marick 

pre22126_ch22_466-495.indd   469pre22126_ch22_466-495.indd   469 13/12/13   6:14 PM13/12/13   6:14 PM



470 PART THREE  QUALITY MANAGEMENT

computer software, you spiral inward along streamlines that decrease the level 

of abstraction on each turn.          

  A strategy for software testing may also be viewed in the context of the spiral 

( Figure 22.1 ).  Unit testing  begins at the vortex of the spiral and concentrates on 

each unit (e.g., component, class, or WebApp content object) of the software as 

implemented in source code. Testing progresses by moving outward along the 

spiral to  integration testing,  where the focus is on design and the construction of 

the software architecture. Taking another turn outward on the spiral, you en-

counter  validation testing,  where requirements established as part of require-

ments modeling are validated against the software that has been constructed. 

Finally, you arrive at  system testing,  where the software and other system ele-

ments are tested as a whole. To test computer software, you spiral out along 

streamlines that broaden the scope of testing with each turn. 

      Considering the process from a procedural point of view, testing within the 

context of software engineering is actually a series of four steps that are im-

plemented sequentially. The steps are shown in  Figure 22.2 . Initially, tests focus 

on each component individually, ensuring that it functions properly as a unit. 

Hence, the name  unit testing.  Unit testing makes heavy use of testing techniques 

that exercise specifi c paths in a component’s control structure to ensure com-

plete coverage and maximum error detection. Next, components must be assem-

bled or integrated to form the complete software package.  Integration testing  

addresses the issues associated with the dual problems of verifi cation and pro-

gram construction. Test-case design techniques that focus on inputs and out-

puts are more prevalent during integration, although techniques that exercise 

specifi c program paths may be used to ensure coverage of major control paths. 

After the software has been integrated (constructed), a set of  high-order tests  is 

conducted. Validation criteria (established during requirements analysis) must 

be evaluated.  Validation testing  provides fi nal assurance that software meets all 

functional, behavioral, and performance requirements.      

 What is 
the overall 

strategy for 
software testing? 

?

 WebRef 
 Useful resources for 
software testers can 
be found at   www
.SQAtester.com  . 

System testing
Validation testing
Integration testing

Unit testing

Code

Design
Requirements

System engineering

 FIGURE 22.1

 Testing 
strategy

pre22126_ch22_466-495.indd   470pre22126_ch22_466-495.indd   470 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  471

 The last high-order testing step falls outside the boundary of software engi-

neering and into the broader context of computer system engineering. Software, 

once validated, must be combined with other system elements (e.g., hardware, 

people, databases).  System testing  verifi es that all elements mesh properly and 

that overall system function/performance is achieved.     

 FIGURE 22.2

 Software test-
ing steps

Unit
testCode

Design

Requirements

Testing
“direction”

Integration test

High-order
tests

   Preparing for Testing     Preparing for Testing  

  The scene:  Doug Miller’s offi ce, as 
component-level design continues and 

construction of certain components begins. 

  The players:  Doug Miller, software engineering man-
ager, Vinod, Jamie, Ed, and Shakira—members of the 
 SafeHome  software engineering team. 

  The conversation:  

  Doug:  It seems to me that we haven’t spent enough 
time talking about testing. 

  Vinod:  True, but we’ve all been just a little busy. And 
besides, we have been thinking about it . . . in fact, 
more than thinking. 

  Doug (smiling):  I know . . . we’re all overloaded, but 
we’ve still got to think down the line. 

  Shakira:  I like the idea of designing unit tests before I 
begin coding any of my components, so that’s what I’ve 
been trying to do. I have a pretty big fi le of tests to run 
once code for my components is complete. 

  Doug:  That’s an Extreme Programming [an agile soft-
ware development process, see Chapter 5] concept, no? 

  Ed:  It is. Even though we’re not using Extreme Program-
ming per se, we decided that it’d be a good idea to 
design unit tests before we build the component—the 
design gives us all of the information we need. 

  Jamie:  I’ve been doing the same thing. 

  Vinod:  And I’ve taken on the role of the integrator, so 
every time one of the guys passes a component to me, 
I’ll integrate it and run a series of regression tests on the 
partially integrated program. I’ve been working to design 
a set of appropriate tests for each function in the system. 

  Doug (to Vinod):  How often will you run the tests? 

  Vinod:  Every day . . . until the system is inte-
grated . . .well, I mean until the software increment we 
plan to deliver is integrated. 

  Doug:  You guys are way ahead of me! 

  Vinod (laughing):  Anticipation is everything in the 
software biz, Boss.  

 SAFEHOME 

pre22126_ch22_466-495.indd   471pre22126_ch22_466-495.indd   471 13/12/13   6:14 PM13/12/13   6:14 PM



472 PART THREE  QUALITY MANAGEMENT

     22.1.4   Criteria for Completion of Testing 

 A classic question arises every time software testing is discussed: “When are we 

done testing—how do we know that we’ve tested enough?” Sadly, there is no de-

fi nitive answer to this question, but there are a few pragmatic responses and 

early attempts at empirical guidance.     

  One response to the question is: “You're never done testing; the burden simply 

shifts from you (the software engineer) to the end user.” Every time the user exe-

cutes a computer program, the program is being tested. This sobering fact un-

derlines the importance of other software quality assurance activities. Another 

response (somewhat cynical but nonetheless accurate) is: “You’re done testing 

when you run out of time or you run out of money.” 

 Although few practitioners would argue with these responses, you need more 

rigorous criteria for determining when suffi cient testing has been conducted. 

The  cleanroom software engineering  approach (Chapter 28) suggests statistical 

use techniques [Kel00] that execute a series of tests derived from a statistical 

sample of all possible program executions by all users from a targeted popula-

tion. By collecting metrics during software testing and making use of existing 

statistical models, it is possible to develop meaningful guidelines for answering 

the question: “When are we done testing?”  

       22.2  STRATEGIC ISSUES 

  Later in this chapter, we present a systematic strategy for software testing. But 

even the best strategy will fail if a series of overriding issues are not addressed. 

Tom Gilb [Gil95] argues that a software testing strategy will succeed only when 

software testers: (1) specify product requirements in a quantifi able manner long 

before testing commences, (2) state testing objectives explicitly, (3) understand 

the users of the software and develop a profi le for each user category, (4) develop 

a testing plan that emphasizes “rapid cycle testing,”  2   (5) build “robust” software 

that is designed to test itself (the concept of antibugging is discussed in Section 

22.3.1), (6) use effective technical reviews as a fi lter prior to testing, (7) conduct 

technical reviews to assess the test strategy and test cases themselves, and (8) 

develop a continuous improvement approach (Chapter 37) for the testing 

process.              

 When are 
we fi nished 

testing? 
?

    uote: 

 “Testing only 
to end-user 
requirements is 
like inspecting a 
building based 
on the work done 
by the interior 
designer at the 
expense of the 
foundations, 
girders, and 
plumbing.” 

 Boris Beizer 

 What 
guidelines 

lead to a 
successful 
software testing 
strategy? 

?

 WebRef 
 An excellent list of 
testing resources can 
be found at   www
.SQAtester.com  . 

  2  Gilb [Gil95] recommends that a software team “learn to test in rapid cycles (2 percent of project 

effort) of customer-useful, at least fi eld ‘trialable,’ increments of functionality and/or quality 

improvement.” The feedback generated from these rapid cycle tests can be used to control 

quality levels and the corresponding test strategies. 

pre22126_ch22_466-495.indd   472pre22126_ch22_466-495.indd   472 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  473

    22.3  TEST STRATEGIES FOR CONVENTIONAL SOFTWARE  3    

  Many strategies can be used to test software. At one extreme, you can wait until 

the system is fully constructed and then conduct tests on the overall system in 

the hope of fi nding errors. This approach, although appealing, simply does not 

work. It will result in buggy software that disappoints all stakeholders. At the 

other extreme, you could conduct tests on a daily basis, whenever any part of the 

system is constructed. 

 A testing strategy that is chosen by many software teams falls between the two 

extremes. It takes an incremental view of testing, beginning with the testing of 

individual program units, moving to tests designed to facilitate the integration of 

the units (sometimes on a daily basis), and culminating with tests that exercise 

the constructed system. Each of these classes of tests is described in the sections 

that follow. 

   22.3.1   Unit Testing 

  Unit testing  focuses verifi cation effort on the smallest unit of software design—

the software component or module. Using the component-level design descrip-

tion as a guide, important control paths are tested to uncover errors within the 

boundary of the module. The relative complexity of tests and the errors those 

tests uncover is limited by the constrained scope established for unit testing. The 

unit test focuses on the internal processing logic and data structures within the 

boundaries of a component. This type of testing can be conducted in parallel for 

multiple components.     

   Unit Test Considerations.   Unit tests are illustrated schematically in  Figure 22.3 . 

The module interface is tested to ensure that information properly fl ows into 

and out of the program unit under test. Local data structures are examined to 

ensure that data stored temporarily maintains its integrity during all steps in 

an algorithm’s execution. All independent paths through the control structure 

are exercised to ensure that all statements in a module have been executed at 

least once. Boundary conditions are tested to ensure that the module operates 

properly at boundaries established to limit or restrict processing. And fi nally, all 

error-handling paths are tested.      

 Data fl ow across a component interface is tested before any other testing is 

initiated. If data do not enter and exit properly, all other tests are moot. In ad-

dition, local data structures should be exercised and the local impact on global 

data should be ascertained (if possible) during unit testing. 

 It’s not a bad idea to 
design unit test cases 
 before  you develop 
code for a component. 
It helps ensure that 
you’ll develop code 
that will pass the tests. 

  3  Throughout this book, we use the terms  conventional software  or  traditional software  to refer 

to common hierarchical or call-and-return software architectures that are frequently encoun-

tered in a variety of application domains. Traditional software architectures are  not  object 

oriented and do not encompass WebApps or MobileApps. 

pre22126_ch22_466-495.indd   473pre22126_ch22_466-495.indd   473 13/12/13   6:14 PM13/12/13   6:14 PM



474 PART THREE  QUALITY MANAGEMENT

      Selective testing of execution paths is an essential task during the unit test. 

Test cases should be designed to uncover errors due to erroneous computations, 

incorrect comparisons, or improper control fl ow. 

      Boundary testing is one of the most important unit testing tasks. Software 

often fails at its boundaries. That is, errors often occur when the  n th element 

of an  n -dimensional array is processed, when the  i th repetition of a loop with  i  

passes is invoked, when the maximum or minimum allowable value is encoun-

tered. Test cases that exercise data structure, control fl ow, and data values just 

below, at, and just above maxima and minima are very likely to uncover errors. 

 A good design anticipates error conditions and establishes error-handling 

paths to reroute or cleanly terminate processing when an error does occur. Your-

don [You75] calls this approach  antibugging.  Unfortunately, there is a tendency 

to incorporate error handling into software and then never test the error han-

dling. If error-handling paths are implemented, they must be tested. 

 Among the potential errors that should be tested when error handling is eval-

uated are: (1) error description is unintelligible, (2) error noted does not corre-

spond to error encountered, (3) error condition causes system intervention prior 

to error handling, (4) exception-condition processing is incorrect, or (5) error 

description does not provide enough information to assist in the location of the 

cause of the error. 

   Unit-Test Procedures.   Unit testing is normally considered as an adjunct to 

the coding step. The design of unit tests can occur before coding begins or after 

source code has been generated. A review of design information provides guid-

ance for establishing test cases that are likely to uncover errors in each of the 

 What 
errors are 

commonly found 
during unit 
testing? 

?

   Be sure that you 
design tests to execute 
every error-handling 
path. If you don’t, the 
path may fail when it 
is invoked, exacerbat-
ing an already dicey 
situation. 

Test
cases

Module Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths

 FIGURE 22.3

 Unit test

pre22126_ch22_466-495.indd   474pre22126_ch22_466-495.indd   474 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  475

categories discussed earlier. Each test case should be coupled with a set of ex-

pected results. 

 Because a component is not a stand-alone program, driver and/or stub soft-

ware must often be developed for each unit test. The unit test environment is 

illustrated in  Figure 22.4 . In most applications a  driver  is nothing more than a 

“main program” that accepts test-case data, passes such data to the component 

(to be tested), and prints relevant results.  Stubs  serve to replace modules that are 

subordinate (invoked by) the component to be tested. A stub or “dummy subpro-

gram” uses the subordinate module’s interface, may do minimal data manipula-

tion, prints verifi cation of entry, and returns control to the module undergoing 

testing.      

      Drivers and stubs represent testing “overhead.” That is, both are software that 

must be coded (formal design is not commonly applied) but that is not delivered 

with the fi nal software product. If drivers and stubs are kept simple, actual over-

head is relatively low. Unfortunately, many components cannot be adequately 

unit tested with “simple” overhead software. In such cases, complete testing can 

be postponed until the integration test step (where drivers or stubs are also used). 

     22.3.2   Integration Testing 

      A neophyte in the software world might ask a seemingly legitimate question once 

all modules have been unit tested: “If they all work individually, why do you doubt 

that they’ll work when we put them together?” The problem, of course, is “put-

ting them together”—interfacing. Data can be lost across an interface; one com-

ponent can have an inadvertent, adverse effect on another; subfunctions, when 

combined, may not produce the desired major function; individually acceptable 

   There are some situa-
tions in which you will 
not have the resources 
to do comprehensive 
unit testing. Select crit-
ical modules and those 
with high cyclomatic 
complexity and unit-
test only those. 

   Taking the “big bang” 
approach to integration 
is a lazy strategy that 
is doomed to failure. 
Integrate incremen-
tally, testing as you go. 

Test
cases

Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths

Module
to be
tested

Stub Stub

Driver

RESULTS

 FIGURE 22.4

 Unit-test 
environment

pre22126_ch22_466-495.indd   475pre22126_ch22_466-495.indd   475 13/12/13   6:14 PM13/12/13   6:14 PM



476 PART THREE  QUALITY MANAGEMENT

imprecision may be magnifi ed to unacceptable levels; global data structures can 

present problems. Sadly, the list goes on and on. 

 Integration testing is a systematic technique for constructing the software ar-

chitecture while at the same time conducting tests to uncover errors associated 

with interfacing. The objective is to take unit-tested components and build a pro-

gram structure that has been dictated by design. 

 There is often a tendency to attempt nonincremental integration; that is, to 

construct the program using a “big bang” approach. All components are com-

bined in advance and the entire program is tested as a whole. Chaos usually 

results! Errors are encountered, but correction is diffi cult because isolation of 

causes is complicated by the vast expanse of the entire program. 

 Incremental integration is the antithesis of the big bang approach. The pro-

gram is constructed and tested in small increments, where errors are easier to 

isolate and correct; interfaces are more likely to be tested completely; and a sys-

tematic test approach may be applied. In the paragraphs that follow, a number of 

different incremental integration strategies are discussed. 

       Top-Down Integration.    Top-down integration testing  is an incremental ap-

proach to construction of the software architecture. Modules are integrated by 

moving downward through the control hierarchy, beginning with the main con-

trol module (main program). Modules subordinate (and ultimately subordinate) 

to the main control module are incorporated into the structure in either a depth-

fi rst or breadth-fi rst manner. 

 Referring to  Figure 22.5 ,  depth-fi rst integration  integrates all components on a 

major control path of the program structure. Selection of a major path is some-

what arbitrary and depends on application-specifi c characteristics. For example, 

selecting the left-hand path, components M1, M2 , M5 would be integrated fi rst. 

Next, M8 or (if necessary for proper functioning of M2) M6 would be integrated. 

Then, the central and right-hand control paths are built.  Breadth-fi rst integration  

incorporates all components directly subordinate at each level, moving across 

the structure horizontally. From the fi gure, components M2, M3, and M4 would 

be integrated fi rst. The next control level, M5, M6, and so on, follows. The integra-

tion process is performed in a series of fi ve steps:     

      1.  The main control module is used as a test driver and stubs are substituted 

for all components directly subordinate to the main control module.  

    2.  Depending on the integration approach selected (i.e., depth or 

breadth fi rst), subordinate stubs are replaced one at a time with actual 

components.  

    3.  Tests are conducted as each component is integrated.  

    4.  On completion of each set of tests, another stub is replaced with the real 

component.  

   When you develop 
a project schedule, 
you’ll have to consider 
the manner in which 
integration will occur 
so that components 
will be available when 
needed. 

 What are 
the steps 

for top-down 
integration? 

?

pre22126_ch22_466-495.indd   476pre22126_ch22_466-495.indd   476 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  477

    5.  Regression testing (discussed later in this section) may be conducted to 

ensure that new errors have not been introduced.  

  The process continues from step 2 until the entire program structure is built.      

 The top-down integration strategy verifi es major control or decision points early 

in the test process. In a “well-factored” program structure, decision making occurs 

at upper levels in the hierarchy and is therefore encountered fi rst. If major control 

problems do exist, early recognition is essential. If depth-fi rst integration is selected, 

a complete function of the software may be implemented and demonstrated. Early 

demonstration of functional capability is a confi dence builder for all stakeholders. 

        Bottom-Up Integration.    Bottom-up integration testing,  as its name implies, be-

gins construction and testing with  atomic modules  (i.e., components at the lowest 

levels in the program structure). Because components are integrated from the 

bottom up, the functionality provided by components subordinate to a given level 

is always available and the need for stubs is eliminated. A bottom-up integration 

strategy may be implemented with the following steps: 

          1.  Low-level components are combined into clusters (sometimes called 

 builds ) that perform a specifi c software subfunction.  

    2.  A  driver  (a control program for testing) is written to coordinate test-case 

input and output.  

    3.  The cluster is tested.  

    4.  Drivers are removed and clusters are combined moving upward in the 

program structure.  

 What 
problems 

may be 
encountered 
when top-down 
integration is 
chosen? 

?

 What are 
the steps 

for bottom-up 
integration? 

?

M1

M3M2

M7M6M5

M8

M4

 FIGURE 22.5

 Top-down 
integration

pre22126_ch22_466-495.indd   477pre22126_ch22_466-495.indd   477 13/12/13   6:14 PM13/12/13   6:14 PM



478 PART THREE  QUALITY MANAGEMENT

       Integration follows the pattern illustrated in  Figure 22.6 . Components are 

combined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver 

(shown as a dashed block). Components in clusters 1 and 2 are subordinate to M 
a . 

Drivers D1 and D2 are removed and the clusters are interfaced directly to M 
a
 . 

Similarly, driver D3 for cluster 3 is removed prior to integration with module Mb. 

Both M a  and M 
b
  will ultimately be integrated with component M 

c
 , and so forth. 

 As integration moves upward, the need for separate test drivers lessens. In 

fact, if the top two levels of program structure are integrated top down, the num-

ber of drivers can be reduced substantially and integration of clusters is greatly 

simplifi ed.          

    Regression Testing.   Each time a new module is added as part of integration 

testing, the software changes. New data fl ow paths are established, new I/O 

may occur, and new control logic is invoked. Side effects associated with these 

changes may cause problems with functions that previously worked fl awlessly. In 

the context of an integration test strategy,  regression testing  is the reexecution 

of some subset of tests that have already been conducted to ensure that changes 

have not propagated unintended side effects. Regression testing helps to ensure 

that changes (due to testing or for other reasons) do not introduce unintended 

behavior or additional errors. 

 Regression testing may be conducted manually, by reexecuting a subset of all 

test cases or using automated capture/playback tools.  Capture/playback tools  

enable the software engineer to capture test cases and results for subsequent 

   Regression testing is 
an important strategy 
for reducing “side ef-
fects.” Run regression 
tests every time a 
major change is made 
to the software (includ-
ing the integration of 
new components). 

   Bottom-up integration 
eliminates the need for 
complex stubs. 

Mc

Ma

D2 D3D1

Mb

Cluster 1

Cluster 3

Cluster 2

 FIGURE 22.6

 Bottom-up 
integration

pre22126_ch22_466-495.indd   478pre22126_ch22_466-495.indd   478 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  479

playback and comparison. The  regression test suite  (the subset of tests to be exe-

cuted) contains three different classes of test cases:

    •  A representative sample of tests that will exercise all software functions.  

   •  Additional tests that focus on software functions that are likely to be af-

fected by the change.  

   •  Tests that focus on the software components that have been changed.    

      As integration testing proceeds, the number of regression tests can grow quite 

large. Therefore, the regression test suite should be designed to include only 

those tests that address one or more classes of errors in each of the major pro-

gram functions. 

   Smoke Testing.    Smoke testing  is an integration testing approach that is commonly 

used when product software is developed. It is designed as a pacing mechanism for 

time-critical projects, allowing the software team to assess the project on a frequent 

basis. In essence, the smoke-testing approach encompasses the following activities:

     1.  Software components that have been translated into code are integrated 

into a  build.  A build includes all data fi les, libraries, reusable modules, 

and engineered components that are required to implement one or more 

product functions.  

    2.  A series of tests is designed to expose errors that will keep the build 

from properly performing its function. The intent should be to uncover 

“show-stopper” errors that have the highest likelihood of throwing the 

software project behind schedule.  

    3.  The build is integrated with other builds, and the entire product (in its 

current form) is smoke tested daily. The integration approach may be top 

down or bottom up.     

 The daily frequency of testing gives both managers and practitioners a realis-

tic assessment of integration testing progress. McConnell [McC96] describes the 

smoke test in the following manner:

  The smoke test should exercise the entire system from end to end. It does not have to 

be exhaustive, but it should be capable of exposing major problems. The smoke test 

should be thorough enough that if the build passes, you can assume that it is stable 

enough to be tested more thoroughly.       

  Smoke testing provides a number of benefi ts when it is applied on complex, 

time-critical software projects:

    •   Integration risk is minimized.  Because smoke tests are conducted daily, 

incompatibilities and other show-stopper errors are uncovered early, 

thereby reducing the likelihood of serious schedule impact when errors 

are uncovered.  

   Smoke testing might 
be characterized as 
a rolling integration 
strategy. The software 
is rebuilt (with new 
components added) 
and smoke tested 
every day. 

  uote: 

 “Treat the daily 
build as the 
heartbeat of the 
project. If there’s 
no heartbeat, the 
project is dead.” 

 Jim McCarthy 

 What 
benefi ts can 

be derived from 
smoke testing? 

?

pre22126_ch22_466-495.indd   479pre22126_ch22_466-495.indd   479 13/12/13   6:14 PM13/12/13   6:14 PM



480 PART THREE  QUALITY MANAGEMENT

   •   The quality of the end product is improved.  Because the approach is 

construction (integration) oriented, smoke testing is likely to uncover 

functional errors as well as architectural and component-level design 

errors. If these errors are corrected early, better product quality will 

result.  

   •   Error diagnosis and correction are simplifi ed.  Like all integration testing 

approaches, errors uncovered during smoke testing are likely to be asso-

ciated with “new software increments”—that is, the software that has just 

been added to the build(s) is a probable cause of a newly discovered error.  

   •   Progress is easier to assess.  With each passing day, more of the software 

has been integrated and more has been demonstrated to work. This im-

proves team morale and gives managers a good indication that progress is 

being made.    

   Integration Test Work Products.   An overall plan for integration of the software 

and a description of specifi c tests is documented in a  Test Specifi cation.  This 

work product incorporates a test plan and a test procedure and becomes part of 

the software confi guration. Testing is divided into phases and builds that address 

specifi c functional and behavioral characteristics of the software. For example, 

integration testing for the  SafeHome  security system might be divided into the 

following test phases: user interaction, sensor processing, communications func-

tions, and alarm processing. 

 Each of integration test phase delineates a broad functional category within 

the software and generally can be related to a specifi c domain within the soft-

ware architecture. Therefore, program builds (groups of modules) are created to 

correspond to each phase. 

 A schedule for integration, the development of overhead software, and re-

lated topics are also discussed as part of the test plan. Start and end dates for 

each phase are established and “availability windows” for unit-tested modules 

are defi ned. A brief description of overhead software (stubs and drivers) con-

centrates on characteristics that might require special effort. Finally, test envi-

ronment and resources are described. Unusual hardware confi gurations, exotic 

simulators, and special test tools or techniques are a few of many topics that may 

also be discussed. 

 The detailed testing procedure that is required to accomplish the test plan is 

described next. The order of integration and corresponding tests at each inte-

gration step are described. A listing of all test cases (annotated for subsequent 

reference) and expected results are also included. 

 A history of actual test results, problems, or peculiarities is recorded in a  Test 

Report  that can be appended to the  Test Specifi cation,  if desired. Information 

contained in this section can be vital during software maintenance. Appropriate 

references and appendixes are also presented. 

pre22126_ch22_466-495.indd   480pre22126_ch22_466-495.indd   480 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  481

        22.4  TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE  4    

 The objective of testing, stated simply, is to fi nd the greatest possible number of 

errors with a manageable amount of effort applied over a realistic time span. Al-

though this fundamental objective remains unchanged for object-oriented soft-

ware, the nature of object-oriented software changes both testing strategy and 

testing tactics (Chapter 24). 

    22.4.1   Unit Testing in the OO Context 

 When object-oriented software is considered, the concept of the unit changes. 

Encapsulation drives the defi nition of classes and objects. This means that each 

class and each instance of a class packages attributes (data) and the operations 

that manipulate these data. An encapsulated class is usually the focus of unit 

testing. However, operations (methods) within the class are the smallest testable 

units. Because a class can contain a number of different operations, and a par-

ticular operation may exist as part of a number of different classes, the tactics 

applied to unit testing must change. 

      You can no longer test a single operation in isolation (the conventional view 

of unit testing) but rather as part of a class. To illustrate, consider a class hier-

archy in which an operation  X  is defi ned for the superclass and is inherited by 

a number of subclasses. Each subclass uses operation  X , but it is applied within 

the context of the private attributes and operations that have been defi ned for 

the subclass. Because the context in which operation  X  is used varies in subtle 

ways, it is necessary to test operation  X  in the context of each of the subclasses. 

This means that testing operation  X  in a stand-alone fashion (the conventional 

unit-testing approach) is usually ineffective in the object-oriented context. 

 Class testing for OO software is the equivalent of unit testing for conventional 

software. Unlike unit testing of conventional software, which tends to focus on 

the algorithmic detail of a module and the data that fl ow across the module in-

terface, class testing for OO software is driven by the operations encapsulated by 

the class and the state behavior of the class. 

    22.4.2   Integration Testing in the OO Context 

 Because object-oriented software does not have an obvious hierarchical con-

trol structure, traditional top-down and bottom-up integration strategies (Sec-

tion 22.3.2) have little meaning. In addition, integrating operations one at a time 

into a class (the conventional incremental integration approach) is often impos-

sible because of the “direct and indirect interactions of the components that 

make up the class” [Ber93]. 

  4  Basic object-oriented concepts are presented in Appendix 2. 

   Class testing for OO 
software is analogous 
to module testing for 
conventional software. 
It is not advisable 
to test operations in 
isolation. 

pre22126_ch22_466-495.indd   481pre22126_ch22_466-495.indd   481 13/12/13   6:14 PM13/12/13   6:14 PM



482 PART THREE  QUALITY MANAGEMENT

 There are two different strategies for integration testing of OO systems 

[Bin94b]. The fi rst,  thread-based testing,  integrates the set of classes required 

to respond to one input or event for the system. Each thread is integrated and 

tested individually. Regression testing is applied to ensure that no side effects 

occur. The second integration approach,  use-based testing,  begins the construc-

tion of the system by testing those classes (called  independent classes ) that use 

very few (if any)  server  classes. After the independent classes are tested, the next 

layer of classes, called  dependent classes,  that use the independent classes are 

tested. This sequence of testing layers of dependent classes continues until the 

entire system is constructed. 

      The use of drivers and stubs also changes when integration testing of OO sys-

tems is conducted. Drivers can be used to test operations at the lowest level and 

for the testing of whole groups of classes. A driver can also be used to replace 

the user interface so that tests of system functionality can be conducted prior to 

implementation of the interface. Stubs can be used in situations in which collab-

oration between classes is required but one or more of the collaborating classes 

has not yet been fully implemented. 

  Cluster testing  is one step in the integration testing of OO software. Here, a 

cluster of collaborating classes (determined by examining the CRC and object-

relationship model) is exercised by designing test cases that attempt to uncover 

errors in the collaborations. 

       22.5  TEST STRATEGIES FOR WEBAPPS 

  The strategy for WebApp testing adopts the basic principles for all software test-

ing and applies a strategy and tactics that are used for object-oriented systems. 

The following steps summarize the approach:

     1.  The content model for the WebApp is reviewed to uncover errors.  

    2.  The interface model is reviewed to ensure that all use cases can be 

accommodated.  

    3.  The design model for the WebApp is reviewed to uncover navigation 

errors.  

    4.  The user interface is tested to uncover errors in presentation and/or navi-

gation mechanics.  

    5.  Each functional component is unit tested.  

    6.  Navigation throughout the architecture is tested.  

    7.  The WebApp is implemented in a variety of different environmental con-

fi gurations and is tested for compatibility with each confi guration.  

    8.  Security tests are conducted in an attempt to exploit vulnerabilities in the 

WebApp or within its environment.  

   An important strategy 
for integration testing 
of OO software is 
thread-based testing. 
Threads are sets of 
classes that respond 
to an input or event. 
Use-based tests focus 
on classes that do not 
collaborate heavily 
with other classes. 

   The overall strategy for 
WebApp testing can be 
summarized in the 10 
steps noted here. 

 WebRef 
 Excellent articles on 
WebApp testing can be 
found at   www
.stickyminds.com/
testing.asp   

pre22126_ch22_466-495.indd   482pre22126_ch22_466-495.indd   482 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  483

    9.  Performance tests are conducted.  

    10.  The WebApp is tested by a controlled and monitored population of end 

users. The results of their interaction with the system are evaluated for 

errors.             

  Because many WebApps evolve continuously, the testing process is an ongo-

ing activity, conducted by support staff who use regression tests derived from the 

tests developed when the WebApp was fi rst engineered. Methods for WebApp 

testing are considered in Chapter 25. 

      22.6  TEST STRATEGIES FOR MOBILEAPPS 

  The strategy for testing mobile applications adopts the basic principles for all 

software testing. However, the unique nature of MobileApps demands the con-

sideration of a number of specialized testing approaches:

    •   User-experience testing.  Users are involved early in the development pro-

cess to ensure that the MobileApp lives up to the usability and accessibil-

ity expectations of the stakeholders on all supported devices.  

   •   Device compatibility testing . Testers verify that the MobileApp works cor-

rectly on all required hardware and software combinations.  

   •   Performance testing.  Testers check nonfunctional requirements unique to 

mobile devices (e.g., download times, processor speed, storage capacity, 

power availability).  

   •   Connectivity testing.  Testers ensure that the MobileApp can access any 

needed networks or Web services and can tolerate weak or interrupted 

network access.  

   •   Security testing . Testers ensure that the MobileApp does not compromise 

the privacy or security requirements of its users.  

   •   Testing-in-the-wild . The app is tested under realistic conditions on actual 

user devices in a variety of networking environments around the globe.  

   •  Certifi cation testing. Testers ensure that the MobileApp meets the stan-

dards established by the app stores that will distribute it.    

 Methods for MobileApp testing are considered in Chapter 26. 

      22.7  VALIDATION TEST ING 

       Validation testing begins at the culmination of integration testing, when individ-

ual components have been exercised, the software is completely assembled as 

a package, and interfacing errors have been uncovered and corrected. At the 

pre22126_ch22_466-495.indd   483pre22126_ch22_466-495.indd   483 13/12/13   6:14 PM13/12/13   6:14 PM



484 PART THREE  QUALITY MANAGEMENT

validation or system level, the distinction between different software categories 

disappears. Testing focuses on user-visible actions and user-recognizable output 

from the system. 

 Validation can be defi ned in many ways, but a simple (albeit harsh) defi nition 

is that validation succeeds when software functions in a manner that can be rea-

sonably expected by the customer. At this point a battle-hardened software de-

veloper might protest: “Who or what is the arbiter of reasonable expectations?” 

If a  Software Requirements Specifi cation  has been developed, it describes all us-

er-visible attributes of the software and contains a  Validation Criteria  section 

that forms the basis for a validation-testing approach. 

   22.7.1   Validation-Test Criteria 

 Software validation is achieved through a series of tests that demonstrate confor-

mity with requirements. A test plan outlines the classes of tests to be conducted, 

and a test procedure defi nes specifi c test cases that are designed to ensure that all 

functional requirements are satisfi ed, all behavioral characteristics are achieved, 

all content is accurate and properly presented, all performance requirements are 

attained, documentation is correct, and usability and other requirements are met 

(e.g., transportability, compatibility, error recovery, maintainability). If a deviation 

from specifi cation is uncovered, a  defi ciency list  is created. A method for resolv-

ing defi ciencies (acceptable to stakeholders) must be established. 

    22.7.2   Confi guration Review 

 An important element of the validation process is a  confi guration review.  The 

intent of the review is to ensure that all elements of the software confi guration 

have been properly developed, are cataloged, and have the necessary detail to 

bolster the support activities. The confi guration review, sometimes called an 

audit, is discussed in more detail in Chapter 29. 

    22.7.3   Alpha and Beta Testing 

  It is virtually impossible for a software developer to foresee how the customer 

will really use a program. Instructions for use may be misinterpreted; strange 

combinations of data may be used; output that seemed clear to the tester may be 

unintelligible to a user in the fi eld. 

 When custom software is built for one customer, a series of acceptance tests 

are conducted to enable the customer to validate all requirements. Conducted by 

the end user rather than software engineers, an acceptance test can range from 

an informal “test drive” to a planned and systematically executed series of tests. 

In fact, acceptance testing can be conducted over a period of weeks or months, 

thereby uncovering cumulative errors that might degrade the system over time. 

 If software is developed as a product to be used by many customers, it is 

impractical to perform formal acceptance tests with each one. Most software 

   Like all other testing 
steps, validation tries 
to uncover errors, but 
the focus is at the re-
quirements level—on 
things that will be 
immediately apparent 
to the end user. 

    uote: 

 “Given enough 
eyeballs, all bugs 
are shallow (e.g., 
given a large 
enough beta-tester 
and co-developer 
base, almost every 
problem will be 
characterized 
quickly and the 
fi x obvious to 
someone).” 

 E. Raymond 

pre22126_ch22_466-495.indd   484pre22126_ch22_466-495.indd   484 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  485

product builders use a process called alpha and beta testing to uncover errors 

that only the end user seems able to fi nd. 

      The  alpha test  is conducted at the developer’s site by a representative group 

of end users. The software is used in a natural setting with the developer “looking 

over the shoulder” of the users and recording errors and usage problems. Alpha 

tests are conducted in a controlled environment. 

 The  beta test  is conducted at one or more end-user sites. Unlike alpha testing, 

the developer generally is not present. Therefore, the beta test is a “live” appli-

cation of the software in an environment that cannot be controlled by the devel-

oper. The customer records all problems (real or imagined) that are encountered 

during beta testing and reports these to the developer at regular intervals. As a 

result of problems reported during beta tests, you make modifi cations and then 

prepare for release of the software product to the entire customer base. 

 A variation on beta testing, called  customer acceptance testing , is sometimes 

performed when custom software is delivered to a customer under contract. 

The customer performs a series of specifi c tests in an attempt to uncover errors 

before accepting the software from the developer. In some cases (e.g., a major 

corporate or governmental system) acceptance testing can be very formal and 

encompass many days or even weeks of testing.     

 What is the 
difference 

between an alpha 
test and a beta 
test? 

?

  Preparing for Validation   Preparing for Validation 

  The scene:  Doug Miller’s offi ce, as 
component-level design continues and 

construction of certain components continues. 

  The players:  Doug Miller, software engineering man-
ager, Vinod, Jamie, Ed, and Shakira—members of the 
 SafeHome  software engineering team. 

  The conversation:  

  Doug:  The fi rst increment will be ready for validation 
in what . . . about three weeks? 

  Vinod:  That’s about right. Integration is going well. 
We’re smoke testing daily, fi nding some bugs, but noth-
ing we can’t handle. So far, so good. 

  Doug:  Talk to me about validation. 

  Shakira:  Well, we’ll use all of the use cases as the 
basis for our test design. I haven’t started yet, but I’ll be 
developing tests for all of the use cases that I’ve been 
responsible for. 

  Ed:  Same here. 

  Jamie:  Me too, but we’ve got to get our act together for 
acceptance test and also for alpha and beta testing, no? 

  Doug:  Yes. In fact I’ve been thinking; we could bring 
in an outside contractor to help us with validation. I 
have the money in the budget . . . and it’d give us a 
new point of view. 

  Vinod:  I think we’ve got it under control. 

  Doug:  I’m sure you do, but an ITG gives us an inde-
pendent look at the software. 

  Jamie:  We’re tight on time here, Doug. I for one don’t 
have the time to baby-sit anybody you bring in to do 
the job. 

  Doug:  I know, I know. But if an ITG works from re-
quirements and use cases, not too much babysitting will 
be required. 

  Vinod:  I still think we’ve got it under control. 

  Doug:  I hear you, Vinod, but I am going to overrule 
on this one. Let’s plan to meet with the ITG rep later 
this week. Get ‘em started and see what they come up 
with. 

  Vinod:  Okay, maybe it’ll lighten the load a bit.  

 SAFEHOME 

pre22126_ch22_466-495.indd   485pre22126_ch22_466-495.indd   485 13/12/13   6:14 PM13/12/13   6:14 PM



486 PART THREE  QUALITY MANAGEMENT

        22.8  SYSTEM TEST ING 

   At the beginning of this book, we stressed the fact that software is only one el-

ement of a larger computer-based system. Ultimately, software is incorporated 

with other system elements (e.g., hardware, people, information), and a series 

of system integration and validation tests are conducted. These tests fall out-

side the scope of the software process and are not conducted solely by software 

engineers. However, steps taken during software design and testing can greatly 

improve the probability of successful software integration in the larger system. 

 A classic system-testing problem is “fi nger pointing.” This occurs when an error 

is uncovered, and the developers of different system elements blame each other 

for the problem. Rather than indulging in such nonsense, you should anticipate po-

tential interfacing problems and (1) design error-handling paths that test all infor-

mation coming from other elements of the system, (2) conduct a series of tests that 

simulate bad data or other potential errors at the software interface, (3) record the 

results of tests to use as “evidence” if fi nger pointing does occur, and (4) participate 

in planning and design of system tests to ensure that software is adequately tested. 

   22.8.1   Recovery Testing 

 Many computer-based systems must recover from faults and resume processing 

with little or no downtime. In some cases, a system must be fault tolerant; that is, 

processing faults must not cause overall system function to cease. In other cases, 

a system failure must be corrected within a specifi ed period of time or severe 

economic damage will occur. 

  Recovery testing  is a system test that forces the software to fail in a variety of 

ways and verifi es that recovery is properly performed. If recovery is automatic 

(performed by the system itself), reinitialization, checkpointing mechanisms, 

data recovery, and restart are evaluated for correctness. If recovery requires 

human intervention, the mean-time-to-repair (MTTR) is evaluated to determine 

whether it is within acceptable limits. 

    22.8.2   Security Testing 

 Any computer-based system that manages sensitive information or causes actions 

that can improperly harm (or benefi t) individuals is a target for improper or illegal 

penetration. Penetration spans a broad range of activities: hackers who attempt to 

penetrate systems for sport, disgruntled employees who attempt to penetrate for 

revenge, dishonest individuals who attempt to penetrate for illicit personal gain. 

  Security testing  attempts to verify that protection mechanisms built into a sys-

tem will, in fact, protect it from improper penetration. To quote Beizer [Bei84]: 

“The system’s security must, of course, be tested for invulnerability from frontal 

attack—but must also be tested for invulnerability from fl ank or rear attack.” 

 Given enough time and resources, good security testing will ultimately pene-

trate a system. The role of the system designer is to make penetration cost more 

  uote: 

 “Like death and 
taxes, testing is 
both unpleasant 
and inevitable.” 

 Ed Yourdon 

pre22126_ch22_466-495.indd   486pre22126_ch22_466-495.indd   486 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  487

than the value of the information that will be obtained. Security testing and secu-

rity engineering are discussed in more detail in Chapter 27. 

    22.8.3   Stress Testing 

 Earlier software testing steps result in thorough evaluation of normal program 

functions and performance. Stress tests are designed to confront programs with 

abnormal situations. In essence, the tester who performs stress testing asks: 

“How high can we crank this up before it fails?” 

   Stress testing  executes a system in a manner that demands resources in abnor-

mal quantity, frequency, or volume. For example, (1) special tests may be designed 

that generate 10 interrupts per second, when one or two is the average rate, (2) 

input data rates may be increased by an order of magnitude to determine how input 

functions will respond, (3) test cases that require maximum memory or other re-

sources are executed, (4) test cases that may cause thrashing in a virtual operating 

system are designed, (5) test cases that may cause excessive hunting for disk-resi-

dent data are created. Essentially, the tester attempts to break the program. 

 A variation of stress testing is a technique called  sensitivity testing.  In some 

situations (the most common occur in mathematical algorithms), a very small 

range of data contained within the bounds of valid data for a program may cause 

extreme and even erroneous processing or profound performance degradation. 

Sensitivity testing attempts to uncover data combinations within valid input 

classes that may cause instability or improper processing. 

    22.8.4   Performance Testing 

 For real-time and embedded systems, software that provides required function 

but does not conform to performance requirements is unacceptable. Performance 

testing is designed to test the run-time performance of software within the context 

of an integrated system. Performance testing occurs throughout all steps in the 

testing process. Even at the unit level, the performance of an individual module 

may be assessed as tests are conducted. However, it is not until all system elements 

are fully integrated that the true performance of a system can be ascertained. 

 Performance tests are often coupled with stress testing and usually require both 

hardware and software instrumentation. That is, it is often necessary to measure 

resource utilization (e.g., processor cycles) in an exacting fashion. External instru-

mentation can monitor execution intervals, log events (e.g., interrupts) as they 

occur, and sample machine states on a regular basis. By instrumenting a system, the 

tester can uncover situations that lead to degradation and possible system failure. 

    22.8.5   Deployment Testing 

 In many cases, software must execute on a variety of platforms and under more 

than one operating system environment.  Deployment testing,  sometimes called 

 confi guration testing,  exercises the software in each environment in which it is to 

operate. In addition, deployment testing examines all installation procedures and 

    uote: 

 “If you’re trying 
to fi nd true system 
bugs and you 
haven’t subjected 
your software to 
a real stress test, 
then it’s high time 
you started.” 

 Boris Beizer 

pre22126_ch22_466-495.indd   487pre22126_ch22_466-495.indd   487 13/12/13   6:14 PM13/12/13   6:14 PM



488 PART THREE  QUALITY MANAGEMENT

specialized installation software (e.g., “installers”) that will be used by customers, 

and all documentation that will be used to introduce the software to end users.       

    uote: 

 “As soon as 
we started 
programming, 
we found to our 
surprise that it 
wasn't as easy to 
get programs right 
as we had thought. 
Debugging had to 
be discovered. I 
can remember the 
exact instant when 
I realized that a 
large part of my life 
from then on was 
going to be spent in 
fi nding mistakes in 
my own programs.” 

 Maurice Wilkes, 
discovers 

debugging, 1949 

  Test Planning and Management 

  Objective:  These tools assist a software team 
in planning the testing strategy that is chosen 

and managing the testing process as it is conducted. 

  Mechanics:  Tools in this category address test 
planning, test storage, management and control, 
requirements traceability, integration, error tracking, 
and report generation. Project managers use them to 
supplement project scheduling tools. Testers use these 
tools to plan testing activities and to control the fl ow of 
information as the testing process proceeds. 

  Representative Tools:   5    
  QaTraq Test Case Management Tool,  developed 

by Traq Software (  www.testmanagement.
com  ), “encourages a structured approach to test 
management.” 

  QAComplete,  developed by SmartBear ( http://
smartbear.com/products/qa-tools/test-management ), 
provides a single point of control for managing all 
phases of the agile testing process. 

  TestWorks,  developed by Software Research ( http://
www.testworks.com/ ), contains a fully integrated 
suite of testing tools including tools for test 
management and reporting. 

  OpensourceTesting.org  (  www.opensourcetesting.
org/testmgt.php  ) lists a variety of open-source test 
management and planning tools. 

  OpensourceTestManagement.com  (  http://www.
opensourcetestmanagement.com/  ) lists a 
variety of open-source test management and planning 
tools.  

 SOFTWARE TOOLS 

  5  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  6  In making the statement, we take the broadest possible view of testing. Not only does the devel-

oper test software prior to release, but the customer/user tests the software every time it is used! 

       22.9  THE AR T OF DEBUGGING 

  Software testing is a process that can be systematically planned and specifi ed. 

Test-case design can be conducted, a strategy can be defi ned, and results can be 

evaluated against prescribed expectations. 

  Debugging  occurs as a consequence of successful testing. That is, when a test 

case uncovers an error, debugging is the process that results in the removal of 

the error. Although debugging can and should be an orderly process, it is still 

very much an art. As a software engineer, you are often confronted with a “symp-

tomatic” indication of a software problem as you evaluate the results of a test. 

That is, the external manifestation of the error and its internal cause may have 

no obvious relationship to one another. The poorly understood mental process 

that connects a symptom to a cause is debugging. 

   22.9.1   The Debugging Process 

 Debugging is not testing but often occurs as a consequence of testing.  6   Referring 

to  Figure 22.7 , the debugging process begins with the execution of a test case. 

pre22126_ch22_466-495.indd   488pre22126_ch22_466-495.indd   488 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  489

Results are assessed and a lack of correspondence between expected and actual 

performance is encountered. In many cases, the noncorresponding data are a 

symptom of an underlying cause as yet hidden. The debugging process attempts 

to match symptom with cause, thereby leading to error correction.      

 The debugging process will usually have one of two outcomes: (1) the cause 

will be found and corrected or (2) the cause will not be found. In the latter case, 

the person performing debugging may suspect a cause, design a test case to help 

validate that suspicion, and work toward error correction in an iterative fashion. 

      Why is debugging so diffi cult? In all likelihood, human psychology (see Sec-

tion 22.9.2) has more to do with an answer than software technology. However, a 

few characteristics of bugs provide some clues:

     1.  The symptom and the cause may be geographically remote. That is, the 

symptom may appear in one part of a program, while the cause may ac-

tually be located at a site that is far removed. Highly coupled components 

(Chapter 12) exacerbate this situation.  

    2.  The symptom may disappear (temporarily) when another error is 

corrected.  

    3.  The symptom may actually be caused by nonerrors (e.g., round-off 

inaccuracies).  

    4.  The symptom may be caused by human error that is not easily traced.  

 Why is 
debugging so 

diffi cult? 
?

Regression
tests

Corrections

Identified
causes

Additional tests

Suspected causes

Results

Debugging

Test
Cases

 FIGURE 22.7

 The 
debugging 
process

pre22126_ch22_466-495.indd   489pre22126_ch22_466-495.indd   489 13/12/13   6:14 PM13/12/13   6:14 PM



490 PART THREE  QUALITY MANAGEMENT

    5.  The symptom may be a result of timing problems, rather than processing 

problems.  

    6.  It may be diffi cult to accurately reproduce input conditions (e.g., a re-

al-time application in which input ordering is indeterminate).  

    7.  The symptom may be intermittent. This is particularly common in embed-

ded systems that couple hardware and software inextricably.  

    8.  The symptom may be due to causes that are distributed across a number 

of tasks running on different processors.     

 During debugging, we encounter errors that range from mildly annoying (e.g., 

an incorrect output format) to catastrophic (e.g., the system fails, causing seri-

ous economic or physical damage). As the consequences of an error increase, 

the amount of pressure to fi nd the cause also increases. Often, pressure forces 

a software developer to fi x one error and at the same time introduce two more. 

    22.9.2   Psychological Considerations 

 Unfortunately, there appears to be some evidence that debugging prowess is an 

innate human trait. Some people are good at it and others aren’t. Although ex-

perimental evidence on debugging is open to many interpretations, large vari-

ances in debugging ability have been reported for programmers with the same 

education and experience. Although it may be diffi cult to “learn” debugging, a 

number of approaches to the problem can be proposed. We examine them in 

Section 22.9.3.          

    uote: 

 “Everyone knows 
that debugging is 
twice as hard as 
writing a program 
in the fi rst place. 
So if you are as 
clever as you can 
be when you write 
it, how will you 
ever debug it?” 

 Brian Kernighan 

   Set a time limit, say 
two hours, on the 
amount of time you 
spend trying to debug 
a problem on your 
own. After that, get 
help! 

  Debugging   Debugging 

  The scene:  Ed’s cubical as code 
and unit testing is conducted. 

  The players:  Ed and Shakira—members of the  Safe-
Home  software engineering team. 

  The conversation:  

  Shakira (looking in through the entrance to 
the cubical):  Hey . . . where were you at lunchtime? 

  Ed:  Right here . . . working. 

  Shakira:  You look miserable . . . what’s the matter? 

  Ed (sighing audibly):  I’ve been working on this bug 
since I discovered it at 9:30 this morning and it’s what, 
2:45 . . . I’m clueless. 

  Shakira:  I thought we all agreed to spend no more 
than one hour debugging stuff on our own; then we get 
help, right? 

  Ed:  Yeah, but . . . 

  Shakira (walking into the cubical):  So what’s the 
problem? 

  Ed:  It’s complicated, and besides, I’ve been looking 
at this for, what, 5 hours. You’re not going to see it in 
5 minutes. 

  Shakira:  Indulge me . . . what’s the problem? 

 [Ed explains the problem to Shakira, who looks at it 
for about 30 seconds without speaking, then . . .] 

  Shakira (a smile is gathering on her face):  Uh, 
right there, the variable named  setAlarmCondition.  
Shouldn’t it be set to “false” before the loop gets started? 

 [Ed stares at the screen in disbelief, bends forward, 
and begins to bang his head gently against the monitor. 
Shakira, smiling broadly now, stands and walks out.]  

 SAFEHOME 

pre22126_ch22_466-495.indd   490pre22126_ch22_466-495.indd   490 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  491

     22.9.3   Debugging Strategies 

 Regardless of the approach that is taken, debugging has one overriding objec-

tive—to fi nd and correct the cause of a software error or defect. The objective is 

realized by a combination of systematic evaluation, intuition, and luck. 

 In general, three debugging strategies have been proposed [Mye79]: brute 

force, backtracking, and cause elimination. Each of these strategies can be con-

ducted manually, but modern debugging tools can make the process much more 

effective.  

     Debugging Tactics.   The  brute force  category of debugging is probably the most 

common and least effi cient method for isolating the cause of a software error. 

You apply brute force debugging methods when all else fails. Using a “let the 

computer fi nd the error” philosophy, memory dumps are taken, run-time traces 

are invoked, and the program is loaded with output statements. You hope that 

somewhere in the morass of information that is produced you’ll fi nd a clue that 

can lead us to the cause of an error. Although the mass of information produced 

may ultimately lead to success, it more frequently leads to wasted effort and 

time. Thought must be expended fi rst! 

  Backtracking  is a fairly common debugging approach that can be used suc-

cessfully in small programs. Beginning at the site where a symptom has been un-

covered, the source code is traced backward (manually) until the cause is found. 

Unfortunately, as the number of source lines increases, the number of potential 

backward paths may become unmanageably large. 

 The third approach to debugging— cause elimination —is manifested by induc-

tion or deduction and introduces the concept of binary partitioning. Data related 

to the error occurrence are organized to isolate potential causes. A “cause hy-

pothesis” is devised and the aforementioned data are used to prove or disprove 

the hypothesis. Alternatively, a list of all possible causes is developed and tests 

are conducted to eliminate each. If initial tests indicate that a particular cause 

hypothesis shows promise, data are refi ned in an attempt to isolate the bug. 

  Automated Debugging.   Each of these debugging approaches can be supple-

mented with debugging tools that can provide you with semiautomated support 

as debugging strategies are attempted. Hailpern and Santhanam [Hai02] sum-

marize the state of these tools when they note: “. . . many new approaches have 

been proposed and many commercial debugging environments are available. 

Integrated development environments (IDEs) provide a way to capture some 

of the language-specifi c predetermined errors (e.g., missing end-of-statement 

characters, undefi ned variables, and so on) without requiring compilation.” A 

wide variety of debugging compilers, dynamic debugging aids (“tracers”), au-

tomatic test-case generators, and cross-reference mapping tools are available. 

However, tools are not a substitute for careful evaluation based on a complete 

design model and clear source code. 

    uote: 

 “The fi rst step in 
fi xing a broken 
program is 
getting it to fail 
repeatably (on the 
simplest example 
possible).” 

  T. Duff 

pre22126_ch22_466-495.indd   491pre22126_ch22_466-495.indd   491 13/12/13   6:14 PM13/12/13   6:14 PM



492 PART THREE  QUALITY MANAGEMENT

        The People Factor.   Any discussion of debugging approaches and tools is incom-

plete without mention of a powerful ally—other people! A fresh viewpoint, un-

clouded by hours of frustration, can do wonders.  8   A fi nal maxim for debugging 

might be: “When all else fails, get help!” 

     22.9.4   Correcting the Error 

  Once a bug has been found, it must be corrected. But as we have already noted, 

the correction of a bug can introduce other errors and therefore do more harm 

than good. Van Vleck [Van89] suggests three simple questions that you should 

ask before making the “correction” that removes the cause of a bug:

     1.   Is the cause of the bug reproduced in another part of the program?  In many 

situations, a program defect is caused by an erroneous pattern of logic 

that may be reproduced elsewhere. Explicit consideration of the logical 

pattern may result in the discovery of other errors.  

    2.   What “next bug” might be introduced by the fi x I'm about to make?  Before 

the correction is made, the source code (or, better, the design) should be 

evaluated to assess coupling of logic and data structures. If the correction 

    uote: 

 “The best tester 
isn’t the one who 
fi nds the most 
bugs . . . the best 
tester is the one 
who gets the most 
bugs fi xed.” 

 Cem Kaner et al. 

   Debugging  

  Objective:  These tools provide automated 
assistance for those who must debug software 

problems. The intent is to provide insight that may be diffi cult 
to obtain if approaching the debugging process manually. 

  Mechanics:  Most debugging tools are programming 
language and environment specifi c. 

  Representative Tools:   7    
  Borland Silkt,  distributed by Borland (  http://www.

borland.com/products/  ), assists in both testing 
and debugging. 

  Coverty Development Testing Platform , developed by 
Coverty (  http://www.coverity.com/products/  ), 
provides a means of introducing quality and security 
testing into the early development process. 

  C11Test,  developed by Parasoft (  www.parasoft.com  ), is 
a unit-testing tool that supports a full range of tests on 
C and C11 code. Debugging features assist in the 
diagnosis of errors that are found. 

  CodeMedic,  developed by NewPlanet Software (  www.
newplanetsoftware.com/medic/  ), provides a 
graphical interface for the standard UNIX debugger, 
 gdb,  and implements its most important features.  gdb  
currently supports C/C11, Java, PalmOS, various 
embedded systems, assembly language, FORTRAN, 
and Modula-2. 

  GNATS , a freeware application (  www.gnu.org/
software/gnats/  ), is a set of tools for tracking bug 
reports.  

 SOFTWARE TOOLS 

  7  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  8  The concept of pair programming (recommended as part of the Extreme Programming model 

discussed in Chapter 5) provides a mechanism for “debugging” as the software is designed and 

coded. 

pre22126_ch22_466-495.indd   492pre22126_ch22_466-495.indd   492 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  493

is to be made in a highly coupled section of the program, special care 

must be taken when any change is made.  

    3.   What could we have done to prevent this bug in the fi rst place?  This ques-

tion is the fi rst step toward establishing a statistical software quality as-

surance approach (Chapter 21). If you correct the process as well as the 

product, the bug will be removed from the current program and may be 

eliminated from all future programs.    

        22.10 SUMMARY 

 Software testing accounts for the largest percentage of technical effort in the 

software process. Regardless of the type of software you build, a strategy for sys-

tematic test planning, execution, and control begins by considering small ele-

ments of the software and moves outward toward the program as a whole. 

 The objective of software testing is to uncover errors. For conventional soft-

ware, this objective is achieved through a series of test steps. Unit and integration 

tests concentrate on functional verifi cation of a component and incorporation 

of components into the software architecture. Validation testing demonstrates 

traceability to software requirements, and system testing validates software once 

it has been incorporated into a larger system. Each test step is accomplished 

through a series of systematic test techniques that assist in the design of test 

cases. With each testing step, the level of abstraction with which software is con-

sidered is broadened. 

 The strategy for testing object-oriented software begins with tests that exer-

cise the operations within a class and then moves to thread-based testing for 

integration. Threads are sets of classes that respond to an input or event. Use-

based tests focus on classes that do not collaborate heavily with other classes. 

 Web and MobileApps are tested in much the same way as OO systems. How-

ever, tests are designed to exercise content, functionality, the interface, naviga-

tion, and other aspects of app performance and security. MobileApps require 

specialized testing approaches that focus on testing the App on multiple devices 

and in real world network environments. 

 Unlike testing (a systematic, planned activity), debugging can be viewed as 

an art. Beginning with a symptomatic indication of a problem, the debugging 

activity must track down the cause of an error. Of the many resources available 

during debugging, the most valuable is the counsel of other members of the soft-

ware engineering staff. 

     PROBLEMS AND POINTS TO PONDER 
    22.1  Using your own words, describe the difference between verifi cation and validation. Do 
both make use of test-case design methods and testing strategies?  

pre22126_ch22_466-495.indd   493pre22126_ch22_466-495.indd   493 13/12/13   6:14 PM13/12/13   6:14 PM



494 PART THREE  QUALITY MANAGEMENT

   22.2  List some problems that might be associated with the creation of an independent test 
group. Are an ITG and an SQA group made up of the same people?  

   22.3  Is it always possible to develop a strategy for testing software that uses the sequence 
of testing steps described in Section 22.1.3? What possible complications might arise for 
embedded systems?  

   22.4  Why is a highly coupled module diffi cult to unit test?  

   22.5  The concept of “antibugging” (Section 22.2.1) is an extremely effective way to provide 
built-in debugging assistance when an error is uncovered:

    a. Develop a set of guidelines for antibugging.  
   b. Discuss advantages of using the technique.  
   c. Discuss disadvantages.     

   22.6  How can project scheduling affect integration testing?  

   22.7  Is unit testing possible or even desirable in all circumstances? Provide examples to 
justify your answer.  

   22.8  Who should perform the validation test—the software developer or the software user? 
Justify your answer.  

   22.9  Develop a complete test strategy for the  SafeHome  system discussed earlier in this 
book. Document it in a  Test Specifi cation.   

   22.10  As a class project, develop a  Debugging Guide  for your installation. The guide should 
provide language and system-oriented hints that you have learned through the school of 
hard knocks! Begin with an outline of topics that will be reviewed by the class and your 
instructor. Publish the guide for others in your local environment.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Virtually every book on software testing discusses strategies along with methods for test-
case design. Whittaker ( How Google Tests Software,  Addison-Wesley, 2012) and ( How to 

Break Software,  Addison-Wesley, 2002), Spiller and his colleagues ( Software Testing Founda-

tions,  Rocky Nook, 2011), Black ( Managing the Testing,  3rd ed., Wiley, 2009) and ( Pragmatic 

Software Testing,  Wiley, 2007), Page and his colleagues ( How We Test Software at Microsoft,  
Microsoft Press, 2008), Lewis ( Software Testing and Continuous Quality Improvement,  3rd 
ed., Auerbach, 2008), Everett and Raymond ( Software Testing,  Wiley-IEEE Computer Society 
Press, 2007), Perry ( Effective Methods for Software Testing,  3rd ed., Wiley, 2005), Loveland and 
his colleagues ( Software Testing Techniques,  Charles River Media, 2004), Burnstein ( Practi-

cal Software Testing,  Springer, 2003), Dustin ( Effective Software Testing,  Addison-Wesley, 
2002), Craig and Kaskiel (Systematic Software Testing, Artech House, 2002), and Tamres ( In-

troducing Software Testing,  Addison-Wesley, 2002), are only a small sampling of many books 
that discuss testing principles, concepts, strategies, and methods. 

   For those readers with an interest in agile software development methods, Gartner and 
Gartner ( ATDD by Example: A Practical Guide to Acceptance Test-Driven Development , Ad-
dison-Wesley, 2012), Crispin and Gregory ( Agile Testing: A Practical Guide for Testers and 

Teams , Addison-Wesley, 2009), Crispin and House ( Testing Extreme Programming,  Addi-
son-Wesley, 2002) and Beck ( Test Driven Development: By Example,  Addison-Wesley, 2002) 
present testing strategies and tactics for Extreme Programming. Kamer and his colleagues 
( Lessons Learned in Software Testing,  Wiley, 2001) present a collection of more than 300 
pragmatic “lessons” (guidelines) that every software tester should learn. Watkins ( Testing IT: 

An Off-the-Shelf Testing Process , 2nd ed. Cambridge University Press, 2010) establishes an 
effective testing framework for all types of developed and acquired software. Manges and 

pre22126_ch22_466-495.indd   494pre22126_ch22_466-495.indd   494 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 22  SOFTWARE TESTING STRATEGIES  495

O'Brien ( Agile Testing with Ruby and Rails,  Apress, 2008) addresses testing strategies and 
techniques for the Ruby programming language and Web framework. 

   Bashir and Goel ( Testing Object-Oriented Software,  Springer-Verlag, 2012), Sykes and 
McGregor ( Practical Guide to Testing Object-Oriented Software,  Addison-Wesley, 2001), 
Binder ( Testing Object-Oriented Systems,  Addison-Wesley, 1999), Kung and his colleagues 
( Testing Object-Oriented Software,  IEEE Computer Society Press, 1998), and Marick ( The 

Craft of Software Testing,  Prentice Hall, 1997) present strategies and methods for testing 
OO systems. 

   Guidelines for debugging are contained in books by Grötker and his colleagues ( The 

Developer's Guide to Debugging,  2nd ed., CreateSpace Independent Publishing, 2012), Whit-
taker ( Exploratory Testing,  Addison-Wesley, 2009), Zeller ( Why Programs Fail: A Guide to 

Systematic Debugging,  2nd ed., Morgan Kaufmann, 2009), Butcher ( Debug I!,  Pragmatic 
Bookshelf, 2009), Agans ( Debugging,  Amacon, 2006), and Tells and Hsieh ( The Science of 

Debugging,  The Coreolis Group, 2001). Kaspersky ( Hacker Debugging Uncovered,  A-List 
Publishing, 2005) addresses the technology of debugging tools. Younessi ( Object-Oriented 

Defect Management of Software,  Prentice Hall, 2002) presents techniques for managing de-
fects that are encountered in object-oriented systems. Beizer [Bei84] presents an interest-
ing “taxonomy of bugs” that can lead to effective methods for test planning. 

   Books by Graham and Fewster ( Experiences of Test Automation,  Addison-Wesley, 2012) 
and Dustin and his colleagues ( Implementing Automated Software Testing , Addison-Wesley, 
2009) discuss automated testing. Books by Hunt and John ( Java Performance,  Addison-Wes-
ley, 2011), Hewardt and his colleagues ( Advanced .NET Debugging,  Addison-Wesley, 2009), 
Matloff and his colleagues ( The Art of Debugging with GDB, DDD, and Eclipse,  No Starch 
Press, 2008), Madisetti and Akgul ( Debugging Embedded Systems,  Springer, 2007), Robbins 
( Debugging Microsoft .NET 2.0 Applications,  Microsoft Press, 2005), Best ( Linux Debugging 

and Performance Tuning,  Prentice Hall, 2005), Ford and Teorey ( Practical Debugging in C++,  
Prentice Hall, 2002), Brown ( Debugging Perl,  McGraw-Hill, 2000), and Mitchell ( Debugging 

Java,  McGraw-Hill, 2000) address the special nature of debugging for the environments im-
plied by their titles. 

   A wide variety of information sources on software testing strategies are available on the 
Internet. An up-to-date list of World Wide Web references that are relevant to software test-
ing strategies can be found at the SEPA website:   www.mhhe.com/pressman  .      

pre22126_ch22_466-495.indd   495pre22126_ch22_466-495.indd   495 13/12/13   6:14 PM13/12/13   6:14 PM



496

    C H A P T E R

23  TESTING CONVENTIONAL
APPLICATIONS 

       Testing presents an interesting dilemma for software engineers, who by 

their nature are constructive people. Testing requires that the devel-

oper discard preconceived notions of the “correctness” of software just 

developed and then work hard to design test cases to “break” the software. 

Beizer [Bei90] describes this situation effectively when he states:

  There’s a myth that if we were really good at programming, there would be no bugs 

to catch. If only we could really concentrate, if only everyone used structured pro-

gramming, top-down design, . . . then there would be no bugs. So goes the myth. There 

are bugs, the myth says, because we are bad at what we do; and if we are bad at it, we 

should feel guilty about it. Therefore, testing and test case design is an admission

 K E Y 
C O N C E P T S 
    basis path testing . 500  
    black-box testing  . 509  
    boundary value 
analysis  . . . . . . . . 512  
    control structure 
testing . . . . . . . . . 507  
    cyclomatic 
complexity  . . . . . . 503  
    equivalence 
partitioning  . . . . . . . 511  
    fl ow graph . . . . . . 500  
    graph matrices  . . . 506  

  What is it?   Once source code 
has been generated, software must 
be tested to uncover (and correct) 
as many errors as possible before 

delivery to your customer. Your goal is to de-
sign a series of test cases that have a high 
likelihood of fi nding errors—but how? That’s 
where software testing techniques enter the 
picture. These techniques provide systematic 
guidance for designing tests that (1) exercise 
the internal logic and interfaces of every soft-
ware component and (2) exercise the input 
and output domains of the program to uncover 
errors in program function, behavior, and 
performance. 

   Who does it?   During early stages of testing, a 
software engineer performs all tests. However, 
as the testing process progresses, testing spe-
cialists may become involved. 

   Why is it important?   Reviews and other SQA 
activities can and do uncover errors, but they 
are not suffi cient. Every time the program is 
executed, the customer tests it! Therefore, you 
have to execute the program before it gets to 
the customer with the specifi c intent of fi nding 
and removing all errors. To fi nd the highest pos-
sible number of errors, tests must be conducted 

systematically and test cases must be designed 
using disciplined techniques. 

   What are the steps?   For conventional appli-
cations, software is tested from two different 
perspectives: (1) internal program logic is 
exercised using “white box” test-case design 
techniques and (2) software requirements are 
exercised using “black box” test-case design 
techniques. Use cases assist in the design of 
tests to uncover errors at the software valida-
tion level. In every case, the intent is to fi nd the 
maximum number of errors with the minimum 
amount of effort and time. 

   What is the work product?   A set of test 
cases designed to exercise internal logic, inter-
faces, component collaborations, and external 
requirements is designed and documented, ex-
pected results are defi ned, and actual results 
are recorded. 

   How do I ensure that I’ve done it 
right?   When you begin testing, change your 
point of view. Try hard to “break” the soft-
ware! Design test cases in a disciplined fash-
ion and review the test cases you do create 
for thoroughness. In addition, you can eval-
uate test coverage and track error detection 
activities.  

 Q U I C K 
L O O K 

pre22126_ch23_496-522.indd   496pre22126_ch23_496-522.indd   496 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  497

of failure, which instills a goodly dose of guilt. And the tedium of testing is just pun-

ishment for our errors. Punishment for what? For being human? Guilt for what? For 

failing to achieve inhuman perfection? For not distinguishing between what another 

programmer thinks and what he says? For failing to be telepathic? For not solv-

ing human communications problems that have been kicked around  .  .  .  for forty 

centuries?   

 Should testing instill guilt? Is testing really destructive? The answer to these 

questions is “No!” 

 In this chapter, we discuss techniques for software test-case design for con-

ventional applications. Test-case design focuses on a set of techniques for the 

creation of test cases that meet overall testing objectives and the testing strate-

gies discussed in Chapter 22.  

    23.1  SOFTWARE TEST ING FUNDAMENTALS 

  The goal of testing is to fi nd errors, and a good test is one that has a high prob-

ability of fi nding an error. Therefore, you should design and implement a 

computer-based system or a product with “testability” in mind. At the same time, 

the tests themselves must exhibit a set of characteristics that achieve the goal of 

fi nding the most errors with a minimum of effort.      

  Testability.   James Bach  1   provides the following defi nition for testability: “ Soft-

ware testability  is simply how easily [a computer program] can be tested.” The 

following characteristics lead to testable software. 

           Operability.  “The better it works, the more effi ciently it can be tested.” If a 

system is designed and implemented with quality in mind, relatively few bugs 

will block the execution of tests, allowing testing to progress without fi ts and 

starts.  

       Observability.  “What you see is what you test.” Inputs provided as part of 

testing produce distinct outputs. System states and variables are visible or que-

riable during execution. Incorrect output is easily identifi ed. Internal errors are 

automatically detected and reported. Source code is accessible.  

       Controllability.  “The better we can control the software, the more the test-

ing can be automated and optimized.” All possible outputs can be generated 

through some combination of input, and I/O formats are consistent and struc-

tured. All code is executable through some combination of input. Software and 

  uote: 

 “Every program 
does something 
right, it just may 
not be the thing we 
want it to do.” 

 Author unknown 

 What are the 
characteristics 

of testability? 
?

    graph-based testing 
methods . . . . . . . . 509  
    model-based 
testing . . . . . . . . . 516  
    orthogonal array 
testing . . . . . . . . . 513  
    patterns . . . . . . . . 519  
    white-box testing . 500  
  

  1  The paragraphs that follow are used with permission of James Bach (copyright 1994) and 

have been adapted from material that originally appeared in a posting in the newsgroup 

comp.software-eng. 

pre22126_ch23_496-522.indd   497pre22126_ch23_496-522.indd   497 13/12/13   6:14 PM13/12/13   6:14 PM



498 PART THREE  QUALITY MANAGEMENT

hardware states and variables can be controlled directly by the test engineer. 

Tests can be conveniently specifi ed, automated, and reproduced.  

       Decomposability.  “By controlling the scope of testing, we can more quickly 

isolate problems and perform smarter retesting.” The software system is built 

from independent modules that can be tested independently.  

       Simplicity.  “The less there is to test, the more quickly we can test it.” 

The program should exhibit  functional simplicity  (e.g., the feature set is 

the minimum necessary to meet requirements);  structural simplicity  (e.g., 

architecture is modularized to limit the propagation of faults), and  code 

simplicity  (e.g., a coding standard is adopted for ease of inspection and 

maintenance).  

       Stability.  “The fewer the changes, the fewer the disruptions to testing.” 

Changes to the software are infrequent, controlled when they do occur, 

and do not invalidate existing tests. The software recovers well from 

failures.  

       Understandability.  “The more information we have, the smarter we will test.” 

The architectural design and the dependencies between internal, external, and 

shared components are well understood. Technical documentation is instantly 

accessible, well organized, specifi c and detailed, and accurate. Changes to the 

design are communicated to testers.    

 You can use the attributes suggested by Bach to develop software work products 

that are amenable to testing. 

   Test Characteristics.   And what about the tests themselves? Kaner, Falk, and 

Nguyen [Kan93] suggest the following attributes of a “good” test: 

          A good test has a high probability of fi nding an error.  To achieve this goal, the 

tester must understand the software and attempt to develop a mental picture of 

how the software might fail.  

       A good test is not redundant.  Testing time and resources are limited. There 

is no point in conducting a test that has the same purpose as another test. Every 

test should have a different purpose (even if it is subtly different).  

       A good test should be “best of breed”  [Kan93]. In a group of tests that have 

a similar intent, time and resource limitations may dictate the execution of 

only those tests that has the highest likelihood of uncovering a whole class of 

errors.  

       A good test should be neither too simple nor too complex.  Although it is some-

times possible to combine a series of tests into one test case, the possible side 

effects associated with this approach may mask errors. In general, each test 

should be executed separately.  

  uote: 

 “Errors are more 
common, more 
pervasive, and 
more troublesome 
in software 
than with other 
technologies.” 

 David Parnas 

 What is 
a “good” 

test? 
?

pre22126_ch23_496-522.indd   498pre22126_ch23_496-522.indd   498 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  499

           23.2  INTERNAL AND EXTERNAL VIEWS OF TEST ING   

 Any engineered product (and most other things) can be tested in one of two ways: 

(1) Knowing the specifi ed function that a product has been designed to perform, 

tests can be conducted that demonstrate each function is fully operational while 

at the same time searching for errors in each function. (2) Knowing the internal 

workings of a product, tests can be conducted to ensure that “all gears mesh,” 

that is, internal operations are performed according to specifi cations and all 

internal components have been adequately exercised. The fi rst test approach 

takes an external view and is called black-box testing. The second requires an 

internal view and is termed white-box testing.  2   

   Black-box testing  alludes to tests that are conducted at the software inter-

face. A black-box test examines some fundamental aspect of a system with lit-

tle regard for the internal logical structure of the software.  White-box testing  of 

software is predicated on close examination of procedural detail. Logical paths 

through the software and collaborations between components are tested by ex-

ercising specifi c sets of conditions and/or loops. 

   At fi rst glance it would seem that very thorough white-box testing would lead 

to “100 percent correct programs.” All we need do is defi ne all logical paths, 

  uote: 

 “There is only one 
rule in designing 
test cases: cover 
all features, but 
do not make too 
many test cases.” 

 Tsuneo Yamaura 

   White-box tests can 
be designed only after 
component-level design 
(or source code) ex-
ists. The logical details 
of the program must 
be available. 

   Designing Unique Tests     Designing Unique Tests  

  The scene:  Vinod’s cubical. 

  The players:  Vinod and Ed—members of the 
 SafeHome  software engineering team. 

  The conversation:  

  Vinod:  So these are the test cases you intend to run for 
the  passwordValidation  operation. 

  Ed:  Yeah, they should cover pretty much all 
possibilities for the kinds of passwords a user might 
enter. 

  Vinod:  So let’s see . . . you note that the correct 
password will be 8080, right? 

 Ed: Uh huh. 

  Vinod:  And you specify passwords 1234 and 
6789 to test for error in recognizing invalid 
passwords? 

  Ed:  Right, and I also test passwords that are close to 
the correct password, see . . . 8081 and 8180. 

  Vinod:  Those are okay, but I don’t see much point in 
running both the 1234 and 6789 inputs. They’re redun-
dant . . . test the same thing, don’t they? 

  Ed:  Well, they’re different values. 

  Vinod:  That’s true, but if 1234 doesn’t uncover an 
error . . . in other words . . . the  passwordValidation  
operation notes that it’s an invalid password, it’s not 
likely that 6789 will show us anything new. 

  Ed:  I see what you mean. 

  Vinod:  I’m not trying to be picky here . . . it’s just that 
we have limited time to do testing, so it’s a good idea to 
run tests that have a high likelihood of fi nding new errors. 

  Ed:  Not a problem . . . I’ll give this a bit more thought.  

 SAFEHOME 

  2  The terms  functional testing  and  structural testing  are sometimes used in place of black-box 

and white-box testing, respectively. 

pre22126_ch23_496-522.indd   499pre22126_ch23_496-522.indd   499 13/12/13   6:14 PM13/12/13   6:14 PM



500 PART THREE  QUALITY MANAGEMENT

develop test cases to exercise them, and evaluate results, that is, generate test 

cases to exercise program logic exhaustively. Unfortunately, exhaustive testing 

presents certain logistical problems. For even small programs, the number of 

possible logical paths can be very large. White-box testing should not, however, 

be dismissed as impractical. A limited number of important logical paths can 

be selected and exercised. Important data structures can be probed for validity. 

 Exhaustive Testing 
 Consider a 100-line program in the language 
C. After some basic data declaration, the 

program contains two nested loops that execute from 
1 to 20 times each, depending on conditions speci-
fi ed at input. Inside the interior loop, four if-then-else 
constructs are required. There are approximately 10 14  
possible paths that may be executed in this program! 

 To put this number in perspective, we assume that 
a magic test processor (“magic” because no such 

processor exists) has been developed for exhaustive 
testing. The processor can develop a test case, execute 
it, and evaluate the results in one millisecond. Work-
ing 24 hours a day, 365 days a year, the processor 
would work for 3170 years to test the program. This 
would, undeniably, cause havoc in most development 
schedules. 

 Therefore, it is reasonable to assert that exhaustive 
testing is impossible for large software systems. 

 INFO 

        23.3  WHITE-BOX TEST ING   

  White-box testing,  sometimes called  glass-box testing  or  structural testing,  is a 

test-case design philosophy that uses the control structure described as part of 

component-level design to derive test cases. Using white-box testing methods, you 

can derive test cases that (1) guarantee that all independent paths within a module 

have been exercised at least once, (2) exercise all logical decisions on their true 

and false sides, (3) execute all loops at their boundaries and within their opera-

tional bounds, and (4) exercise internal data structures to ensure their validity. 

      23.4  BASIS  PATH TEST ING 

   Basis path testing  is a white-box testing technique fi rst proposed by Tom McCabe 

[McC76]. The basis path method enables the test-case designer to derive a logical 

complexity measure of a procedural design and use this measure as a guide for defi n-

ing a basis set of execution paths. Test cases derived to exercise the basis set are guar-

anteed to execute every statement in the program at least one time during testing. 

   23.4.1   Flow Graph Notation 

 Before the basis path method can be introduced, a simple notation for the rep-

resentation of control fl ow, called a  fl ow graph  (or  program graph ) must be 

  uote: 

 “Bugs lurk in 
corners and 
congregate at 
boundaries.” 

 Boris Beizer 

pre22126_ch23_496-522.indd   500pre22126_ch23_496-522.indd   500 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  501

introduced.  3   The fl ow graph depicts logical control fl ow using the notation illus-

trated in  Figure 23.1 . Each structured construct (Chapter 14) has a corresponding 

fl ow graph symbol.        

   To illustrate the use of a fl ow graph, consider the procedural design repre-

sentation in  Figure 23.2a . Here, a fl owchart is used to depict program control 

structure.  Figure 23.2b  maps the fl owchart into a corresponding fl ow graph (as-

suming that no compound conditions are contained in the decision diamonds of 

the fl owchart). Referring to  Figure 23.2b , each circle, called a  fl ow graph node,  

represents one or more procedural statements. A sequence of process boxes and 

a decision diamond can map into a single node. The arrows on the fl ow graph, 

called  edges  or  links,  represent fl ow of control and are analogous to fl owchart 

arrows. An edge must terminate at a node, even if the node does not represent 

   A fl ow graph should be 
drawn only when the 
logical structure of a 
component is complex. 
The fl ow graph allows 
you to trace program 
paths more readily. 

  3  In actuality, the basis path method can be conducted without the use of fl ow graphs. However, 

they serve as a useful notation for understanding control fl ow and illustrating the approach. 

If While

The structured constructs in flow graph form:

Where each circle represents one or more
nonbranching PDL or source code statements

Until

Case

Sequence

 FIGURE 23.1

 Flow graph 
notation

1

3

10

(a)

6

9

2

4

587

11 (b)

1

2,3

4,56

9

10

11

87

R1

R3

R2

R4

Region

Node

Edge

  FIGURE 23.2  (a) Flowchart and (b) fl ow graph   

pre22126_ch23_496-522.indd   501pre22126_ch23_496-522.indd   501 13/12/13   6:14 PM13/12/13   6:14 PM



502 PART THREE  QUALITY MANAGEMENT

any procedural statements (e.g., see the fl ow graph symbol for the if-then-else 

construct). Areas bounded by edges and nodes are called  regions.  When counting 

regions, we include the area outside the graph as a region.  4   

  When compound conditions are encountered in a procedural design, the gen-

eration of a fl ow graph becomes slightly more complicated. A compound con-

dition occurs when one or more Boolean operators (logical OR, AND, NAND, 

NOR) is present in a conditional statement. Referring to  Figure 23.3 , the program 

design language (PDL) segment translates into the fl ow graph shown. Note that 

a separate node is created for each of the conditions  a  and  b  in the statement 

IF  a  OR  b.  Each node that contains a condition is called a  predicate node  and is 

characterized by two or more edges emanating from it.  

    23.4.2   Independent Program Paths 

 An  independent path  is any path through the program that introduces at least 

one new set of processing statements or a new condition. When stated in terms 

of a fl ow graph, an independent path must move along at least one edge that has 

not been traversed before the path is defi ned. For example, a set of independent 

paths for the fl ow graph illustrated in  Figure 23.2b  is

       Path 1: 1-11  

      Path 2: 1-2-3-4-5-10-1-11  

      Path 3: 1-2-3-6-8-9-10-1-11  

      Path 4: 1-2-3-6-7-9-10-1-11    

 Note that each new path introduces a new edge. The path

       1-2-3-4-5-10-1-2-3-6-8-9-10-1-11    

  4  A more detailed discussion of graphs and their uses is presented in Section 23.6.1. 

Predicate
node

.

.

.
IF a OR b

then procedure   x
else procedure   y

ENDIF

y

b

a

x

x

  FIGURE 23.3

 Compound 
logic   

pre22126_ch23_496-522.indd   502pre22126_ch23_496-522.indd   502 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  503

 is not considered to be an independent path because it is simply a combination of 

already specifi ed paths and does not traverse any new edges. 

 Paths 1 through 4 constitute a  basis set  for the fl ow graph in  Figure 23.2b . That 

is, if you can design tests to force execution of these paths (a basis set), every 

statement in the program will have been guaranteed to be executed at least one 

time and every condition will have been executed on its true and false sides. It 

should be noted that the basis set is not unique. In fact, a number of different 

basis sets can be derived for a given procedural design. 

   How do you know how many paths to look for? The computation of cyclomatic 

complexity provides the answer.  Cyclomatic complexity  is a software metric that 

provides a quantitative measure of the logical complexity of a program. When 

used in the context of the basis path testing method, the value computed for cyc-

lomatic complexity defi nes the number of independent paths in the basis set of a 

program and provides you with an upper bound for the number of tests that must 

be conducted to ensure that all statements have been executed at least once. 

 Cyclomatic complexity has a foundation in graph theory and provides you 

with an extremely useful software metric. Complexity is computed in one of 

three ways: 

       1.  The number of regions of the fl ow graph corresponds to the cyclomatic 

complexity.  

    2.  Cyclomatic complexity  V ( G ) for a fl ow graph  G  is defi ned as

 V ( G ) 5  E  2  N  1 2 

     where  E  is the number of fl ow graph edges and  N  is the number of fl ow 

graph nodes.  

    3.  Cyclomatic complexity  V ( G ) for a fl ow graph  G  is also defi ned as

 V ( G ) 5  P  1 1 

     where  P  is the number of predicate nodes contained in the fl ow graph  G .  

    Referring once more to the fl ow graph in  Figure 23.2b , the cyclomatic complexity 

can be computed using each of the algorithms just noted:

     1.  The fl ow graph has four regions.  

    2.   V ( G ) 5 11 edges 2 9 nodes 1 2 5 4.  

    3.   V ( G ) 5 3 predicate nodes 1 1 5 4.    

 Therefore, the cyclomatic complexity of the fl ow graph in  Figure 23.2b  is 4. 

 More important, the value for  V ( G ) provides you with an upper bound for the 

number of independent paths that form the basis set and, by implication, an 

upper bound on the number of tests that must be designed and executed to guar-

antee coverage of all program statements. 

   Cyclomatic complexity 
is a useful metric 
for predicting those 
modules that are likely 
to be error prone. Use 
it for test planning 
as well as test-case 
design. 

 How do I 
compute 

cyclomatic 
complexity? 

?

   Cyclomatic complexity 
provides the upper 
bound on the number 
of test cases that will 
be required to guaran-
tee that every state-
ment in the program 
has been executed at 
least one time. 

pre22126_ch23_496-522.indd   503pre22126_ch23_496-522.indd   503 13/12/13   6:14 PM13/12/13   6:14 PM



504 PART THREE  QUALITY MANAGEMENT

       23.4.3   Deriving Test Cases 

 The basis path testing method can be applied to a procedural design or to source 

code. In this section, we present basis path testing as a series of steps. The pro-

cedure  average,  depicted in PDL in  Figure 23.4 , will be used as an example to 

illustrate each step in the test-case design method. Note that  average,  although 

an extremely simple algorithm, contains compound conditions and loops. The 

following steps can be applied to derive the basis set:

     1.   Using the design or code as a foundation, draw a corresponding fl ow 

graph.  A fl ow graph is created using the symbols and construction rules 

presented in Section 23.4.1. Referring to the PDL for  average  in  Fig-

ure 23.4 , a fl ow graph is created by numbering those PDL statements that 

will be mapped into corresponding fl ow graph nodes. The corresponding 

fl ow graph is in  Figure 23.5 .     

    2.   Determine the cyclomatic complexity of the resultant fl ow graph.  The 

cyclomatic complexity  V ( G ) is determined by applying the algorithms 

described in Section 23.4.2. It should be noted that  V ( G ) can be determined 

    uote: 

 “To err is human, 
to fi nd a bug is 
divine.”

Robert Dunn 

  Using Cyclomatic Complexity   Using Cyclomatic Complexity 

  The scene:  Shakira’s cubicle. 

  The players:  Vinod and Shakira—members of the 
 SafeHome  software engineering team who are working 
on test planning for the security function. 

  The conversation:  

  Shakira:  Look . . . I know that we should unit-test all 
the components for the security function, but there are a 
lot of ‘em and if you consider the number of operations 
that have to be exercised, I don’t know . . . maybe we 
should forget white-box testing, integrate everything, 
and start running black-box tests. 

  Vinod:  You fi gure we don’t have enough time to do com-
ponent tests, exercise the operations, and then integrate? 

  Shakira:  The deadline for the fi rst increment is getting 
closer than I’d like . . . yeah, I’m concerned. 

  Vinod:  Why don’t you at least run white-box tests on 
the operations that are likely to be the most error prone? 

  Shakira (exasperated):  And exactly how do I 
know which are the most error prone? 

  Vinod:   V  of  G . 

  Shakira:  Huh? 

  Vinod:  Cyclomatic complexity— V  of  G . Just compute 
 V ( G ) for each of the operations within each of the 
components and see which have the highest values for 
 V ( G ). They’re the ones that are most likely to be error 
prone. 

  Shakira:  And how do I compute  V  of  G ? 

  Vinod:  It’s really easy. Here’s a book that describes 
how to do it. 

  Shakira (leafing through the pages):  Okay, 
it doesn’t look hard. I’ll give it a try. The ops with the 
highest  V ( G ) will be the candidates for white-box tests. 

  Vinod:  Just remember that there are no guarantees. A 
component with a low  V ( G ) can still be error prone. 

  Shakira:  Alright. But at least this’ll help me to narrow 
down the number of components that have to undergo 
white-box testing.  

 SAFEHOME 

pre22126_ch23_496-522.indd   504pre22126_ch23_496-522.indd   504 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  505

without developing a fl ow graph by counting all conditional statements in 

the PDL (for the procedure  average,  compound conditions count as two) 

and adding 1. Referring to  Figure 23.5 ,

 V ( G ) 5 6 regions

 V ( G ) 5 17 edges 2 13 nodes 1 2 5 6

 V ( G ) 5 5 predicate nodes 1 1 5 6  

PROCEDURE average;

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximum;

TYPE value[1:100] IS SCALAR ARRAY;
TYPE average, total.input, total.valid;
 minimum, maximum, sum IS SCALAR;
TYPE i IS INTEGER;

* This procedure computes the average of 100 or fewer
 numbers that lie between bounding values; it also computes the
 sum and the total number valid.

i = 1;
total.input = total.valid = 0;
sum = 0;
DO WHILE value[i] <> –999 AND total.input < 100

ENDDO
IF total.valid > 0

ENDIF
END average

increment total.input by 1;
IF value[i] > = minimum AND value[i] < = maximum

ENDIF
increment i by 1;

THEN average = sum / total.valid;
ELSE average = –999;

THEN increment total.valid by 1;
 sum = s sum + value[i]
ELSE skip

1

3

6
4

5
7

8

9
10

11
12

13

2

  FIGURE 23.4

 PDL with 
nodes 
identifi ed   

1

2

3

4

5

6

7

8

9

10

1112

13

  FIGURE 23.5

 Flow graph for 
the procedure 
average   

pre22126_ch23_496-522.indd   505pre22126_ch23_496-522.indd   505 13/12/13   6:14 PM13/12/13   6:14 PM



506 PART THREE  QUALITY MANAGEMENT

    3.   Determine a basis set of linearly independent paths.  The value of  V ( G ) 

provides the number of linearly independent paths through the program 

control structure. In the case of procedure  average,  we expect to specify 

six paths:

       Path 1: 1-2-10-11-13  

      Path 2: 1-2-10-12-13  

      Path 3: 1-2-3-10-11-13  

      Path 4: 1-2-3-4-5-8-9-2-. . .  

      Path 5: 1-2-3-4-5-6-8-9-2-. . .  

      Path 6: 1-2-3-4-5-6-7-8-9-2-. . .    

     The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through 

the remainder of the control structure is acceptable. It is often worthwhile 

to identify predicate nodes as an aid in the derivation of test cases. In this 

case, nodes 2, 3, 5, 6, and 10 are predicate nodes.  

    4.   Prepare test cases that will force execution of each path in the basis set.  

Data should be chosen so that conditions at the predicate nodes are 

appropriately set as each path is tested. Each test case is executed and 

compared to expected results. Once all test cases have been completed, 

the tester can be sure that all statements in the program have been exe-

cuted at least once.    

 It is important to note that some independent paths (e.g., path 1 in our ex-

ample) cannot be tested in stand-alone fashion. That is, the combination of data 

required to traverse the path cannot be achieved in the normal fl ow of the pro-

gram. In such cases, these paths are tested as part of another path test. 

    23.4.4   Graph Matrices 

 The procedure for deriving the fl ow graph and even determining a set of basis 

paths is amenable to mechanization. A data structure, called a  graph matrix,  can 

be quite useful for developing a software tool that assists in basis path testing. 

 A graph matrix is a square matrix whose size (i.e., number of rows and col-

umns) is equal to the number of nodes on the fl ow graph. Each row and column 

corresponds to an identifi ed node, and matrix entries correspond to connections 

(an edge) between nodes. A simple example of a fl ow graph and its correspond-

ing graph matrix [Bei90] is shown in  Figure 23.6 .  

 Referring to the fi gure, each node on the fl ow graph is identifi ed by numbers, 

while each edge is identifi ed by letters. A letter entry is made in the matrix to 

correspond to a connection between two nodes. For example, node 3 is connected 

to node 4 by edge  b . 

   To this point, the graph matrix is nothing more than a tabular representation 

of a fl ow graph. However, by adding a  link weight  to each matrix entry, the graph 

    uote: 

 “The Ariane 5 
rocket blew up on 
lift-off due solely to 
a software defect 
(a bug) involving 
the conversion of 
a 64-bit fl oating 
point value into 
a 16-bit integer. 
The rocket and 
its four satellites 
were  uninsured  
and worth $500 
million. [Path tests 
that exercised 
the conversion 
path] would have 
found the bug but 
were vetoed for 
budgetary reasons.” 

 A news report 

 What is a 
graph matrix 

and how do we 
extend it for use 
in testing? 

?

pre22126_ch23_496-522.indd   506pre22126_ch23_496-522.indd   506 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  507

matrix can become a powerful tool for evaluating program control structure 

during testing. The link weight provides additional information about control 

fl ow. In its simplest form, the link weight is 1 (a connection exists) or 0 (a connec-

tion does not exist). But link weights can be assigned other, more interesting 

properties:

    •  The probability that a link (edge) will be executed.  

   •  The processing time expended during traversal of a link  

   •  The memory required during traversal of a link  

   •  The resources required during traversal of a link.    

 Beizer [Bei90] provides a thorough treatment of additional mathematical 

algorithms that can be applied to graph matrices. Using these techniques, the 

analysis required to design test cases can be partially or fully automated.  

       23.5  CONTROL STRUCTURE TEST ING 

  The basis path testing technique described in Section 23.4 is one of a number of 

techniques for control structure testing. Although basis path testing is simple 

and highly effective, it is not suffi cient in itself. In this section, other variations 

on control structure testing are discussed. These broaden testing coverage and 

improve the quality of white-box testing. 

  Condition testing  [Tai89] is a test-case design method that exercises the logical 

conditions contained in a program module.  Data fl ow testing  [Fra93] selects test 

paths of a program according to the locations of defi nitions and uses of variables 

in the program. 

  Loop testing  is a white-box testing technique that focuses exclusively on the va-

lidity of loop constructs. Four different classes of loops [Bei90] can be defi ned: sim-

ple loops, concatenated loops, nested loops, and unstructured loops ( Figure 23.7 ). 

    uote: 

 “Paying more 
attention to 
running tests 
than to designing 
them is a classic 
mistake.” 

 Brian Marick 

  FIGURE 23.6

 Graph matrix   1

3

4

2

5

a

b

c

d
e

f

g

Flow graph

1 3 42 5

1

3

4

2

5

a

eg

c f

d b

Connected to
node

Node

Graph matrix

pre22126_ch23_496-522.indd   507pre22126_ch23_496-522.indd   507 13/12/13   6:14 PM13/12/13   6:14 PM



508 PART THREE  QUALITY MANAGEMENT

         Simple Loops.   The following set of tests can be applied to simple loops, where  n  

is the maximum number of allowable passes through the loop. 

     1.  Skip the loop entirely.  

    2.  Only one pass through the loop.  

    3.  Two passes through the loop.  

    4.   m  passes through the loop where  m  ,  n.   

    5.   n  2 1,  n, n  1 1 passes through the loop.  

    Nested Loops.   If we were to extend the test approach for simple loops to nested 

loops, the number of possible tests would grow geometrically as the level of nest-

ing increases. This would result in an impractical number of tests. Beizer [Bei90] 

suggests an approach that will help to reduce the number of tests:

     1.  Start at the innermost loop. Set all other loops to minimum values.  

    2.  Conduct simple loop tests for the innermost loop while holding the outer 

loops at their minimum iteration parameter (e.g., loop counter) values. 

Add other tests for out-of-range or excluded values.  

    3.  Work outward, conducting tests for the next loop, but keeping all other 

outer loops at minimum values and other nested loops to “typical” values.  

    4.  Continue until all loops have been tested.    

     Concatenated Loops.   Concatenated loops can be tested using the approach de-

fi ned for simple loops, if each of the loops is independent of the other. However, 

if two loops are concatenated and the loop counter for loop 1 is used as the initial 

value for loop 2, then the loops are not independent. When the loops are not in-

dependent, the approach applied to nested loops is recommended. 

    uote: 

 “Good testers are 
masters at noticing 
‘something funny’ 
and acting on it.” 

 Brian Marick 

   You can’t test unstruc-
tured loops effectively. 
Refactor them. 

Simple loops
Nested loops

Concatenated
loops

Unstructured
loops

  FIGURE 23.7

 Classes of 
Loops   

pre22126_ch23_496-522.indd   508pre22126_ch23_496-522.indd   508 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  509

   Unstructured Loops.   Whenever possible, this class of loops should be rede-

signed to refl ect the use of the structured programming constructs (Chapter 14). 

        23.6  BLACK-BOX TEST ING 

   Black-box testing , also called  behavioral testing  or  functional testing,  focuses on 

the functional requirements of the software. That is, black-box testing techniques 

enable you to derive sets of input conditions that will fully exercise all functional 

requirements for a program. Black-box testing is not an alternative to white-box 

techniques. Rather, it is a complementary approach that is likely to uncover a 

different class of errors than white-box methods. 

 Black-box testing attempts to fi nd errors in the following categories: (1) incor-

rect or missing functions, (2) interface errors, (3) errors in data structures or ex-

ternal database access, (4) behavior or performance errors, and (5) initialization 

and termination errors. 

 Unlike white-box testing, which is performed early in the testing process, black-

box testing tends to be applied during later stages of testing (see Chapter 22). Be-

cause black-box testing purposely disregards control structure, attention is focused 

on the information domain. Tests are designed to answer the following questions:

    •  How is functional validity tested?  

   •  How are system behavior and performance tested?  

   •  What classes of input will make good test cases?  

   •  Is the system particularly sensitive to certain input values?  

   •  How are the boundaries of a data class isolated?  

   •  What data rates and data volume can the system tolerate?  

   •  What effect will specifi c combinations of data have on system operation?    

   By applying black-box techniques, you derive a set of test cases that satisfy the fol-

lowing criteria [Mye79]: test cases that reduce, by a count that is greater than one, 

the number of additional test cases that must be designed to achieve reasonable 

testing, and test cases that tell you something about the presence or absence of 

classes of errors, rather than an error associated only with the specifi c test at hand. 

   23.6.1   Graph-Based Testing Methods 

   The fi rst step in black-box testing is to understand the objects  5   that are modeled 

in software and the relationships that connect these objects. Once this has been 

accomplished, the next step is to defi ne a series of tests that verify “all objects 

 What 
questions do 

black-box tests 
answer? 

?

  5  In this context, you should consider the term  objects  in the broadest possible context. It en-

compasses data objects, traditional components (modules), and object-oriented elements of 

computer software. 

pre22126_ch23_496-522.indd   509pre22126_ch23_496-522.indd   509 13/12/13   6:14 PM13/12/13   6:14 PM



510 PART THREE  QUALITY MANAGEMENT

have the expected relationship to one another” [Bei95]. Stated in another way, 

software testing begins by creating a graph of important objects and their rela-

tionships and then devising a series of tests that will cover the graph so that each 

object and relationship is exercised and errors are uncovered. 

  To accomplish these steps, you begin by creating a  graph —a collection of  nodes  

that represent objects,  links  that represent the relationships between objects, 

 node weights  that describe the properties of a node (e.g., a specifi c data value 

or state behavior), and  link weights  that describe some characteristic of a link. 

 The symbolic representation of a graph is shown in  Figure 23.8a . Nodes are 

represented as circles connected by links that take a number of different forms. 

A  directed link  (represented by an arrow) indicates that a relationship moves in 

only one direction. A  bidirectional link,  also called a  symmetric link,  implies that 

the relationship applies in both directions.  Parallel links  are used when a num-

ber of different relationships are established between graph nodes.  

 As a simple example, consider a portion of a graph for a word-processing 

application ( Figure 23.8b ) where

        Object #1  5  newFile ( menu selection)  

       Object #2  5  documentWindow   

       Object #3  5  documentText     

 Referring to the fi gure, a menu select on  newFile  generates a document win-

dow. The node weight of  documentWindow  provides a list of the window attributes 

   A graph represents the 
relationships between 
data objects and pro-
gram objects, enabling 
us to derive test cases 
that search for errors 
associated with these 
relationships. 

  FIGURE 23.8

 (a) Graph 
notation; 
(b) simple 
example   

New file
menu
select

Menu select generates Document
window

Document
text

Is represented as
Contains

(b)

Object
#1

Directed link Object
#2

Object
#3

Undirected link

Parallel links

Node weight
(value)

(a)

Allows editing of

(link weight)

(generation time < 1.0 sec)

Attributes:
Start dimension: default setting
          or preferences
Background color: white
Text color: default color 
  or preferences

pre22126_ch23_496-522.indd   510pre22126_ch23_496-522.indd   510 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  511

that are to be expected when the window is generated. The link weight indicates 

that the window must be generated in less than 1.0 second. An undirected link 

establishes a symmetric relationship between the  newFile  menu selection and 

 documentText,  and parallel links indicate relationships between  documentWindow  

and  documentText.  In reality, a far more detailed graph would have to be gener-

ated as a precursor to test-case design. You can then derive test cases by travers-

ing the graph and covering each of the relationships shown. These test cases are 

designed in an attempt to fi nd errors in any of the relationships. Beizer [Bei95] 

describes a number of behavioral testing methods that can make use of graphs:

        Transaction fl ow modeling.  The nodes represent steps in some transaction 

(e.g., the steps required to make an airline reservation using an online 

service), and the links represent the logical connection between steps. For 

example, a data object  fl ightInformationInput  is followed by the operation 

 validationAvailabilityProcessing ().  

       Finite state modeling.  The nodes represent different user-observable 

states of the software (e.g., each of the “screens” that appear as an order 

entry clerk takes a phone order), and the links represent the transitions 

that occur to move from state to state (e.g.,  orderInformation  is verifi ed 

during  inventoryAvailabilityLook-up()  and is followed by  customerBilling-

Information  input). The state diagram (Chapter 11) can be used to assist in 

creating graphs of this type.  

       Data fl ow modeling.  The nodes are data objects, and the links are the 

transformations that occur to translate one data object into another. For 

example, the node  FICATaxWithheld  ( FTW ) is computed from gross wages 

( GW ) using the relationship,  FTW 5 0.62 3 GW.   

       Timing modeling.  The nodes are program objects, and the links are the 

sequential connections between those objects. Link weights are used to 

specify the required execution times as the program executes.  

   A detailed discussion of each of these graph-based testing methods is beyond 

the scope of this book. If you have further interest, see [Bei95] for a comprehen-

sive coverage. 

    23.6.2   Equivalence Partitioning 

  Equivalence partitioning  is a black-box testing method that divides the input do-

main of a program into classes of data from which test cases can be derived. An 

ideal test case single-handedly uncovers a class of errors (e.g., incorrect pro-

cessing of all character data) that might otherwise require many test cases to be 

executed before the general error is observed. 

 Test-case design for equivalence partitioning is based on an evaluation of 

 equivalence classes  for an input condition. Using concepts introduced in the 

pre22126_ch23_496-522.indd   511pre22126_ch23_496-522.indd   511 13/12/13   6:14 PM13/12/13   6:14 PM



512 PART THREE  QUALITY MANAGEMENT

preceding section, if a set of objects can be linked by relationships that are 

symmetric, transitive, and refl exive, an equivalence class is present [Bei95]. An 

equivalence class represents a set of valid or invalid states for input conditions. 

Typically, an input condition is either a specifi c numeric value, a range of values, 

a set of related values, or a Boolean condition. Equivalence classes may be de-

fi ned according to the following guidelines: 

       1.  If an input condition specifi es a range, one valid and two invalid equiva-

lence classes are defi ned.  

    2.  If an input condition requires a specifi c value, one valid and two invalid 

equivalence classes are defi ned.  

    3.  If an input condition specifi es a member of a set, one valid and one invalid 

equivalence class are defi ned.  

    4.  If an input condition is Boolean, one valid and one invalid class are defi ned.  

  By applying the guidelines for the derivation of equivalence classes, test cases 

for each input domain data item can be developed and executed. Test cases are 

selected so that the largest number of attributes of an equivalence class are 

exercised at once. 

     23.6.3   Boundary Value Analysis 

 A greater number of errors occurs at the boundaries of the input domain rather 

than in the “center.” It is for this reason that  boundary value analysis  (BVA) has 

been developed as a testing technique. Boundary value analysis leads to a selec-

tion of test cases that exercise bounding values. 

 Boundary value analysis is a test-case design technique that complements 

equivalence partitioning. Rather than selecting any element of an equivalence 

class, BVA leads to the selection of test cases at the “edges” of the class. Rather 

than focusing solely on input conditions, BVA derives test cases from the output 

domain as well [Mye79]. 

   Guidelines for BVA are similar in many respects to those provided for equiv-

alence partitioning:

     1.  If an input condition specifi es a range bounded by values  a  and  b,  test 

cases should be designed with values  a  and  b  and just above and just 

below  a  and  b.   

    2.  If an input condition specifi es a number of values, test cases should be de-

veloped that exercise the minimum and maximum numbers. Values just 

above and below minimum and maximum are also tested.  

    3.  Apply guidelines 1 and 2 to output conditions. For example, assume that 

a temperature versus pressure table is required as output from an en-

gineering analysis program. Test cases should be designed to create an 

 How do 
I defi ne 

equivalence 
classes for 
testing? 

?

    uote: 

 “An effective 
way to test code 
is to exercise 
it at its natural 
boundaries.” 

 Brian Kernighan 

   BVA extends equiva-
lence partitioning by 
focusing on data at 
the “edges” of an 
equivalence class. 

pre22126_ch23_496-522.indd   512pre22126_ch23_496-522.indd   512 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  513

output report that produces the maximum (and minimum) allowable num-

ber of table entries.  

    4.  If internal program data structures have prescribed boundaries (e.g., a 

table has a defi ned limit of 100 entries), be certain to design a test case to 

exercise the data structure at its boundary.  

 Most software engineers intuitively perform BVA to some degree. By applying 

these guidelines, boundary testing will be more complete, thereby having a 

higher likelihood for error detection.   

    23.6.4   Orthogonal Array Testing 

   There are many applications in which the input domain is relatively limited. 

That is, the number of input parameters is small and the values that each of the 

parameters may take are clearly bounded. When these numbers are very small 

(e.g., three input parameters taking on three discrete values each), it is possible to 

consider every input permutation and exhaustively test the input domain. How-

ever, as the number of input values grows and the number of discrete values for 

each data item increases, exhaustive testing becomes impractical or impossible. 

  Orthogonal array testing  can be applied to problems in which the input do-

main is relatively small but too large to accommodate exhaustive testing. The or-

thogonal array testing method is particularly useful in fi nding  region faults —an 

error category associated with faulty logic within a software component. 

 To illustrate the difference between orthogonal array testing and more con-

ventional “one input item at a time” approaches, consider a system that has 

three input items,  X, Y,  and  Z.  Each of these input items has three discrete values 

associated with it. There are 3 3  5 27 possible test cases. Phadke [Pha97] suggests 

a geometric view of the possible test cases associated with X, Y, and Z illustrated 

in  Figure 23.9 . Referring to the fi gure, one input item at a time may be varied in 

sequence along each input axis. This results in relatively limited coverage of the 

input domain (represented by the left-hand cube in the fi gure).  

   Orthogonal array 
testing enables you 
to design test cases 
that provide maximum 
test coverage with a 
reasonable number of 
test cases. 

YY
X X

ZZ

One input item at a time L9 orthogonal array

  FIGURE 23.9

 A geometric 
view of test 
cases 
 Source: [Pha97].   

pre22126_ch23_496-522.indd   513pre22126_ch23_496-522.indd   513 13/12/13   6:14 PM13/12/13   6:14 PM



514 PART THREE  QUALITY MANAGEMENT

 When orthogonal array testing occurs, an L9  orthogonal array  of test cases is 

created. The L9 orthogonal array has a “balancing property” [Pha97]. That is, test 

cases (represented by dark dots in the fi gure) are “dispersed uniformly through-

out the test domain,” as illustrated in the right-hand cube in  Figure 23.9 . Test 

coverage across the input domain is more complete. 

 To illustrate the use of the L9 orthogonal array, consider the  send  function for 

a fax application. Four parameters, P1, P2, P3, and P4, are passed to the  send  

function. Each takes on three discrete values. For example, P1 takes on values:

       P1 5 1, send it now  

      P1 5 2, send it one hour later  

      P1 5 3, send it after midnight  

      P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send 

functions.    

 If a “one input item at a time” testing strategy were chosen, the following se-

quence of tests (P1, P2, P3, P4) would be specifi ed: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), 

(1, 2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). But these would 

uncover only  single mode faults  [Pha97], that is, faults that are triggered by a 

single parameter. 

 Given the relatively small number of input parameters and discrete values, 

exhaustive testing is possible. The number of tests required is 3 4  5 81, large but 

manageable. All faults associated with data item permutation would be found, 

but the effort required is relatively high. 

 The orthogonal array testing approach enables you to provide good test cover-

age with far fewer test cases than the exhaustive strategy. An L9 orthogonal array 

for the fax  send  function is illustrated in  Figure 23.10 . 

Test
case Test parameters

P1 P2 P3 P4

1

2

3

3

1

2

2

3

1

1

2

3

2

3

1

3

1

2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

1

2

3

4

5

6

7

8

9

  FIGURE 23.10

 An L9 
orthogonal 
array   

pre22126_ch23_496-522.indd   514pre22126_ch23_496-522.indd   514 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  515

  Phadke [Pha97] assesses the result of tests using the L9 orthogonal array in 

the following manner:

   Detect and isolate all single mode faults.  A single mode fault is a consistent problem 

with any level of any single parameter. For example, if all test cases of factor P1 5 1 

cause an error condition, it is a single mode failure. In this example tests 1, 2 and 3 

[ Figure 23.10 ] will show errors. By analyzing the information about which tests show 

errors, one can identify which parameter values cause the fault. In this example, by 

noting that tests 1, 2, and 3 cause an error, one can isolate [logical processing associ-

ated with “send it now” (P1 5 1)] as the source of the error. Such an isolation of fault 

is important to fi x the fault. 

  Detect all double mode faults.  If there exists a consistent problem when specifi c 

levels of two parameters occur together, it is called a  double mode fault.  Indeed, a 

double mode fault is an indication of pairwise incompatibility or harmful interactions 

between two test parameters. 

  Multimode faults.  Orthogonal arrays [of the type shown] can assure the detection 

of only single and double mode faults. However, many multi-mode faults are also de-

tected by these tests.   

 You can fi nd a detailed discussion of orthogonal array testing in [Pha89]. 

   Test-Case Design  

  Objective:  To assist the software team in 
developing a complete set of test cases for 

both black-box and white-box testing. 

  Mechanics:  These tools fall into two broad categories: 
static testing tools and dynamic testing tools. Three 
different types of static testing tools are used in the 
industry: code-based testing tools, specialized testing 
languages, and requirements-based testing tools. 
Code-based testing tools accept source code as input 
and perform a number of analyses that result in the 
generation of test cases. Specialized testing languages 
(e.g., ATLAS) enable a software engineer to write detailed 
test specifi cations that describe each test case and the 
logistics for its execution. Requirements-based testing tools 
isolate specifi c user requirements and suggest test cases 
(or classes of tests) that will exercise the requirements. 
Dynamic testing tools interact with an executing program, 
checking path coverage, testing assertions about the 
value of specifi c variables, and otherwise instrumenting 
the execution fl ow of the program. 

   Representative Tools:  6   
   McCabeTest,  developed by McCabe & Associates 

(  www.mccabe.com  ), implements a variety of path 
testing techniques derived from an assessment of 
cyclomatic complexity and other software metrics. 

  TestWorks,  developed by Software Research ( http://
www.testworks.com/stwhome.html ), is a 
complete set of automated testing tools that assists in the 
design of tests cases for software developed in C/C++ 
and Java and provides support for regression testing. 

  T-VEC Test Generation System,  developed by T-VEC 
Technologies (  www.t-vec.com  ), is a tool set that 
supports unit, integration, and validation testing by 
assisting in the design of test cases using information 
contained in an OO requirements specifi cation. 

  e-TEST Suite,  developed by Empirix (  www.empirix
.com  ), encompasses a complete set of tools for 
testing WebApps, including tools that assist test-case 
design and test planning.  

 SOFTWARE TOOLS 

  6  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch23_496-522.indd   515pre22126_ch23_496-522.indd   515 13/12/13   6:14 PM13/12/13   6:14 PM



516 PART THREE  QUALITY MANAGEMENT

          23.7  MODEL-BASED TEST ING 

   Model-based testing  (MBT) is a black-box testing technique that uses informa-

tion contained in the requirements model as the basis for the generation of test 

cases [DAC03]. In many cases, the model-based testing technique uses UML state 

diagrams, an element of the behavioral model (Chapter 11), as the basis for the 

design of test cases.  7   The MBT technique requires fi ve steps:

      1.   Analyze an existing behavioral model for the software or create one.   

Recall that a  behavioral model  indicates how software will respond to 

external events or stimuli. To create the model, you should perform the 

steps discussed in Chapter 11: (1) evaluate all use cases to fully under-

stand the sequence of interaction within the system, (2) identify events 

that drive the interaction sequence and understand how these events re-

late to specifi c objects, (3) create a sequence for each use case, (4) build a 

UML state diagram for the system (e.g., see Figure 11.1), and (5) review the 

behavioral model to verify accuracy and consistency.  

    2.   Traverse the behavioral model and specify the inputs that will force the 

software to make the transition from state to state.  The inputs will trigger 

events that will cause the transition to occur.  

    3.   Review the behavioral model and note the expected outputs as the soft-

ware makes the transition from state to state.  Recall that each state tran-

sition is triggered by an event and that as a consequence of the transition, 

some function is invoked and outputs are created. For each set of inputs 

(test cases) you specifi ed in step 2, specify the expected outputs as they 

are characterized in the behavioral model.  

    4.   Execute the test cases.  Tests can be executed manually or a test script can 

be created and executed using a testing tool.  

    5.   Compare actual and expected results and take corrective action as required.     

 MBT helps to uncover errors in software behavior, and as a consequence, it is 

extremely useful when testing event-driven applications. 

      23.8  TEST ING DOCUMENTATION AND HELP FACIL IT IES 

  The term  software testing  conjures images of large numbers of test cases pre-

pared to exercise computer programs and the data that they manipulate. But 

errors in help facilities or program documentation can be as devastating to the 

acceptance of the program as errors in data or source code. Nothing is more 

    uote: 

 “It's hard enough 
to fi nd an error in 
your code when 
you're looking for 
it; it's even harder 
when you've 
assumed your code 
is error-free.” 

 Steve McConnell 

  7  Model-based testing can also be used when software requirements are represented with 

decision tables, grammars, or Markov chains [DAC03]. 

pre22126_ch23_496-522.indd   516pre22126_ch23_496-522.indd   516 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  517

frustrating than following a user guide or an online help facility exactly and get-

ting results or behaviors that do not coincide with those predicted by the docu-

mentation. It is for this reason that documentation testing should be a meaningful 

part of every software test plan. 

 Documentation testing can be approached in two phases. The fi rst phase, 

technical review (Chapter 20), examines the document for editorial clarity. The 

second phase, live test, uses the documentation in conjunction with the actual 

program. 

 Surprisingly, a live test for documentation can be approached using tech-

niques that are analogous to many of the black-box testing methods discussed 

earlier. Graph-based testing can be used to describe the use of the program; 

equivalence partitioning and boundary value analysis can be used to defi ne var-

ious classes of input and associated interactions. MBT can be used to ensure 

that documented behavior and actual behavior coincide. Program usage is then 

tracked through the documentation. 

  Documentation Testing 
  The following questions should be answered 
during documentation and/or help facility 

testing: 

    •  Does the documentation accurately describe how to 
accomplish each mode of use?  

   •  Is the description of each interaction sequence accurate?  

   •  Are examples accurate?  

   •  Are terminology, menu descriptions, and system 
responses consistent with the actual program?  

   •  Is it relatively easy to locate guidance within the 
documentation?  

   •  Can troubleshooting be accomplished easily with the 
documentation?  

   •  Are the document’s table of contents and index 
robust, accurate, and complete?  

   •  Is the design of the document (layout, typefaces, 
indentation, graphics) conducive to understanding 
and quick assimilation of information?  

   •  Are all software error messages displayed for the 
user described in more detail in the document? Are 
actions to be taken as a consequence of an error 
message clearly delineated?  

   •  If hypertext links are used, are they accurate and 
complete?  

   •  If hypertext is used, is the navigation design 
appropriate for the information required?    

 The only viable way to answer these questions is to 
have an independent third party (e.g., selected users) 
test the documentation in the context of program usage. 
All discrepancies are noted and areas of document am-
biguity or weakness are defi ned for potential rewrite.  

 INFO 

        23.9  TEST ING FOR REAL-TIME SYSTEMS 

  The time-dependent, asynchronous nature of many real-time applications adds 

a new and potentially diffi cult element to the testing mix—time. Not only does 

the test-case designer have to consider conventional test cases but also event 

handling (i.e., interrupt processing), the timing of the data, and the parallelism of 

the tasks (processes) that handle the data. In many situations, test data provided 

pre22126_ch23_496-522.indd   517pre22126_ch23_496-522.indd   517 13/12/13   6:14 PM13/12/13   6:14 PM



518 PART THREE  QUALITY MANAGEMENT

when a real-time system is in one state will result in proper processing, while 

the same data provided when the system is in a different state may lead to error. 

 For example, the real-time software that controls a new photocopier accepts 

operator interrupts (i.e., the machine operator hits control keys such as R ESET  or 

D ARKEN ) with no error when the machine is making copies (in the  copying  state). 

These same operator interrupts, if input when the machine is in the  jammed  

state, cause a display of the diagnostic code indicating the location of the jam to 

be lost (an error). 

 In addition, the intimate relationship that exists between real-time software 

and its hardware environment can also cause testing problems. Software tests 

must consider the impact of hardware faults on software processing. Such faults 

can be extremely diffi cult to simulate realistically. 

   An overall four-step strategy for real-time software testing can be proposed:

    •   Task testing.  Test each task independently. That is, conventional tests 

are designed for each task and executed independently during these 

tests. Task testing uncovers errors in logic and function but not timing or 

behavior.  

   •   Behavioral testing.  Using system models created with automated tools, 

it is possible to simulate the behavior of a real-time system and examine 

its behavior as a consequence of external events. These analysis activities 

can serve as the basis for the design of test cases that are conducted when 

the real-time software has been built. Using a technique that is similar to 

equivalence partitioning (Section 23.6.2), events (e.g., interrupts, control 

signals) are categorized for testing. For example, events for the photo-

copier might be user interrupts (e.g., reset counter), mechanical inter-

rupts (e.g., paper jammed), system interrupts (e.g., toner low), and failure 

modes (e.g., roller overheated). Each of these events is tested individually, 

and the behavior of the executable system is examined to detect errors 

that occur as a consequence of processing associated with these events.  

   •   Intertask testing.  Once errors in individual tasks and in system behavior have 

been isolated, testing shifts to time-related errors. Asynchronous tasks that 

are known to communicate with one another are tested with different data 

rates and processing load to determine if intertask synchronization errors 

will occur. In addition, tasks that communicate via a message queue or data 

store are tested to uncover errors in the sizing of these data storage areas.  

   •   System testing.  Software and hardware are integrated, and a full range 

of system tests are conducted in an attempt to uncover errors at the 

software-hardware interface. Most real-time systems process interrupts. 

Therefore, testing the handling of these Boolean events is essential. 

Using the state diagram (Chapter 11), the tester develops a list of all 

possible interrupts and the processing that occurs as a consequence of 

 What is an 
effective 

strategy for 
testing a real-time 
system? 

?

pre22126_ch23_496-522.indd   518pre22126_ch23_496-522.indd   518 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  519

the interrupts. Tests are then designed to assess the following system 

characteristics:

    •  Are interrupt priorities properly assigned and properly handled?  

   •  Is processing for each interrupt handled correctly?  

   •  Does the performance (e.g., processing time) of each interrupt-handling 

procedure conform to requirements?  

   •  Does a high volume of interrupts arriving at critical times create prob-

lems in function or performance?       

 In addition, global data areas that are used to transfer information as part of 

interrupt processing should be tested to assess the potential for the generation 

of side effects. 

        23.10  PATTERNS FOR SOFTWARE TEST ING 

  The use of patterns as a mechanism for describing solutions to specifi c design 

problems was discussed in Chapter 16. But patterns can also be used to propose 

solutions to other software engineering situations—in this case, software testing. 

 Testing patterns  describe common testing problems and solutions that can assist 

you in dealing with them. 

   Much of software testing, even during the past decade, has been an ad hoc 

activity. If testing patterns can help a software team to communicate about test-

ing more effectively, to understand the motivating forces that lead to a specifi c 

approach to testing, and to approach the design of tests as an evolutionary ac-

tivity in which each iteration results in a more complete suite of test cases, then 

patterns have accomplished much. 

 Testing patterns are described in much the same way as design patterns 

(Chapter 16). Dozens of testing patterns have been proposed in the literature 

(e.g., [Mar02]). The following three testing patterns (presented in abstract form 

only) provide representative examples:

   Pattern name:   PairTesting  

  Abstract:  A process-oriented pattern,  pair testing  describes a technique that is 

analogous to pair programming (Chapter 5) in which two testers work together to de-

sign and execute a series of tests that can be applied to unit, integration or validation 

testing activities. 

  Pattern name:   SeparateTestInterface  

  Abstract:  There is a need to test every class in an object-oriented system, includ-

ing “internal classes” (i.e., classes that do not expose any interface outside of the com-

ponent that used them). The  SeparateTestInterface  pattern describes how to create 

“a test interface that can be used to describe specifi c tests on classes that are visible 

only internally to a component” [Lan01]. 

 WebRef 
 A software testing 
patterns catalog can be 
found at   http://c2
.com/cgi-bin/wiki?
TestingPatterns  . 

   Testing patterns can 
help a software team 
communicate more 
effectively about 
testing and better 
understand the forces 
that lead to a specifi c 
testing approach. 

pre22126_ch23_496-522.indd   519pre22126_ch23_496-522.indd   519 13/12/13   6:14 PM13/12/13   6:14 PM



520 PART THREE  QUALITY MANAGEMENT

  Pattern name:   ScenarioTesting  

  Abstract:  Once unit and integration tests have been conducted, there is a need to 

determine whether the software will perform in a manner that satisfi es users. The 

 ScenarioTesting  pattern describes a technique for exercising the software from the 

user’s point of view. A failure at this level indicates that the software has failed to 

meet a user visible requirement [Kan01].   

 A comprehensive discussion of testing patterns is beyond the scope of this 

book. If you have further interest, see [Bin99], [Mar02], and [Tho04] for additional 

information on this important topic. 

       23.11 SUMMARY 

 The primary objective for test-case design is to derive a set of tests that have the 

highest likelihood for uncovering errors in software. To accomplish this objec-

tive, two different categories of test-case design techniques are used: white-box 

testing and black-box testing. 

 White-box tests focus on the program control structure. Test cases are derived 

to ensure that all statements in the program have been executed at least once 

during testing and that all logical conditions have been exercised. Basis path 

testing, a white-box technique, makes use of program graphs (or graph matrices) 

to derive the set of linearly independent tests that will ensure coverage. Condi-

tion and data fl ow testing further exercise program logic, and loop testing com-

plements other white-box techniques by providing a procedure for exercising 

loops of varying degrees of complexity. 

 Hetzel [Het84] describes white-box testing as “testing in the small.” His impli-

cation is that the white-box tests that have been considered in this chapter are 

typically applied to small program components (e.g., modules or small groups of 

modules). Black-box testing, on the other hand, broadens your focus and might 

be called “testing in the large.” 

 Black-box tests are designed to validate functional requirements without re-

gard to the internal workings of a program. Black-box testing techniques focus 

on the information domain of the software, deriving test cases by partitioning the 

input and output domain of a program in a manner that provides thorough test 

coverage. Equivalence partitioning divides the input domain into classes of data 

that are likely to exercise a specifi c software function. Boundary value analysis 

probes the program’s ability to handle data at the limits of acceptability. Orthog-

onal array testing provides an effi cient, systematic method for testing systems 

with small numbers of input parameters. Model-based testing uses elements of 

the requirements model to test the behavior of an application. 

 Experienced software developers often say, “Testing never ends, it just gets 

transferred from you [the software engineer] to your customer. Every time your 

pre22126_ch23_496-522.indd   520pre22126_ch23_496-522.indd   520 13/12/13   6:14 PM13/12/13   6:14 PM



CHAPTER 23  TESTING CONVENTIONAL APPLICATIONS  521

customer uses the program, a test is being conducted.” By applying test-case 

design, you can achieve more complete testing and thereby uncover and correct 

the highest number of errors before the “customer’s tests” begin. 

     PROBLEMS AND POINTS TO PONDER 
    23.1.  Myers [Mye79] uses the following program as a self-assessment for your ability to spec-
ify adequate testing: A program reads three integer values. The three values are inter-
preted as representing the lengths of the sides of a triangle. The program prints a message 
that states whether the triangle is scalene, isosceles, or equilateral. Develop a set of test 
cases that you feel will adequately test this program.  

   23.2.  Design and implement the program (with error handling where appropriate) specifi ed 
in Problem 23.1. Derive a fl ow graph for the program and apply basis path testing to develop 
test cases that will guarantee that all statements in the program have been tested. Execute 
the cases and show your results.  

   23.3.  Can you think of any additional testing objectives that are not discussed in 
Section 23.1.1?  

   23.4.  Select a software component that you have designed and implemented recently. De-
sign a set of test cases that will ensure that all statements have been executed using basis 
path testing.  

   23.5.  Specify, design, and implement a software tool that will compute the cyclomatic com-
plexity for the programming language of your choice. Use the graph matrix as the operative 
data structure in your design.  

   23.6.  Read Beizer [Bei95] or a related Web-based source (e.g.,   www.laynetworks.com/
Discrete%20Mathematics_1g.htm  ) and determine how the program you have developed in 
Problem 23.5 can be extended to accommodate various link weights. Extend your tool to 
process execution probabilities or link processing times.  

   23.7.  Design an automated tool that will recognize loops and categorize them as indicated 
in Section 23.5.3.  

   23.8.  Extend the tool described in Problem 23.7 to generate test cases for each loop cate-
gory, once encountered. It will be necessary to perform this function interactively with the 
tester.  

   23.9.  Give at least three examples in which black-box testing might give the impression 
that “everything’s OK,” while white-box tests might uncover an error. Give at least three ex-
amples in which white-box testing might give the impression that “everything’s OK,” while 
black-box tests might uncover an error.  

   23.10.  Will exhaustive testing (even if it is possible for very small programs) guarantee that 
the program is 100 percent correct?  

   23.11.  Test a user manual (or help facility) for an application that you use frequently. Find at 
least one error in the documentation.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Virtually all books dedicated to software testing consider both strategy and tactics. There-
fore, further readings noted for Chapter 22 are equally applicable for this chapter. Burn-
stein ( Practical Software Testing,  Springer, 2010), Crispin and Gregory ( Agile Testing: A 

Practical Guide for Testers and Agile Teams,  Addison-Wesley, 2009), Lewis ( Software Testing 

pre22126_ch23_496-522.indd   521pre22126_ch23_496-522.indd   521 13/12/13   6:14 PM13/12/13   6:14 PM



522 PART THREE  QUALITY MANAGEMENT

and Continuous Quality Improvement,  3rd ed., Auerbach, 2008), Ammann and Offutt ( Intro-

duction to Software Testing,  Cambridge University Press, 2008), Everett and McCleod (Soft-
ware Testing ,  Wiley-IEEE Computer Society Press, 2007), Black ( Pragmatic Software Testing,  
Wiley, 2007), Spiller and his colleagues ( Software Testing Process: Test Management,  Rocky 
Nook, 2007), Perry ( Effective Methods for Software Testing,  3rd ed., Wiley, 2006), Loveland 
and his colleagues ( Software Testing Techniques,  Charles River Media, 2004), Dustin ( Effec-

tive Software Testing,  Addison-Wesley, 2002), Craig and Kaskiel ( Systematic Software Test-

ing,  Artech House, 2002), Tamres ( Introducing Software Testing,  Addison-Wesley, 2002), and 
Whittaker ( Exploratory Software Testing: Tips, Tricks, and Techniques to Guide Test Design,  
Addison-Wesley, 2009) and ( How to Break Software,  Addison-Wesley, 2002) are only a small 
sampling of many books that discuss testing principles, concepts, strategies, and methods. 

   A third edition of Myers’s [Mye79] classic text has been produced by Myers and his col-
leagues ( The Art of Software Testing,  3rd ed., Wiley, 2011) and covers test-case design tech-
niques in considerable detail. Black ( Managing the Testing Process , 3rd ed., Wiley, 2009), 
Jorgensen ( Software Testing: A Craftsman's Approach,  3rd ed.,   CRC Press, 2008), Pezze 
and Young ( Software Testing and Analysis,  Wiley, 2007), Perry ( Effective Methods for Soft-

ware Testing,  3rd ed., Wiley, 2006), Copeland ( A Practitioner's Guide to Software Test Design,  
Artech, 2003), and Hutcheson ( Software Testing Fundamentals,  Wiley, 2003) each provide 
useful presentations of test-case design methods and techniques. Beizer’s [Bei90] classic 
text provides comprehensive coverage of white-box techniques, introducing a level of math-
ematical rigor that has often been missing in other treatments of testing. His later book 
[Bei95] presents a concise treatment of important methods. 

   Software testing is a resource-intensive activity. It is for this reason that many organi-
zations automate parts of the testing process. Books by Graham and her colleagues ( Ex-

periences of Test Automation: Case Studies of Software Test Automation,  Addison-Wesley, 
2012) and ( Software Test Automation , Addison-Wesley, 1999), Li and Wu ( Effective Software 

Test Automation,  Sybex, 2004); Mosely and Posey ( Just Enough Software Test Automation,  
Prentice Hall, 2002); Dustin, Rashka, and Poston ( Automated Software Testing: Introduc-

tion, Management, and Performance,  Addison-Wesley, 1999); and Poston ( Automating 

Specifi cation-Based Software Testing,  IEEE Computer Society, 1996) discuss tools, strate-
gies, and methods for automated testing. Nquyen and his colleagues ( Happy About   Global 

Software Test Automation,  Happy About Press, 2006) present an executive overview of 
testing automation. 

   Meszaros ( Unit Test Patterns: Refactoring Test Code,  Addison-Wesley, 2007), Thomas and 
his colleagues ( Java Testing Patterns,  Wiley, 2004) and Binder [Bin99] describe testing pat-
terns that cover testing of methods, classes/clusters, subsystems, reusable components, 
frameworks, and systems as well as test automation and specialized database testing. 

   A wide variety of information sources on test-case design methods are available on the 
Internet. An up-to-date list of World Wide Web references that are relevant to testing tech-
niques can be found at the SEPA website:   www.mhhe.com/pressman  .      

pre22126_ch23_496-522.indd   522pre22126_ch23_496-522.indd   522 13/12/13   6:14 PM13/12/13   6:14 PM



523

 TESTING OBJECT-ORIENTED
APPLICATIONS 

          In Chapter 23, we noted that the objective of testing, stated simply, is to fi nd 

the greatest possible number of errors with a manageable amount of effort 

applied over a realistic time span. Although this fundamental objective 

remains unchanged for object-oriented software, the nature of OO programs 

changes both testing strategy and testing tactics. 

 It could be argued that as reusable class libraries grow in size, greater 

reuse will mitigate the need for heavy testing of OO systems. Exactly the op-

posite is true. Binder [Bin94b] discusses this when he states:

  [E]ach reuse is a new context of usage and retesting is prudent. It seems likely that 

more, not less testing will be needed to obtain high reliability in object-oriented 

systems.   

  What is it?   The architecture of 
object-oriented (OO) software results 
in a series of layered subsystems that 
encapsulate collaborating classes. 

Each of these system elements (subsystems and 
classes) performs functions that help to achieve 
system requirements. It is necessary to test an 
OO system at a variety of different levels in an 
effort to uncover errors that may occur as classes 
collaborate with one another and subsystems 
communicate across architectural layers. 

   Who does it?   Object-oriented testing is per-
formed by software engineers and testing 
specialists. 

   Why is it important?   You have to execute the 
program before it gets to the customer with 
the specifi c intent of removing all errors, so that 
the customer will not experience the frustration 
associated with a poor-quality product. In order 
to fi nd the highest possible number of errors, tests 
must be conducted systematically and test cases 
must be designed using disciplined techniques. 

   What are the steps?   OO testing is strategi-
cally analogous to the testing of conventional 
systems, but it is tactically different. Because 

the OO analysis and design models are simi-
lar in structure and content to the resultant OO 
program, “testing” is initiated with the review 
of these models. Once code has been gener-
ated, OO testing begins “in the small” with 
class testing. A series of tests are designed 
that exercise class operations and examine 
whether errors exist as one class collaborates 
with other classes. As classes are integrated 
to form a subsystem, thread-based, use-based, 
and cluster testing along with fault-based ap-
proaches are applied to fully exercise collabo-
rating classes. Finally, use cases (developed as 
part of the analysis model) are used to uncover 
errors at the software validation level. 

   What is the work product?   A set of test 
cases, designed to exercise classes, their col-
laborations, and behaviors is designed and 
documented; expected results are defi ned, 
and actual results are recorded. 

   How do I ensure that I’ve done it right?  
 When you begin testing, change your point of 
view. Try hard to “break” the software! Design 
test cases in a disciplined fashion, and review 
the tests cases you do create for thoroughness.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    class testing . . . . . 528  
    cluster testing. . . . 529  
    consistency . . . . . . 526  
    fault-based 
testing . . . . . . . . . 531  
    multiple class 
testing . . . . . . . . . 534  
    object-oriented 
models . . . . . . . . . 525  
    partition testing  . . 533  
    random testing . . . 532  
    scenario-based 
testing . . . . . . . . . 532  

     C H A P T E R

24 

pre22126_ch24_523-539.indd   523pre22126_ch24_523-539.indd   523 13/12/13   10:02 PM13/12/13   10:02 PM



524 PART THREE  QUALITY MANAGEMENT

 To adequately test OO systems, three things must be done: (1) the defi nition 

of testing must be broadened to include error discovery techniques applied 

to object-oriented analysis and design models, (2) the strategy for unit and 

integration testing must change signifi cantly, and (3) the design of test cases 

must account for the unique characteristics of OO software. 

    24.1  BROADENING THE VIEW OF TEST ING 

  The construction of object-oriented software begins with the creation of analy-

sis and design models.  1   Because of the evolutionary nature of the OO software 

engineering paradigm, these models begin as relatively informal representa-

tions of system requirements and evolve into detailed models of classes, class 

relationships, system design and allocation, and object design (incorporating a 

model of object connectivity via messaging). At each stage, the models can be 

“tested” in an attempt to uncover errors prior to their propagation to the next 

iteration.  

 It can be argued that the review of OO analysis and design models is espe-

cially useful because the same semantic constructs (e.g., classes, attributes, op-

erations, messages) appear at the analysis, design, and code levels. Therefore, a 

problem in the defi nition of class attributes that is uncovered during analysis will 

circumvent side effects that might occur if the problem were not discovered until 

design or code (or even the next iteration of analysis).     

  For example, consider a class in which a number of attributes are defi ned 

during the fi rst iteration of analysis. An extraneous attribute is appended to the 

class (due to a misunderstanding of the problem domain). Two operations are 

then specifi ed to manipulate the attribute. A review is conducted and a domain 

expert points out the problem. By eliminating the extraneous attribute at this 

stage, the following problems and unnecessary effort may be avoided during 

analysis:

     1.  Special subclasses may have been generated to accommodate the unnec-

essary attribute or exceptions to it. Work involved in the creation of un-

necessary subclasses has been avoided.  

    2.  A misinterpretation of the class defi nition may lead to incorrect or extra-

neous class relationships.  

    3.  The behavior of the system or its classes may be improperly characterized 

to accommodate the extraneous attribute.    

   Although the review 
of the OO analysis 
and design models 
is an integral part of 
“testing” an OO appli-
cation, recognize that 
it is not suffi cient in 
and of itself. You must 
conduct executable 
tests as well. 

    testing methods  . . 529  
    testing strategies  . 528  
    thread-based 
testing . . . . . . . . . 529  
    use-based testing  . 529  
  

  1  Analysis and design modeling techniques are presented in Part 2 of this book. Basic OO con-

cepts are presented in Appendix 2. 

pre22126_ch24_523-539.indd   524pre22126_ch24_523-539.indd   524 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  525

 If the problem is not uncovered during analysis and propagated further, the fol-

lowing problems could occur (and will have been avoided because of the earlier 

review) during design:

     1.  Improper allocation of the class to subsystem and/or tasks may occur 

during system design.  

    2.  Unnecessary design work may be expended to create the procedural 

design for the operations that address the extraneous attribute.  

    3.  The messaging model will be incorrect (because messages must be 

designed for the operations that are extraneous).     

 If the problem remains undetected during design and passes into coding, con-

siderable effort will be expended to generate code that implements an unnec-

essary attribute, two unnecessary operations, messages that drive interobject 

communication, and many other related issues. In addition, testing of the class 

will absorb more time than necessary. Once the problem is fi nally uncovered, 

modifi cation of the system must be carried out with the ever-present potential 

for side effects that are caused by change. 

 During latter stages of their development, object-oriented analysis (OOA) and 

design (OOD) models provide substantial information about the structure and 

behavior of the system. For this reason, these models should be subjected to rig-

orous review prior to the generation of code. 

 All object-oriented models should be tested (in this context, the term  testing  

incorporates technical reviews) for correctness, completeness, and consistency 

within the context of the model’s syntax, semantics, and pragmatics. 

      24.2  TEST ING OOA AND OOD MODELS 

  Analysis and design models cannot be tested in the conventional sense, because 

they cannot be executed. However, technical reviews (Chapter 20) can be used to 

examine their correctness and consistency. 

   24.2.1   Correctness of OOA and OOD Models 

 The notation and syntax used to represent analysis and design models will be tied 

to the specifi c analysis and design methods that are chosen for the project. Hence 

syntactic correctness is judged on proper use of the symbology; each model is 

reviewed to ensure that proper modeling conventions have been maintained. 

 During analysis and design, you can assess semantic correctness based on the 

model’s conformance to the real-world problem domain. If the model accurately re-

fl ects the real world (to a level of detail that is appropriate to the stage of development 

at which the model is reviewed), then it is semantically correct. To determine whether 

the model does, in fact, refl ect real-world requirements, it should be presented to 

  uote: 

 “The tools we use 
have a profound 
(and devious!) 
infl uence on our 
thinking habits, 
and, therefore, 
on our thinking 
abilities.” 

 Edsger Dijkstra 

pre22126_ch24_523-539.indd   525pre22126_ch24_523-539.indd   525 13/12/13   10:02 PM13/12/13   10:02 PM



526 PART THREE  QUALITY MANAGEMENT

problem domain experts who will examine the class defi nitions and hierarchy for 

omissions and ambiguity. Class relationships (instance connections) are evaluated to 

determine whether they accurately refl ect real-world object connections.  2    

    24.2.2   Consistency of Object-Oriented Models 

 The consistency of object-oriented models may be judged by “considering the 

relationships among entities in the model. An inconsistent analysis or design 

model has representations in one part that are not correctly refl ected in other 

portions of the model” [McG94]. 

 To assess consistency, you should examine each class and its connections 

to other classes. The class-responsibility-collaborator (CRC) model and an 

object-relationship diagram can be used to facilitate this activity. As you learned 

in Chapter 10, the CRC model is composed on CRC index cards. Each CRC card 

lists the class name, its responsibilities (operations), and its collaborators (other 

classes to which it sends messages and on which it depends for the accomplish-

ment of its responsibilities). The collaborations imply a series of relationships 

(i.e., connections) between classes of the OO system. The object relationship 

model provides a graphic representation of the connections between classes. All 

of this information can be obtained from the analysis model (Chapter 10). 

 To evaluate the class model the following steps have been recommended 

[McG94]:

     1.   Revisit the CRC model and the object-relationship model.  Cross-check 

to ensure that all collaborations implied by the requirements model are 

properly refl ected in the both.  

    2.   Inspect the description of each CRC index card to determine if a dele-

gated responsibility is part of the collaborator’s defi nition.  For example, 

consider a class defi ned for a point-of-sale checkout system and called 

 CreditSale.  This class has a CRC index card as illustrated in  Figure 24.1 .      

      For this collection of classes and collaborations, ask whether a respon-

sibility (e.g.,  read credit card ) is accomplished if delegated to the named 

collaborator ( CreditCard ). That is, does the class  CreditCard  have an op-

eration that enables it to be read? In this case the answer is “yes.” The ob-

ject-relationship is traversed to ensure that all such connections are valid.  

    3.   Invert the connection to ensure that each collaborator that is asked for 

service is receiving requests from a reasonable source.  For example, 

if the  CreditCard  class receives a request for  purchase amount  from the 

 CreditSale  class, there would be a problem.  CreditCard  does not know 

the purchase amount.  

  2  Use cases can be invaluable in tracking analysis and design models against real-world usage 

scenarios for the OO system. 

pre22126_ch24_523-539.indd   526pre22126_ch24_523-539.indd   526 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  527

    4.   Using the inverted connections examined in step 3, determine whether 

other classes might be required or whether responsibilities are properly 

grouped among the classes.   

    5.   Determine whether widely requested responsibilities might be combined 

into a single responsibility.  For example,  read credit card  and  get autho-

rization  occur in every situation. They might be combined into a  validate 

credit request  responsibility that incorporates getting the credit card 

number and gaining authorization.    

 You should apply steps 1 through 5 iteratively to each class and through each 

evolution of the requirements model. 

 Once the design model (Chapters 12–18) is created, you should also conduct 

reviews of the system design and the object design. The system design depicts 

the overall product architecture, the subsystems that compose the product, the 

manner in which subsystems are allocated to processors, the allocation of classes 

to subsystems, and the design of the user interface. The object model presents 

the details of each class and the messaging activities that are necessary to imple-

ment collaborations between classes. 

 The system design is reviewed by examining the object-behavior model de-

veloped during object-oriented analysis and mapping required system behav-

ior against the subsystems designed to accomplish this behavior. Concurrency 

and task allocation are also reviewed within the context of system behavior. The 

behavioral states of the system are evaluated to determine which exist concur-

rently. Use cases are used to exercise the user interface design. 

 The object model should be tested against the object-relationship network to 

ensure that all design objects contain the necessary attributes and operations to 

 FIGURE 24.1 

An example 
CRC Index 
card used for 
review

pre22126_ch24_523-539.indd   527pre22126_ch24_523-539.indd   527 13/12/13   10:02 PM13/12/13   10:02 PM



528 PART THREE  QUALITY MANAGEMENT

implement the collaborations defi ned for each CRC index card. In addition, the 

detailed specifi cation of operation details (i.e., the algorithms that implement 

the operations) is reviewed. 

       24.3  OBJECT-ORIENTED TEST ING STRATEGIES 

  As we noted in Chapter 23, the classical software testing strategy begins with 

“testing in the small” and works outward toward “testing in the large.” Stated 

in the jargon of software testing (Chapter 23), you begin with  unit testing,  then 

progress toward  integration testing,  and culminate with  validation and system 

testing.  In conventional applications, unit testing focuses on the smallest compi-

lable program unit—the subprogram (e.g., component, module, subroutine, pro-

cedure). Once each of these units has been testing individually, it is integrated 

into a program structure while a series of regression tests are run to uncover 

errors due to interfacing the modules and side effects that are caused by the ad-

dition of new units. Finally, the system as a whole is tested to ensure that errors 

in requirements are uncovered. 

        24.3.1   Unit Testing in the OO Context 

 When object-oriented software is considered, the concept of the unit changes. 

Encapsulation drives the defi nition of classes and objects. This means that each 

class and each instance of a class (object) packages attributes (data) and the op-

erations (also known as methods or services) that manipulate these data. Rather 

than testing an individual module, the smallest testable unit is the encapsulated 

class. Because a class can contain a number of different operations and a partic-

ular operation may exist as part of a number of different classes, the meaning of 

unit testing changes dramatically. 

 We can no longer test a single operation in isolation (the conventional view of 

unit testing) but rather, as part of a class. To illustrate, consider a class hierar-

chy in which an operation  X () is defi ned for the superclass and is inherited by a 

number of subclasses. Each subclass uses operation  X (), but it is applied within 

the context of the private attributes and operations that have been defi ned for 

each subclass. Because the context in which operation  X () is used varies in subtle 

ways, it is necessary to test operation  X () in the context of each of the subclasses. 

This means that testing operation  X () in a vacuum (the traditional unit-testing 

approach) is ineffective in the object-oriented context. 

  Class testing  for OO software is the equivalent of unit testing for conventional 

software.  3   Unlike unit testing of conventional software, which tends to focus on 

the algorithmic detail of a module and the data that fl ows across the module 

   The smallest testable 
“unit” in OO software 
is the class. Class 
testing is driven by the 
operations encapsu-
lated by the class and 
the state behavior of 
the class. 

  3  Test-case design methods for OO classes are discussed in Sections 24.4 through 24.6. 

pre22126_ch24_523-539.indd   528pre22126_ch24_523-539.indd   528 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  529

interface, class testing for OO software is driven by the operations encapsulated 

by the class and the state behavior of the class.  

    24.3.2   Integration Testing in the OO Context 

 Because object-oriented software does not have a hierarchical control structure, 

conventional top-down and bottom-up integration strategies have little meaning. 

In addition, integrating operations one at a time into a class (the conventional 

incremental integration approach) is often impossible because of the “direct and 

indirect interactions of the components that make up the class” [Ber93]. 

      There are two different strategies for integration testing of OO systems [Bin94a]. 

The fi rst,  thread-based testing,  integrates the set of classes required to respond to 

one input or event for the system. Each thread is integrated and tested individu-

ally. Regression testing is applied to ensure that no side effects occur. The second 

integration approach,  use-based testing,  begins the construction of the system 

by testing those classes (called  independent classes ) that use very few (if any) of 

server classes. After the independent classes are tested, the next layer of classes, 

called  dependent classes,  that use the independent classes are tested. This se-

quence of testing layers of dependent classes continues until the entire system is 

constructed. Unlike conventional integration, the use of driver and stubs (Chap-

ter 23) as replacement operations is to be avoided, when possible. 

  Cluster testing  [McG94] is one step in the integration testing of OO software. 

Here, a cluster of collaborating classes (determined by examining the CRC and 

object-relationship model) is exercised by designing test cases that attempt to 

uncover errors in the collaborations. 

    24.3.3   Validation Testing in an OO Context 

 At the validation or system level, the details of class connections disappear. Like 

conventional validation, the validation of OO software focuses on user-visible ac-

tions and user-recognizable outputs from the system. To assist in the derivation 

of validation tests, the tester should draw upon use cases (Chapters 9 and 10) that 

are part of the requirements model. The use case provides a scenario that has a 

high likelihood of uncovered errors in user-interaction requirements. 

 Conventional black-box testing methods (Chapter 23) can be used to drive 

validation tests. In addition, you may choose to derive test cases from the object-

behavior model and from an event fl ow diagram created as part of OOA. 

       24.4  OBJECT-ORIENTED TEST ING METHODS 

   The architecture of object-oriented software results in a series of layered sub-

systems that encapsulate collaborating classes. Each of these system ele-

ments (subsystems and classes) performs functions that help to achieve system 

   Integration testing for 
OO software tests a 
set of classes that are 
required to respond to 
a given event. 

pre22126_ch24_523-539.indd   529pre22126_ch24_523-539.indd   529 13/12/13   10:02 PM13/12/13   10:02 PM



530 PART THREE  QUALITY MANAGEMENT

requirements. It is necessary to test an OO system at a variety of different levels 

in an effort to uncover errors that may occur as classes collaborate with one 

another and subsystems communicate across architectural layers. 

 Test-case design methods for object-oriented software continue to evolve. 

However, an overall approach to OO test-case design has been suggested by 

Berard [Ber93]:

     1.  Each test case should be uniquely identifi ed and explicitly associated with 

the class to be tested.  

    2.  The purpose of the test should be stated.  

    3.  A list of testing steps should be developed for each test and should con-

tain: a list of specifi ed states for the class that is to be tested, a list of mes-

sages and operations that will be exercised as a consequence of the test, 

a list of exceptions that may occur as the class is tested, a list of external 

conditions (i.e., changes in the environment external to the software that 

must exist in order to properly conduct the test), and supplementary in-

formation that will aid in understanding or implementing the test.    

 Unlike conventional test-case design, which is driven by an input-process-

output view of software or the algorithmic detail of individual modules, object-

oriented testing focuses on designing appropriate sequences of operations to 

exercise the states of a class. 

   24.4.1   The Test-Case Design Implications of OO Concepts 

 As a class evolves through the analysis and design models, it becomes a target 

for test-case design. Because attributes and operations are encapsulated, testing 

operations outside of the class is generally unproductive. Although encapsulation 

is an essential design concept for OO, it can create a minor obstacle when test-

ing. As Binder [Bin94a] notes, “Testing requires reporting on the concrete and ab-

stract state of an object.” Yet, encapsulation can make this information somewhat 

diffi cult to obtain. Unless built-in operations are provided to report the values for 

class attributes, a snapshot of the state of an object may be diffi cult to acquire. 

      Inheritance may also present you with additional challenges during test-case 

design. We have already noted that each new usage context requires retesting, 

even though reuse has been achieved. In addition, multiple inheritance  4   com-

plicates testing further by increasing the number of contexts for which testing 

is required [Bin94a]. If subclasses instantiated from a superclass are used within 

the same problem domain, it is likely that the set of test cases derived for the su-

perclass can be used when testing the subclass. However, if the subclass is used 

in an entirely different context, the superclass test cases will have little applica-

bility and a new set of tests must be designed.  

  uote: 

 “I see testers as the 
bodyguards of the 
project. We defend 
our developer’s 
fl ank from failure, 
while they focus on 
creating success.” 

 James Bach 

 WebRef 
 An excellent collection 
of papers and resources 
on OO testing can be 
found by searching the 
site   https://www
.thecsiac.com/  . 

  4  An OO concept that should be used with extreme care. 

pre22126_ch24_523-539.indd   530pre22126_ch24_523-539.indd   530 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  531

    24.4.2   Applicability of Conventional Test-Case Design Methods 

 The white-box testing methods described in Chapter 23 can be applied to the op-

erations defi ned for a class. Basis path, loop testing, or data fl ow techniques can 

help to ensure that every statement in an operation has been tested. However, the 

concise structure of many class operations causes some to argue that the effort 

applied to white-box testing might be better redirected to tests at a class level. 

 Black-box testing methods are as appropriate for OO systems as they are for 

systems developed using conventional software engineering methods. As we 

noted in Chapter 23, use cases can provide useful input in the design of black-

box and state-based tests. 

    24.4.3   Fault-Based Testing  5   

         The object of  fault-based testing within an OO system is to design tests that have 

a high likelihood of uncovering plausible faults. Because the product or system 

must conform to customer requirements, preliminary planning required to per-

form fault-based testing begins with the analysis model. The tester looks for 

plausible faults (i.e., aspects of the implementation of the system that may result 

in defects). To determine whether these faults exist, test cases are designed to 

exercise the design or code. 

 Of course, the effectiveness of these techniques depends on how testers per-

ceive a plausible fault. If real faults in an OO system are perceived to be implau-

sible, then this approach is really no better than any random testing technique. 

However, if the analysis and design models can provide insight into what is likely 

to go wrong, then fault-based testing can fi nd signifi cant numbers of errors with 

relatively low expenditures of effort. 

      Integration testing looks for plausible faults in operation calls or message con-

nections. Three types of faults are encountered in this context: unexpected re-

sult, wrong operation/message used, and incorrect invocation. To determine 

plausible faults as functions (operations) are invoked, the behavior of the opera-

tion must be examined. 

 Integration testing applies to attributes as well as to operations. The “behav-

iors” of an object are defi ned by the values that its attributes are assigned. Test-

ing should exercise the attributes to determine whether proper values occur for 

distinct types of object behavior. 

      It is important to note that integration testing attempts to fi nd errors in the cli-

ent object, not the server. Stated in conventional terms, the focus of integration 

testing is to determine whether errors exist in the calling code, not the called 

   The strategy for fault-
based testing is to 
hypothesize a set of 
plausible faults and 
then derive tests to 
prove each hypothesis. 

 What types 
of faults 

are encountered 
in operation calls 
and message 
connections? 

?

  5  Sections 24.4.3 and 24.4.4 have been adapted from an article by Brian Marick originally posted 

on the Internet newsgroup comp.testing. This adaptation is included with the permission of 

the author. For further information on these topics, see [Mar94]. It should be noted that the 

techniques discussed in Sections 24.4.3 and 24.4.4 are also applicable for conventional software. 

pre22126_ch24_523-539.indd   531pre22126_ch24_523-539.indd   531 13/12/13   10:02 PM13/12/13   10:02 PM



532 PART THREE  QUALITY MANAGEMENT

code. The operation call is used as a clue, a way to fi nd test requirements that 

exercise the calling code. 

    24.4.4   Scenario-Based Test Design 

 Fault-based testing misses two main types of errors: (1) incorrect specifi cations 

and (2) interactions among subsystems. When errors associated with an incorrect 

specifi cation occur, the product doesn’t do what the customer wants. It might 

do the wrong thing or omit important functionality. But in either circumstance, 

quality (conformance to requirements) suffers. Errors associated with subsystem 

interaction occur when the behavior of one subsystem creates circumstances 

(e.g., events, data fl ow) that cause another subsystem to fail. 

 Scenario-based testing concentrates on what the user does, not what the 

product does. This means capturing the tasks (via use cases) that the user has to 

perform and then applying them and their variants as tests. 

 Scenarios uncover interaction errors. But to accomplish this, test cases must 

be more complex and more realistic than fault-based tests. Scenario-based 

testing tends to exercise multiple subsystems in a single test (users do not limit 

themselves to the use of one subsystem at a time). 

       24.5  TEST ING METHODS APPL ICABLE AT THE CLASS LEVEL 

  Testing “in the small” focuses on a single class and the methods that are encapsu-

lated by the class. Random testing and partitioning are methods that can be used 

to exercise a class during OO testing. 

   24.5.1   Random Testing for OO Classes 

      To provide brief illustrations of these methods, consider a banking application 

in which an  Account  class has the following operations:  open(), setup(), deposit(), 

withdraw(), balance(), summarize(), creditLimit(),  and  close()  [Kir94]. Each of 

these operations may be applied for  Account,  but certain constraints (e.g., the 

account must be opened before other operations can be applied and closed after 

all operations are completed) are implied by the nature of the problem. Even 

with these constraints, there are many permutations of the operations. The min-

imum behavioral life history of an instance of  Account  includes the following 

operations:

open•setup•deposit•withdraw•close 

 This represents the minimum test sequence for account. However, a wide va-

riety of other behaviors may occur within this sequence:

open•setup•deposit•[deposit | withdraw | balance | summarize | creditLimit]  n  •withdraw•close 

   Scenario-based testing 
will uncover errors 
that occur when any 
actor interacts with the 
software. 

   The number of possible 
permutations for ran-
dom testing can grow 
quite large. A strategy 
similar to orthogonal 
array testing can be 
used to improve test-
ing effi ciency. 

pre22126_ch24_523-539.indd   532pre22126_ch24_523-539.indd   532 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  533

 A variety of different operation sequences can be generated randomly. For 

example:

        Test case r
1
:   open•setup•deposit•deposit•balance•summarize•withdraw•close  

       Test case r
2
:  open•setup•deposit•withdraw•deposit•balance•creditLimit•withdraw•close    

 These and other random order tests are conducted to exercise different class 

instance life histories.     

   Class Testing     Class Testing  

  The scene:  Shakira’s cubicle. 

  The players:  Jamie and Shakira—members of the 
 SafeHome  software engineering team who are working 
on test-case design for the security function. 

  The conversation:  

  Shakira:  I’ve developed some tests for the  Detector  
class [Figure 14.4]—you know, the one that allows 
access to all of the  Sensor  objects for the security 
function. You familiar with it? 

  Jamie (laughing):  Sure, it’s the one that allowed you 
to add the “doggie angst” sensor. 

  Shakira:  The one and only. Anyway, it has an inter-
face with four ops:  read(), enable(), disable(), and  test().  
Before a sensor can be read, it must be enabled. Once 
it’s enabled, it can be read and tested. It can be dis-
abled at any time, except if an alarm condition is being 
processed. So I defi ned a simple test sequence that will 
exercise its behavioral life history. [Shows Jamie the 
following sequence.] 

 #1: enable•test•read•disable 

  Jamie:  That’ll work, but you’ve got to do more testing 
than that! 

  Shakira:  I know, I know, here are some other se-
quences I’ve come up with. [Shows Jamie the following 
sequences.] 

 #2: enable•test*[read]  n  •test•disable 

 #3: [read]  n   

 #4: enable*disable•[test | read] 

  Jamie:  So let me see if I understand the intent of 
these. #1 goes through a normal life history, sort of a 
conventional usage. #2 repeats the read operation  n  
times, and that’s a likely scenario. #3 tries to read the 
sensor before it’s been enabled . . . that should produce 
an error message of some kind, right? #4 enables and 
disables the sensor and then tries to read it. Isn’t that the 
same as test #2? 

  Shakira:  Actually no. In #4, the sensor has been 
enabled. What #4 really tests is whether the disable 
op works as it should. A  read()  or  test()  after  disable()  
should generate the error message. If it doesn’t, then we 
have an error in the disable op. 

  Jamie:  Cool. Just remember that the four tests have to 
be applied for every sensor type since all the ops may 
be subtly different depending on the type of sensor. 

  Shakira:  Not to worry. That’s the plan.  

 SAFEHOME 

     24.5.2   Partition Testing at the Class Level 

  Partition testing  reduces the number of test cases required to exercise the class 

in much the same manner as equivalence partitioning (Chapter 23) for tradi-

tional software. Input and output are categorized and test cases are designed to 

exercise each category. But how are the partitioning categories derived? 

 What testing 
options are 

available at the 
class level? 

?

pre22126_ch24_523-539.indd   533pre22126_ch24_523-539.indd   533 13/12/13   10:02 PM13/12/13   10:02 PM



534 PART THREE  QUALITY MANAGEMENT

       State-based partitioning  categorizes class operations based on their ability to 

change the state of the class. As an example, consider the  Account  class. State 

operations include  deposit()  and  withdraw(),  whereas nonstate operations in-

clude  balance(), summarize(),  and  creditLimit(). Tests are designed in a way that 

exercises operations that change state and those that do not change state sepa-

rately. Therefore,

        Test case p
1
:  open•setup•deposit•deposit•withdraw•withdraw•close  

       Test case p
2
:  open•setup•deposit•summarize•creditLimit•withdraw•close     

 Test case  p
1
  changes state, while test case  p

2
 exercises operations that do not 

change state (other than those in the minimum test sequence). 

 Other types of partition testing can also be applied.  Attribute-based 

partitioning  categorizes class operations based on the attributes that they use. 

 Category-based partitioning  categorizes class operations based on the generic 

function that each performs. 

       24.6  INTERCLASS TEST-CASE DES IGN 

  Test-case design becomes more complicated as integration of the object-

oriented system begins. It is at this stage that testing of collaborations between 

classes must begin. To illustrate “interclass test-case generation” [Kir94], we 

expand the banking example introduced in Section 24.5 to include the classes 

and collaborations noted in  Figure 24.2 . The direction of the arrows in the fi g-

ure indicates the direction of messages, and the labeling indicates the opera-

tions that are invoked as a consequence of the collaborations implied by the 

messages.  

 Like the testing of individual classes, class collaboration testing can be accom-

plished by applying random and partitioning methods, as well as scenario-based 

testing and behavioral testing. 

   24.6.1   Multiple Class Testing 

 Kirani and Tsai [Kir94] suggest the following sequence of steps to generate mul-

tiple class random test cases:

     1.  For each client class, use the list of class operations to generate a series of 

random test sequences. The operations will send messages to other server 

classes.  

    2.  For each message that is generated, determine the collaborator class and 

the corresponding operation in the server object.  

    uote: 

 “The boundary 
that defi nes the 
scope of unit and 
integration testing 
is different for 
object-oriented 
development. Tests 
can be designed 
and exercised 
at many points 
in the process. 
Thus ‘design a 
little, code a little’ 
becomes ‘design a 
little, code a little, 
test a little.’ 

 Robert Binder 

pre22126_ch24_523-539.indd   534pre22126_ch24_523-539.indd   534 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  535

    3.  For each operation in the server object (that has been invoked by messages 

sent from the client object), determine the messages that it transmits.  

    4.  For each of the messages, determine the next level of operations that are 

invoked and incorporate these into the test sequence.    

 To illustrate [Kir94], consider a sequence of operations for the  Bank  class rel-

ative to an  ATM  class ( Figure 24.2 ):

verifyAcct•verifyPIN•[[verifyPolicy•withdrawReq]|depositReq|acctInfoREQ]  n   

 A random test case for the  Bank  class might be

       Test case r
3
  5 verifyAcct•verifyPIN•depositReq    

 In order to consider the collaborators involved in this test, the messages asso-

ciated with each of the operations noted in test case  r
3
  are considered.  Bank  must 

collaborate with  ValidationInfo  to execute the  verifyAcct()  and  verifyPIN().   Bank  

must collaborate with  Account  to execute  depositReq().  Hence, a new test case 

that exercises these collaborations is 

         Test case r
4
  = verifyAcct [Bank:validAcctValidationInfo]•verifyPIN

[Bank: validPinValidationInfo]•depositReq [Bank: depositaccount]  

  The approach for multiple class partition testing is similar to the approach 

used for partition testing of individual classes. A single class is partitioned as dis-

cussed in Section 24.5.2. However, the test sequence is expanded to include those 

operations that are invoked via messages to collaborating classes. An alternative 

ATM
ATM
User

Interface
  

cardInserted
password
deposit
withdraw
accntStatus
terminate

 
 
 

 

verifyStatus
depositStatus 
dispenseCash 
printAccntStat 
readCardInfo 
getCashAmnt

 

Bank

verifyAcct
verifyPIN
verifyPolicy
withdrawReq
depositReq
acctInfo

 

creditLimit
accntType 
balance 
withdraw 
deposit 
close

Account Validation
Info

 

validPIN
validAcct

Cashier

openAcct
initialDeposit 
authorizeCard 
deauthorize 
closeAcct

  FIGURE 24.2

 Class collabo-
ration diagram 
for banking 
application. 
   Source: Adapted 
from [Kir94]. 

pre22126_ch24_523-539.indd   535pre22126_ch24_523-539.indd   535 13/12/13   10:02 PM13/12/13   10:02 PM



536 PART THREE  QUALITY MANAGEMENT

approach partitions tests based on the interfaces to a particular class. Refer-

ring to  Figure 24.2 , the  Bank  class receives messages from the  ATM  and  Cashier  

classes. The methods within  Bank  can therefore be tested by partitioning them 

into those that serve  ATM  and those that serve  Cashier.  State-based partitioning 

(Section 24.5.2) can be used to refi ne the partitions further. 

    24.6.2   Tests Derived from Behavior Models 

 The use of the state diagram as a model that represents the dynamic behavior 

of a class is discussed in Chapter 11. The state diagram for a class can be used 

to help derive a sequence of tests that will exercise the dynamic behavior of the 

class (and those classes that collaborate with it).  Figure 24.3  [Kir94] illustrates a 

state diagram for the  Account  class discussed earlier. Referring to the fi gure, ini-

tial transitions move through the  empty acct  and  setup acct  states. The majority 

of all behavior for instances of the class occurs while in the  working acct  state. A 

fi nal withdrawal and account closure cause the account class to make transitions 

to the  nonworking acct  and  dead acct  states, respectively.  

 The tests to be designed should achieve coverage of every state. That is, the 

operation sequences should cause the  Account  class to make transition through 

all allowable states:

        Test case s
1
:  open•setupAccnt•deposit (initial)•withdraw (fi nal)•close    

 It should be noted that this sequence is identical to the minimum test 

sequence discussed in Section 24.5.2. Adding additional test sequences to the 

minimum sequence, 

        Test case s
2
:  open•setupAccnt•deposit(initial)•deposit•balance•credit•withdraw (fi nal)•close  

       Test case s
3
:  open•setupAccnt•deposit(initial)•deposit•withdraw•accntInfo•withdraw

    (fi nal)•close  

Open
Empty
acct

Set up
acct

Working
acct

Nonworking
acct

Dead
acct

Setup Accnt

Deposit (initial)

Balance
credit

accntInfo

Deposit

Withdraw

Withdrawal (final)

Close

  FIGURE 24.3

 State diagram 
for the 
Account class. 
   Source: Adapted 
from [Kir94]. 

pre22126_ch24_523-539.indd   536pre22126_ch24_523-539.indd   536 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  537

  Still more test cases could be derived to ensure that all behaviors for the class 

have been adequately exercised. In situations in which the class behavior results 

in a collaboration with one or more classes, multiple state diagrams are used to 

track the behavioral fl ow of the system. 

 The state model can be traversed in a “breadth-fi rst” [McG94] manner. In 

this context, breadth-fi rst implies that a test case exercises a single transition 

and that when a new transition is to be tested, only previously tested transitions 

are used. 

 Consider a  CreditCard  object that is part of the banking system. The initial 

state of  CreditCard  is  undefi ned  (i.e., no credit card number has been provided). 

Upon reading the credit card during a sale, the object takes on a  defi ned  state; 

that is, the attributes card number and expiration date, along with bank-specifi c iden-

tifi ers are defi ned. The credit card is  submitted  when it is sent for authorization, 

and it is  approved  when authorization is received. The transition of  CreditCard  

from one state to another can be tested by deriving test cases that cause the tran-

sition to occur. A breadth-fi rst approach to this type of testing would not exercise 

 submitted  before it exercised  undefi ned  and  defi ned. If it did, it would make use 

of transitions that had not been previously tested and would therefore violate the 

breadth-fi rst criterion. 

        24.7 SUMMARY 

 The overall objective of object-oriented testing—to fi nd the maximum num-

ber of errors with a minimum amount of effort is identical to the objective of 

conventional software testing. But the strategy and tactics for OO testing differ 

signifi cantly. The view of testing broadens to include the review of both the re-

quirements and design model. In addition, the focus of testing moves away from 

the procedural component (the module) and toward the class. 

 Because the OO requirements and design models and the resulting source code 

are semantically coupled, testing (in the form of technical reviews) begins during 

the modeling activity. For this reason, the review of CRC, object-relationship, 

and object-behavior models can be viewed as fi rst-stage testing. 

 Once code is available, unit testing is applied for each class. The design of tests 

for a class uses a variety of methods: fault-based testing, random testing, and 

partition testing. Each of these methods exercise the operations encapsulated 

by the class. Test sequences are designed to ensure that relevant operations are 

exercised. The state of the class, represented by the values of its attributes, is 

examined to determine if errors exist. 

 Integration testing can be accomplished using a thread-based or use-based 

strategy. Thread-based testing integrates the set of classes that collaborate to 

respond to one input or event. Use-based testing constructs the system in layers, 

beginning with those classes that do not make use of server classes. Integration 

pre22126_ch24_523-539.indd   537pre22126_ch24_523-539.indd   537 13/12/13   10:02 PM13/12/13   10:02 PM



538 PART THREE  QUALITY MANAGEMENT

test-case design methods can also make use of random and partition tests. In 

addition, scenario-based testing and tests derived from behavioral models can 

be used to test a class and its collaborators. A test sequence tracks the fl ow of 

operations across class collaborations. 

 OO system validation testing is black-box oriented and can be accomplished 

by applying the same black-box methods discussed for conventional software. 

However, scenario-based testing dominates the validation of OO systems, mak-

ing the use case a primary driver for validation testing. 

     PROBLEMS AND POINTS TO PONDER 
    24.1.  In your own words, describe why the class is the smallest reasonable unit for testing 
within an OO system.  

   24.2.  Why do we have to retest subclasses that are instantiated from an existing class, if the 
existing class has already been thoroughly tested? Can we use the test-case design for the 
existing class?  

   24.3.  Why should “testing” begin with object-oriented analysis and design?  

   24.4.  Derive a set of CRC index cards for  SafeHome,  and conduct the steps noted in Sec-
tion 24.2.2 to determine if inconsistencies exist.  

   24.5.  What is the difference between thread-based and use-based strategies for integration 
testing? How does cluster testing fi t in?  

   24.6.  Apply random testing and partitioning to three classes defi ned in the design for the 
 SafeHome  system. Produce test cases that indicate the operation sequences that will be 
invoked.  

   24.7.  Apply multiple class testing and tests derived from the behavioral model for the  Safe-

Home  design.  

   24.8.  Derive four additional tests using random testing and partitioning methods as well as 
multiple class testing and tests derived from the behavioral model for the banking applica-
tion presented in Sections 24.5 and 24.6.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Many books on testing noted in the  Further Readings  sections of Chapters 22 and 23 dis-
cuss testing of OO systems to some extent. Bashir and Goel ( Testing Object-Oriented 

Software,  Springer, 2012), Schach ( Object-Oriented and Classical Software Engineering,  
McGraw-Hill, 8th ed., 2010) and Bruege and Dutoit ( Object-Oriented Software Engineering 

Using UML, Patterns, and Java , Prentice Hall, 3rd ed., 2009) consider OO testing within the 
context of broader software engineering practice. Jorgensen ( Software Testing: A Crafts-

man’s Approach,  Auerbach, 3rd ed., 2008) discusses formal techniques and object-oriented 
techniques. Yurga ( Testing and Testability of Object-Oriented Software Systems via Metrics: 

A Metrics-Based Approach to the Testing Process and Testability of Object-Oriented Soft-

ware Systems,  LAP Lambert, 2011), Sykes and McGregor ( Practical Guide to Testing 

Object-Oriented Software,  Addison-Wesley, 2001), Binder ( Testing Object-Oriented Systems,  
Addison-Wesley, 1999), and Kung and his colleagues ( Testing Object-Oriented Software,  
Wiley-IEEE Computer Society Press, 1998), treat OO testing in signifi cant detail. Freeman 

pre22126_ch24_523-539.indd   538pre22126_ch24_523-539.indd   538 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 24  TESTING OBJECT-ORIENTED APPLICATIONS  539

and Pryce ( Growing Object-Oriented Software, Guided by Tests,  Addison-Wesley, 2009) dis-
cussing test-driven design of object-oriented software. Denney ( Use Case Levels of Test: A 

Four-Step Strategy for Building Time and Innovation in Software Test Design,  CreateSpace 
Independent Publishing, 2012) discusses techniques that may be applied to applied testing 
object-oriented systems. 

   A wide variety of information sources on object-oriented testing methods are available 
on the Internet. An up-to-date list of World Wide Web references that are relevant to testing 
techniques can be found at the SEPA website:   www.mhhe.com/pressman .      

pre22126_ch24_523-539.indd   539pre22126_ch24_523-539.indd   539 13/12/13   10:02 PM13/12/13   10:02 PM



540

    C H A P T E R

25  TESTING WEB
APPLICATIONS 

          There is an urgency that always pervades a WebApp project. Stakehold-

ers—concerned about competition from other WebApps, coerced by 

customer demands, and worried that they’ll miss a market window—

press to get the WebApp online. As a consequence, technical activities that 

often occur late in the process, such as WebApp testing, are sometimes given 

short shrift. This can be a catastrophic mistake. To avoid it, you and other team 

members must ensure that each work product exhibits high quality. Wallace 

and his colleagues {Wal03] note this when they state:

  Testing shouldn’t wait until the project is fi nished. Start testing before you write 

one line of code. Test constantly and effectively, and you will develop a much more 

durable Web site. 

 Since requirements and design models cannot be tested in the classical 

sense, you and your team should conduct technical reviews (Chapter 20) as 

well as executable tests. The intent is to uncover and correct errors before the 

WebApp is made available to its end users. 

  What is it?   WebApp testing is a 
collection of related activities with 
a single goal: to uncover errors in 
WebApp content, function, usabil-

ity, navigability, performance, capacity, and 
security. To accomplish this, a testing strategy 
that encompasses both reviews and execut-
able testing is applied. 

   Who does it?   Web engineers and other project 
stakeholders (managers, customers, end users) 
all participate in WebApp testing. 

   Why is it important?   If end users encounter 
errors that shake their faith in the WebApp, 
they will go elsewhere for the content and 
function they need, and the WebApp will fail. 
For this reason, you must work to eliminate as 
many errors as possible before the WebApp 
goes online. 

   What are the steps?   The WebApp testing 
process begins by focusing on user-visible 

aspects of the WebApp and proceeds to tests 
that exercise technology and infrastructure. 
Seven testing steps are performed: content 
testing, interface testing, navigation testing, 
component testing, confi guration testing, per-
formance testing, and security testing. 

   What is the work product?   In some instances 
a WebApp test plan is produced. In every 
instance, a suite of test cases is developed for 
every testing step and an archive of test results 
is maintained for future use. 

   How do I ensure that I’ve done it right?   
Although you can never be sure that you’ve 
performed every test that is needed, you can 
be certain that testing has uncovered errors 
(and that those errors have been corrected). In 
addition, if you’ve established a test plan, you 
can check to ensure that all planned tests have 
been conducted.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    compatibility 
tests  . . . . . . . . . . 554  
    component-level 
testing . . . . . . . . . 555  
    confi guration 
testing . . . . . . . . . 558  
    content testing  . . . 545  
    database testing . . 547  
    load testing  . . . . . 562  
    navigation testing . 556  
    performance 
testing . . . . . . . . . 560  
    planning . . . . . . . . 543  
    quality, dimensions 
of. . . . . . . . . . . . . 541  
    security testing . . . 559  
    strategy . . . . . . . . 543  
    stress testing  . . . . 562  
    usability tests. . . . 552  
    user interface 
testing . . . . . . . . . 549  
  

pre22126_ch25_540-566.indd   540pre22126_ch25_540-566.indd   540 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  541

      25.1  TEST ING CONCEPTS FOR WEBAPPS 

  Testing is the process of exercising software with the intent of fi nding (and ulti-

mately correcting) errors. This fundamental philosophy, fi rst presented in Chap-

ter 22, does not change for WebApps. In fact, because Web-based systems and 

applications reside on a network and interoperate with many different operating 

systems, browsers (or other personal communication devices), hardware plat-

forms, communications protocols, and “backroom” applications, the search for 

errors represents a signifi cant challenge. 

 To understand the objectives of testing within a Web engineering context, you 

should consider the many dimensions of WebApp quality.  1   In the context of this 

discussion, we consider quality dimensions that are particularly relevant in any 

discussion of WebApp testing. We also consider the nature of the errors that are 

encountered as a consequence of testing, and the testing strategy that is applied 

to uncover these errors.  

   25.1.1   Dimensions of Quality 

 Quality is incorporated into a Web application as a consequence of good design. 

It is evaluated by applying a series of technical reviews that assess various ele-

ments of the design model and by applying a testing process that is discussed 

throughout this chapter. Both reviews and testing examine one or more of the 

following quality dimensions [Mil00a]: 

         •   Content  is evaluated at both a syntactic and semantic level. At the syntac-

tic level, spelling, punctuation, and grammar are assessed for text-based 

documents. At a semantic level, correctness (of information presented), 

consistency (across the entire content object and related objects), and lack 

of ambiguity are all assessed.  

   •   Function  is tested to uncover errors that indicate lack of conformance to 

customer requirements. Each WebApp function is assessed for correct-

ness, instability, and general conformance to appropriate implementation 

standards (e.g., Java or AJAX standards).  

   •   Structure  is assessed to ensure that it properly delivers WebApp content 

and function, that it is extensible, and that it can be supported as new con-

tent or functionality is added.  

   •   Usability  is tested to ensure that each category of user is supported by 

the interface and can learn and apply all required navigation syntax and 

semantics.  

 How do 
we assess 

quality within 
the context of a 
WebApp and its 
environment? 

?

  1  Generic software quality dimensions, equally applicable for WebApps, were discussed in 

Chapter 19.  

pre22126_ch25_540-566.indd   541pre22126_ch25_540-566.indd   541 13/12/13   6:15 PM13/12/13   6:15 PM



542 PART THREE  QUALITY MANAGEMENT

   •   Navigability  is tested to ensure that all navigation syntax and semantics 

are exercised to uncover any navigation errors (e.g., dead links, improper 

links, erroneous links).   

   •   Performance  is tested under a variety of operating conditions, confi gura-

tions, and loading to ensure that the system is responsive to user inter-

action and handles extreme loading without unacceptable operational 

degradation.  

   •   Compatibility  is tested by executing the WebApp in a variety of different 

host confi gurations on both the client and server sides. The intent is to 

fi nd errors that are specifi c to a unique host confi guration.  

   •   Interoperability is tested to ensure that the WebApp properly interfaces 

with other applications and/or databases.  

   •   Security  is tested by assessing potential vulnerabilities and attempting 

to exploit each. Any successful penetration attempt is deemed a security 

failure.  

  A strategy and tactics for WebApp testing has been developed to exercise each 

of these quality dimensions and is discussed in the remainder of this chapter. 

    25.1.2   Errors within a WebApp Environment 

 Errors encountered as a consequence of successful WebApp testing have a num-

ber of unique characteristics [Ngu00]: 

          1.  Because many types of WebApp tests uncover problems that are fi rst evi-

denced on the client side (i.e., via an interface implemented on a specifi c 

browser or a personal communication device), you often see a symptom of 

the error, not the error itself.  

    2.  Because a WebApp is implemented in a number of different confi gura-

tions and within different environments, it may be diffi cult or impossible 

to reproduce an error outside the environment in which the error was 

originally encountered.  

    3.  Although some errors are the result of incorrect design or improper 

HTML (or other programming language) coding, many errors can be 

traced to the WebApp confi guration.  

    4.  Because WebApps reside within a client-server architecture, errors can 

be diffi cult to trace across three architectural layers: the client, the server, 

or the network itself.  

    5.  Some errors are due to the  static operating environment  (i.e., the specifi c 

confi guration in which testing is conducted), while others are attributable 

to the dynamic operating environment (i.e., instantaneous resource load-

ing or time-related errors).  

    uote: 

 “Innovation is a 
bittersweet deal for 
software testers. 
Just when it seems 
that we know how 
to test a particular 
technology, a new 
one [WebApps] 
comes along and 
all bets are off.” 

 James Bach 

 What makes 
errors 

encountered 
during WebApp 
execution 
somewhat 
different from 
those encountered 
for conventional 
software? 

?

pre22126_ch25_540-566.indd   542pre22126_ch25_540-566.indd   542 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  543

  These fi ve error attributes suggest that environment plays an important role 

in the diagnosis of all errors uncovered during the WebApp testing. In some sit-

uations (e.g., content testing), the site of the error is obvious, but in many other 

types of WebApp testing (e.g., navigation testing, performance testing, security 

testing) the underlying cause of the error may be considerably more diffi cult to 

determine. 

    25.1.3   Testing Strategy 

 The strategy for WebApp testing adopts the basic principles for all software test-

ing (Chapter 22) and applies a strategy and tactics that have been recommended 

for object-oriented systems (Chapter 24). The following steps summarize the 

approach: 

          1.  The content model for the WebApp is reviewed to uncover errors.  

    2.  The interface model is reviewed to ensure that all use cases can be 

accommodated.  

    3.  The design model for the WebApp is reviewed to uncover navigation 

errors.  

    4.  The user interface is tested to uncover errors in presentation and/or 

navigation mechanics.  

    5.  Selected functional components are unit tested.  

    6.  Navigation throughout the architecture is tested.  

    7.  The WebApp is implemented in a variety of different environmental 

confi gurations and is tested for compatibility with each confi guration.  

    8.  Security tests are conducted in an attempt to exploit vulnerabilities in the 

WebApp or within its environment.  

    9.  Performance tests are conducted.  

    10.  The WebApp is tested by a controlled and monitored population of 

end users; the results of their interaction with the system are 

evaluated for content and navigation errors, usability concerns, 

compatibility concerns, and WebApp security, reliability, and 

performance.       

  Because many WebApps evolve continuously, the testing process is an ongoing 

activity, conducted by Web support staff who use regression tests derived from 

the tests developed when the WebApp was fi rst engineered. 

    25.1.4   Test Planning 

 The use of the word  planning  (in any context) is anathema to some Web devel-

opers. These developers don’t plan; they just start—hoping that a killer WebApp 

   The overall strategy for 
WebApp testing can be 
summarized in the 10 
steps noted here. 

 WebRef 
 Excellent articles on 
WebApp testing can 
be found at   www
.stickyminds.com/
testing.asp  . 

pre22126_ch25_540-566.indd   543pre22126_ch25_540-566.indd   543 13/12/13   6:15 PM13/12/13   6:15 PM



544 PART THREE  QUALITY MANAGEMENT

will emerge. A more disciplined approach recognizes that planning establishes a 

road map for all work that follows. It’s worth the effort. In their book on WebApp 

testing, Splaine and Jaskiel [Spl01] state:

  Except for the simplest of websites, it quickly becomes apparent that some sort of 

test planning is needed. All too often, the initial number of bugs found from ad hoc 

testing is large enough that not all of them are fi xed the fi rst time they’re detected. 

This puts an additional burden on people who test websites and applications. Not 

only must they conjure up imaginative new tests, but they must also remember how 

previous tests were executed in order to reliably re-test the website/application, 

and ensure that known bugs have been removed and that no new bugs have been 

introduced.   

      The questions you should ask are: How do we “conjure up imaginative new 

tests,” and what should those tests focus on? The answers to these questions are 

contained within a test plan. 

 A WebApp test plan identifi es (1) the task set  2   to be applied as testing 

commences, (2) the work products to be produced as each testing task is ex-

ecuted, and (3) the manner in which the results of testing are evaluated, re-

corded, and reused when regression testing is conducted. In some cases, the 

test plan is integrated with the project plan. In others, the test plan is a sep-

arate document.  

       25.2  THE TEST ING PROCESS—AN OVERVIEW   

 You begin the WebApp testing process with tests that exercise content and inter-

face functionality that are immediately visible to end users. As testing proceeds, 

aspects of the design architecture and navigation are exercised. Finally, the 

focus shifts to tests that examine technological capabilities that are not always 

apparent to end users—WebApp infrastructure and installation/implementation 

issues. 

  Figure 25.1  juxtaposes the WebApp testing process with the design pyra-

mid for WebApps (Chapter 17). Note that as the testing fl ow proceeds from 

left to right and top to bottom, user-visible elements of the WebApp design 

(top elements of the pyramid) are tested fi rst, followed by infrastructure design 

elements.   

   The test plan identifi es 
the testing task set, 
the work products to 
be developed, and the 
way in which results 
are to be evaluated, 
recorded, and reused. 

  uote: 

 “In general, the 
software testing 
techniques that 
are applied to 
other applications 
are the same as 
those applied 
to Web-based 
applications . . . 
The difference 
between the two 
types of testing is 
that the technology 
variables in the 
Web environment 
multiply.” 

 Hung Nguyen 
  2  Task sets are discussed in Chapter 3. A related term– workfl ow ">–is also used to describe a 

series of tasks required to accomplish a software engineering activity. 

pre22126_ch25_540-566.indd   544pre22126_ch25_540-566.indd   544 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  545

         25.3  CONTENT TEST ING 

       Errors in WebApp content can be as trivial as minor typographical mistakes or as 

signifi cant as incorrect information, improper organization, or violation of intel-

lectual property laws.  Content testing  attempts to uncover these and many other 

problems before the user encounters them. 

 Content testing combines both reviews and the generation of executable test 

cases. Review is applied to uncover semantic errors in content (discussed in 

Section 25.3.1). Executable testing is used to uncover content errors that can be 

traced to dynamically derived content that is driven by data acquired from one 

or more databases.     

    25.3.1   Content Testing Objectives 

 Content testing has three important objectives: (1) to uncover syntactic errors 

(e.g., typos, grammar mistakes) in text-based documents, graphical representa-

tions, and other media; (2) to uncover semantic errors (i.e., errors in the accuracy 

or completeness of information) in any content object presented as navigation 

occurs, and (3) to fi nd errors in the organization or structure of content that is 

presented to the end user. 

   Although technical re-
views are not a part of 
testing, content review 
should be performed 
to ensure that content 
has quality. 

   Content testing objects 
are: (1) to uncover 
syntactic errors in con-
tent, (2) to uncover 
semantic errors, and 
(3) to fi nd structural 
errors. 

Content
Testing

Interface
Testing

Navigation
Testing

Component
Testing

Configuration
Testing

Performance
Testing Security

Testing

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

 FIGURE 25.1

 The testing 
process

pre22126_ch25_540-566.indd   545pre22126_ch25_540-566.indd   545 13/12/13   6:15 PM13/12/13   6:15 PM



546 PART THREE  QUALITY MANAGEMENT

 To accomplish the fi rst objective, automated spelling and grammar checkers 

may be used. However, many syntactic errors evade detection by such tools and 

must be discovered by a human reviewer (tester). In fact, a large website might 

enlist the services of a professional copy editor to uncover typographical errors, 

grammatical mistakes, errors in content consistency, errors in graphical repre-

sentations, and cross-referencing errors. 

      Semantic testing focuses on the information presented within each content 

object. The reviewer (tester) must answer the following questions:

    •  Is the information factually accurate?  

   •  Is the information concise and to the point?  

   •  Is the layout of the content object easy for the user to understand?  

   •  Can information embedded within a content object be found easily?  

   •  Have proper references been provided for all information derived from 

other sources?  

   •  Is the information presented consistent internally and consistent with 

information presented in other content objects?  

   •  Is the content offensive, misleading, or does it open the door to 

litigation?  

   •  Does the content infringe on existing copyrights or trademarks?  

   •  Does the content contain internal links that supplement existing content? 

Are the links correct?  

   •  Does the aesthetic style of the content confl ict with the aesthetic style of 

the interface?    

 Obtaining answers to each of these questions for a large WebApp (containing 

hundreds of content objects) can be a daunting task. However, failure to uncover 

semantic errors will shake the user’s faith in the WebApp and can lead to failure 

of the Web-based application. 

 Content objects exist within an architecture that has a specific style 

(Chapter 17). During content testing, the structure and organization of 

the content architecture is tested to ensure that required content is pre-

sented to the end user in the proper order and relationships. For exam-

ple, the   SafeHomeAssured.com   WebApp presents a variety of information 

about sensors that are used as part of security and surveillance products. 

Content objects provide descriptive information, technical specifica-

tions, a photographic representation, and related information. Tests of the 

  SafeHomeAssured.com   content architecture strive to uncover errors in the 

presentation of this information (e.g., a description of Sensor  X  is presented 

with a photo of Sensor  Y ).     

 What 
questions 

should be asked 
and answered to 
uncover semantic 
errors in content? 

?

pre22126_ch25_540-566.indd   546pre22126_ch25_540-566.indd   546 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  547

     25.3.2   Database Testing 

 Modern WebApps do much more than present static content objects. In many ap-

plication domains, WebApps interface with sophisticated database management 

systems and build dynamic content objects that are created in real time using 

the data acquired from a database. 

 For example, a fi nancial services WebApp can produce complex text-based, 

tabular, and graphical information about a specifi c equity (e.g., a stock or mutual 

fund). The composite content object that presents this information is created dy-

namically after the user has made a request for information about a specifi c eq-

uity. To accomplish this, the following steps are required: (1) an equities database 

is queried, (2) relevant data are extracted from the database, (3) the extracted 

data must be organized as a content object, and (4) this content object (repre-

senting customized information requested by an end user) is transmitted to the 

client environment for display. Errors can and do occur as a consequence of each 

of these steps. The objective of database testing is to uncover these errors, but 

database testing is complicated by a variety of factors: 

          1.   The original client-side request for information is rarely presented in the 

form [e.g., structured query language (SQL)] that can be input to a data-

base management system (DBMS). Therefore, tests should be designed to 

uncover errors made in translating the user’s request into a form that can 

be processed by these DBMS.  

    2.   The database may be remote to the server that houses the WebApp. There-

fore, tests that uncover errors in communication between the WebApp 

and the remote database must be developed.  4    

 What issues 
complicate 

database testing 
for WebApps? 

?

   Web Content Testing Tools  

  Objective:  The objective of Web content 
testing tools is to identify errors that prevent 

a Web page from displaying web content in a readable 
and organized manner. 

  Mechanics:  These tools typically prompt you to 
enter the URL of a web resource to test. Each tool then 
provides a list of errors (e.g., failure to follow the markup 
language standard) with suggestions on how to correct 
the errors. 

  Representative Tools:   3  
     http://validator.w3.org/  —Online WC3 tool checks 

Web pages for markup language validity (HTM, 
XHTML, SMIL, MathML). 

   http://jigsaw.w3.org/css-validator/  —Online 
WC3 tool that checks CSS style sheets and 
documents using CSS stylesheets. 

   http://validator.w3.org/feed/  —Online WC3 tool 
that checks syntax of Atom or RSS feeds.  

 INFO 

  3  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

      4  These tests can become complex when distributed databases are encountered or when access 

to a data warehouse (Chapter 1) is required. 

pre22126_ch25_540-566.indd   547pre22126_ch25_540-566.indd   547 13/12/13   6:15 PM13/12/13   6:15 PM



548 PART THREE  QUALITY MANAGEMENT

    3.   Raw data acquired from the database must be transmitted to the WebApp 

server and properly formatted for subsequent transmittal to the client.  

Therefore, tests that demonstrate the validity of the raw data received by 

the WebApp server must be developed, and additional tests that demon-

strate the validity of the transformations applied to the raw data to create 

valid content objects must also be created.  

    4.   The dynamic content object(s) must be transmitted to the client in a form 

that can be displayed to the end user.  Therefore, a series of tests must be 

designed to (1) uncover errors in the content object format and (2) test 

compatibility with different client environment confi gurations.  

  Considering these four factors, test-case design methods should be applied for 

each of the “layers of interaction” [Ngu01] noted in  Figure 25.2 . Testing should 

ensure that (1) valid information is passed between the client and server from the 

interface layer, (2) the WebApp processes script correctly and properly extract or 

format user data, (3) user data are passed correctly to a server-side data trans-

formation function that formats appropriate queries (e.g., SQL), (4) queries are 

passed to a data management layer  5   that communicates with database access 

routines (potentially located on another machine).        

 The data transformation, data management, and database access layers 

shown in  Figure 25.2  are often constructed with reusable components that have 

    uote: 

 “[W]e are unlikely 
to have confi dence 
in a website that 
suffers frequent 
downtime, hangs 
in the middle of 
a transaction, 
or has a poor 
sense of usability. 
Testing, therefore, 
has a crucial role 
in the overall 
development 
process.” 

 Wing Lam 

  5  The data management layer typically incorporates an SQL call-level interface (SQL-CLI) such 

as Microsoft OLE/ADO or Java Database Connectivity (JDBC). 

Client layer - user interface

HTML scripts

User data

User data

Raw data

SQL

SQL

Server layer - WebApp

Server layer - data transformation

Server layer - data managment

Database layer - data access

Database

 FIGURE 25.2

 Layers of 
interaction

pre22126_ch25_540-566.indd   548pre22126_ch25_540-566.indd   548 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  549

been validated separately and as a package. If this is the case, WebApp testing 

focuses on the design of test cases to exercise the interactions between the client 

layer and the fi rst two server layers (WebApp and data transformation) shown in 

the fi gure. 

 The user interface layer is tested to ensure that scripts are properly con-

structed for each user query and properly transmitted to the server side. The 

WebApp layer on the server side is tested to ensure that user data are prop-

erly extracted from scripts and properly transmitted to the data transformation 

layer on the server side. The data transformation functions are tested to ensure 

that the correct SQL is created and passed to appropriate data management 

components. 

 A detailed discussion of the underlying technology that must be understood 

to adequately design these database tests is beyond the scope of this book. If you 

have additional interest, see [Sce02], [Ngu01], and [Bro01]. 

       25.4  USER INTERFACE TEST ING 

  Verifi cation and validation of a WebApp user interface occurs at three distinct 

points. During requirements analysis, the interface model is reviewed to ensure 

that it conforms to stakeholder requirements and to other elements of the require-

ments model. During design the interface design model is reviewed to ensure that 

generic quality criteria established for all user interfaces (Chapter 15) have been 

achieved and that application-specifi c interface design issues have been properly 

addressed. During testing, the focus shifts to the execution of application-specifi c 

aspects of user interaction as they are manifested by interface syntax and seman-

tics. In addition, testing provides a fi nal assessment of usability. 

   25.4.1   Interface Testing Strategy 

  Interface testing  exercises interaction mechanisms and validates aesthetic as-

pects of the user interface. The overall strategy for interface testing is to (1) un-

cover errors related to specifi c interface mechanisms (e.g., errors in the proper 

execution of a menu link or the way data are entered in a form) and (2) uncover 

errors in the way the interface implements the semantics of navigation, WebApp 

functionality, or content display. To accomplish this strategy, a number of tactical 

steps are initiated: 

         •   Interface features are tested to ensure that design rules, aesthetics, and 

related visual content are available for the user without error.   

   •   Individual interface mechanisms are tested in a manner that is analo-

gous to unit testing.  For example, tests are designed to exercise all forms, 

client-side scripting, dynamic HTML, scripts, streaming content, and 

   With the exception 
of WebApp-oriented 
specifi cs, the interface 
strategy noted here 
is applicable to all 
types of client-server 
software. 

pre22126_ch25_540-566.indd   549pre22126_ch25_540-566.indd   549 13/12/13   6:15 PM13/12/13   6:15 PM



550 PART THREE  QUALITY MANAGEMENT

application-specifi c interface mechanisms (e.g., a shopping cart for an 

e-commerce application).  

   •   Each interface mechanism is tested within the context of a use case or NSU 

(Chapter 17) for a specifi c user category   

   •   The complete interface is tested against selected use cases and NSUs to 

uncover errors in the semantics of the interface.  It is at this stage that a se-

ries of usability tests are conducted.  

   •   The interface is tested within a variety of environments (e.g., browsers) to 

ensure that it will be compatible   

     25.4.2   Testing Interface Mechanisms 

 When a user interacts with a WebApp, the interaction occurs through one or 

more interface mechanisms. A brief overview of testing considerations for each 

interface mechanism is presented in the paragraphs that follow [Spl01].     

   Links.   Each navigation link is tested to ensure that the proper content object or 

function is reached.  6   Testing includes links associated with the interface layout 

(e.g., menu bars, index items, links within each content object, and links to ex-

ternal WebApps).  

   Forms.    At a macroscopic level, tests are performed to ensure that (1) labels 

correctly identify fi elds within the form and that mandatory fi elds are identifi ed 

visually for the user, (2) the server receives all information contained within the 

form and that no data are lost in the transmission between client and server, 

(3) appropriate defaults are used when the user does not select from a pull-down 

menu or set of buttons, (4) browser functions (e.g., the “back” arrow) do not cor-

rupt data entered in a form, and (5) scripts that perform error checking on data 

entered work properly and provide meaningful error messages. 

 At a more targeted level, tests should ensure that (1) form fi elds have proper 

width and data types, (2) the form establishes appropriate safeguards that pre-

clude the user from entering text strings longer than some predefi ned maxi-

mum, (3) all appropriate options for pull-down menus are specifi ed and ordered 

in a way that is meaningful to the end user, (4) browser “auto-fi ll” features do not 

lead to data input errors, and (5) tab key (or some other key) initiates proper 

movement between form fi elds. 

        Client-side scripting.   Black-box tests are conducted to uncover any errors in 

processing as the script is executed. These tests are often coupled with forms 

testing, because script input is often derived from data provided as part of forms 

processing. 

   External link testing 
should occur through-
out the life of the 
WebApp. Part of a 
support strategy should 
be regularly scheduled 
link tests. 

   Client-side scripting 
tests and tests asso-
ciated with dynamic 
HTML should be 
repeated whenever 
a new version of a 
popular browser is 
released. 

  6  These tests can be performed as part of either interface or navigation testing. 

pre22126_ch25_540-566.indd   550pre22126_ch25_540-566.indd   550 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  551

   Dynamic HTML.    Each Web page that contains dynamic HTML is executed to en-

sure that the dynamic display is correct. In addition, a compatibility test should 

be conducted to ensure that the dynamic HTML works properly in the environ-

mental confi gurations that support the WebApp. 

   Pop-up windows.    A series of tests ensure that (1) the pop-up is properly sized 

and positioned, (2) the pop-up does not cover the original WebApp window, 

(3) the aesthetic design of the pop-up is consistent with the aesthetic design of 

the interface, and (4) scroll bars and other control mechanisms appended to the 

pop-up are properly located and function as required. 

   CGI scripts.    Black-box tests are conducted with an emphasis on data integ-

rity (as data are passed to the CGI script) and script processing (once validated 

data have been received). In addition, performance testing can be conducted to 

ensure that the server-side confi guration can accommodate the processing de-

mands of multiple invocations of CGI scripts [Spl01]. 

   Streaming content.    Tests should demonstrate that streaming data are up-to-

date, properly displayed, and can be suspended without error and restarted 

without diffi culty. 

   Cookies.    Both server-side and client-side testing are required. On the server 

side, tests should ensure that a cookie is properly constructed (contains correct 

data) and properly transmitted to the client side when specifi c content or func-

tionality is requested. In addition, the proper persistence of the cookie is tested 

to ensure that its expiration date is correct. On the client side, tests determine 

whether the WebApp properly attaches existing cookies to a specifi c request 

(sent to the server). 

   Application-specific interface mechanisms.   Tests conform to a checklist of func-

tionality and features that are defi ned by the interface mechanism. For exam-

ple, Splaine and Jaskiel [Spl01] suggest the following checklist for shopping cart 

functionality defi ned for an e-commerce application:

    •  Boundary-test (Chapter 23) the minimum and maximum number of items 

that can be placed in the shopping cart.  

   •  Test a “check out” request for an empty shopping cart.  

   •  Test proper deletion of an item from the shopping cart.  

   •  Test to determine whether a purchase empties the cart of its contents.  

   •  Test to determine the persistence of shopping cart contents (this should be 

specifi ed as part of customer requirements).  

   •  Test to determine whether the WebApp can recall shopping cart contents 

at some future date (assuming that no purchase was made).    

pre22126_ch25_540-566.indd   551pre22126_ch25_540-566.indd   551 13/12/13   6:15 PM13/12/13   6:15 PM



552 PART THREE  QUALITY MANAGEMENT

     25.4.3   Testing Interface Semantics 

 Once each interface mechanism has been “unit” tested, the focus of interface 

testing changes to a consideration of interface semantics. Interface semantics 

testing “evaluates how well the design takes care of users, offers clear direc-

tion, delivers feedback, and maintains consistency of language and approach” 

[Ngu00]. 

 A thorough review of the interface design model can provide partial an-

swers to the questions implied by the preceding paragraph. However, each 

use-case scenario (for each user category) should be tested once the WebApp 

has been implemented. In essence, a use case becomes the input for the de-

sign of a testing sequence. The intent of the testing sequence is to uncover 

errors that will preclude a user from achieving the objective associated with 

the use case. 

    25.4.4   Usability Tests 

      Usability testing is similar to interface semantics testing (Section 25.4.3) in the 

sense that it also evaluates the degree to which users can interact effectively with 

the WebApp and the degree to which the WebApp guides users’ actions, provides 

meaningful feedback, and enforces a consistent interaction approach. Rather 

than focusing intently on the semantics of some interactive objective, usability 

reviews and tests are designed to determine the degree to which the WebApp 

interface makes the user’s life easy.  7    

 You will invariably contribute to the design of usability tests, but the tests 

themselves are conducted by end users. Usability testing can occur at a va-

riety of different levels of abstraction: (1) the usability of a specifi c interface 

mechanism (e.g., a form) can be assessed, (2) the usability of a complete Web 

page (encompassing interface mechanisms, data objects, and related func-

tions) can be evaluated, or (3) the usability of the complete WebApp can be 

considered.     

  The fi rst step in usability testing is to identify a set of usability categories and 

establish testing objectives for each category. The following test categories and 

objectives (written in the form of a question) illustrate this approach:  8   

        Interactivity— Are interaction mechanisms (e.g., pull-down menus, buttons, 

pointers) easy to understand and use?  

       Layout —Are navigation mechanisms, content, and functions placed in a 

manner that allows the user to fi nd them quickly?  

 WebRef 
 A worthwhile guidance 
to usability testing can 
be found at   http://
www.keyrelevance
.com/articles/
usability-tips.htm  . 

 What 
characteristics 

of usability become 
the focus of testing 
and what specifi c 
objectives are 
addressed? 

?

  7  The term  user-friendliness  has been used in this context. The problem, of course, is that one 

user’s perception of a “friendly” interface may be radically different from another’s. 

  8  For additional information on usability, see Chapter 15.  

pre22126_ch25_540-566.indd   552pre22126_ch25_540-566.indd   552 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  553

       Readability —Is text well written and understandable?  9   Are graphic repre-

sentations easy to understand?  

       Aesthetics —Do layout, color, typeface, and related characteristics lead to 

ease of use? Do users “feel comfortable” with the look and feel of the WebApp?  

       Display characteristics —Does the WebApp make optimal use of screen size 

and resolution?  

       Time sensitivity —Can important features, functions, and content be used or 

acquired in a timely manner?  

       Personalization —Does the WebApp tailor itself to the specifi c needs of differ-

ent user categories or individual users?  

       Accessibility —Is the WebApp accessible to people who have disabilities?  

      A series of tests is designed within each of these categories. In some cases, the 

“test” may be a visual review of a Web page. In other cases interface semantics tests 

may be executed again, but in this instance usability concerns are paramount.  

  As an example, we consider usability assessment for interaction and interface 

mechanisms. Constantine and Lockwood [Con99] suggest that the following list 

of interface features should be reviewed and tested for usability: animation, but-

tons, color, control, dialogue, fi elds, forms, frames, graphics, labels, links, menus, 

messages, navigation, pages, selectors, text, and tool bars. As each feature is as-

sessed, it is graded on a qualitative scale by the users who are doing the testing. 

 Figure 25.3  depicts a possible set of assessment “grades” that can be selected by 

users. These grades are applied to each feature individually, to a complete Web 

page, or to the WebApp as a whole.          

 FIGURE 25.3

 Qualitative 
assessment of 
usability

Ease of use

Easy to learn

Effective

Simple

Somewhat ambiguous
Confusing

Generally uniform
Predictable

Predictability

Ease of understanding
Awkward

Difficult to learn Informative
Clear

Misleading

Inconsistent
Lacking uniformity

     9  The FOG Readability Index and others may be used to provide a quantitative assessment of read-

ability See  http://developer.gnome.org/gdp-style-guide/stable/usability-readability.html.en 

for more details.

pre22126_ch25_540-566.indd   553pre22126_ch25_540-566.indd   553 13/12/13   6:15 PM13/12/13   6:15 PM



554 PART THREE  QUALITY MANAGEMENT

     25.4.5   Compatibility Tests 

 Different computers, display devices, operating systems, browsers, and net-

work connection speeds can have a signifi cant infl uence on WebApp operation. 

Each computing confi guration can result in differences in client-side processing 

speeds, display resolution, and connection speeds. Operating system vagaries 

may cause WebApp processing issues. Different browsers sometimes produce 

slightly different results, regardless of the degree of HTML standardization 

within the WebApp. Required plug-ins may or may not be readily available for a 

particular confi guration.  Compatibility testing  strives to uncover these problems 

before the WebApp goes online. 

 The fi rst step in compatibility testing is to defi ne a set of “commonly encoun-

tered” client-side computing confi gurations and their variants. In essence, a 

tree structure is created, identifying each computing platform, typical display 

devices, the operating systems supported on the platform, the browsers avail-

able, likely Internet connection speeds, and similar information. Next, a series of 

compatibility validation tests are derived, often adapted from existing interface 

tests, navigation tests, performance tests, and security tests. The intent of these 

tests is to uncover errors or execution problems that can be traced to confi gura-

tion differences. 

   Web User Interface Testing Tools  

  Objective:  The objective of Web user 
interface testing tools is to determine usability 

or accessibility problems present in a Web page or 
website. 

  Mechanics:  Two types of tools are listed here. Some 
tools prompt you to enter the URL of a Web page and 
print a list of suggestions on how to correct any failures 
to conform to a set of heuristics. Some tools capture 
the user actions and prompt users for feedback while 
working on the pages of a website. 

  Representative Tools:   10    
   http://www.usabilla.com/  — Usabilla  is an online 

tool that allows developers to track user actions and 
gather opinions during active use of a Web page. 

   http://www.google.com/analytics/  — Google 
Analytics  is an online tool that provides a 
comprehensive set of website data tracking and 
analysis tools that can be used to assess site usability. 

   http://valet.webthing.com/access/url.html  —
 Web Valet  provides an online service for checking 
Web pages for accessibility issues. 

   http://wave.webaim.org/  — Wave  provides an 
online service that marks up Web pages to show 
accessibility issues. 

   http://www.sidar.org/hera/index.php.en  —
 Hera  provides an online service that uses the Web 
Content Accessibility Guidelines to check Web pages 
for accessibility issues.  

 INFO 

  10  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch25_540-566.indd   554pre22126_ch25_540-566.indd   554 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  555

            25.5  COMPONENT-LEVEL TEST ING 

   Component-level testing,  also called  function testing,  focuses on a set of tests 

that attempt to uncover errors in WebApp functions. Each WebApp function is 

a software module (implemented in one of a variety of programming or script-

ing languages) and can be tested using black-box (and in some cases, white-box) 

techniques as discussed in Chapter 23. 

 Component-level test cases are often driven by forms-level input. Once forms 

data are defi ned, the user selects a button or other control mechanism to initiate 

execution. Equivalence partitioning, boundary value analysis, and path testing 

(Chapter 23) can be adapted for use in testing forms-based input and the func-

tionality that is applied to it. 

 In addition to these test-case design methods, a technique called  forced error 

testing  [Ngu01] is used to derive test cases that purposely drive the WebApp 

component into an error condition. The purpose is to uncover errors that occur 

   WebApp Testing     WebApp Testing  

  The scene:  Doug Miller’s offi ce. 

  The players:  Doug Miller, manager of the  SafeHome  
software engineering group, and Vinod Raman, a 
member of the product software engineering team. 

  The conversation:  

  Doug:  What do you think of the   SafeHomeAssured
.com   e-commerce WebApp V0.0? 

  Vinod:  The outsourcing vendor has done a good job. 
Sharon (development manager for the vendor) tells me 
they’re testing as we speak. 

  Doug:  I’d like you and the rest of the team to do a little 
informal testing on the e-commerce site. 

  Vinod (grimacing):  I thought we were going to hire 
a third-party testing company to validate the WebApp. 
We’re still killing ourselves trying to get the product 
software out the door. 

  Doug:  We’re going to hire a testing vendor for perfor-
mance and security testing, and our outsourcing vendor is 
already testing. Just thought another point of view would be 
helpful, and besides, we’d like to keep costs in line, so . . . 

  Vinod (sighs):  What are you looking for? 

  Doug:  I want to be sure that the interface and all navi-
gation are solid. 

  Vinod:  I suppose we can start with the use cases for 
each of the major interface functions:

        Learn about   SafeHome.   

       Specify the   SafeHome   system you need.   

       Purchase a   SafeHome   system.   

       Get technical support.     

  Doug:  Good. But take the navigation paths all the way 
to their conclusion. 

  Vinod (looking through a notebook of use 
cases):  Yeah, when you select  Specify the Safe-
Home system you need , that’ll take you to:

        Select SafeHome components.   

       Get   SafeHome   component 
recommendations.     

 We can exercise the semantics of each path. 

  Doug:  While you’re there, check out the content that 
appears at each navigation node. 

  Vinod:  Of course . . . and the functional elements as 
well. Who’s testing usability? 

  Doug:  Oh . . . the testing vendor will coordinate us-
ability testing. We’ve hired a market research fi rm to 
line up 20 typical users for the usability study, but if you 
guys uncover any usability issues . . . 

  Vinod:  I know, pass them along. 

  Doug:  Thanks, Vinod.  

 SAFEHOME 

pre22126_ch25_540-566.indd   555pre22126_ch25_540-566.indd   555 13/12/13   6:15 PM13/12/13   6:15 PM



556 PART THREE  QUALITY MANAGEMENT

during error handling (e.g., incorrect or nonexistent error messages, WebApp 

failure as a consequence of the error, erroneous output driven by erroneous 

input, side effects that are related to component processing). 

 Each component-level test case specifi es all input values and the expected out-

put to be provided by the component. The actual output produced as a consequence 

of the test is recorded for future reference during support and maintenance. 

      25.6  NAVIGATION TEST ING 

  A user travels through a WebApp in much the same way as a visitor walks through 

a store or museum. There are many pathways that can be taken, many stops that 

can be made, many things to learn and look at, activities to initiate, and decisions 

to make. This navigation process is predictable in the sense that every visitor has a 

set of objectives when he arrives. At the same time, the navigation process can be 

unpredictable because the visitor, infl uenced by something he sees or learns, may 

choose a path or initiate an action that is not typical for the original objective. The 

job of navigation testing is (1) to ensure that the mechanisms that allow the WebApp 

user to travel through the WebApp are all functional and (2) to validate that each 

navigation semantic unit (NSU) can be achieved by the appropriate user category. 

   25.6.1   Testing Navigation Syntax 

  The fi rst phase of navigation testing actually begins during interface testing. Nav-

igation mechanisms are tested to ensure that each performs its intended func-

tion. Splaine and Jaskiel [Spl01] suggest that each of the following navigation 

mechanisms should be tested: links and anchors of all types, redirects (when a 

user request a nonexistent URL), bookmarks, frames and frame sets, site maps, 

and the accuracy of internal search facilities. 

 Some of the tests noted can be performed by automated tools (e.g., link checking), 

while others are designed and executed manually. The intent throughout is to en-

sure that errors in navigation mechanics are found before the WebApp goes online. 

    25.6.2   Testing Navigation Semantics 

      In Chapter 17 a navigation semantic unit (NSU) is defi ned as “a set of information 

and related navigation structures that collaborate in the fulfi llment of a subset of 

related user requirements” [Cac02]. Each NSU is defi ned by a set of navigation 

paths (called “ways of navigating”) that connect navigation nodes (e.g., Web pages, 

content objects, or functionality). Taken as a whole, each NSU allows a user to 

achieve specifi c requirements defi ned by one or more use cases for a user cate-

gory. Navigation testing exercises each NSU to ensure that these requirements can 

be achieved. You should answer the following questions as each NSU is tested:

    •  Is the NSU achieved in its entirety without error?  

   •  Is every navigation node (defi ned for an NSU) reachable within the con-

text of the navigation paths defi ned for the NSU?  

    uote: 

 “We’re not lost. 
We’re locationally 
challenged.” 

 John M. Ford 

 What 
questions 

must be asked 
and answered 
as each NSU is 
tested? 

?

pre22126_ch25_540-566.indd   556pre22126_ch25_540-566.indd   556 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  557

   •  If the NSU can be achieved using more than one navigation path, has 

every relevant path been tested?  

   •  If guidance is provided by the user interface to assist in navigation, are 

directions correct and understandable as navigation proceeds?  

   •  Is there a mechanism (other than the browser “back” arrow) for returning to 

the preceding navigation node and to the beginning of the navigation path?  

   •  Do mechanisms for navigation within a large navigation node (i.e., a long 

Web page) work properly?  

   •  If a function is to be executed at a node and the user chooses not to 

provide input, can the remainder of the NSU be completed?  

   •  If a function is executed at a node and an error in function processing 

occurs, can the NSU be completed?  

   •  Is there a way to discontinue the navigation before all nodes have been 

reached, but then return to where the navigation was discontinued and 

proceed from there?  

   •  Is every node reachable from the site map? Are node names meaningful 

to end users?  

   •  If a node within an NSU is reached from some external source, is it pos-

sible to process to the next node on the navigation path? Is it possible to 

return to the previous node on the navigation path?  

   •  Does the user understand his location within the content architecture as 

the NSU is executed?    

      Navigation testing, like interface and usability testing, should be conducted by 

as many different constituencies as possible. You have responsibility for early 

stages of navigation testing, but later stages should be conducted by other proj-

ect stakeholders, an independent testing team, and ultimately, by nontechnical 

users. The intent is to exercise WebApp navigation thoroughly.     

   If NSUs have not been 
created as part of 
WebApp analysis or 
design, you can apply 
use cases for the de-
sign of navigation test 
cases. The same set 
of questions are asked 
and answered. 

   Web Navigation Testing Tools  

  Objective:  The objective of Web user 
navigation testing tools is to identify any broken 

web links or pages that are not reachable in a website. 

  Mechanics:  The tools prompt you for the URL of a Web 
source and scan its markup language for links that do not 
return the correct type of Web resource. Some tools attempt 
to crawl through whole site to look for errors in deeper links. 

  Representative Tools:   11    
   http://validator.w3.org/checklink>  —Online 

WC3 link checker that analyzes HTML and XHTML 
documents for broken links. 

   http://www.relsoftware.com/  —Download site for 
 Rel Link Checker Lite  a free tool for identifying broken 
links and orphaned fi les.  

 INFO 

  11  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch25_540-566.indd   557pre22126_ch25_540-566.indd   557 13/12/13   6:15 PM13/12/13   6:15 PM



558 PART THREE  QUALITY MANAGEMENT

        25.7  CONFIGURATION TEST ING 

  Confi guration variability and instability are important factors that make WebApp 

testing a challenge. Hardware, operating system(s), browsers, storage capacity, net-

work communication speeds, and a variety of other client-side factors are diffi cult 

to predict for each user. In addition, the confi guration for a given user can change 

[e.g., operating system (OS) updates, new ISP and connection speeds] on a regular 

basis. The result can be a client-side environment that is prone to errors that are 

both subtle and signifi cant. One user’s impression of the WebApp and the manner 

in which she interacts with it can differ signifi cantly from another user’s experi-

ence, if both users are not working within the same client-side confi guration. 

 The job of  confi guration testing  is not to exercise every possible client-side 

confi guration. Rather, it is to test a set of probable client-side and server-side 

confi gurations to ensure that the user experience will be the same on all of them 

and to isolate errors that may be specifi c to a particular confi guration. 

   25.7.1   Server-Side Issues 

 On the server side, confi guration test cases are designed to verify that the projected 

server confi guration [i.e., WebApp server, database server, operating system(s), fi re-

wall software, concurrent applications] can support the WebApp without error. 

 As server-side confi guration tests are designed, you should consider each 

component of the server confi guration. Among the questions that need to be 

asked and answered during server-side confi guration testing are: 

         •  Is the WebApp fully compatible with the server OS?  

   •  Are system fi les, directories, and related system data created correctly 

when the WebApp is operational?  

   •  Do system security measures (e.g., fi rewalls or encryption) allow the 

WebApp to execute and service users without interference or perfor-

mance degradation?  

   •  Has the WebApp been tested with the distributed server confi guration  12   

(if one exists) that has been chosen?   

   •  Is the WebApp properly integrated with database software? Is the 

WebApp sensitive to different versions of database software?  

   •  Do server-side WebApp scripts execute properly?  

   •  Have system administrator errors been examined for their effect on 

WebApp operations?  

   •  If proxy servers are used, have differences in their confi guration been 

addressed with on-site testing?  

 What 
questions 

must be asked 
and answered 
as server-side 
confi guration 
testing is 
conducted? 

?

  12  For example, a separate application server and database server may be used. Communication 

between the two machines occurs across a network connection.

pre22126_ch25_540-566.indd   558pre22126_ch25_540-566.indd   558 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  559

     25.7.2   Client-Side Issues 

 On the client side, confi guration tests focus more heavily on WebApp compati-

bility with confi gurations that contain one or more permutations of the follow-

ing components: hardware, operating systems, browser software, user interface 

components, plug-ins, and connectivity services (e.g., cable, DSL, WiFi). In addi-

tion to these components, other variables include networking software, the vaga-

ries of the ISP, and applications running concurrently. 

 To design client-side confi guration tests, you must reduce the number of con-

fi guration variables to a manageable number.  13   To accomplish this, each user cat-

egory is assessed to determine the likely confi gurations to be encountered within 

the category. In addition, industry market share data may be used to predict the 

most likely combinations of components. The WebApp is then tested within these 

environments.     

   13  Conducting tests on every possible combination of confi guration components is far too time-

consuming. 

  14  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

 15   Security testing is also discussed as part of security engineering in Chapter 27. 

 16  Books by Cross and Fisher [Cro07], Andrews and Whittaker [And06], and Trivedi [Tri03] provide 

useful information about the subject.

   Web Confi guration Testing Tools  

  Objective:  The objective of Web 
confi guration testing tools is to determine 

problems that may occur when a page is displayed by 
different web browser and operating system combinations. 

  Mechanics:  These tools prompt you to enter the URL 
of a Web page and allow you to select from dozens of 
browser and operating systems combinations. The tools 
will display thumbnails of the Web page as is appears 
on each browser version selected. 

  Representative Tools:   14   
   http://browsershots.org/  —Browsershots provides 

an online service that allows you to test your website 
from many different browsers and operating systems. 

   http://testingbot.com/  — TestingBot  provides a 
limited free trial of an online service that allows you 
to test your website using many different browsers 
and operating systems.  

 INFO 

         25.8  SECURITY TEST ING  15   
     WebApp security is a complex subject that must be fully understood before ef-

fective security testing can be accomplished.  16   WebApps and the client-side and 

server-side environments in which they are housed represent an attractive tar-

get for external hackers, disgruntled employees, dishonest competitors, and 

anyone else who wishes to steal sensitive information, maliciously modify con-

tent, degrade performance, disable functionality, or embarrass a person, orga-

nization, or business. 

    uote: 

 “The Internet is 
a risky place to 
conduct business 
or store assets. 
Hackers, crackers, 
snoops, spoofers, . . . 
vandals, virus 
launchers, and rogue 
program purveyors 
run loose.” 

 Dorothy and 
Peter Denning 

pre22126_ch25_540-566.indd   559pre22126_ch25_540-566.indd   559 13/12/13   6:15 PM13/12/13   6:15 PM



560 PART THREE  QUALITY MANAGEMENT

      Security tests are designed to probe vulnerabilities of the client-side environ-

ment, the network communications that occur as data are passed from client to 

server and back again, and the server-side environment. Each of these domains 

can be attacked, and it is the job of the security tester to uncover weaknesses 

that can be exploited by those with the intent to do so. 

 On the client side, vulnerabilities can often be traced to preexisting bugs in 

browsers, e-mail programs, or communication software. On the server side, vul-

nerabilities include denial-of-service attacks and malicious scripts that can be 

passed along to the client side or used to disable server operations. In addition, 

server-side databases can be accessed without authorization (data theft). 

      To protect against these (and many other) vulnerabilities, fi rewalls, authen-

tication, encryption, and authorization techniques can be used. Security tests 

should be designed to probe each of these security technologies in an effort to 

uncover security holes. 

 The actual design of security tests requires in-depth knowledge of the inner 

workings of each security element and a comprehensive understanding of a full 

range of networking technologies. In many cases, security testing is outsourced 

to fi rms that specialize in these technologies. 

   If the WebApp is busi-
ness critical, maintains 
sensitive data, or is a 
likely target of hack-
ers, it’s a good idea 
to outsource security 
testing to a vendor 
who specializes in it. 

   Security tests should 
be designed to exercise 
fi rewalls, authentica-
tion, encryption, and 
authorization. 

  17  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

   Web Security Testing Tools  

  Objective:  The objective of Web security 
testing tools is to help identify potential 

security problems present in a website. 

  Mechanics:  These tools are typically downloaded and 
run in the development environment. They check web 
application for scripts that can inject harmful data that 
can alter the website functionality. Some tools allow you 
to schedule their use as probing or monitoring tools. 

  Representative Tools:   17   
   http://www.mavitunasecurity.com/

communityedition/  —Download site for a tool 

( Netsparker ) that checks WebApps for SQL injection 
vulnerabilities. 

   http://enyojs.com/  —Download site for the free 
 N-Stalker  tool that performs a number of security 
checks on websites using the  N-Stealth  web attack 
signature database. 

   http://code.google.com/p/skipfi sh/  —Download 
site for skipfi sh which prepares a report on security 
vulnerabilities found by crawling the pages in a 
website.  

 INFO 

           25.9  PERFORMANCE TEST ING 

  Nothing is more frustrating than a WebApp that takes minutes to load content 

when competitive sites download similar content in seconds. Nothing is more 

aggravating than trying to log on to a WebApp and receiving a “server-busy” 

pre22126_ch25_540-566.indd   560pre22126_ch25_540-566.indd   560 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  561

message, with the suggestion that you try again later. Nothing is more dis-

concerting than a WebApp that responds instantly in some situations, and 

then seems to go into an infinite wait state in other situations. All of these 

occurrences happen on the Web every day, and all of them are performance 

related. 

  Performance testing  is used to uncover performance problems that can 

result from a lack of server-side resources, inappropriate network band-

width, inadequate database capabilities, faulty or weak operating system 

capabilities, poorly designed WebApp functionality, and other hardware 

or software issues that can lead to degraded client-server performance. 

The intent is twofold: (1) to understand how the system responds as  load-

ing  (i.e., number of users, number of transactions, or overall data volume), 

and (2) to collect metrics that will lead to design modifications to improve 

performance. 

        25.9.1   Performance Testing Objectives 

 Performance tests are designed to simulate real-world loading situations. As the 

number of simultaneous WebApp users grows, or the number of online trans-

actions increases, or the amount of data (downloaded or uploaded) increases, 

performance testing will help answer the following questions:

    •  Does the server response time degrade to a point where it is noticeable 

and unacceptable?  

   •  At what point (in terms of users, transactions, or data loading) does 

performance become unacceptable?  

   •  What system components are responsible for performance degradation?  

   •  What is the average response time for users under a variety of loading 

conditions?  

   •  Does performance degradation have an impact on system security?  

   •  Is WebApp reliability or accuracy affected as the load on the system 

grows?  

   •  What happens when loads that are greater than maximum server capacity 

are applied?  

   •  Does performance degradation have an impact on company revenues?    

 To develop answers to these questions, two different performance tests are 

conducted: (1)  load testing  examines   real-world loading at a variety of load lev-

els and in a variety of combinations, and (2)  stress testing  forces   loading to be 

increased to the breaking point to determine how much capacity the WebApp 

environment can handle. Each of these testing strategies is considered in the 

sections that follow. 

   Some aspects of 
WebApp performance, 
at least as it is per-
ceived by the end user, 
are diffi cult to test. 
Network loading, the 
vagaries of network 
interfacing hardware, 
and similar issues are 
not easily tested at the 
WebApp level. 

pre22126_ch25_540-566.indd   561pre22126_ch25_540-566.indd   561 13/12/13   6:15 PM13/12/13   6:15 PM



562 PART THREE  QUALITY MANAGEMENT

    25.9.2   Load Testing 

      The intent of load testing is to determine how the WebApp and its server-side en-

vironment will respond to various loading conditions. As testing proceeds, per-

mutations to the following variables defi ne a set of test conditions:

        N,  number of concurrent users  

       T,  number of online transactions per unit of time  

       D,  data load processed by the server per transaction    

 In every case, these variables are defi ned within normal operating bounds of 

the system. As each test condition is run, one or more of the following measures 

are collected: average user response, average time to download a standardized 

unit of data, or average time to process a transaction. You should examine these 

measures to determine whether a precipitous decrease in performance can be 

traced to a specifi c combination of  N, T,  and  D.  

 Load testing can also be used to assess recommended connection speeds for 

users of the WebApp. Overall throughput,  P,  is computed in the following manner:

 P 5 N  3  T  3  D  

 As an example, consider a popular sports news site. At a given moment, 20,000 

concurrent users submit a request (a transaction,  T ) once every 2 minutes on 

average. Each transaction requires the WebApp to download a new article that 

averages 3K bytes in length. Therefore, throughput can be calculated as:

 P  5 [20,000 3 0.5 3 3Kb]/60 5 500 Kbytes/sec

 5 4 megabits per second 

 The network connection for the server would therefore have to support this data 

rate and should be tested to ensure that it does. 

    25.9.3   Stress Testing 

       Stress testing  is a continuation of load testing, but in this instance the variables, 

 N, T,  and  D  are forced to meet and then exceed operational limits. The intent of 

these tests is to answer each of the following questions:

    •  Does the system degrade “gently,” or does the server shut down as capac-

ity is exceeded?  

   •  Does server software generate “server not available” messages? More 

generally, are users aware that they cannot reach the server?  

   •  Does the server queue resource requests and empty the queue once ca-

pacity demands diminish?  

   •  Are transactions lost as capacity is exceeded?  

   •  Is data integrity affected as capacity is exceeded?  

   If a WebApp uses 
multiple servers to 
provide signifi cant 
capacity, load testing 
must be performed 
in a multiserver 
environment. 

   The intent of stress 
testing is to better 
understand how a 
system fails as it is 
stressed beyond its 
operational limits. 

pre22126_ch25_540-566.indd   562pre22126_ch25_540-566.indd   562 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  563

   •  What values of  N, T,  and  D  force the server environment to fail? How does 

failure manifest itself? Are automated notifi cations sent to technical sup-

port staff at the server site?  

   •  If the system does fail, how long will it take to come back online?  

   •  Are certain WebApp functions (e.g., compute intensive functionality, data 

streaming capabilities) discontinued as capacity reaches the 80 or 90 per-

cent level?    

 A variation of stress testing is sometimes referred to as  spike/bounce testing  

[Spl01]. In this testing regime, load is spiked to capacity, then lowered quickly to 

normal operating conditions, and then spiked again. By bouncing system load-

ing, you can determine how well the server can marshal resources to meet very 

high demand and then release them when normal conditions reappear (so that 

they are ready for the next spike).     

   Web Performance Testing Tools  

  Objective:  The objective of Web 
performance testing tools is to look for 

bottlenecks that can cause poor performance or simulate 
conditions that may cause a website to fail completely. 

  Mechanics:  Online tools prompt you for the URL of a 
web resource. Some tools automatically conduct a series 
of simulated load tests. Some tools collect statistics on 
page loading and server response times as developers 
navigate the website. 

  Representative Tools:   18    
   http://loadimpact.com/   —  LoadImpact  is an online 

tool that conducts load impact testing using simulated 
user loads on web servers. 

   http://www.websitepulse.com/help/testtools.
website-test.html/  — WebSitePulse  is an online 

tool which measures server availability and the 
response time of a website. 

   http://www.websiteoptimization.com/
services/analyze/  — Web Page Analyzer  is an 
online tool which measures website performance and 
provides a list of suggested changes to improve load 
times. 

  http://developer.yahoo.com/yslow/ —Yslow is 
an online tool that analyzes Web pages and suggests 
improvements based on rules for development of 
high-performing websites. 

   http://tools.pingdom.com/fpt/  — Pingdom  is 
an online tool which measures Web page load 
time bottlenecks by analyzing component elements 
individually.  

 INFO 

  18  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

         25.10 SUMMARY 

 The goal of WebApp testing is to exercise each of the many dimensions of 

WebApp quality with the intent of fi nding errors or uncovering issues that may 

lead to quality failures. Testing focuses on content, function, structure, usability, 

navigability, performance, compatibility, interoperability, capacity, and security. 

pre22126_ch25_540-566.indd   563pre22126_ch25_540-566.indd   563 13/12/13   6:15 PM13/12/13   6:15 PM



564 PART THREE  QUALITY MANAGEMENT

It incorporates reviews that occur as the WebApp is designed, and tests that are 

conducted once the WebApp has been implemented. 

 The WebApp testing strategy exercises each quality dimension by initially 

examining “units” of content, functionality, or navigation. Once individual units 

have been validated, the focus shifts to tests that exercise the WebApp as a whole. 

To accomplish this, many tests are derived from the user’s perspective and are 

driven by information contained in use cases. A WebApp test plan is developed 

and identifi es testing steps, work products (e.g., test cases), and mechanisms for 

the evaluation of test results. The testing process encompasses seven different 

types of testing. 

 Content testing (and reviews) focus on various categories of content. The in-

tent is to uncover both semantic and syntactic errors that affect the accuracy of 

content or the manner in which it is presented to the end user. Interface testin g  

exercises the interaction mechanisms that enable a user to communicate with 

the WebApp and validates aesthetic aspects of the interface. The intent is to un-

cover errors that result from poorly implemented interaction mechanisms or 

from omissions, inconsistencies, or ambiguities in interface semantics. 

 Navigation testing applies use cases, derived as part of the modeling activity, 

in the design of test cases that exercise each usage scenario against the naviga-

tion design. Navigation mechanisms are tested to ensure that any errors imped-

ing completion of a use case are identifi ed and corrected. Component testing 

exercises content and functional units within the WebApp. 

 Confi guration testing attempts to uncover errors and/or compatibility prob-

lems that are specifi c to a particular client or server environment. Tests are then 

conducted to uncover errors associated with each possible confi guration. Secu-

rity testing incorporates a series of tests designed to exploit vulnerabilities in the 

WebApp and its environment. The intent is fi nd security holes. Performance test-

ing encompasses a series of tests that are designed to assess WebApp response 

time and reliability as demands on server-side resource capacity increase. 

     PROBLEMS AND POINTS TO PONDER 
    25.1.  Are there any situations in which WebApp testing should be totally disregarded?  

   25.2.  In your own words, discuss the objectives of testing in a WebApp context.  

   25.3.  Compatibility is an important quality dimension. What must be tested to ensure that 
compatibility exists for a WebApp?  

   25.4.  Which errors tend to be more serious—client-side errors or server-side errors? Why?  

   25.5.  What elements of the WebApp can be “unit tested”? What types of tests must be con-
ducted only after the WebApp elements are integrated?  

   25.6.  Is it always necessary to develop a formal written test plan? Explain.  

pre22126_ch25_540-566.indd   564pre22126_ch25_540-566.indd   564 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 25  TESTING WEB APPLICATIONS  565

   25.7.  Is it fair to say that the overall WebApp testing strategy begins with user-visible ele-
ments and moves toward technology elements? Are there exceptions to this strategy?  

   25.8.  Is content testing  really  testing in a conventional sense? Explain.  

   25.9.  Describe the steps associated with database testing for a WebApp. Is database testing 
predominantly a client-side or server-side activity?  

   25.10.  What is the difference between testing that is associated with interface mechanisms 
and testing that addresses interface semantics?  

   25.11.  Assume that you are developing an online pharmacy ( YourCornerPharmacy.com ) 
that caters to senior citizens. The pharmacy provides typical functions, but also maintains 
a database for each customer so that it can provide drug information and warn of potential 
drug interactions. Discuss any special usability tests for this WebApp.  

   25.12.  Assume that you have implemented a drug interaction checking function for 
 YourCornerPharmacy.com  (Problem 20.11). Discuss the types of component-level tests that 
would have to be conducted to ensure that this function works properly. (Note: A database 
would have to be used to implement this function.)  

   25.13.  What is the difference between testing for navigation syntax and navigation 
semantics?  

   25.14.  Is it possible to test every confi guration that a WebApp is likely to encounter on the 
server side? On the client side? If it is not, how do you select a meaningful set of confi gura-
tion tests?  

   25.15.  What is the objective of security testing? Who performs this testing activity?  

   25.16.   YourCornerPharmacy.com  (Problem 25.11) has become wildly successful, and the 
number of users has increased dramatically in the fi rst two months of operation. Draw a 
graph that depicts probable response time as a function of number of users for a fi xed set of 
server-side resources. Label the graph to indicate points of interest on the “response curve.”  

   25.17.  In response to it, success  YourCornerPharmacy.com  (Problem 25.11) has imple-
mented a special server solely to handle prescription refi lls. On average, 1000 concurrent 
users submit a refi ll request once every two minutes. The WebApp downloads a 500-byte 
block of data in response. What is the approximate required throughput for this server in 
megabits per second?  

   25.18.  What is the difference between load testing and stress testing?  

      FUR THER READINGS AND INFORMATION SOURCES 
  The literature for WebApp testing continues to evolve. Books by Andrews and Whittaker 
( How to Break Web Software, Addison-Wesley, 2006), Ash ( The Web Testing Companion,  Wiley, 
2003), Nguyen and his colleagues ( Testing Applications for the Web,  2nd ed., Wiley, 2003), 
Dustin and his colleagues ( Quality Web Systems,  Addison-Wesley, 2002), and Splaine and 
Jaskiel [Spl01] are among the most complete treatments of the subject published to date. 
Whitaker and his colleagues describe additional web testing practices ( How Google Tests 

Software,  Addison-Wesley, 2012). Mosley ( Client-Server Software Testing on the Desktop and 

the Web,  Prentice Hall, 1999) addresses both client-side and server-side testing issues. 
   Useful information of WebApp testing strategies and methods, as well as a worthwhile 

discussion of automated testing tools is presented by David ( Selenium 2 Testing Tools: A 

Beginner’s Guide,  Packit Publishing, 2012) and Stottlemeyer ( Automated Web Testing Toolkit,  
Wiley, 2001). Graham and her colleagues ( Experiences of Test Automation,  Addison-Wesley, 
2012) and ( Software Test Automation,  Addison-Wesley, 1999) present additional material on 
automated tools. 

pre22126_ch25_540-566.indd   565pre22126_ch25_540-566.indd   565 13/12/13   6:15 PM13/12/13   6:15 PM



566 PART THREE  QUALITY MANAGEMENT

   Microsoft ( Performance Testing Guidance for Web Applications,  Microsoft Press, 2008) 
and Subraya  (Integrated Approach to Web Performance Testing,  IRM Press, 2006) present 
detailed treatments of performance testing for WebApps. Hope and Walther ( Web Security 

Testing Cookbook,  O’Reilly, 2008), Skoudis ( Counter Hack Reloaded,  Prentice Hall, 2nd ed, 
2006), Andreu ( Profession Pen Testing for Wes Applications, Wrox, 2006), Chirillo ( Hack Attacks 

Revealed,  2nd ed., Wiley, 2003), Splaine ( Testing Web Security, Wiley, 2002), and Klevinsky 
and his colleagues ( Hack I.T.: Security through Penetration Testing,  Addison-Wesley, 2002) 
provide much useful information for those who must design security tests. In addition, 
books that address security testing for software in general can provide important guid-
ance for those who must test WebApps. Representative titles include: Engebretson ( Basics 

of Hacking and Penetration Testing,  Syngress, 2011), Basta and Halton ( Computer Security 

and Penetration Testing,  Thomson Delmar Learning, 2007), Wysopal and his colleagues ( The 

Art of Software Security Testing,  Addison-Wesley, 2006), and Gallagher and his colleagues 
( Hunting Security Bugs,  Microsoft Press, 2006). 

   A wide variety of information sources on WebApp testing is available on the Internet. 
An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch25_540-566.indd   566pre22126_ch25_540-566.indd   566 13/12/13   6:15 PM13/12/13   6:15 PM



567

 TESTING
MOBILEAPPS 

          The same sense of urgency that drives WebApp projects also pervades 

MobileApp projects. Stakeholders are worried that they will miss a 

market window and press to get the MobileApp into the store. Technical 

activities that often occur late in the process, such as performance and secu-

rity testing, are sometimes given short shrift. Usability testing that should 

occur during the design phase may end up being deferred until just before 

delivery. These can be catastrophic mistakes. To avoid this situation, you and 

other team members must ensure that each work product exhibits high qual-

ity. A white paper posted by Soasta [Soa11] summarizes this:

  Mobile technology is simply ramping up faster than other technologies in the 

past—it may be the fastest adoption curve in history. And this has important impli-

cations for your business model. You’ve got to be fast to market but also prepared 

for rapid adoption. If your application performs poorly, or fails under load, many 

competitors are ready to take your place—the barriers to entry are low. 

   MobileApp requirements and design models cannot be tested solely with 

executable test cases. You and your team should conduct technical reviews

  What is it?   MobileApp testing is 
a collection of related activities with 
a single goal: to uncover errors in 
MobileApp content, function, us-

ability, navigability, performance, capacity, 
and security. To accomplish this, a testing strat-
egy that encompasses both reviews and exe-
cutable testing is applied. 

   Who does it?   Software engineers and other 
project stakeholders (managers, customers, 
end users) all participate in MobileApp testing. 

   Why is it important?   If end users encounter 
errors or diffi culties within the MobileApp, they 
will go elsewhere for the personalized content 
and function they need. For this reason, you 
must work to fi nd and correct as many errors 
as possible before the MobileApp is placed in 
an app store or repository. 

   What are the steps?   The MobileApp testing 
process begins by focusing on user-visible 

aspects of the MobileApp and proceeds 
to testing of technology and infrastructure. 
Several testing steps are performed: content 
testing, interface testing, navigation testing, 
component testing, confi guration testing, 
 performance testing, and security testing. 

   What is the work product?   A MobileApp 
test plan is often produced. A suite of test 
cases is developed for each testing step and 
an  archive of test results is maintained for 
 future use. 

   How do I ensure that I’ve done it right?   Al-
though you can never be sure that you’ve per-
formed every test that is needed, you can be 
certain that testing has uncovered errors (and 
that those errors have been corrected). In ad-
dition, if you’ve established a test plan, you 
can check to ensure that all planned tests have 
been conducted.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    automation . . . . . . 571  
    checklist . . . . . . . . 570  
    guidelines . . . . . . . 568  
    internationalization. 578  
    real-time testing . . 578  
    strategies. . . . . . . 569  
    stress testing  . . . . 573  
    testing-in-the-wild  .573  
    test matrix . . . . . . 572  
    tools and 
environments  . . . . 579  
          usability testing  . . 575    

    C H A P T E R

26 

pre22126_ch26_567-583.indd   567pre22126_ch26_567-583.indd   567 13/12/13   6:15 PM13/12/13   6:15 PM



568 PART THREE  QUALITY MANAGEMENT

(Chapter 20) and test usability (Chapter 15), as well as performance. Confi gura-

tion testing is especially important as a mechanism for verifying the MobileApp’s 

ability to take context into account. The intent is to uncover and correct errors 

before the MobileApp is released to the end-user community. 

 There are several important questions to ask when creating a MobileApp test-

ing strategy [Sch09]. 

    •  Do you have to build a fully functional prototype before you test with users?  

   •  Should you test with the user’s device or provide a device for testing?  

   •  What devices and user groups should you include in testing?  

   •  What are the benefi ts/drawbacks of lab testing versus remote testing?  

  We address each of these questions throughout this chapter. 

    26.1  TEST ING GUIDEL INES 

  MobileApps that execute entirely on a mobile device can be tested using 

 traditional software testing methods (Chapter 23) or using emulators running 

on personal computers. On the other hand, thin-client MobileApps that make 

use of server-based resources are particularly challenging to test. In addition to 

many of the testing challenges presented by WebApps (Chapter 25), the testing 

of thin-client MobileApps must also consider transmission of data through Inter-

net gateways and telephone networks [Was10]. Users expect MobileApps to be 

context aware and deliver personalized user experiences based on the physical 

location of a device in relation to available network features. But testing Mobile-

Apps in a dynamic ad hoc network environment using every possible device and 

network confi guration is diffi cult, if not impossible. 

      To understand the objectives of MobileApp testing, you should consider the 

many unique challenges facing app designers. MobileApps are expected to de-

liver much of the complex functionality and reliability found in PC-based ap-

plications, but they are resident on mobile platforms with relatively limited 

resources. The following guidelines provide a basis for mobile application test-

ing [Kea07]:

    •   Understand the network and device landscape before testing to identify 

bottlenecks.  Testing across borders is discussed in Section 26.4.  

   •   Conduct tests in uncontrolled real-world test conditions  (fi eld-based test-

ing), especially for a multitier mobile application. Testing in the produc-

tion environment is discussed in Section 26.2.5.  

   •   Select the right automation test tool.  Ideally, the tool should support all 

desired platforms, allow testing for various screen types, resolutions, 

and input mechanisms—such as touchpad and keypad, and implement 

   Involve users as early 
as possible in the 
testing cycle—early 
feedback helps in 
design correction. 

pre22126_ch26_567-583.indd   568pre22126_ch26_567-583.indd   568 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  569

connectivity to the external system to carry out end-to-end testing. 

MobileApp testing tools are discussed in greater detail in Section 26.6.  

   •   Use the Weighted Device Platform Matrix method to identify the most criti-

cal hardware/platform combination to test.  This method is very useful 

 especially when hardware/platform combinations are numerous and time 

to test is low. Details of applying this method are described in Section 26.2.3.  

   •   Check the end-to-end functional fl ow in all possible platforms at least 

once.  When Web services are involved, it is diffi cult to trace the actual net-

work path required to deliver a MobileApp function without performance 

tools. Tool use is discussed in Section 26.6.  

   •   Conduct performance testing, GUI testing, and compatibility testing using 

actual devices.  Even though these tests can be done using emulators, 

testing with actual devices is recommended. User interaction testing 

is discussed in Section 26.3 and performance issues are discussed in 

Section 26.2.  

   •   Measure performance only in realistic conditions of wireless traffi c and 

user load.  Real-time testing issues for MobileApps are discussed in Sec-

tion 26.5.     

      26.2  THE TEST ING STRATEGIES 

  Technology alone is not suffi cient to guarantee commercial success of a Mo-

bileApp. Users abandon MobileApps quickly if they do not work well or fail to 

meet expectations. It is important to recall that testing has two important goals: 

(1) to create test cases that uncover defects early in the development cycle and 

(2) to verify the presence of important quality attributes. The quality attributes 

for MobileApps are based on those set forth in ISO 9126 [Spr04] and encompass 

functionality, reliability, usability, effi ciency, maintainability, and portability 

(Chapter 19). 

 Developing a MobileApp testing strategy requires an understanding of both 

software testing and the challenges that make mobile devices and their net-

work infrastructure unique [Kho12a]. In addition to a thorough knowledge of 

conventional software testing approaches (Chapters 22 and 23), a MobileApp 

tester should have a good understanding of telecommunications principles and 

an awareness of the differences and capabilities of mobile operating systems 

platforms. This basic knowledge must be complemented with a thorough under-

standing of the different types of mobile testing (e.g., MobileApp testing, mobile 

handset testing, mobile website testing), the use of simulators, test automation 

tools, and remote data access services (RDA). Each of these topics is discussed 

later in this chapter. 

  uote: 

 ”I want to be 
buried with a 
mobile phone, just 
in case I’m not 
dead“ 

 Amanda Holden 

pre22126_ch26_567-583.indd   569pre22126_ch26_567-583.indd   569 13/12/13   6:15 PM13/12/13   6:15 PM



570 PART THREE  QUALITY MANAGEMENT

        26.2.1   Are Conventional Approaches Applicable? 

      A comprehensive MobileApp testing program includes the generic spiral ap-

proach discussed in Chapter 22, but will also include adaptations discussed 

for client-server architectures, real-time computing, graphical user interfaces, 

WebApps, and object-oriented systems (Chapters 23–25). MobileApp testing also 

has unique challenges that should be addressed to ensure that an app meets 

both its functional and nonfunctional requirements.  1    

 Vinson [Vin11] suggests that MobileApp testers adapt the strategy used for test-

ing WebApps (Chapter 25). Content must be tested to be sure that it was chosen 

with the limitations of mobile devices and ad hoc networks in mind. Compatibility 

testing and deployment testing are more challenging in the mobile world, owing 

to the large variety in device characteristics and user environments. Performance 

testing needs to determine whether the limited storage, processing, connectivity, 

and power available on a mobile device may negatively impact features or func-

tionality. MobileApp performance testing is often conducted at a level of detail 

   Those who must test 
MobileApps are well 
served by adopting 
the overall strategy for 
testing WebApps 

   MobileApp Testing—Checklist  
 Nari Kannnan, CEO of the mobile appli-
cations consulting company appsparq, 

Inc. posted the following recommendations for testing 
MobileApps [Kan11]:

    •   Conceptual testing —Getting input from 
prospective users of the MobileApp prior to beginning 
development helps ensure that no unnecessary 
features are included and no essential features have 
been missed. (Requirements gathering and validation 
techniques are discussed in Chapter 9.)  

   •   Unit and system testing —Implementing regular 
unit and system testing accommodates any software 
application that contains multiple components and 
interacts with networks (Chapters 22 and 26).  

   •   User experience testing —Involving real users 
early in the development process ensures that 
the experience provided lives up to the usability 
and accessibility expectations of its stakeholders. 
MobileApp usability testing is discussed in 
Section 26.3.  

   •   Stability testing —Ensuring that the MobileApp 
does not crash owing to incompatibilities with 

network or Web services. Testing MobileApps 
in production environments is discussed in 
Section 23.2.5.  

   •   Connectivity testing —Testing access to all 
essential components and Web resources is essential 
to ensuring the MobileApp is making appropriate 
use of context. Testing across borders is discussed in 
Section 26.6.  

   •   Performance testing —Testing the ability of the 
MobileApp to meet its nonfunction requirements 
(download times, processor speed, storage capacity, 
etc.). Performance testing is discussed in Sections 
26.2.4 and 26.5.  

   •   Device compatibility testing —Verifying that the 
MobileApp runs correctly on all targeted devices. The 
task is discussed in Section 26.2.3.  

   •   Security testing —Ensuring the MobileApp meets 
the security requirements set by its stakeholders. 
Security assurance testing is discussed in Chapter 27.  

   •   Certifi cation testing —Checking that the 
MobileApp meets the standards established by the 
app stores that will distribute it.     

 INFO 

  1  An overview of the unique issues in testing MobileApps can be found at:  http://www.utest.com/

landing-interior/crowdsource-your-mobile-app-testing  

pre22126_ch26_567-583.indd   570pre22126_ch26_567-583.indd   570 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  571

that is seen only in the development of real-time systems. Security testing has to 

take the loss of a physical device into account as well as the fact that MobileApps 

often run directly on the mobile device hardware exposing personal data to theft. 

MobileApps are often designed to be used by people with less technical knowl-

edge than the typical Web user precipitating the need for more extensive testing 

of the user experience (Section 26.3). Agile development process models (Chap-

ter 5) and/or test-driven development models (Chapter 24) can be used. 

    26.2.2   The Need for Automation 

  A MobileApp tester often encounters many confi guration variants (devices, op-

erating systems, and mobile networks) that may need to be included to ensure 

that a MobileApp is both functional and context aware. Because it is important to 

test a MobileApp effi ciently and completely, automated testing can be useful for 

confi guration testing (Section 25.7) or regression testing (Section 22.3). It should 

be noted, however, that it may not be possible to automate all parts of MobileApp 

testing (e.g., user interactions found in a handheld video game). 

 Automated testing tools can improve team morale when testers would other-

wise be forced to process a large number of repetitive test cases mechanically. 

The availability of automated test tools can encourage earlier and more frequent 

testing, allowing the early discovery of MobileApp defects. An agile development 

process (Chapter 5) mandates the use of daily build cycles that require regres-

sion testing to ensure that changes have not produced unintended side effects. 

 Mobile Labs, Inc. [Mob11] has proposed an approach to automating Mobile-

App testing that encompasses the following elements: 

       Feasibility analysis.  Determines which tests and test cases have the greatest 

return on investment (ROI) if automated. The focus should be on automating re-

peatable and frequently used test cases. The goal is to try to automate 50 to 

60 percent of manual test cases. 

  Proof of concept.  Validates the value of test automation. To accomplish this, 

a limited number of manual test scripts are automated to determine the ROI of 

the effort. The test team must determine scalability to the other scripts and the 

degree of reuse in subsequent testing cycles. 

  Best practice test framework.  Provides a methodology specifi c to mobile 

applications that serves as the foundation for the testing process. Frameworks 

defi ne the rules for implementation and testing of the MobileApp and are de-

veloped for each mobile platform and tailored to the organization’s application 

suite. 

  Customized testing tools.  Customizes testing tools to each mobile platform 

(and the application being tested) by leveraging advanced scripting techniques. 

  Testing under real-world conditions.  Confi rms how the application will run 

on an actual device outside the testing laboratory. Testing on actual devices 

    uote: 

 “Today there 
are hundreds of 
millions of mobile 
devices, but you do 
have to know a bit 
about what each 
device is capable 
of doing in order 
to approach it as a 
developer.” 

 John Fowler 

 What are 
the most 

important 
elements of 
automated mobile 
testing? 

?

pre22126_ch26_567-583.indd   571pre22126_ch26_567-583.indd   571 13/12/13   6:15 PM13/12/13   6:15 PM



572 PART THREE  QUALITY MANAGEMENT

instead of emulators reduces the incidence of false defect reporting and en-

sures that user-level errors will be more likely to be uncovered (Section 26.2.5). 

  Rapid defect resolution.  Speeds implementation through automatic submis-

sion of defect information and generation of discrepancy reports allowing de-

velopers to reduce the time required to resolve defects. 

  Reuse of test scripts.  Provides cost savings by eliminating the need to start 

test case creation from scratch when enhancements are made. It is important 

for the test tool architecture to allow the separation of function interfaces and 

test logic. This allows interfaces to be wrapped in reusable functions as tools 

are adapted for new platforms and devices. 

    26.2.3   Building a Test Matrix 

 MobileApps are often developed for multiple devices and designed to be 

used in many different contexts and locations. A  weighted device platform 

matrix  (WDPM) helps ensure that test coverage includes each combination 

of mobile device and context variables.  2   The WDPM can also be used to help 

prioritize the device/context combinations so that the most important are 

tested first. 

 The steps to build the WDPM ( Figure 26.1 ) for several devices and operating 

systems are: (1) list the important operating system variants as the matrix col-

umn labels, (2) list the targeted devices as the matrix row labels, (3) assign a 

ranking (e.g., 0 to 10) to indicate the relative importance of each operating sys-

tem and each device, and (4) compute the product of each pair of rankings and 

enter each product as the cell entry in the matrix (use NA for combinations that 

are not available).  

 Testing effort should be adjusted so that the device/platform combinations 

with the highest ratings receive the most attention for each context variable 

under consideration. In  Figure 26.1 ,  Device4  and  OS3  have the highest rating and 

would receive high-priority attention during testing.  

  FIGURE 26.1

 Weighted 
device 
platform 
matrix   

  2   Context variables  are variables that are associated with either the current connection or the 

current transaction that the MobileApp will use to direct its visible-user behavior. 

Device 1
Ranking 3

OS1

NA

NA

9
14

4
OS2

28

36

NA
NA

7
OS3

49

63

NA
NA

7
3
4
9

Device 2
Device 3
Device 4

pre22126_ch26_567-583.indd   572pre22126_ch26_567-583.indd   572 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  573

    26.2.4   Stress Testing 

       Stress testing  for mobile apps attempts to fi nd errors that will occur under ex-

treme operating conditions. In addition, it provides a mechanism for deter-

mining whether the MobileApp will degrade gracefully without compromising 

security. Among the many actions that might create extreme conditions are: 

(1)  running several mobile apps on the same device, (2) infecting system soft-

ware with  viruses or malware, (3) attempting to take over a device and use it to 

spread spam, (4) forcing the mobile app to process inordinately large numbers of 

transactions, and (5) storing inordinately large quantities of data on the device. 

As these conditions are encountered, the MobileApp is checked to ensure that 

resource intensive services (e.g., streaming media) are handled properly. 

 Effective stress testing [Soa11] should be performed “in the wild,” where dif-

ferent devices and different operating environments are common. Conditions 

that exercise two to three times rated capacity should be tested. Tests should 

refl ect actual user behavior in real-life contexts and should refl ect users who 

change location locally, as well as users in other countries with different network 

confi guration and standards. 

 In the sections that follow, we consider some of these guidelines in greater detail. 

    26.2.5   Testing in a Production Environment 

 Many MobileApp developers advocate  testing-in-the-wild , or testing in the users’ 

native environments with the production release versions of the MobileApp re-

sources. Testing-in-the-wild is designed to be agile and respond to changes as 

the MobileApp evolves [Ute12].  
 Some of the characteristics of in-the-wild testing include adverse and un-

predictable environments, outdated browsers and plug-ins, unique hardware, 

and imperfect connectivity (both Wi-Fi and mobile carrier). In order to mirror 

real-world conditions, the demographic characteristics of testers should match 

those of targeted users, as well as those of their devices. In addition, you should 

include use cases involving small numbers of users, less-popular browsers, as 

well as a diverse set of mobile devices. Testing-in-the-wild is always somewhat 

unpredictable, and test plans must be adapted as testing progresses. For further 

information, Rooksby and his colleagues have identifi ed themes that are present 

in successful strategies for testing-in-the-wild [Roo09]. 

 Creating test environments in-house is an expensive and error-prone pro-

cess. Cloud-based testing can offer a standardized infrastructure and preconfi g-

ured software images, freeing the MobileApp team from the need to worry about 

fi nding servers or purchasing their own licenses for software and testing tools. 

Cloud service providers give testers access to scalable and ready to user virtual 

laboratories with a library of operating systems, test and execution management 

tools, and storage necessary for creating a test environment that closely mirrors 

the real world. [Myl11]. 

   Graceful degradation is 
an important property 
of fault tolerant 
systems. A system that 
degrades gracefully 
will attempt to get to 
a known safe state in 
the advent of an error 
before shutting down 
if it cannot repair the 
damage and allow 
execution to continue. 

    uote: 

 ” The important 
thing about mobile 
is that everybody 
has a computer in 
their pocket.” 

 Ben Horowitz 

pre22126_ch26_567-583.indd   573pre22126_ch26_567-583.indd   573 13/12/13   6:15 PM13/12/13   6:15 PM



574 PART THREE  QUALITY MANAGEMENT

 Cloud-based testing is not without potential problems: lack of standards, po-

tential security issues, data location and integrity issues, incomplete infrastruc-

ture support, improper usages of services, and performance issues are only 

some of the common challenges that face development teams that use the cloud 

approach. 

   MobileApp Testing in the Production Environment     MobileApp Testing in the Production Environment  

  The scene:  Doug Miller’s offi ce. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering group) and Vinod Raman (a mem-
ber of the product software engineering team). 

  The conversation:  

  Doug:  What do you think of the e-commerce portion 
of our   SafeHomeAssured   MobileApp V0.0? 

  Vinod:  The outsourcing vendor has done a good job 
of adapting the WebApp   SafeHomeAssured.com   to 
the mobile environment. Sharon [development manager 
for the vendor] tells me they’re testing the prototype as 
we speak. 

  Doug:  I heard they were doing testing for the 
e-commerce site using device emulators. I think we 
should do a little testing on actual devices. 

  Vinod (grimacing):  I thought we were going to hire 
a third-party testing company to validate the Mobile-
App. We’re still killing ourselves trying to get the prod-
uct software out the door. 

  Doug:  We’re going to hire a testing vendor for perfor-
mance, security testing, and confi guration testing. Our 
outsourcing vendor is already doing some testing. I just 

thought another point of view would be helpful, and 
besides, we’d like to keep costs in line, so . . . 

  Vinod (sighs):  What are you looking for? 

  Doug:  I want to be sure that the user experience is 
solid. 

  Vinod:  I suppose we can start with the use cases for 
each of the major interface functions. 

  Doug:  Good. But follow the logic paths from their be-
ginning to their conclusion. Take a look at the weighted 
device platform matrix. I’d like you to check its perfor-
mance on the top six most important devices, and while 
you’re there, check out the content that appears at each 
navigation node. Make sure it takes the device charac-
teristics into account as each screen display is rendered. 

  Vinod:  Of course . . . and the functional elements as 
well. Who’s testing usability? 

  Doug:  Oh . . . the testing vendor will coordinate us-
ability testing. We’ve hired a market research fi rm to 
line up 20 typical users for the usability study, but if you 
guys uncover any usability issues . . . 

  Vinod:  I know, pass them along. 

  Doug (smiling):  Thanks, Vinod.  

 SAFEHOME 

            26.3  CONSIDERING THE SPECTRUM OF USER INTERACTION 

       In a crowded marketplace in which products provide the same functionality, 

users will choose the MobileApp that is easiest to use. The user interface and its 

interaction mechanisms are visible to the MobileApp users. It is important to test 

the quality of the user experience provided by the MobileApp to ensure that it 

meets the expectations of its users. 

 Many of the procedures for assessing the usability of software user interfaces 

discussed in Chapter 15 can be used to assess MobileApps. Similarly many of the 

strategies used to assess the quality of WebApps (Chapter 25) may be used to test 

 What 
characteristics 

of MobileApp 
usability become 
the focus of testing 
and what specifi c 
objectives are 
addressed? 

?

pre22126_ch26_567-583.indd   574pre22126_ch26_567-583.indd   574 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  575

the user interface portion of the MobileApp. There is more to building a good 

MobileApp user interface than simply shrinking the size of a user interface from 

an existing personal computer application.     

   MobileApp Usability Testing Components  
 A number of recommendations for key com-
ponents MobileApp usability testing have 

been presented in the MobileApp Testing Blog.  3    

    •   Functionality —Ensure that core functionality is 
supported by the user stories and takes stakeholder 
goals and expectations into account.  

   •   Information architecture .—Make sure that 
content and links have been structured and 
presented in a logical manner, taking chunking  4   and 
perspectives into account.  

   •   Content —Use text, video, images, and multimedia 
only when it supports the user task in a mobile 
context, give user control over whether to start media 
or not, make sure the content is presented in mobile 
device format.  

   •   Design —Design for quick visual scanning of 
screen, consider both portrait and landscape display 
orientations, rethink the screen layout, do not just 
shrink it.  

   •   User input —Make it easy for users to enter data, 
offer auto completion and spell checking, display 

default values, offer alternate input mechanisms 
based on individual device capabilities.  

   •   Mobile context —Account for changes in context 
(time of day, location, networks) and use device 
features and capabilities to anticipate and support 
the user’s context of use.  

   •   Usability —Ensure that interaction devices (touch 
screens, keyboards, audio) and widgets (buttons, links, 
scrollbar) work well together on all targeted devices, 
follow conventions, and reduce the learning curve.  

   •   Trustworthiness —Be sensitive to privacy and 
security, do not collect personal information without 
explicit user permission, allow user to control how 
personal info is shared and state your business 
practices.  

   •   Feedback —Get important information to your 
users, minimize number of alerts, make alerts brief 
and informative, provide confi rmation of user actions 
without disrupting user’s workfl ow.  

   •   Help —Make it easy for users to access help and 
support options, offer contextual help.    

 INFO 

  3  The blog can be found at  http://www.mobileapptesting.com/10-key-components-of-successful-

mobile-app-usability/2012/09/  

      4   Chunking  is the practice of breaking up hypermedia documents into smaller groupings of re-

lated information to allow faster assimilation by the reader. 

    26.3.1   Gesture Testing 
 Touch screens are very popular on mobile devices and, as a consequence, de-

velopers have added multitouch gestures (e.g., swiping, zooming, scrolling, se-

lection) as a means augmenting the user interaction possibilities without losing 

screen real estate. Unfortunately, gesture-intensive interfaces present a number 

of testing challenges. 

 It is diffi cult to use automated tools to test touch or gesture interface actions. 

Gestures are hard to log accurately for replay. The location of screen objects is 

affected by screen size and resolution, as well as previous user actions. Paper 

prototypes, sometimes developed as part of design, cannot be used to adequately 

pre22126_ch26_567-583.indd   575pre22126_ch26_567-583.indd   575 13/12/13   6:15 PM13/12/13   6:15 PM



576 PART THREE  QUALITY MANAGEMENT

test gestures. Instead, testers need to create test framework programs that 

make calls to functions that simulate gesture events. All of this is expensive and 

time-consuming. 

 Accessibility testing for visually impaired users is challenging because gesture 

interfaces typically do not provide either tactile or auditory feedback. Usability 

and accessibility testing for gestures become very important for ubiquitous de-

vices like smartphones. It may be important to test the operation of the device 

when gesture operations are not available. 

 Ideally user stories or use cases are written in suffi cient detail to allow 

their use as the basis for test scripts. It is important to recruit representative 

users and include all targeted devices to take screen differences into account 

when testing gestures with a MobileApp. Finally, testers should ensure that the 

gestures conform to the standards and contexts set for the mobile device or 

platform. 

    26.3.2   Voice Input and Recognition 

 Smart mobile devices now make use of voice input to allow for contemporane-

ous hands-busy, eyes-busy operation of the device. Voice input may take several 

forms with different levels of programming complexity required to process each. 

Voice-mail input occurs when a message is simply recorded for playback later. 

Discrete word recognition can be used to allow users to verbally select items 

from a menu with a small number of choices. Continuous speech recognition 

refl ects attempts to translate dictated speech into meaningful text strings. Each 

type of voice input has its own testing challenges. 

      According to Shneiderman [Shn09] all forms of speech input and process-

ing are hindered by interference from noisy environments. Using voice com-

mands to control a device impresses a greater cognitive load on the user, as 

compared to pointing to a screen object or pressing a key. The user must think 

of the correct word or words to get the MobileApp to perform the desired ac-

tion. When pointing at an object, however, the user merely needs to recognize 

the appropriate screen object and select it. However, the breadth and accu-

racy of speech recognition systems are evolving rapidly, and it is likely that 

voice recognition will become the dominant form of communication in many 

MobileApps. 

 Testing the quality and reliability of voice input and recognition presents 

technical challenges for even the best testing organizations. Erroneous voice 

input (due to user error, misspoken words or phrases, or environmental inter-

ference) must be tested to ensure that bad input does not cause the Mobile-

App or the device to fail. Because each user/device combination is different, a 

broad population of users and environments should be involved to ensure an 

acceptable error rate. Finally, it is important to log errors so that developers 

can improve the ability of the MobileApp to process speech input. 

   Testing of voice input 
should take environ-
mental conditions and 
individual voice varia-
tion into account. 

pre22126_ch26_567-583.indd   576pre22126_ch26_567-583.indd   576 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  577

    26.3.3   Virtual Key Board Input 

 Because a virtual keyboard may obscure part of the display screen when acti-

vated, it is important to test the MobileApp to ensure that important screen in-

formation is not hidden from the user while typing. If the screen information 

must be hidden it is important to test the ability of the MobileApp to allow page 

fl ipping by the user without losing typed information [Sch09]. 

 Virtual keyboards are typically smaller than personal computer keyboards, 

and therefore, it is diffi cult to type with 10 fi ngers. Because the keys themselves 

are smaller and harder to hit and provide no tactile feedback, the MobileApp 

must be tested to ensure that it allows easy error correction and can manage 

mistyped words without crashing. 

  Predictive technologies  (i.e., auto completion of partially typed words) are often 

used with virtual keyboards to help expedite user input. It is important to test the 

correctness of the word completions for the natural language chosen by the user, 

if the MobileApp is designed for a global market. It is also important to test the us-

ability of any mechanism that allows the user to override a suggested completion. 

 Virtual keyboard testing is often conducted in the usability laboratory, but 

some should be conducted in the wild. If virtual keyboard tests uncover signifi -

cant problems, the only alternative may be to ensure that the MobileApp can ac-

cept input from devices other than a virtual keyboard (e.g., a physical keyboard 

or voice input). 

    26.3.4   Alerts and Extraordinary Conditions 

 As a MobileApp runs in a real-time environment, there are factors that may im-

pact its behavior. For example, a Wi-Fi signal may be lost, or an incoming text 

message, phone call, or calendar alert may be received while the user is working 

with the MobileApp. 

 These factors can disrupt the MobileApp user’s workfl ow, yet most users opt 

to allow alerts and other interruptions as they work. Your MobileApp test envi-

ronment must be able to simulate these alerts and conditions. In addition, you 

should test the MobileApp’s ability to handle alerts and conditions in production 

environment on actual devices (Section 26.5). 

 Part of MobileApp testing should focus on the usability issues relating to alerts 

and pop-up messages. Testing should examine the clarity and context of alerts, 

the appropriateness of their location on the device display screen, and when for-

eign languages are involved, verifi cation that the translation from one language 

to another is correct. 

 Many alerts and conditions may be triggered differently on various mobile 

devices or by network or context changes. While many of the exception-handling 

processes can be simulated with a software test harness, you cannot rely solely 

on testing in the development environment. This again emphasizes the impor-

tance of testing the MobileApp in the wild on actual devices. 

pre22126_ch26_567-583.indd   577pre22126_ch26_567-583.indd   577 13/12/13   6:15 PM13/12/13   6:15 PM



578 PART THREE  QUALITY MANAGEMENT

        26.4  TEST ACROSS BORDERS 

   Internationalization  is the process of creating a software product so that it can be 

used in several countries and with various languages without requiring any engi-

neering changes.  Localization  is the process of adapting a software application for 

use in targeted global regions by adding locale-specifi c requirements and translat-

ing text elements to appropriate languages. Localization effort may involve taking 

each country’s currency, culture, taxes, and standards (both technical and legal) 

into account in addition to differences in languages [Sla12]. Launching a Mobile-

App in many parts of the world without testing it there would be very foolish. 

 Because it can be very costly to build an in-house testing facility in each coun-

try for which localization is planned, outsourcing testing to local vendors in each 

country is often more cost effective [Reu12]. However, using an outsourcing ap-

proach risks a degradation of communication between the MobileApp develop-

ment team and those who are performing localization tests. 

  Crowdsourcing  has become popular in many online communities.  5   Revenui 

[Reu12] suggests that crowdsourcing could be used to engage localization testers 

dispersed around the globe outside of the development environment. To accom-

plish this, it is important to fi nd a community that prides itself on its reputation 

and has a track record of successes. An easy-to-use real-time platform allows 

community members to communicate with the project decision makers. To pro-

tect intellectual property, only trustworthy community members who are willing 

to sign nondisclosure agreements are allowed to participate.  

      26.5  REAL-TIME TEST ING ISSUES 

  Actual mobile devices have inherent limitations precipitated by the combination 

of hardware and fi rmware delivered in the device. If the range of potential de-

vice platforms is large, it is expensive and time-consuming to perform Mobile-

App testing. 

 Mobile devices are not designed with testing in mind. Limited processing 

power and storage capacity may not allow loading of the diagnostic software 

needed to record the test-case performance. Emulated devices are often easier 

to manage and allow easier acquisition of test data. 

 Each mobile network (there are hundreds, worldwide) uses its own unique 

infrastructure to support the mobile Web. The Web proxies implemented by mo-

bile Web operators dictate how, when, and whether you can connect to specifi c 

Web resources using their network. This can restrict the fl ow of information that 

   uote: 

 ”The world is being 
re-shaped by the 
convergence of 
social, mobile, 
cloud, big data, 
community and 
other powerful 
forces. The 
combination of 
these technologies 
unlocks an 
incredible 
opportunity to 
connect everything 
together in a 
new way and 
is dramatically 
transforming the 
way we live and 
work. 

 Marc Benioff 

  5   Crowdsourcing  is a distributed problem solving model where community members work on 

solutions to problems posted to the group. 

pre22126_ch26_567-583.indd   578pre22126_ch26_567-583.indd   578 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  579

travels between your server and the test client. Some proxies may strip vital 

information from http headers your application needs to provide functionality 

or device adaptation. Network signal strength can be an issue. Emulators often 

cannot emulate the effects and timing of network services, and you may not see 

problems that users will have when the MobileApp runs on an actual device. 

 A remote mobile device is a useful piece of test equipment that can be used to 

overcome some of the limitations of using emulators. A  remote mobile device  is a 

physical mobile handset that is mounted in a box with a remote control unit and 

remote antenna. The remote control unit is connected to the device screen and 

keyboard control circuits. When connected to the Internet, this solution allows a 

user on a local PC or Web client to press buttons and collect data on what is hap-

pening on the remote device. Some remote devices have the ability to record test 

cases for subsequent replay to assist the process of automating regression testing. 

 Last, it is important to monitor power consumption specifi cally associated 

with the use of the MobileApp on a mobile device. Transmitting information from 

mobile devices consumes more power than monitoring a network for a signal. 

Processing streaming media consumes more power than loading a Web page or 

sending a text message. Assessing power consumption accurately must be done 

in real time on the actual device and in the wild. 

      26.6  TEST ING TOOLS AND ENVIRONMENTS 

  In Section 26.3.2 we discussed the reasons for automating some aspects of Mo-

bileApp testing in order to reduce testing time and improve the quality and cov-

erage of the testing process. Likewise, we discussed the importance of testing in 

the production environment in Section 26.2.5. There are times, however, when 

manual testing is required, but even in those cases, tools can be used to monitor 

the behavior of MobileApps and users on devices across networks. 

 Khode [Kho12b] suggests several criteria to use when selecting mobile test 

automation tools. These criteria might also be applicable to mobile testing tools 

in general. 

    •   Object identifi cation —The tool can recognize device objects using a vari-

ety of methods (e.g., object ID, image processing, text recognition, HTML5/

DOM objects).  

   •   Security —The tool should not require the use of an unprotected device 

connected to the public Internet.  

   •   Devices —The tool makes use of actual user devices without requiring the 

use of special developer modes.  

   •   Functionality —All device functionality is supported including multitouch 

gestures, virtual keyboard input, incoming calls and text messaging, alert 

processing, and others.  

What criteria 
should I 

use to select 
automation tools 
for mobile testing?

?

pre22126_ch26_567-583.indd   579pre22126_ch26_567-583.indd   579 13/12/13   6:15 PM13/12/13   6:15 PM



580 PART THREE  QUALITY MANAGEMENT

   •   Emulators and plug-ins —The same test can be executed on different de-

vices and different mobile operating systems using the existing testing 

environment.  

   •   Connectivity —Simultaneous connection of multiple devices using USB, 

Wi-Fi, private cloud, and phone carrier to test connection stability and 

recovery.       

   Selected Tools for MobileApp Testing  
 Here is a list of several tools that might be 
useful in MobileApp testing. This is a very 

volatile fi eld. This list of representative tools was recently 
recommended by Brown [Bro11] and Vinson [Vin11].  6    

  Mobile Web page tools  try to determine the degree 
to which a Web page is mobile device friendly. User 
enters a Web URL and the tool provides a list of 
defects. 

  Representative Tool  

 WC3mobileOKChecker  http://validator.w3.org/
mobile/ ) 

  Mobile browser emulators  show the appearance 
of a Web page on mobile browsers. User enters a 
Web URL and tool shows how it would appear on a 
mobile browser. 

  Representative Tools  

 Mobile Phone Emulator  http://www.
mobilephoneemulator.com/ ) 

 iPhoney  http://www.marketcircle.com/iphoney/ ) 

  Device emulators  are virtual devices that typically run 
on a personal computer and allow you to develop and 
test MobileApps without access to physical devices. 

  Representative Tools  

 Android Emulators ( http://developer.android
.com/sdk/index.html ) 

 iPad Peek ( http://ipadpeek.com/ ) 

 Adobe Edge Inspect  http://html.adobe.com/
edge/inspect/ ) 

 Blackberry Simulators ( http://us.blackberry.com/
sites/developers/resources/simulators.html ) 

  Automated tools  record interactions on IOS or 
Android and allows their play back as test scripts. 
Typically these run on a personal computer with a 
device emulator. 

  Representative Tools  

 MonkeyTalk ( http://www.gorillalogic.com/
testing-tools/monkeytalk ) 

 Eggplant Mobile ( http://www.testplant.com/ ) 

 Device Anywhere ( http://www.
keynotedeviceanywhere.com/  

  Network monitoring tools  add, modify, and fi lter 
HTTP request headers sent to Web servers. Installs as 
a browser plug-in. 

  Representative Tool  

 Modify headers ( https://addons.mozilla.org/en-
us/fi refox/addon/modify-headers/ ) 

  Mobile analytics testing  collects data to allow 
analysis of how users interact with the MobileApp 
which is important to assess ROI (return on 
investment). Typically requires a Web or cloud 
service to assist in data collection and storage. 

  Representative Tools  

 Flurry ( http://www.fl urry.com/fl urry-analytics.html ) 

 Google Mobile Analytics ( http://www.google.com/
analytics/mobile/ ) 

 Distimo Monitor ( http://monitor.distimo.com/ )  

 SOFTWARE TOOLS 

  6  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In addition, tool names are registered trademarks of the companies noted. 

pre22126_ch26_567-583.indd   580pre22126_ch26_567-583.indd   580 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  581

        26.7 SUMMARY 

 The goal of MobileApp testing is to exercise each of the many dimensions of 

 MobileApp quality with the intent of fi nding errors or uncovering issues that 

may lead to quality failures. Testing focuses on quality elements such as content, 

 function, structure, usability, use of context, navigability, performance, power 

management, compatibility, interoperability, capacity, and security. It incorpo-

rates reviews and usability assessments that occur as the MobileApp is designed, 

and tests that are conducted once the MobileApp has been implemented and 

deployed on an actual device. 

 The MobileApp testing strategy exercises each quality dimension by initially 

examining “units” of content, functionality, or navigation. Once individual units 

have been validated, the focus shifts to tests that exercise the MobileApp as a 

whole. To accomplish this, many tests are derived from the user’s perspective 

and are driven by information contained in use cases. A MobileApp test plan 

is developed and identifi es testing steps, work products (e.g., test cases), and 

mechanisms for the evaluation of test results. The testing process encompasses 

several different types of testing. 

 Content testing (and reviews) focus on various categories of content. The in-

tent is to examine errors that affect the presentation of the content to the end 

user. The content needs to be examined for performance issues imposed by the 

mobile device constraints. Interface testin g  exercises the interaction mecha-

nisms that defi ne the user experience provided by the MobileApp. The intent is 

to uncover errors that result when the MobileApp does not take device, user, or 

location context into account. 

 Navigation testing is based on use cases, derived as part of the modeling 

activity. The test cases are designed to exercise each usage scenario against 

the navigation design within architectural framework used to deploy the Mo-

bileApp. Component testing exercises content and functional units within the 

MobileApp. 

 Confi guration testing attempts to uncover errors and/or compatibility prob-

lems that are specifi c to a particular device or network environment. Tests are 

then conducted to uncover errors associated with each possible confi guration. 

This is complicated by the large number of mobile devices and network service 

providers. Security testing incorporates a series of tests designed to exploit 

vulnerabilities in the MobileApp or its environment. The intent is to fi nd secu-

rity holes in either the device operating environment or the Web services being 

accessed. Performance testing encompasses a series of tests that are designed 

to assess MobileApp response time and reliability as demands on server-side 

resource capacity increase. Finally, MobileApp testing should address perfor-

mance issues such as power usage, processing speed, memory limitations, ability 

to recover from failures, and connectivity issues. 

pre22126_ch26_567-583.indd   581pre22126_ch26_567-583.indd   581 13/12/13   6:15 PM13/12/13   6:15 PM



582 PART THREE  QUALITY MANAGEMENT

     PROBLEMS AND POINTS TO PONDER 
    26.1.  Are there any situations in which MobileApp testing on actual devices can be 
disregarded?  

   26.2.  In your own words, discuss the objectives for testing a MobileApp.  

   26.3.  Compatibility is an important quality dimension. What must be tested to ensure that 
compatibility exists for a MobileApp?  

   26.4.  Locate a free MobileApp testing tool. Critique the performance of the tool relative to 
the MobileApp with which you are familiar.  

   26.5.  What elements of the MobileApp can be “unit tested”? What types of tests must be 
conducted only after the MobileApp elements are integrated?  

   26.6.  Is it always necessary to develop a formal written-test plan? Explain.  

   26.7.  Is it fair to say that the overall MobileApp-testing strategy begins with user-visible 
elements and moves toward technology elements? Are there exceptions to this strategy?  

   26.8.  Is certifi cation testing  really  testing in a conventional sense? Explain.  

   26.9.  Describe the steps associated with user experience testing for a MobileApp.  

   26.10.  Assume that you are developing a MobileApp to access an online pharmacy that 
 caters to senior citizens. The pharmacy provides typical functions, but also maintains a 
 database for each customer so that it can provide drug information and warn of potential 
drug interactions. Discuss any special usability tests for this MobileApp.  

   26.11.  Assume that you have implemented a Web service that provides a drug interaction–
checking function for  YourCornerPharmacy.com  (see Problem 26.10). Discuss the types of 
component-level tests that would have to be conducted on the mobile device to ensure that 
the MobileApp accesses this function properly.  

   26.12.  How can a MobileApp’s ability to take context into account be tested?  

   26.13.  Is it possible to test every confi guration that a MobileApp is likely to encounter in the 
production environment? If it is not, how do you select a meaningful set of confi guration 
tests?  

   26.14.  Describe a security test that might need to be conducted for the    YourCornerPhar-
macy  (Problem 26.10) MobileApp. Who should perform this test?  

   26.15.  What is the difference between stress-testing a MobileApp and stress-testing a 
WebApp?  

      FUR THER READINGS AND INFORMATION SOURCES 
  There are many books that describe mobile computing and these often contain discus-
sions of MobileApp testing. Kumar and Xie ( Handbook of Mobile Systems Applications 

and Services,  Auerbach Publications, 2012) have edited a book that covers mobile ser-
vices and the role of service-oriented architectures in mobile computing. Books on per-
vasive computing by Chalmers ( Sensing and Systems in Pervasive Computing: Engineering 

Context Aware Systems  Springer, 2011)), Adelstein ( Fundamentals of Mobile and Pervasive 

Computing , McGraw-Hill, 2004  ) and Hansmann ( Pervasive Computing: The Mobile World , 
2nd ed., Springer, 2003) defi ne the principles of context in mobile computing. The book by 
Nguyen, et al. ( Testing Applications on the Web: Test Planning for Mobile and Internet-Based 

Systems,  2nd ed., Wiley, 2003) discusses testing of MobileApps with an emphasis on testing 
accessibility, reliability, and security. 

pre22126_ch26_567-583.indd   582pre22126_ch26_567-583.indd   582 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 26  TESTING MOBILEAPPS  583

   Interface design books are plentiful. Many of them contain information on testing 
MobileApp usability. The book by Ben Shneiderman and colleagues ( Designing the User 

Experience , 5th ed., Addison-Wesley, 2009) is a classic work on usability. Other good gen-
eral references are books by Quesenberry and Szuc ( Global UX: Design and Research 

in a Connected World,  Morgan Kaufmann, 2011) and Schumacher ( Handbook of Global 

User Research , Morgan Kaufmann, 2009). Nielsen ( Mobile Usability , New Riders, 2012) 
 offers advice on how to design usable interfaces that take mobile-device screen size into 
 account. Colborne ( Simple and Usable Web, Mobile, and Interaction Design , New Riders, 
2010) describes the process of simplifying user interaction. Ginsburg ( Designing the iPhone 

User Experience: A User-Centered Approach to Sketching and Prototyping iPhone Apps , 
Addison-Wesley, 2010) discusses the importance of taking a user-centric approach to as-
sessing the user experience. 

   Meier (The  Microsoft Application Architecture Guide , 2nd ed. Microsoft Press, 2009) 
has edited a book that contains useful information on mobile application testing. A book 
by Graham ( Experiences of Test Automation: Case Studies of Software Test Automation,  
Addison-Wesley, 2012) provides good background on testing automation. Lee ( Test-Driven 

iOS Development , Addison-Wesley, 2012) discusses the MobileApp testing process in the 
context of test-driven design. 

   A wide variety of information sources on WebApp testing is available on the Internet. 
An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch26_567-583.indd   583pre22126_ch26_567-583.indd   583 13/12/13   6:15 PM13/12/13   6:15 PM



584

    C H A P T E R

       Devanbu and Stubblebine [Dev00] make the following comment as an 

introduction to their roadmap for security engineering:

  Is there such a thing anymore as a software system that doesn’t need to be 

secure? Almost every software controlled system faces threats from potential ad-

versaries, from Internet-aware client applications running on PCs, to complex 

telecommunications and power systems accessible over the Internet, to commod-

ity software with copy protection mechanisms. Software engineers must be cog-

nizant of these threats and engineer systems with credible defenses, while still 

delivering value to customers. 

   The threats that the authors discussed more than a decade ago have 

multiplied with the explosive growth of the Web, the ubiquitous presence of 

mobile applications, and the widespread use of the cloud. Each of these tech-

nologies has raised new concerns about user privacy and the potential loss 

or theft of personal information. Security is not just a concern to the people

 SECURITY
ENGINEERING 27 

 K E Y 
C O N C E P T S 
    asset  . . . . . . . . . . 585  
    assurance case  . . . 592  
    attack  . . . . . . . . . 585  

    pattern . . . . . . 589  
    surface  . . . . . . 596  

    exposure  . . . . . . . 585  
    security  

    assurance  . . . . 592   
   case  . . . . . . . . 592   
   engineering . . . 588  
    model  . . . . . . . 590  
    requirements . . 585  

    threat  
    analysis  . . . . . 585  
    modeling . . . . . 594  

    trust verifi cation . . 591    

  What is it?   Security engineers 
build systems that have the ability 
to protect their assets from attack. 
Using threat analysis, you can de-

termine the controls required to reduce the ex-
posure that results when attacks exploit system 
vulnerabilities. Security is an essential prereq-
uisite for software quality factors such as integ-
rity, availability, reliability, and safety. 

   Who does it?   Software engineers working with 
customers and any other stakeholders who rely 
on the system results or services. 

   Why is it important?   Each emerging technol-
ogy brings new concerns about user privacy 
and the potential loss or theft of valuable in-
formation. Security is not just a concern to the 
people developing software for the military, 
government, or health agencies. Today, se-
curity must be the concern of every software 
engineer who has client resources to protect. 

   What are the steps?   First, system assets are 
identifi ed and the exposure to loss due to 

security breach is determined. The system ar-
chitecture is then modeled at the component 
level. Next, a security requirements specifi ca-
tion and a risk mitigation plan are created. As 
the system is constructed, security assurance is 
preformed and continues throughout the soft-
ware process. 

   What is the work product?   The primary 
work products are a security specifi cation 
(which may be part of a requirements model) 
and a documented security case that is part 
of the system quality assurance documents. To 
develop these work products, a threat model 
and security risk assessment and risk mitiga-
tion plan are also created. 

   How do I ensure I have done it right?   Use 
the evidence resulting from security reviews, 
inspections, and test results and present it as 
a security case that allows system stakeholders 
to assess their degree of trust that the system 
protects its assets and preserves stakeholder 
privacy.  

 Q U I C K 
L O O K 

pre22126_ch27_584-600.indd   584pre22126_ch27_584-600.indd   584 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  585

developing software for the military, government, or health agencies. Today, se-

curity must be the concern of every software engineer who has client resources 

to protect. 

  In the simplest sense, software security provides the mechanisms that en-

able a software system to protect its assets from attack.  Assets  are system re-

sources that have value to one or more stakeholders. Assets include database 

information, fi les, programs, hard-drive storage space, system memory, or even 

processor capacity. Attacks often take advantage of software weaknesses or vul-

nerabilities that allow unauthorized access to a system. For example, a common 

vulnerability might come from failing to authenticate users before allowing them 

to access valuable system resources. 

 Software security is an aspect of software quality assurance (Chapter 21). Ear-

lier in this book, you learned that quality cannot be added to a system by re-

sponding to bug reports. In a similar manner, it is very diffi cult to add security to 

an existing system by responding to reports of system vulnerabilities that have 

been exploited [Gho01]. Security concerns must be considered at the beginning 

of the software process, built into the software design, implemented as part of 

coding, and verifi ed during testing and deployment. 

 In this chapter we present a survey of important issues in software security 

engineering. A complete discussion of this topic is beyond the scope of this book. 

Additional information may be found in [All08], [Lip10], and [Sin08]. 

      27.1  ANALYZING SECURITY REQUIREMENTS 

  Requirements for software security are determined by working with the cus-

tomer to identify the assets that must be protected and the cost associated with 

the loss of those assets should a security breach occur. The value of the loss of 

an asset is known as its  exposure . Losses might be measured in time or cost to 

recover or recreate an asset. Assets with insignifi cant value do not need to be 

secured. 

 An important part of building secure systems is anticipating conditions or 

threats that may be used to damage system resources or render them inacces-

sible to authorized users. This process is called  threat analysis . Once the system 

assets, vulnerabilities, and threats have been identifi ed, controls can be created 

to either avoid attacks or mitigate their damage. 

 Software security is an essential prerequisite for software integrity, avail-

ability, reliability, and safety (Chapter 19). It may not be possible to create 

a system that can defend its assets against all possible threats, and for that 

reason, it may be necessary to encourage users to maintain backup copies of 

critical data, redundant system components, and ensure privacy controls are 

in place. 

  uote: 

 Security is always 
excessive until it’s 
not enough. 

   Robbie Sinclair 

   Focus on assets that 
have the highest 
value and the greatest 
exposure. 

pre22126_ch27_584-600.indd   585pre22126_ch27_584-600.indd   585 16/12/13   6:23 PM16/12/13   6:23 PM



586 PART THREE  QUALITY MANAGEMENT

        27.2  SECURITY AND PRIVACY IN AN ONLINE WORLD 

  Internet activity is moving away from traditional desktop browsing and toward 

scenarios in which browsers provide dynamic, customized content. Users can 

enter their own content on community forums that incorporate data mash-ups 

from third-party sites. Many desktop applications make use of web browser in-

terfaces to access local data and provide a uniform user experience on multiple 

computing platforms. As a consequence, web developers need better control and 

security mechanisms. Data and code from untrusted sources should not be given 

the same privileges as a trusted programmer’s code. For the web browser to be 

an effective user interface, privacy, trust, and security need to be among its most 

important quality attributes [Sei11].  

 In many instances a user’s confi dential information fl ows across organiza-

tional boundaries on the Internet. For example, electronic patient information 

may need to be shared among hospitals, insurance companies, and physicians. 

Similarly, travel information may need to be shared among travel agencies, ho-

tels, and airlines. In these situations, users must reveal personal information to 

receive a service. Often the user is not able to control what an organization does 

  uote 

 ”Relying on the 
government to 
protect your 
privacy is like 
asking a peeping 
tom to install your 
window blinds.“ 

 John Perry 
Barlow 

   Stakeholder Security Concerns     Stakeholder Security Concerns  

  The scene:  Software engineering 
team workspace. 

  The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, soft-
ware team member, Doug Miller, software engineering 
manager; and Lisa Perez, marketing team members, 
and a product engineering representative. 

  The conversation:  

  Vinod:  If it’s okay, I’ll act as facilitator for this meeting. 
 (Everyone nods in agreement) 

  We need to begin determining the security concerns for 
the  SafeHome  Project. 

  Doug:  Can we begin by listing the things we’re worried 
about protecting? 

  Jamie:  Well, what if an outsider hacks into  SafeHome  
and manages to rob or damage a homeowner’s house? 

  Lisa:  The company’s reputation would suffer if it was 
known some hacker disabled our systems. 

  Jamie:  Not to mention the liability if the system was 
determined to be poorly designed. 

  Doug:  The web interface to the product makes it possible 
for someone to intercept passwords as they’re transmitted. 

  Ed:  More importantly, the web interface will require a 
database containing customer information, so we have 
privacy concerns. 

  Vinod:  Perhaps this would be a good time to have 
everyone spend 10 minutes listing each asset they think 
might be lost or compromised by an attack. 

  [10 minutes pass] 

  Vinod:  OK, let’s post them on the whiteboard and see 
if there are similar concerns. 

 [15 minutes and the list is created] 

  Lisa:  That looks like a lot of concerns. How can we 
handle them all? 

  Doug:  We need to prioritize our list based on the cost 
to repair the damage caused by losing the asset. 

  Lisa:  How can we do that? 

  Vinod:  We need to get real costs for replacing the lost 
assets using historic project data. And Lisa, you need 
to talk to legal and get their take on what our liability 
might be.    

 SAFEHOME 

pre22126_ch27_584-600.indd   586pre22126_ch27_584-600.indd   586 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  587

with this information once it is received in digital form. In ideal circumstances, 

users can directly control how their data should be handled and shared, but this 

requires the creation of user-prescribed data-sharing preferences to the data 

itself as it is captured electronically [Pea11]. 

   27.2.1   Social Media 

 The explosive growth and popularity of online social media networks have made 

them attractive targets for malicious programmers. Because of the implicit trust 

most users have in a social network environment, it is easy for a hacker to use a 

compromised account to send malware-infected messages to the account hold-

er’s friends. Social networks can be used to lure users to phishing sites  1   with the 

intention of tricking them into submitting personal data or forwarding cash to a 

friend in need. Another ruse is the use of e-mails that include details stolen from 

a user’s personal data [Sae11].   

 Some social media networks allow users to develop their own applications. 

These applications innocently ask the user to grant access to personal data and 

then use that data in ways that the user never intended. Sometimes an applica-

tion or game is so attractive that even a knowledgeable user will allow this type 

of access so that she can use the application. Social networks often have check-in 

features that allow criminals to target individuals through their movements in real 

life. Despite the concerns over identity theft, spam, and spyware, many computer 

users are not motivated to take the steps needed to protect themselves [Sta10]. 

    27.2.2   Mobile Applications 

   Users of mobile apps have access to almost the same web services that fi xed-location 

wired Internet users have. Wireless Internet users have inherited all the security 

risks associated with desktop commerce, plus many new risks unique to mobile net-

works. The nature of wireless networks requires trust and cooperation between 

nodes that can be exploited by malicious programs to deny services or collect confi -

dential information. The platforms and languages developed for mobile devices can 

be hacked, and malicious code can be inserted into the device system software with 

all the privileges of the device owner. This means that security technologies such as 

sign-in, authentication, and encryption can be undermined with relative ease. 

    27.2.3   Cloud Computing 

 Cloud computing brings additional confi dentiality and privacy concerns because 

data is entrusted to remote servers that are managed by service providers. 

These cloud service providers have complete access and control over our data. 

They are trusted not to share it with others (either accidentally or deliberately) 

    uote: 

 ”If you reveal your 
secrets to the wind, 
you should not 
blame the wind for 
revealing them to 
the trees.” 

 Kahlil Gibran 

 What 
threats are 

encountered 
in mobile 
applications? 

?

  1  A  phishing site  disguises itself as a known and trusted website, luring the user to provide per-

sonal information that can lead to the loss of security assets. 

pre22126_ch27_584-600.indd   587pre22126_ch27_584-600.indd   587 16/12/13   6:23 PM16/12/13   6:23 PM



588 PART THREE  QUALITY MANAGEMENT

and to take responsible steps to prevent its loss. Online data repositories are 

very attractive sources for data mining (e.g., to collect demographic or market-

ing information). The problem is that the originator of the data has not given his 

explicit consent [Rya11a]. Policy makers should create policies and regulations 

to ensure that service providers do not abuse the trust of their users. 

 The boundary between the “trusted inside” and “untrusted outside” blurs when 

a company adopts cloud computing. With the organization’s applications and data 

no longer on site, a new type of malicious insider is possible. Confi dential data are 

only a few commands away from access by a malicious or incompetent system ad-

ministrator. Most cloud service providers have strict procedures in place for mon-

itoring employee access to customer data. Policies preventing physical access to 

data are not effective against remote attacks, and monitoring often only detects an 

attack after it happens. To foster user trust in a cloud system, it may be important 

to provide users with the ability to assess whether the necessary mechanisms for 

protecting confi dentiality and privacy are in place [Roc11]. 

 The ubiquity of Web access and the advent of cloud computing has enabled 

new forms of business collaborations. Sharing information and protecting con-

fi dentiality is a diffi cult task. Secure multiparty computing raises the risks of 

selfi sh behavior unless all parties are confi dent no one can take advantage of the 

systems. This situation highlights a psychological dimension of system trust and 

security that cannot be solved by software engineering alone [Ker11]. 

    27.2.4   The Internet of Things 

 Some visionaries describe an “Internet of Things” [Rom11] in which everything 

real has a virtual counterpart on the Internet. These virtual entities can produce 

and consume services and collaborate toward a common goal. For example, a us-

er’s phone knows about the user’s physical and mental state through a network 

of surrounding devices that can act on the user’s behalf. Automotive engineers 

envision cars that communicate autonomously with other vehicles, data sources, 

and devices and do not require direct driver control. 

 However, security is one of the major obstacles that stand in the way of this vision. 

Without strong security foundations, attacks and malfunctions will outweigh any of 

the benefi ts realized by an Internet of things. Policy makers must consider the bal-

ance between governance and innovation. Excessive governance can easily hinder 

innovation, and in turn, innovation can inadvertently ignore human rights [Rom11]. 

       27.3  SECURITY ENGINEERING ANALYS IS 

  Security analysis tasks include requirements elicitation, threats modeling, risk 

analysis, measures design, and correctness checks. These tasks include consid-

eration of both the functional and nonfunctional details of the system along with 

its business case [Bre03]. 

pre22126_ch27_584-600.indd   588pre22126_ch27_584-600.indd   588 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  589

   27.3.1   Security Requirement Elicitation 

  The general techniques for requirement elicitation discussed in Chapter 8 are 

equally applicable to the elicitation of security requirements. Security require-

ments are nonfunctional requirements  2   that strongly infl uence the  architectural 

design  of software systems. Once the system requirements have been refi ned 

and prioritized using threat modeling and risk analysis, security policies can be 

set for the system. These policies will be refi ned using security modeling and 

decomposition along with usage considerations to derive the required security 

architecture. The security aspects of the architecture are validated before they 

are implemented [Bod09].  

   In some cases, security requirements and other software requirements can 

come into confl ict with one another. For example, security and usability can be at 

odds with one another, and a balance between the two must be found. Highly se-

cure systems are often harder to use by inexperienced users. In  user-centered se-

curity engineering , security requirements elicitation fi nds answers to three 

important questions [Mar02]: (1) What are the users’ needs with respect to security 

software? (2) How can a secure architecture be designed so that it accommodates 

a good user interface design? (3) How can a good user interface be designed so that 

it is secure but at the same time enables effective, effi cient, and satisfying usage? 

The answers to these questions should be incorporated into the use case scenarios 

(Chapter 8) describing how stakeholders interact with the system resources.  
 As requirement elicitation proceeds, the analyst should identify attack pat-

terns. An  attack pattern  is a type of design pattern (Chapter 16) that identifi es 

the security shortcoming of a system. Attack patterns can speed up security 

analysis by providing problem/solution pairs to common security vulnerability. 

Reusing attack patterns can help engineers to identify system vulnerabilities. 

There is no need to recreate different ways to attack a system. Attack patterns 

allow developers to use well-understood names (e.g., phishing, SQL injection, 

and cross-site scripting) for software security issues. Common attack patterns 

can be improved over time [Sin08]. The diffi culty with using attack patterns is 

knowing when a specifi c pattern will apply. 

 Some software engineers believe that the rigors of security engineering are 

incompatible with the informal nature of requirements elicitation in agile pro-

cesses (Chapter 5). However, one technique that might be used to reconcile the 

“formality gap” is the creation of abuser stories in the requirements domain. 

 Abuser stories  are based on customer input that describes threats to the system 

assets. Abuser stories extend the well-established agile concept of user stories 

and can help achieve the security requirements traceability needed to allow 

security assurance to proceed [Pee11]. 

    uote: 

 ”The user’s going 
to pick dancing 
pigs over security 
every time. ”  

 Bruce Schneier 

 What 
security 

requirement 
elicitation 
questions should 
I ask? 

?

    uote: 

  “Securing a 
computer system 
has traditionally 
been a battle of 
wits: the penetrator 
tries to fi nd the 
holes, and the 
designer tries to 
close them.” 

 Gosser 

  2  These are sometimes called  crosscutting concerns  and were discussed in Chapter 4. 

pre22126_ch27_584-600.indd   589pre22126_ch27_584-600.indd   589 16/12/13   6:23 PM16/12/13   6:23 PM



590 PART THREE  QUALITY MANAGEMENT

    27.3.2   Security Modeling 

  Modeling  is an important process for specifying and analyzing requirements. A 

 security model  is a formal description of software system  security policy. A secu-

rity policy provides a defi nition of system security that captures its key security 

requirements and also contains rules describing how security is to be enforced 

during system operation. 

 The security model can provide precise guidance during the design, coding, 

and review processes. Once the system is built, the security model provides a 

basis to aid in verifying the correctness of the security implementation [Dan09]. 

The security model is also a valuable security reference as the system evolves or 

requires repair during maintenance activities. 

   A security model may be represented using text or graphical formalisms. 

Regardless of their representation a security model needs to capture the follow-

ing items: (1) security policy objectives, (2) external interface requirements, 

(3) software security requirements, (4) rules of operation, and (5) specifi cations 

describing model-system correspondence. 

 Some security models are represented on state machines.  3   Each state must 

include information on the relevant security aspects of the system. As a software 

engineer who is concerned with security, you must be certain that any state tran-

sitions allowed in the system start in a secure state and end in a secure state. 

You must also verify that the initial system state is a secure state. To be complete, 

the model needs to have an interpretation that shows how it relates to the actual 

system.  

 Executable modeling formalisms allow developers to verify a security model 

and its behavior before accepting it. Once accepted, the model forms a good basis 

for design. Two languages used for modeling security requirements are  UML.sec  

(an extension to UML using stereotypes and constraints) and  GRL  (goal-oriented 

requirements language for capturing nonfunctional requirements). The use of 

formal modeling languages may help increase the trustworthiness of the system 

as it is developed [Sal11]. 

 Formal methods (Chapter 28) have been proposed as a means of augmenting 

the security analysis and verifi cation of systems. Use of formal specifi cations for 

the security requirements has the potential to assist in the creation of test cases 

for model-based security testing. The use of formal correctness proofs for criti-

cal system components can add to the developers’ confi dence that the system 

does indeed conform to its specifi cation. Of course care must be taken that the 

assumptions underlying the proofs are satisfi ed. 

 What 
information 

is contained in a 
security model? 

?

  3  A  fi nite state machine  is defi ned by a list of the possible transition states from each current 

state, and the triggering condition for each transition. 

pre22126_ch27_584-600.indd   590pre22126_ch27_584-600.indd   590 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  591

    27.3.3   Measures Design 

   To be secure, software must exhibit three properties:  dependability  (operates 

under hostile conditions),  trustworthiness  (system will not behave in a malicious 

manner), and  survivability  (continues to operate when compromised).  4   Security 

metrics  5   and measures need to focus on assessing these properties.  

 Useful security metrics must be based on measures that allow developers to 

assess the degrees to which data confi dentiality or system integrity may be at 

risk. Three measurements that are needed to create such metrics are measures 

of  asset value, threat likelihood,  and  system vulnerability . These properties are 

not easy to measure directly. The cost of losing an asset may be more than the 

cost of recreating it. 

 The best measures are those that are readily available during the devel-

opment or operation of the software. The number of desk security complaints 

or number of security test cases failed can provide some measures (e.g., the 

number of identity theft incidents reported each month). Vulnerabilities may 

not be known until attacks occur, but the number of successful attacks can be 

counted. 

    27.3.4   Correctness Checks 

 Security correctness checks need to take place throughout the software devel-

opment cycle. The exposure to stakeholder assets from attacks on system vul-

nerabilities should be determined early in the development process.  

 The software team then ensures that the threat model derived from the sys-

tem use cases has been accounted for in the security portions of the risk mitiga-

tion, monitoring, and management plan. Quality assurance activities include the 

identifi cation of security standards and the development of security guidelines 

for use during modeling and construction activities. Software verifi cation activi-

ties ensure that the security test cases are complete and traceable to the system 

security requirements. 

 Many of these security checks should be included in the audits, inspections, 

and testing activities built into the conventional software engineering tasks (Sec-

tion 27.6). Data collected during these checks is analyzed and summarized as 

part of the system  security case  as described in Section 27.4. The  trust verifi cation  

process is discussed in Section 27.7. 

   Secure software must 
exhibit three proper-
ties: dependability, 
trustworthiness, and 
survivability. 

    uote: 

 “In theory, one 
can build provably 
secure systems. 
In theory, theory 
can be applied 
to practice but in 
practice, it can’t.” 

 M. Dacie 

  4   https://buildsecurityin.us-cert.gov  

  5   Metrics  are a quantitative indicator of the degree to which a system component or processes 

possess a given attribute. Good metrics meet the SMART (i.e., specifi c, measurable, attainable, 

repeatable, and time-dependent) criteria. Metrics are typically derived from measurements 

using statistical techniques to uncover the relationships. Additional discussion on metrics and 

measurements appears in Chapter 30.  

pre22126_ch27_584-600.indd   591pre22126_ch27_584-600.indd   591 16/12/13   6:23 PM16/12/13   6:23 PM



592 PART THREE  QUALITY MANAGEMENT

       27.4  SECURITY ASSURANCE 

  Because software has become integrated into our everyday lives, security fl aws 

and the losses associated with them become more costly and more ominous. 

Sound software engineering practice involves ascertaining requirements, devel-

oping an appropriate design, and demonstrating that you have created the right 

product. Security assurance is intended to demonstrate that you have built a 

secure product, and as a consequence, it inspires confi dence among end users 

and other stakeholders. 

   27.4.1   The Security Assurance Process 

 Verifi cation is the part of the assurance task that provides evidence that stake-

holders can be confi dent that the software conforms to requirements. When con-

sidered in the context of security engineering, you choose a critical subset of the 

security requirements or claims for the software and create an assurance case 

that demonstrates that the software conforms to those requirements or claims. 

   An  assurance case  is a reasoned and auditable artifact that supports the con-

tention that the software satisfi es the claim being asserted. Assurance cases have 

long been used for software safety and are now being used for software security; 

they are often called  security cases . 

 Each security case consists of three elements: (1) the claims themselves, (2) the 

arguments that link the claims to each other through evidence and assumptions, 

and (3) the body of evidence and explicit assumptions that support the arguments. 

 To be valid a security case must satisfy three objectives. It must specify claims 

that are suitable and adequate for the system in question, document that suitable 

engineering practices have been applied so that the claims can be achieved, and 

show the achievement of these claims are within the required level of risk [Red10]. 

 Several types of evidence may be used to prove the security case. Formal 

proofs of software correctness (Chapter 28) may be helpful, if the code was de-

signed with the intension of proving its correctness. There are tools that support 

automatic software verifi cation [DSi08] and other tools that perform static scans 

for software security weaknesses (e.g., RATS, ITS4, SLAM).  6   But tools by them-

selves cannot build a security case.  

 Some of the evidence will come from the review of system artifacts using varia-

tions of formal technical reviews and inspections of the artifacts (Chapter 20). How-

ever, these reviews focus solely on the security claims. Reviewers with security 

expertise might review the system or its security case. Checklist evaluations might 

also be used to verify that security guidelines and process steps were followed. 

   A security case 
supports the claim that 
the software is secure. 

  6  For a list of security tools, see:  http://www.tech-faq.com/how-to-fi nd-security-vulnerabilities-

in-source-code.html  

pre22126_ch27_584-600.indd   592pre22126_ch27_584-600.indd   592 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  593

      27.4.2   Organization and Management 

 The rush to get software out the door quickly often forces project managers to 

be more concerned with features and functions than security. Software engi-

neers should focus on robustness in software design and architecture, but, in 

addition, secure practices should be adopted as software-based systems are 

built [Sob10]. 

 Security assurance and risk identifi cation activities are planned, managed, 

and tracked in the same way as other software engineering activities. The soft-

ware team collects data (e.g., number of access violations, number of system fail-

ures, number of data records lost) to determine what works and what does not. 

This requires developers to analyze each reported failure (to determine whether 

its cause is related to a system vulnerability) and then assess the asset exposure 

that resulted. 

   Building the Security Case     Building the Security Case  

  The scene:  Software engineering 
team workspace. 

  The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Ed Robbins, 
software team member, Bridget Thornton, software 
quality group leader. 

  The conversation:  

  Ed:  Thanks for joining us Bridget, we need to build the 
security case for  SafeHome  project. 

  Vinod:  How should we get started? 

  Bridget:  We might start by picking one security 
concern and see what evidence we can fi nd to support 
the case for it. 

  Ed:  What kind of evidence? 

  Bridget:  Let’s pick one of the security concerns fi rst. 

  Vinod:  Let’s focus on security concerns related to the 
customer database. 

  Bridget:  OK, let’s start by listing the security claims 
made for accessing the database. 

  Jamie:  Do you mean the security model elements that 
refer to the database? 

  Bridget:  Yes. Next, we take a look at the completed 
inspection checklists and the summaries of the formal 
technical reviews that have been happening as each 
project milestone is completed. 

  Ed:  What about the process audits and change request 
documents produced by your group? 

  Bridget:  Those are important to include as well. 

  Vinod:  We used an ITG to create and run most of the 
system test cases. 

  Bridget:  A summary of the behavior of the security test 
cases comparing expected and actual output is a very 
important part of the security case. 

  Jamie:  That seems like a lot of information to get a 
handle on. 

  Bridget:  It is. That’s why the next step is to take each 
claim made for database security and summarize the 
evidence supporting or refuting the claim of adequate 
asset protection. 

  Ed:  Can you help us review our security case when it’s 
assembled? 

  Bridget:  Of course. My group needs to have an 
ongoing dialog with your team as this project moves 
forward, both pre- and post-launch.  

 SAFEHOME 

pre22126_ch27_584-600.indd   593pre22126_ch27_584-600.indd   593 16/12/13   6:23 PM16/12/13   6:23 PM



594 PART THREE  QUALITY MANAGEMENT

       27.5  SECURITY RISK ANALYS IS   7   

       Identifying and managing security risks are important project planning tasks 

(Chapter 31). Security engineering is driven by risks that are identifi ed by the 

software team and other stakeholders. Risks impact project management and 

security assurance activities. 

  Threat modeling  is a security analysis method that can be used to identify those 

threats with the highest potential to cause damage to a software-based system. Threat 

modeling is accomplished in the earliest phases of a project using the requirements 

and analysis models. The creation of a threat model involves identifying key com-

ponents of an application, decomposing the application, identifying and categoriz-

ing the component threats, rating and categorizing the threats to each component, 

rating the components based on their risk ranking, and developing risk mitigation 

strategies. Microsoft uses the following steps to create a threat model [Sin08]: 

       1   Identify assets . List all sensitive information and intellectual property, 

where it is stored, how it is stored, and who has access.  

    2   Create an architecture overview.  Write system use cases and build a 

model of the system components.  

    3   Decompose the application.  The goal is to ensure that all data sent among 

application components are validated.  

    4   Identify threats.  Note all threats that might compromise the system assets 

using methods like attack trees or attack patterns, often the process involves 

looking as network, host system confi guration, and application threats.  

    5   Document the threats.  Create a risk information sheet detailing how each 

threat should be monitored and mitigated.  

    6   Rate the threats . Most projects have insuffi cient resources to address all 

conceivable threats, so threats need to be ranked using their impact and 

likelihood.  

  Costly assets should be protected from high probability risks. A quantitative 

risk-assessment process (Chapter 35) can be used to rank the threats. First, all 

assets to be assessed are identifi ed and the dollar value of losing or recreating an 

asset is determined. For each asset, a list of major threats is created and histor-

ical data are used to determine the likely occurrence of each threat in a typical 

year. The potential loss in dollars per major threat for each asset per year is com-

puted along with the  annual loss expectancy  (ALE) (determined by multiplying 

the occurrence and potential loss). Finally, the combined threat of losing an asset 

is computed by adding the ALE values associated with each individual threat. 

    Threat modeling  is 
a security analysis 
method that can be 
used to identify those 
threats with the high-
est potential to cause 
damage. 

 What are 
the steps 

required to build a 
threat model? 

?

  7  A generic discussion of risk analysis for software projects encompassing all types of risks that 

threaten the project and its success is presented in Chapter 35. 

pre22126_ch27_584-600.indd   594pre22126_ch27_584-600.indd   594 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  595

        27.6  THE ROLE OF CONVENTIONAL SOFTWARE ENGINEERING ACTIVITIES 

   Building a system and making it secure  after the fact  is highly ineffi cient and prone 

to failure. Yet, some software developers argue that threats to a system cannot be 

predicted until it is built. As a consequence, they ignore security issues until the 

testing phase and then ”back-fi ll” to eliminate security mistakes that were made 

earlier in the software process. Adding security patches to an existing system in 

an ad hoc manner may not be possible without major changes to the design or 

architecture of the system. Hence, the back-fi ll approach is both ineffi cient and 

costly. 

 The nature of an iterative and incremental process (Chapter 4) makes it dif-

fi cult to address all security concerns before doing any development work. Soft-

ware requirements often change during the development process. In addition, 

architectural design decisions can have a direct impact on security concerns. 

For these reasons, it is diffi cult to address all security issues at the beginning of 

a project. Even when the majority of security concerns are addressed up front, 

  uote: 

 In a world in 
which the total of 
human knowledge 
is doubling about 
every 10 years, 
our security can 
rest only on our 
ability to learn. 

 Nathaniel 
Branden 

   Security Steps     Security Steps  

  The scene:  Software quality assur-
ance group workspace. 

  The players:  Jamie Lazar, software team member; 
Vinod Raman, software team member; Bridget Thornton, 
software quality group leader. 

  The conversation:  

  Vinod:  Hi Bridget. Doug wants us to work on security 
risk analysis. 

  Bridget:  Is this to help set the security priorities for 
development? 

  Jamie:  I think so. 

  Vinod:  Can we look at database security concerns? 

  Bridget:  Sure. We know what the costs are to back 
up and repair the data records using historical data. 
We may not know the liability damages that might be 
awarded if customer data is stolen, but we have indus-
try data on those costs. 

  Jamie:  Is that all we need? 

  Bridget:  Well, you already have the system archi-
tectural diagrams. It’s easier to verify that all data ex-
changed among the components have been validated. 
We’ll also need to determine the threats to each asset. 

  Vinod:  How do we do that? 

  Bridget:  We might create an attack tree. We would 
start by setting an attack goal at the root. For exam-
ple, an attacker’s goal might be to steal customer 
information. 

  Vinod:  And . . . 

  Bridget:  You then look at your database attack pattern 
catalog to see which apply and list each as subgoals in 
the tree. 

  Jamie:  Then what? 

  Bridget:  You need to refi ne the threats and create 
risk information sheets for each, describing impact of 
the threat and any monitoring or mitigation steps that 
should be in place to address it. 

  Vinod:  How does this help set development priorities? 

  Bridget:  You determine the cost of each threat by com-
puting the annual loss expectancy (ALE) for each threat 
using historical data. We can help you with that part of 
the process. 

  Jamie:  Thanks, Bridget. We’ll be back to get your 
input on that ALE computation once we have the threats 
identifi ed and refi ned.  

 SAFEHOME 

pre22126_ch27_584-600.indd   595pre22126_ch27_584-600.indd   595 16/12/13   6:23 PM16/12/13   6:23 PM



596 PART THREE  QUALITY MANAGEMENT

design decisions later in the software process can affect security vulnerabilities 

in the fi nal system [Mei06]. 

 An effective software process includes a reasonable set of review and adjust-

ment opportunities. Many security activities complement one another and have 

a synergistic effect on software quality. For example, code reviews are known to 

reduce the number of product defects prior to testing, which in turn eliminates 

potential security holes and improves software quality. 

 During  planning  the project budget and timeline must take security into ac-

count so that the resources needed to satisfy the security objectives  8   of the system 

are appropriately allocated. As part of the security and privacy risk assessment, 

each functional requirement needs to be examined to see if it can affect an asset 

that is associated with a system security objective. During risk analysis, the cost 

associated with each loss should be determined or estimated.

     The identifi cation of mechanisms for dealing with specifi c threats to the system 

is often delayed until the requirements for a software increment are translated 

to its  design  requirements. This is where the attack surface should be identifi ed. 

The  attack surface  is defi ned as the set of reachable and exploitable vulnerabil-

ities present in a software product. Many security vulnerabilities will be found 

at the intersections of the system layers. For example, information entered via a 

form in the user interface may be intercepted as it travels across a network to a 

database server. Design guidelines that include security provisions that directly 

address the attack surface can be developed. 

   It may be helpful to separate the security reviews from the general design 

reviews. Code reviews that focus on security issues should be included as part of 

the  implementation  activities. These code reviews should be based on the appro-

priate security objectives and threats identifi ed in the system design activities. 

 Security testing is a routine part of system testing (Chapter 22). Security risk 

assessment can be a source of test cases that enable security testing to become 

more focused. An incident response plan (IRP) spells out the actions to be carried 

out by each system stakeholder in response to specifi c attacks [Pra07]. A thor-

ough review of the IRP should also be part of the security verifi cation process.  

 In addition, verifi cation should include separate reviews of security opera-

tions and asset archiving procedures. The security risk management plan should 

be reviewed periodically as part of the maintenance process. 

 When security incidents are reported after an application has been deployed, 

developers should evaluate the effectiveness of the security risk management 

procedures as part of the system maintenance (Chapter 36). If the system change 

procedures (Chapter 29) include root cause analysis, this may help uncover 

 vulnerabilities in the overall system design. 

   An  attack surface  is 
defi ned as the set of 
reachable and exploit-
able vulnerabilities 
present in a software 
product. 

 What is 
an incident 

response plan? 
?

  uote: 

 “When you know 
that you’re capable 
of dealing with 
whatever comes, 
you have the only 
security the world 
has to offer.” 

 Harry Browne 

  8  For example, protection of customer data or recognition of legal or regulatory compliance 

requirements associated with the confi dentiality, integrity, or availability of the system infor-

mation or other intellectual property.  

pre22126_ch27_584-600.indd   596pre22126_ch27_584-600.indd   596 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  597

      27.7  VERIF ICATION OF TRUSTWOR THY SYSTEMS 

    When considered in the context of software security,  trust  indicates the level of con-

fi dence that one system entity (or organization) can rely on another.  System entities  

encompass entire systems, subsystems, and software components. Trust has a psy-

chological dimension as well as a technical dimension. In general, one entity can 

be said to trust another when it makes the assumption that the second entity will 

behave exactly as the fi rst entity expects. Demonstrating that this assumption is 

correct is the task of verifying the trustworthiness of a system. Although a variety of 

trust models have been proposed [Sin08], our focus will be on ensuring that the sys-

tem conforms to the mitigation practices created within the system threat model. 

 The verifi cation task ensures that the requirements for trustworthy systems are 

assessed using specifi c, quantifi able metrics based on testing, inspection, and analysis 

techniques [She10]. Testing metrics might include the ratio of the number of detected 

faults to the number of predicted faults or the ratio of security test cases passed to the 

total number run. Other metrics might include defect removal effi ciency (Chapter 32) 

of the formal inspection activities. Ensuring the traceability of security test cases back 

to security use cases developed during analysis activities is also useful. 

 The evidence used to prove the security case must be acceptable and convinc-

ing to all collaborators of the trusted entity. Users of trustworthy systems should 

be convinced that the system has no exploitable vulnerabilities or malicious 

logic. As a consequence of the verifi cation task, users should have confi dence 

in the dependability of the system and its survivability when compromised. This 

implies that damage to software will be minimized and that the system can re-

cover quickly to an acceptable operating capacity. Specifi c security test cases 

and procedures are an important part of the verifi cation process as well [Mea10]. 

    Trust  indicates the level 
of confi dence that 
one system entity (or 
organization) can rely 
on another. 

   Security Test Case Creation     Security Test Case Creation  

  The scene:  Vinod’s cubical. 

  The players:  Vinod Raman, software team member, 
and Ed Robbins, software team member. 

  The conversation:  

  Vinod:  We need to create a security test case for 
accessing the  SafeHome  video offsite. 

  Ed:  We should start by reviewing the security use case 
that Doug and Bridget [software quality group leader] 
developed. 

  Vinod:  I suppose we could let the ITG contractors do 
this, but this seems like a pretty straightforward test 
case. It should be added to the set of test cases we use 
for regression testing, too. 

  Ed:  Okay, the password use case calls for the user to 
log on to a website using a secure connection with a 
valid user ID, two levels of passwords, and the user to 
enter a four-digit pin after requesting the video feed 
request. 

  Vinod:  That gives us several logic paths to test. There 
are four pieces of data for the user to enter. Each input 
needs to be tested with a good value, an incorrect value, 
a null value, and an incorrectly formatted data value. 

  Ed:  To cover all logic paths requires 256 distinct test 
cases. 

  Vinod:  Yes, it does. We also need to defi ne the re-
sponse for each. 

 SAFEHOME 

pre22126_ch27_584-600.indd   597pre22126_ch27_584-600.indd   597 16/12/13   6:23 PM16/12/13   6:23 PM



598 PART THREE  QUALITY MANAGEMENT

   Today, software quality measurement does not adequately address trust assur-

ance and security. Existing measures (e.g., reliability measures like mean time 

between failure or dependability measures such as defect density) often overlook 

numerous factors that may compromise software and leave it vulnerable to attack. 

In part, this is because many of these metrics do not take into account the fact that 

there are active agents continually probing the software for vulnerabilities. 

 Effective security metrics maintain historical data based on an entity’s past be-

havior in situations involving trust. As an example, consider the trust established 

when an e-commerce site allows rating of their sellers and buyers. Of course, this 

type of rating system must ensure that entities being rated are correctly identi-

fi ed and do not have inaccurate data recorded about the entity. Problems like 

these sometimes plague credit reporting systems. 

 The U.S. Department of Homeland Security advocates the adoption of secure 

software design practices that employ reliable, standardized measurement tools. 

Ideally these tools (when they exist) can help developers reduce the number of 

vulnerabilities introduced into a system during development [Mea10]. This might 

allow users of trusted systems to make informed decisions about the trustworthi-

ness of a system. But like system reliability, the user may base this judgment on 

the extent of losses experienced using the system. 

  Ed:  Based on the security policy, the user has three 
attempts for each piece of information. 

  Vinod:  Right, and the user is prompted to enter the 
data after each bad attempt. 

  Ed:  And if any one of them fails on the third attempt 
the system is supposed to send an e-mail alert to the 
company and the user. 

  Vinod:  It would probably be good to randomize the 
order the test cases are presented to the password 

checker. We might need to run our test cases more than 
once to be confi dent the password checker is not history 
sensitive. 

  Ed:  We should write a small program to run through 
these test cases and log the results. 

  Vinod:  Yeah, this is a lot of work. Maybe we should 
let the ITG work with Bridget’s SQA team to develop the 
security tests.  

  9  Tools noted here do not represent an endorsement, but rather are a sampling of tools in this 

category. In most cases, tool names are trademarked by their respective developers. 

  Security Engineering 

  Objective:  Security engineering tools assist in 
identifying security vulnerabilities in source code. 

  Mechanics:  In general the software source code is 
processed by allowing the tool to read the source code 
and fl ag programming constructs for developers to 
examine carefully. 

  Representative Tools:   9    
  RATS (Rough Auditing Tool for Security),  developed by 

Secure Software (  http://code.google.com/p/
rough-auditing-tool-for-security/  ), is a 
scanning tool that provides a security analyst with 
a list of potential trouble spots on which to focus, 
along with describing the problem, and potentially 
suggesting remedies. 

 SOFTWARE TOOLS 

pre22126_ch27_584-600.indd   598pre22126_ch27_584-600.indd   598 16/12/13   6:23 PM16/12/13   6:23 PM



CHAPTER 27  SECURITY ENGINEERING  599

         27.8 SUMMARY 

 Software security engineering is concerned with developing software that pro-

tects the assets it manages from threats. Threats may involve attacks that exploit 

system vulnerabilities to compromise the confi dentiality, integrity, or availability 

of system services or data. 

 Security risk management is concerned with assessing the impact of possible 

threats and deriving security requirements to minimize critical losses. Design 

for security involves creating a system architecture that minimizes the introduc-

tion of known vulnerabilities. Software engineers should make use of techniques 

to prevent attacks, to repel attacks, and to recover from attacks as a means to 

mitigating the effects of losses. 

 Inspiring trust among stakeholders requires that developers regard security 

assurance as an umbrella activity that is present at the beginning throughout 

the software process. The development of security metrics is still in its infancy. 

Building a security case for a system involves collecting evidence using security 

testing, conducting security-focused formal technical reviews, and inspecting to 

ensure security guidelines and mitigation practices are being followed. 

     PROBLEMS AND POINTS TO PONDER 
    27.1.  Consider a mobile phone app that you own. First describe the app briefl y and then list 
at least three to fi ve security risks.  

   27.2.  Describe a security migration strategy for one of the risks noted in Problem 27.1.  

   27.3.  Identify fi ve attack patterns that may be commonly used to attack web apps.  

   27.4.  Describe the trust model used on a bidding site such as eBay.  

   27.5.  Describe the security requirements for a cloud-based photo repository.  

   27.6.  What does the same origin policy have to do with trustworthy systems?  

   27.7.  Use the Internet to determine the annual average cost of single incidence of identity 
theft to an individual consumer.  

   27.8.  Explain some of the problems that might be encountered if you try to address security 
risk after a system is completed.  

   27.9.  Use the Internet to fi nd the details needed to create a phishing attack pattern.  

  ITS4,  developed by Cigital ( http://freecode.com/
projects/its4/ ), is a tool for statically scanning 
security critical C and C++ source code for 
vulnerabilities. 

  SLAM,  developed by Microsoft ( http://research.
microsoft.com/en-us/projects/slam/ ), is 
a tool for checking that software satisfi es critical 

behavioral properties of the interfaces it uses and to 
aid software engineers in designing interfaces and 
software that ensure reliable and correct functioning. 

 Many additional security source code–scanning tools 
can be found at   http://www.tech-faq.com/
how-to-fi nd-security-vulnerabilities-in-
source-code.html    

pre22126_ch27_584-600.indd   599pre22126_ch27_584-600.indd   599 16/12/13   6:23 PM16/12/13   6:23 PM



600 PART THREE  QUALITY MANAGEMENT

   27.10.  Compute the annual loss expectancy (ALE) for the loss of a data server whose re-
placement value is $30,000, the occurrence of loss of data due to hacking is 5 percent annu-
ally, and the potential loss is $20,000.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Books by Vacca ( Computer and Information Security Handbook,  2nd ed., Morgan Kaufman, 
2013), Goodrich and Tamassia ( Introduction to Computer Security,  Addison-Wesley, 2010), 
Anderson ( Security Engineering,  2nd ed., 2008), Kern et al. ( Foundations of Security,  Apress, 
2007), McGraw ( Software Security,  Addison-Wesley, 2006), and Dowd and his colleagues 
( The Art of Software Assessment: Identifying and Preventing Software Vulnerabilities,  
Addison-Wesley, 2006) address important security issues. Zalewski ( The Tangled Web: A 

Guide to Securing Modern Web Applications,  No Starch Press, 2011) and Howard and LeBlanc 
( Writing Secure Code,  2nd ed., Microsoft Press, 2003) discuss how to construct secure sys-
tems. A project manager’s view is presented by Allen et al. ( Software Security Engineering,  
Addison-Wesley, 2008). Howard and Lipner ( The Security Development Lifecycle,  Microsoft 
Press, 2006) discuss the security engineering process. Schumacher et al. ( Security Patterns,  
Wiley, 2006) provide insight into the use of patterns as one element of effective security 
engineering. 

   Others focus on the “break-in” side. Books by Barnett and Grossan ( Web Application 

Defender’s Cookbook: Battling Hackers and Protecting Users,  Wiley, 2012), Ottenheimer and 
Wallace ( Securing the Virtual Environment: How to Defend Against Enterprise Attack  , Wiley, 
2012), Studdard and Pinto ( The Web Application Hacker’s Handbook,  Wiley, 2011), Howard 
and his colleagues ( 24 Deadly Sins of Software Security,  McGraw-Hill, 2009), Erickson 
( Hacking: The Art of Exploration,  No Starch Press, 2008), Andrews and Whittaker ( How to 

Break Web Software,  Addison-Wesley, 2006), Whittaker ( How to Break Software Security,  
Addison-Wesley, 2003), provide useful insight for software engineers who need to under-
stand how to attack systems and applications. 

   Sikorski and Honig ( Practical Malware Analysis,  No Starch Press, 2012) and Ligh et al. 
( Malware Analyst’s Cookbook,  Wiley, 2010) provide excellent insight into the inner working 
of malware. Swiderski ( Threat Modeling,  Microsoft Press, 2004) presents a detailed discus-
sion of threat modeling. 

   Guidelines for those who must conduct security testing are provided in books by Allen 
( Advanced Penetration Testing for Highly Secured Environments,  Packt Publishing, 2012), 
O’Gorman ( Metaspoit: The Penetration Tester’s Guide,  No Starch Press, 2011), Faircloth 
( Penetration Tester’s Open Source Tool Kit,  Syngress, 2011), Engebretson ( The Basics of 

Hacking and Penetration Testing,  Syngress, 2011), Faircloth  (Penetration Tester’s Open 

Source Tool Kit,  Syngress, 2011), Hope and Walther ( Web Security Testing Cookbook,  O’Reilly 
Media, 2008), and Wysopal et al. ( The Art of Software Security Testing,  Addison-Wesley, 2006). 

   A wide variety of information sources on security engineering are available on the 
Internet. An up-to-date list of World Wide Web references that are relevant to pattern-based 
design can be found at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch27_584-600.indd   600pre22126_ch27_584-600.indd   600 16/12/13   6:23 PM16/12/13   6:23 PM



601

 FORMAL MODELING
AND VERIFICATION 

       Unlike reviews and testing that begin once software models and code 

have been developed, formal modeling and verifi cation incorporate 

specialized modeling methods that are integrated with prescribed ver-

ifi cation approaches. Without the appropriate modeling approach, verifi ca-

tion cannot be accomplished. 

 In this chapter and in Appendix 3 we discuss two formal modeling and ver-

ifi cation methods— cleanroom software engineering  and  formal methods . Both 

demand a specialized specifi cation approach and each applies a unique veri-

fi cation method. Both are quite rigorous and neither is used widely by the soft-

ware engineering community. But if you intend to build bulletproof software, 

these methods can help you immeasurably. They’re worth learning about. 

  What is it?   How many times have 
you heard someone say, “Do it right 
the fi rst time”? If we achieved that in 
software, there’d be considerably 

less effort expended on unnecessary software 
rework. Two advanced software engineering 
methods—cleanroom software engineering and 
formal methods—help a software team to “do 
it right the fi rst time” by providing a mathemat-
ically based approach to program modeling 
and the ability to verify that the model is correct. 
Cleanroom software engineering emphasizes 
mathematical verifi cation of correctness before 
program construction commences and certifi ca-
tion of software reliability as part of the testing 
activity. Formal methods use set theory and logic 
notation to create a clear statement of facts (re-
quirements) that can be analyzed to improve (or 
even prove) correctness and consistency. The 
bottom line for both methods is the creation of 
software with extremely low failure rates. 

   Who does it?   A specially trained software 
engineer. 

   Why is it important?   Mistakes create re-
work. Rework takes time and increases costs. 
Wouldn’t it be nice if you could dramati-
cally reduce the number of mistakes (bugs) 

introduced as the software is designed and 
built? That’s the premise of formal modeling 
and verifi cation. 

   What are the steps?   Requirements and de-
sign models are created using specialized 
notation that is amenable to mathematical veri-
fi cation. Cleanroom software engineering uses 
box structure representation that encapsulates 
the system (or some aspect of the system) at a 
specifi c level of abstraction. Correctness verifi -
cation is applied once the box structure design 
is complete. Once correctness has been ver-
ifi ed for each box structure, statistical usage 
testing commences. Formal methods translate 
software requirements into a more formal 
representation by applying the notation and 
heuristics of sets to defi ne the data invariant, 
states, and operations for a system function. 

   What is the work product?   A specialized, 
formal model of requirements is developed. 
The results of correctness proofs and statistical 
use tests are recorded. 

   How do I ensure that I’ve done it right?  
 Formal proof of correctness is applied to the 
requirements model. Statistical use testing ex-
ercises usage scenarios to ensure that errors in 
user functionality are uncovered and corrected.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    box structure 
specifi cation  . . . . . 604  
    certifi cation  . . . . . 612  
    cleanroom design  . 607  
    cleanroom process 
model. . . . . . . . . . 603  
    correctness 
verifi cation . . . . . . 608  
    design 
refi nement  . . . . . . 608  

    C H A P T E R

28 

pre22126_ch28_601-622.indd   601pre22126_ch28_601-622.indd   601 13/12/13   6:15 PM13/12/13   6:15 PM



602 PART THREE  QUALITY MANAGEMENT

  Cleanroom software engineering  is an approach that emphasizes the need to 

build correctness into software as it is being developed. Instead of the classic 

analysis, design, code, test, and debug cycle, the cleanroom approach suggests a 

different point of view [Lin94]:

  The philosophy behind cleanroom software engineering is to avoid dependence on 

costly defect removal processes by writing code increments right the fi rst time and 

verifying their correctness before testing. Its process model incorporates the statisti-

cal quality certifi cation of code increments as they accumulate into a system.   

 In many ways, the cleanroom approach elevates software engineering to another 

level by emphasizing the need to  prove  correctness. 

 Models developed using  formal methods  are described using a formal syn-

tax and semantics that specify system function and behavior. The specifi cation 

is mathematical in form (e.g., predicate calculus can be used as the basis for a 

formal specifi cation language). In his introduction to formal methods, Anthony 

Hall [Hal90] makes a comment that applies equally to cleanroom methods:

  Formal methods [and cleanroom software engineering] are controversial. Their ad-

vocates claim that they can revolutionize [software] development. Their detractors 

think they are impossibly diffi cult. Meanwhile, for most people, formal methods [and 

cleanroom software engineering] are so unfamiliar that it is diffi cult to judge the 

competing claims.   

 We present an overview of formal modeling and verifi cation concepts in this 

chapter. In Appendix 3 we explore some of the technical details of formal mod-

eling and verifi cation. 

    28.1  THE CLEANROOM STRATEGY 

  Cleanroom software engineering makes use of a specialized version of the in-

cremental software model introduced in Chapter 4. A “pipeline of software in-

crements” [Lin94] is developed by small independent software teams. As each 

increment is certifi ed, it is integrated into the whole. Hence, functionality of the 

system grows with time. 

 The sequence of cleanroom tasks for each increment is illustrated in  Fig-

ure 28.1 . Within the pipeline for cleanroom increments, the following tasks occur: 

         Increment planning.  A project plan that adopts the incremental strategy 

is developed. The functionality of each increment, its projected size, and a 

cleanroom development schedule are created. Special care must be taken 

to ensure that certifi ed increments will be integrated in a timely manner. 

  Requirements gathering.  Using techniques similar to those introduced in 

Chapter 8, a more-detailed description of customer-level requirements 

(for each increment) is developed. 

  What is 
the process 

model that is used 
for cleanroom 
projects?  

?

    design 
verifi cation . . . . . . 608  
    formal methods. . . 615  
    functional 
specifi cation  . . . . . 604  
    statistical use 
testing . . . . . . . . . 610    

pre22126_ch28_601-622.indd   602pre22126_ch28_601-622.indd   602 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  603

  Box structure specifi cation.  A specifi cation method that makes use of  box 

structures  is used to describe the functional specifi cation. Box structures 

“isolate and separate the creative defi nition of behavior, data, and proce-

dures at each level of refi nement” [Hev93].  

  Formal design.  Using the box structure approach, cleanroom design is a 

natural and seamless extension of specifi cation. Although it is possible to 

make a clear distinction between the two activities, specifi cations (called 

 black boxes ) are iteratively refi ned (within an increment) to become anal-

ogous to architectural and component-level designs (called  state boxes  

and  clear boxes,  respectively). 

  Correctness verifi cation.  The cleanroom team conducts a series of rigor-

ous correctness verifi cation activities on the design and then the code. 

Verifi cation (Section 28.3.2) begins with the highest-level box structure 

(specifi cation) and moves toward design detail and code. The fi rst level 

of correctness verifi cation occurs by applying a set of “correctness ques-

tions” [Lin88]. If these do not demonstrate that the specifi cation is correct, 

more formal (mathematical) methods for verifi cation are used. 

  Code generation, inspection, and verifi cation.  The box structure speci-

fi cations, represented in a specialized language, are translated into the 

appropriate programming language. Technical reviews (Chapter 20) are 

then used to ensure semantic conformance of the code and box structures 

    uote: 

  “The only way for 
errors to occur in 
a program is by 
being put there 
by the author. No 
other mechanism 
is known . . . Right 
practice aims 
at presenting 
insertion of errors 
and, failing that, 
removing them 
before testing or 
any other running 
of the program.”  

  Harlan Mills  

 FIGURE 28.1

 The cleanroom 
process model BSS

RG

Increment 1

SE

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 2

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 3

SE — system engineering
RG — requirements gathering
BSS — box structure specification
FD — formal design
CV — correctness verification

CG — code generation
CI — code inspection
SUT — statistical use testing
C — certification
TP — test planning

FD CV

TP

CG CI
SUT C

pre22126_ch28_601-622.indd   603pre22126_ch28_601-622.indd   603 13/12/13   6:15 PM13/12/13   6:15 PM



604 PART THREE  QUALITY MANAGEMENT

and syntactic correctness of the code. Then correctness verifi cation is con-

ducted for the source code. 

  Statistical test planning.  The projected usage of the software is analyzed, 

and a suite of test cases that exercise a “probability distribution” of usage 

is planned and designed (Section 28.4). Referring to  Figure 28.1 , this clean-

room activity is conducted in parallel with specifi cation, verifi cation, and 

code generation. 

  Statistical use testing.  Recalling that exhaustive testing of computer soft-

ware is impossible (Chapter 23), it is always necessary to design a fi nite 

number of test cases. Statistical use techniques [Poo88] execute a series of 

tests derived from a statistical sample (the probability distribution noted 

earlier) of all possible program executions by all users from a targeted 

population (Section 28.4).  

  Certifi cation.  Once verifi cation, inspection, and usage testing have been 

completed (and all errors are corrected), the increment is certifi ed as 

ready for integration. 

 The fi rst four activities in the cleanroom process set the stage for the formal 

verifi cation activities that follow. For this reason, we begin the discussion of the 

cleanroom approach with the modeling activities that are essential for formal 

verifi cation to be applied. 

        28.2  FUNCTIONAL SPECIF ICATION 

  The modeling approach in cleanroom software engineering uses a method called 

 box structure specifi cation.  A “box” encapsulates the system (or some aspect of 

the system) at some level of detail. Through a process of elaboration or stepwise 

refi nement, boxes are refi ned into a hierarchy where each box has referential 

transparency. That is, “the information content of each box specifi cation is suffi -

cient to defi ne its refi nement, without depending on the implementation of any 

other box” [Lin94]. This enables the analyst to partition a system hierarchically, 

moving from essential representation at the top to implementation-specifi c de-

tail at the bottom. Three types of boxes are used: 

  Black box.  The black box specifi es the behavior of a system or a part of a 

system. The system (or part) responds to specifi c stimuli (events) by apply-

ing a set of transition rules that map the stimulus into a response. 

  State box.  The state box encapsulates state data and services (operations) 

in a manner that is analogous to objects. In this specifi cation view, inputs 

to the state box (stimuli) and outputs (responses) are represented. The 

state box also represents the “stimulus history” of the black box, that is, 

Cleanroom emphasizes 
tests that exercise the 
way software is really 
used. Use cases pro-
vide input to the test 
planning process.

    A “box” encapsulates 
the system at some 
level of abstraction and 
is used in functional 
specifi cation.  

pre22126_ch28_601-622.indd   604pre22126_ch28_601-622.indd   604 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  605

the data encapsulated in the state box that must be retained between the 

transitions implied. 

  Clear box.  The transition functions that are implied by the state box are 

defi ned in the clear box. Stated simply, a clear box contains the proce-

dural design for the state box. 

  Figure 28.2  illustrates the refi nement approach using box structure specifi ca-

tion. A black box (BB1) defi nes responses for a complete set of stimuli. BB1 can be 

refi ned into a set of black boxes, BB1.1 to BB1. n , each of which addresses a class 

of behavior. Refi nement continues until a cohesive class of behavior is identifi ed 

(e.g., BB1.1.1). A state box (SB1.1.1) is then defi ned for the black box (BB1.1.1). In this 

case, SB1.1.1 contains all data and services required to implement the behavior 

defi ned by BB1.1.1. Finally, SB1.1.1 is refi ned into clear boxes (CB1.1.1. n ) and procedural 

design details are specifi ed.      

 As each of these refi nement steps occurs, verifi cation of correctness also oc-

curs. State-box specifi cations are verifi ed to ensure that each conforms to the 

behavior defi ned by the parent black-box specifi cation. Similarly, clear-box spec-

ifi cations are verifi ed against the parent state box. 

   28.2.1   Black-Box Specifi cation 

  A  black-box  specifi cation describes an abstraction, stimuli, and response using 

the notation shown in  Figure 28.3  [Mil88]. The function  f  is applied to a sequence 

 S*  of inputs (stimuli)  S  and transforms them into an output (response)  R.  For sim-

ple software components,  f  may be a mathematical function, but in general,  f  is 

described using natural language (or a formal specifi cation language). 

    uote: 

  “Every solution 
to every problem 
is simple. It’s the 
distance between 
the two where the 
mystery lies.”  

  Derek Landy  

 FIGURE 28.2

 Box structure 
refi nement

BB1

CB1.1.1.1

CB1.1.1.2

CB1.1.1.3

SB1.1.1BB1.1.1

BB1.1.2

BB1.1.3

BB1.1

BB1.2

BB1.n

pre22126_ch28_601-622.indd   605pre22126_ch28_601-622.indd   605 13/12/13   6:15 PM13/12/13   6:15 PM



606 PART THREE  QUALITY MANAGEMENT

 Many of the concepts introduced for object-oriented systems are also applica-

ble for the black box. Data abstractions and the operations that manipulate those 

abstractions are encapsulated by the black box. Like a class hierarchy, the black-

box specifi cation can exhibit usage hierarchies in which low-level boxes inherit 

the properties of those boxes higher in the tree structure.   

       28.2.2   State-Box Specifi cation 

 The  state box  is “a simple generalization of a state machine” [Mil88]. Recalling 

the discussion of behavioral modeling and state diagrams in Chapter 11, a state 

is some observable mode of system behavior. As processing occurs, a system re-

sponds to events (stimuli) by making a transition from the current state to some 

new state. As the transition is made, an action may occur. The state box uses a 

data abstraction to determine the transition to the next state and the action (re-

sponse) that will occur as a consequence of the transition. 

 Referring to  Figure 28.4 , the state box incorporates a black box  g.  The stimulus 

 S  that is input to the black box arrives from some external source and a set of 

internal system states  T.  Mills [Mil88] provides a mathematical description of the 

function  f  of the black box contained within the state box:

 g :  S*  3  T*    R  3  T  

 where  g  is a subfunction that is tied to a specifi c state  t . When considered collec-

tively, the state-subfunction pairs ( t, g ) defi ne the black-box function  f.       

f : S*          RS R

 FIGURE 28.3

 A black-box 
specifi cation

S RBlack box, g

T

State

 FIGURE 28.4

 A state-box 
specifi cation

pre22126_ch28_601-622.indd   606pre22126_ch28_601-622.indd   606 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  607

    28.2.3   Clear-Box Specifi cation 

 The clear-box specifi cation is closely aligned with procedural design and struc-

tured programming. In essence, the subfunction  g  within the state box is replaced 

by the structured programming constructs that implement  g.  

 As an example, consider the clear box shown in  Figure 28.5 . The black box 

 g,  shown in  Figure 28.3 , is replaced by a sequence construct that incorporates a 

conditional. These, in turn, can be refi ned into lower-level clear boxes as step-

wise refi nement proceeds. 

 It is important to note that the procedural specifi cation described in the 

clear-box hierarchy can be proved to be correct. This topic is considered in 

Section 28.3.      

       28.3  CLEANROOM DESIGN 

  Cleanroom software engineering makes heavy use of the structured program-

ming philosophy (Chapter 14). But in this case, structured programming is ap-

plied far more rigorously. 

 Basic processing functions (described during earlier refi nements of the spec-

ifi cation) are refi ned using a “stepwise expansion of mathematical functions into 

structures of logical connectives [e.g., if-then-else] and subfunctions, where the 

expansion [is] carried out until all identifi ed subfunctions could be directly stated 

in the programming language used for implementation” [Dye92]. 

 The structured programming approach can be used effectively to refi ne 

function, but what about data design? Here a number of fundamental design 

concepts (Chapter 12) come into play. Program data are encapsulated as a 

set of abstractions that are serviced by subfunctions. The concepts of data en-

capsulation, information hiding, and data typing are used to create the data 

design. 

S R

T

State

g11 cg1

g12

g13

 FIGURE 28.5

 A clear-box 
specifi cation

pre22126_ch28_601-622.indd   607pre22126_ch28_601-622.indd   607 13/12/13   6:15 PM13/12/13   6:15 PM



608 PART THREE  QUALITY MANAGEMENT

   28.3.1   Design Refi nement 

 Each clear-box specifi cation represents the design of a procedure (subfunction) 

required to accomplish a state-box transition. Within the clear box, structured 

programming constructs and stepwise refi nement are used to represent pro-

cedural detail. For example, a program function  f  is refi ned into a sequence of 

subfunctions  g  and  h.  These in turn are refi ned into conditional constructs (e.g., 

if-then-else and do-while). Further refi nement continues until there is enough 

procedural detail to create the component in question. 

   At each level of refi nement, the cleanroom team  1   performs a  formal correct-

ness verifi cation.  To accomplish this, a set of generic correctness conditions are 

attached to the structured programming constructs. If a function  f  is expanded 

into a sequence  g  and  h,  the correctness condition for all input to  f  is

     •   Does   g   followed by   h   do   f    ?   

   When a function  p  is refi ned into a conditional of the form, if < c > then  q , else  r , the 

correctness condition for all input to  p  is

    •   Whenever condition  < c >  is true, does   q   do   p ;  and whenever  < c >  is false, 

does   r   do   p  ?     

 When function  m  is refi ned as a loop, the correctness conditions for all input to 

 m  are

    •   Is termination guaranteed?   

   •   Whenever  < c >  is true, does   n   followed by   m   do   m ;  and whenever  < c >  is 

false, does skipping the loop still do   m  ?     

 Each time a clear box is refi ned to the next level of detail, these correctness con-

ditions are applied. 

    28.3.2   Design Verifi cation 

 You should note that the use of the structured programming constructs con-

strains the number of correctness tests that must be conducted. A single con-

dition is checked for sequences; two conditions are tested for if-then-else, and 

three conditions are verifi ed for loops. 

 To illustrate correctness verifi cation for a procedural design, we use a simple 

example fi rst introduced by Linger, Mills, and Witt [Lin79]. The intent is to de-

sign and verify a small program that fi nds the integer part  y  of a square root of 

a given integer  x.  The procedural design is represented using the fl owchart in 

 Figure 28.6 .  2        

  1  Because the entire team is involved in the verifi cation process, it is less likely that an error will 

be made in conducting the verifi cation itself. 

  2   Figure 28.6  has been adapted from [Lin94]. Used with permission. 

    If you use structured 
programming con-
structs, a set of simple 
questions allows you 
to prove your code to 
be correct.  

pre22126_ch28_601-622.indd   608pre22126_ch28_601-622.indd   608 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  609

 To verify the correctness of this design, entry and exit conditions are added 

as shown in  Figure 28.6 . The entry condition notes that  x  must be greater than or 

equal to 0. The exit condition requires that  x  remain unchanged and that  y  satisfy 

the expression noted in the fi gure. To prove the design to be correct, it is neces-

sary to prove the conditions  init, loop, cont, yes,  and  exit  shown in Figure 28.6 are 

true in all cases. These are sometimes called  subproofs.  

     1.  The condition  init  demands that [ x  $ 0 and  y  5 0]. Based on the require-

ments of the problem, the entry condition is assumed correct.  3   Therefore, 

the fi rst part of the  init  condition,  x  $ 0, is satisfi ed. Referring to the fl ow-

chart, the statement immediately preceding the  init  condition, sets  y  5 0. 

Therefore, the second part of the  init  condition is also satisfi ed. Hence,  init  

is true.   

    2.  The  loop  condition may be encountered in one of two ways: (1) directly 

from  init  (in this case, the  loop  condition is satisfi ed directly) or via control 

fl ow that passes through the condition  cont.  Since the  cont  condition is 

identical to the  loop  condition,  loop  is true regardless of the fl ow path that 

leads to it.   

    3.  The  cont  condition is encountered only after the value of  y  is incremented 

by 1. In addition, the control fl ow path that leads to  cont  can be invoked 

only if the  yes  condition is also true. Hence, if ( y  1 1) 2  #  x , it follows that 

 y  2  #  x . The  cont  condition is satisfi ed.  

    To prove a design 
correct, you must fi rst 
identify all conditions 
and then prove that 
each takes on an 
appropriate Bollean 
value. These are called 
subproofs.  

y := y + 1(y + 1)2 ≤ x

y := 0

sqrt

exit: x unchanged and y2 ≤ x ≤ (y + 1)2

yes: (y + 1)2 ≤ x

loop: [y2 ≤ x] cont: [y2 ≤ x]

init:  [x ≥ 0, and y = 0]

entry:  [x ≥ 0]
 FIGURE 28.6

 Computing the 
integer part of 
a square root
Source: [Lin79]

      3  A negative value for the square root has no meaning in this context. 

pre22126_ch28_601-622.indd   609pre22126_ch28_601-622.indd   609 13/12/13   6:15 PM13/12/13   6:15 PM



610 PART THREE  QUALITY MANAGEMENT

    4.  The  yes  condition is tested in the conditional logic shown. Hence, the  yes  

condition must be true when control fl ow moves along the path shown.  

    5.  The  exit  condition fi rst demands that  x  remain unchanged. An exam-

ination of the design indicates that  x  appears nowhere to the left of an 

assignment operator. There are no function calls that use  x.  Hence, it is 

unchanged. Since the conditional test ( y  1 1) 2  #  x  must fail to reach the 

 exit  condition, it follows that ( y  1 1) 2  #  x . In addition, the  loop  condition 

must still be true (i.e.,  y  2  #  x ). Therefore, ( y  1 1) 2  .  x  and  y  2  #  x  can be com-

bined to satisfy the exit condition.  

  You must further ensure that the loop terminates. An examination of the  loop  

condition indicates that, because  y  is incremented and  x  $ 0, the loop must even-

tually terminate. 

 The fi ve steps just noted are a proof of the correctness of the design of the 

algorithm noted in  Figure 28.6 . You are now certain that the design will, in fact, 

compute the integer part of a square root. 

 A more rigorous mathematical approach to design verifi cation is possible. 

However, a discussion of this topic is beyond the scope of this book. If you have 

interest, refer to [Lin79]. 

       28.4  CLEANROOM TEST ING 

  The strategy and tactics of cleanroom testing are fundamentally different from 

conventional testing approaches (Chapters 22 through 26). Conventional meth-

ods derive a set of test cases to uncover design and coding errors. The goal of 

cleanroom testing is to validate software requirements by demonstrating that a 

statistical sample of use cases (Chapter 8) have been executed successfully.  

   28.4.1   Statistical Use Testing 

 The user of a computer program rarely needs to understand the technical details 

of the design. The user-visible behavior of the program is driven by inputs and 

events that are often produced by the user. But in complex systems, the possible 

spectrum of input and events (i.e., the use cases) can be extremely broad. What 

subset of use cases will adequately verify the behavior of the program? This is the 

fi rst question addressed by statistical use testing.  

 Statistical use testing “amounts to testing software the way users intend to use it” 

[Lin94]. To accomplish this, cleanroom testing teams (also called  certifi cation teams ) 

must determine a usage probability distribution for the software. The specifi cation 

(black box) for each increment of the software is analyzed to defi ne a set of stimuli 

(inputs or events) that causes the software to change its behavior. Based on inter-

views with potential users, the creation of usage scenarios, and a general under-

standing of the application domain, a probability of use is assigned to each stimuli. 

  uote: 

  “Quality is not an 
act, it is a habit.”  

 Aristotle 

   Even if you decide 
against the cleanroom 
approach, it's worth 
considering statistical 
use testing as an 
integral part of your 
test strategy. 

pre22126_ch28_601-622.indd   610pre22126_ch28_601-622.indd   610 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  611

   Test cases are generated for each set of stimuli  4   according to the usage proba-

bility distribution. To illustrate, consider the  SafeHome  system discussed earlier 

in this book. Cleanroom software engineering is being used to develop a software 

increment that manages user interaction with the security system keypad. Five 

stimuli have been identifi ed for this increment. Analysis indicates the percent 

probability distribution of each stimulus. To make selection of test cases easier, 

these probabilities are mapped into intervals numbered between 1 and 99 [Lin94] 

and illustrated in the following table:  

Program Stimulus Probability (%) Interval

Arm/disarm (AD) 50  1–49

Zone set (ZS) 15 50–63

Query (Q) 15 64–78

Test (T) 15 79–94

Panic alarm   5 95–99

 To generate a sequence of usage test cases that conform to the usage probabil-

ity distribution, random numbers between 1 and 99 are generated. Each random 

number corresponds to an interval on the preceding probability distribution. 

Hence, the sequence of usage test cases is defi ned randomly but corresponds 

to the appropriate probability of stimuli occurrence. For example, assume the 

following random-number sequences are generated:

    13-94-22-24-45-56  

   81-19-31-69-45-9  

      38-21-52-84-86-4    

 Selecting the appropriate stimuli based on the distribution interval shown in the 

table, the following use cases are derived:

      AD–T–AD–AD–AD–ZS  

      T–AD–AD–AD–Q–AD–AD  

      AD–AD–ZS–T–T–AD    

 The testing team executes these use cases and verifi es software behavior against 

the specifi cation for the system. Timing for tests is recorded so that interval times 

may be determined. Using interval times, the certifi cation team can compute 

mean-time-to-failure. If a long sequence of tests is conducted without failure, the 

MTTF is low and software reliability may be assumed high. 

    Unlike conventional 
testing, cleanroom 
approaches are 
statistically driven.  

  4  Automated tools may be used to accomplish this. For further information, see [Dye92]. 

pre22126_ch28_601-622.indd   611pre22126_ch28_601-622.indd   611 13/12/13   6:15 PM13/12/13   6:15 PM



612 PART THREE  QUALITY MANAGEMENT

    28.4.2   Certifi cation 

 The verifi cation and testing techniques discussed earlier in this chapter lead to 

software components (and entire increments) that can be certifi ed. Within the 

context of the cleanroom software engineering approach,  certifi cation  implies 

that the reliability [measured by mean-time-to-failure (MTTF)] can be specifi ed 

for each component. 

 The potential impact of certifi able software components goes far beyond a sin-

gle cleanroom project. Reusable software components can be stored along with 

their usage scenarios, program stimuli, and probability distributions. Each com-

ponent would have a certifi ed reliability under the usage scenario and testing 

regime described. This information is invaluable to others who intend to use the 

components. 

 The certifi cation approach involves fi ve steps [Woh94]: (1) usage scenarios 

must be created, (2) a usage profi le is specifi ed, (3) test cases are generated from 

the profi le, (4) tests are executed and failure data are recorded and analyzed, 

and (5) reliability is computed and certifi ed. Steps 1 through 4 have been dis-

cussed in a previous section. Certifi cation for cleanroom software engineering 

requires the creation of three models [Poo93]:

        Sampling model.  Software testing executes  m  random test cases and is 

certifi ed if no failures or a specifi ed number of failures occur. The value of 

 m  is derived mathematically to ensure that required reliability is achieved.  

      Component model.  A system composed of  n  components is to be certifi ed. 

The component model enables the analyst to determine the probability 

that component  i  will fail prior to completion.  

       Certifi cation model.  The overall reliability of the system is projected and 

certifi ed.  

      At the completion of statistical use testing, the certifi cation team has the infor-

mation required to deliver software that has a certifi ed MTTF computed using 

each of these models. If you have further interest, see [Cur86], [Mus87], or [Poo93] 

for additional detail.     

       28.5  RETHINKING FORMAL METHODS   

 Most software engineers agree that it is diffi cult if not impossible to create fault-

free software systems following a modeling, design, code, and test paradigm. 

There are some systems that cannot be adequately tested before they are de-

ployed (e.g., a robot operating on a remote planet under hostile environmental 

conditions). 

 Formal methods provide a method for verifying that a critical system will oper-

ate according to its specifi cation. To do this software is treated as a mathematical 

  How do 
we certify 

a software 
component?  

?

pre22126_ch28_601-622.indd   612pre22126_ch28_601-622.indd   612 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  613

entity whose correctness can be proved using logical operations. It turns out that 

this is easier to do for programs implemented in imperative programming lan-

guages  5   than event-driven applications implemented in object-oriented languages.  

 There are a number of potential benefi ts [Abr09] of using formal methods in 

trying to develop fault-free systems. Requirements written using natural lan-

guages are often ambiguous or incomplete. Formal methods model a system as 

a series of state transitions to represent what the developers of the system will 

observe as the program executes. The act of modeling the system may uncover 

several defects in the system. The modeling of a large software application re-

quires several iterations. 

  Horizontal refi nement  elaborates software states from the abstract to the con-

crete by adding detail. This horizontal refi nement is the basis for allowing trace-

ability of software requirements. The assertions used to prohibit the software from 

reaching an invalid state can be defi ned and their placement verifi ed. Once hori-

zontal refi nement of this discrete model is complete,  vertical refi nement  is used to 

transform the states and transitions so that they can be implemented in the target 

programming language. Vertical refi nement is the process that attempts to “glue” 

the abstract to the concrete, without allowing communication weaknesses in a 

poorly chosen target language to affect the requirement specifi cations. 

 The integration of legacy code complicates the use of formal methods since 

the legacy requirements may not be a good fi t for the new system. In many in-

stances, it is best to capture the legacy code behavior in the specifi cation, and 

then implement the behavior in new code. 

 Some opponents of formal methods argue that many of its practices are contrary 

to the tenets of agile process models. However, Black and her colleagues [Bla09] 

suggest that elements of both formal methods and agile processes can be com-

bined to create better software products. Both have the same basic goal of trying 

to create reliable software. Formal methods can add value to agile development 

by forcing developers to make sure the system safety property axioms  6   are valid.

Formal methods techniques (e.g., static analysis and theorem-proving tools) 

can be used to automatically generate test cases from system models and indi-

cate where assertions should be placed in the evolving program code. Informal 

requirements can be translated into formal notation that is embedded into the 

source code. Assertions written in formal notation may be machine-checked for 

inconsistencies. Code often needs to be refactored  7   as it evolves. Formal meth-

ods can provide the basis for defi ning correctness-preserving transformations to 

ensure the refactored code still meets it requirements. 

  uote: 

  “Formal methods 
will never have a 
signifi cant impact 
until they can be 
used by people that 
don’t understand 
them.”  

 Tom Melham 

  5  An  imperative language programming language  achieves its primary affect by assigning the 

values of algebraic expressions. 

  6  Safety property axioms are statements about what software may not allow. Safety was dis-

cussed as part of security in Chapter 27. 

  7   Refactoring  (Chapter 5) improves the code without changing its meaning. 

pre22126_ch28_601-622.indd   613pre22126_ch28_601-622.indd   613 13/12/13   6:15 PM13/12/13   6:15 PM



614 PART THREE  QUALITY MANAGEMENT

 Although the use of formal methods may slow the delivery of the fi rst software 

increment, it can reduce the amount of rework during the project lifetime and 

therefore provide a signifi cant return on the time investment applied. If the cus-

tomer’s requirements are extremely volatile, there is no guarantee that a project 

can be completed more quickly using agile techniques. The name of the game 

is creating a product that that meets the customer’s requirements, and supple-

menting an agile approach with formal methods can help ensure that require-

ments have been met. 

 Mayer and his colleagues [Mey09] describe three types of tools that can be 

useful in automating testing, thereby acting to facilitate statistical use testing 

approaches.  Test generation  tools create and execute test cases without human 

input.  Test extraction  tools produce test cases for later replay from program ex-

ecution failures.  Manual test integration  tools provide help in developing and 

managing test cases that are produced manually. 

 The part of testing that is most likely to be automated is test case execution, 

which is very important for effi cient regression testing. Meyer [Mey09] suggests 

that test case generation is relatively straightforward for languages such as Eiffel 

that support design by contract.  8   Test cases are generated to exercise precon-

ditions and postconditions represented as part of the source code (discussed in 

Section 28.6). When developers fi nd bugs in programs, they typically log them 

and fi x them, missing the opportunity to create test cases for future regression 

testing. When an error occurs during program execution, testing tools capture 

the information about precondition violations or postcondition failures and con-

vert them into test cases automatically.  

  8   Design by contract  uses preconditions, postconditions, and invariants to answer the questions: 

What does the program expect? What does it guarantee? What does it maintain? 

  9  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

   Formal Methods  

  Objective:  The objective of formal 
methods tools is to assist a software team in 

specifi cation and correctness verifi cation. 

  Mechanics:  Tools mechanics vary. In general, tools 
assist in specifi cation and automating correctness 
proving, usually by defi ning a specialized language 
for theorem proving. Many tools are not 
commercialized and have been developed for research 
purposes. 

  Representative Tools:   9   
  ACL2,  developed at the University of Texas (  www

.cs.utexas.edu/users/moore/acl2/  ), is “both 
a programming language in which you can model 
computer systems and a tool to help you prove 
properties of those models.” 

 Pointers to several formal methods tool repositories can 
be found on a site hosted by Cyber Security and 
Information Systems Information Analysis Center 
(CSIAC)  https://sw.thecsiac.com/databases/
url/key/53/57#.UHrvKYbwpuh/ .  

 SOFTWARE TOOLS 

pre22126_ch28_601-622.indd   614pre22126_ch28_601-622.indd   614 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  615

        28.6  FORMAL METHODS CONCEPTS 

   The Encyclopedia of Software Engineering  [Mar01] defi nes formal methods in the 

following manner:

  Formal methods used in developing computer systems are mathematically based 

techniques for describing system properties. Such formal methods provide frame-

works within which people can specify, develop, and verify systems in a systematic, 

rather than ad hoc manner.   

   The desired properties of a formal specifi cation are the objectives of all spec-

ifi cation methods. However, the mathematically based specifi cation language 

used for formal methods results in a much higher likelihood of achieving these 

properties. The formal syntax of a specifi cation language (Appendix 3) enables 

requirements or design to be interpreted in only one way, eliminating ambiguity 

that often occurs when a natural language (e.g., English) or a graphical notation 

(e.g., UML) must be interpreted by a reader. The descriptive facilities of set the-

ory and logic notation enable a clear statement of requirements. To be consistent, 

requirements stated in one place in a specifi cation should not be contradicted in 

another place. Consistency is achieved  10   by mathematically proving that initial 

facts can be formally mapped (using inference rules) into later statements within 

the specifi cation.  

 To introduce basic formal methods concepts, let’s consider a few simple exam-

ples to illustrate the use of mathematical specifi cation, without getting bogged 

down in too much mathematical detail.      

  Example 1: A symbol table.   A program is used to maintain a symbol table. Such 

a table is used frequently in many different types of applications. It consists of a 

collection of items without any duplication. An example of a typical symbol table 

is shown in  Figure 28.7 . It represents the table used by an operating system to 

hold the names of the users of the system. Other examples of tables include the 

collection of names of staff in a payroll system, the collection of names of comput-

ers in a network communications system, and the collection of destinations in a 

system for producing transportation timetables.      

 Assume that the table presented in this example consists of no more than 

 MaxIds  names. This statement, which places a constraint on the table, is a com-

ponent of a condition known as a  data invariant . A data invariant is a condition 

that is true throughout the execution of the system that contains a collection 

    A formal specifi cation 
should have consis-
tency, completeness, 
and lack of ambiguity.  

  10  In reality, completeness is diffi cult to ensure, even when formal methods are used. Some 

aspects of a system may be left undefi ned as the specifi cation is being created; other char-

acteristics may be purposely omitted to allow designers some freedom in choosing an imple-

mentation approach; and fi nally, it is impossible to consider every operational scenario in a 

large, complex system. Things may simply be omitted by mistake. 

pre22126_ch28_601-622.indd   615pre22126_ch28_601-622.indd   615 13/12/13   6:15 PM13/12/13   6:15 PM



616 PART THREE  QUALITY MANAGEMENT

of data. The data invariant that holds for the symbol table just discussed has 

two components: (1) that the table will contain no more than  MaxIds  names and 

(2)  that there will be no duplicate names in the table. In the case of the sym-

bol table program, this means that no matter when the symbol table is exam-

ined during execution of the system, it will always contain no more than  MaxIds  

names and will contain no duplicates. 

 Another important concept is that of a  state.  Many formal languages use the 

notion of states as they were discussed in Chapter 11; that is, a system can be in 

one of several states, each representing an externally observable mode of behav-

ior. However, a different defi nition for the term  state  is used in some specifi cation 

languages. In these languages the state of a system is represented by the sys-

tem’s stored data. Using the latter defi nition in the example of the symbol table 

program, the state is the symbol table. 

 The fi nal concept is that of an  operation.  This is an action that takes place 

within a system and reads or writes data. If the symbol table program is con-

cerned with adding and removing names from the symbol table, then it will be 

associated with two operations: an operation to  add  a specifi ed name to the sym-

bol table and an operation to  remove()  an existing name from the table.  11   If the 

program provides the facility to check whether a specifi c name is contained in 

the table, then there would be an operation that would return some indication of 

whether the name is in the table.  

 Three types of conditions can be associated with operations: invariants, pre-

conditions, and postconditions. An  invariant  defi nes what is guaranteed not to 

change. For example, the symbol table has an invariant that states that the num-

ber of elements is always less than or equal to  MaxIds.  A  precondition  defi nes the 

circumstances in which a particular operation is valid. For example, the precon-

dition for an operation that adds a name to a staff identifi er symbol table is valid 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Wilson

Simpson

Abel

Fernandez

MaxIds = 10

 FIGURE 28.7

 A symbol table

  11  It should be noted that adding a name cannot occur in the  full  state and deleting a name is 

impossible in the  empty  state. 

pre22126_ch28_601-622.indd   616pre22126_ch28_601-622.indd   616 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  617

only if the name that is to be added is not contained in the table and also if there 

are fewer than  MaxIds  staff identifi ers in the table. The  postcondition  of an op-

eration defi nes what is guaranteed to be true upon completion of an operation. 

This is defi ned by its effect on the data. For the  add()  operation, the postcondition 

would specify mathematically that the table has been augmented with the new 

identifi er. 

   Example 2: A block handler.   One of the more important parts of a simple oper-

ating system is the subsystem that maintains fi les created by users. Part of the fi l-

ing subsystem is the  block handler.  Files in the fi le store are composed of blocks 

of storage that are held on a fi le storage device. During the operation of the com-

puter, fi les will be created and deleted, requiring the acquisition and release of 

blocks of storage. In order to cope with this, the fi ling subsystem will maintain a 

reservoir of unused (free) blocks and keep track of blocks that are currently in 

use. When blocks are released from a deleted fi le, they are normally added to 

a queue of blocks waiting to be added to the reservoir of unused blocks. This is 

shown in  Figure 28.8 . In this fi gure, a number of components are shown: the res-

ervoir of unused blocks, the blocks that currently make up the fi les administered 

by the operating system, and those blocks that are waiting to be added to the 

reservoir. The waiting blocks are held in a queue, with each element of the queue 

containing a set of blocks from a deleted fi le.      

 For this subsystem the state is the collection of free blocks, the collection of 

used blocks, and the queue of returned blocks. The data invariant, expressed in 

natural language, is

    •  No block will be marked as both unused and used.  

   •  All the sets of blocks held in the queue will be subsets of the collection of 

currently used blocks.  

1  3  4  6  9

File #1

5  8  11

File #2

7

File #3
Block queue containing blocks from deleted files

Unused blocks

2

Queued for entry into unused blocks

2  5  7  8  10
11  12

Used blocks

Blocks are released
to queue when files
are deleted

 FIGURE 28.8

 A block 
handler

pre22126_ch28_601-622.indd   617pre22126_ch28_601-622.indd   617 13/12/13   6:15 PM13/12/13   6:15 PM



618 PART THREE  QUALITY MANAGEMENT

   •  No elements of the queue will contain the same block numbers.  

   •  The collection of used blocks and blocks that are unused will be the total 

collection of blocks that make up fi les.  

   •  The collection of unused blocks will have no duplicate block numbers.  

   •  The collection of used blocks will have no duplicate block numbers.    

 Some of the operations associated with this data are:  add()  a collection of blocks 

to the end of the queue,  remove()  a collection of used blocks from the front of the 

queue and place them in the collection of unused blocks, and  check()  whether 

the queue of blocks is empty. 

 The precondition of  add()  is that the blocks to be added must be in the collec-

tion of used blocks. The postcondition is that the collection of blocks is now found 

at the end of the queue. The precondition of  remove()  is that the queue must 

have at least one item in it. The postcondition is that the blocks must be added 

to the collection of unused blocks. The  check()  operation has no precondition. 

This means that the operation is always defi ned, regardless of what value the 

state is. The postcondition delivers the value  true  if the queue is empty and  false  

otherwise. 

 In the examples noted in this section, we introduce the key concepts of for-

mal specifi cation but without emphasizing the mathematics that are required 

to make the specifi cation formal. In Appendix 3 we consider how mathematical 

notation can be used to formally specify some element of a system. 

        28.7  ALTERNATIVE ARGUMENTS 

  Parnas [Par10] offers several criticisms of the approach typically used to prove 

program correctness. He argues that using values of expression variables to de-

fi ne the state of computation ignores the role of interrupt handlers in real-time 

systems. Formal methods typically discourage the use of expression side effects 

that may be common in some application domains. Information hiding facilitated 

by use of abstract data types gives rise to the use of hidden states, which must be 

accounted for when writing data invariants. This often makes assertions more 

complex than the code itself. Formal methods were devised for deterministic 

programs.  12   This does not account for programs designed to run forever.  

 Formal methods depend on the use of models intended to provide a simplifi ed 

view of the program. There is no reliable method of translating these models to 

program code. It is possible to prove a program correct that may have defects, 

because the model or code was fl awed. 

  12   Deterministic programs  always begin in a defi ned start state and end in a single end state. 

pre22126_ch28_601-622.indd   618pre22126_ch28_601-622.indd   618 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  619

 In formal methods work, the process of proving software correctness becomes 

the task of showing that a program can be reduced to a sequence of legal states  13   

or data transitions. This may not be suffi cient for all programs. Predicates that 

can verify correct run-time behavior of a program may be needed to check the 

correctness of real-time or parallel algorithms.  

 Assertions help developers document and understand software more effec-

tively but are only practical for small programs. The use of assertions does not 

eliminate the need for external documentation which is often imprecise due to 

ambiguities in the natural language used to describe the system. In addition, for-

mal methods do not help software engineers select from among several correct 

software designs. 

       28.8 SUMMARY 

 Cleanroom software engineering is a formal approach to software development 

that can lead to software that has remarkably high quality. It uses box structure 

specifi cation for analysis and design modeling and emphasizes correctness veri-

fi cation, rather than testing, as the primary mechanism for fi nding and removing 

errors. Statistical use testing is applied to develop the failure rate information 

necessary to certify the reliability of delivered software. 

 The cleanroom approach begins with analysis and design models that use a 

box structure representation. A “box” encapsulates the system (or some aspect 

of the system) at a specifi c level of abstraction. Black boxes are used to represent 

the externally observable behavior of a system. State boxes encapsulate state 

data and operations. A clear box is used to model the procedural design that is 

implied by the data and operations of a state box. 

 Correctness verifi cation is applied once the box structure design is complete. 

The procedural design for a software component is partitioned into a series of 

subfunctions. To prove the correctness of the subfunctions, exit conditions are 

defi ned for each subfunction and a set of subproofs is applied. If each exit condi-

tion is satisfi ed, the design must be correct. 

 Once correctness verifi cation is complete, statistical use testing commences. 

Unlike conventional testing, cleanroom software engineering does not empha-

size unit or integration testing. Rather, the software is tested by defi ning a set 

of usage scenarios, determining the probability of use for each scenario, and 

then defi ning random tests that conform to the probabilities. The error records 

that result are combined with sampling, component, and certifi cation models 

to enable mathematical computation of projected reliability for the software 

component. 

  13  A legal state is a set of program variables that were assigned values allowed by the processing 

the program inputs. 

pre22126_ch28_601-622.indd   619pre22126_ch28_601-622.indd   619 13/12/13   6:15 PM13/12/13   6:15 PM



620 PART THREE  QUALITY MANAGEMENT

 Formal methods use the descriptive facilities of set theory and logic notation 

to enable a software engineer to create a clear statement of facts (requirements). 

The underlying concepts that govern formal methods are: (1) the data invariant, 

a condition true throughout the execution of the system that contains a collec-

tion of data; (2) the state, a representation of a system’s externally observable 

mode of behavior, or (in Z and related languages) the stored data that a system 

accesses and alters; and (3) the operation, an action that takes place in a system 

and reads or writes data to a state. An operation is associated with two condi-

tions: a precondition and a postcondition. 

 Will cleanroom software engineering or formal methods ever be widely used? 

The answer is probably not. They are more diffi cult to learn than conventional 

software engineering methods and represent signifi cant “culture shock” for 

some software practitioners. But the next time you hear someone lament, “Why 

can’t we get this software right the fi rst time?” you’ll know that there are tech-

niques that can help you to do exactly that. 

     PROBLEMS AND POINTS TO PONDER 
    28.1.  If you had to pick one aspect of cleanroom software engineering that makes it radi-
cally different from conventional or object-oriented software engineering approaches, what 
would it be?  

   28.2.  How do an incremental process model and certifi cation work together to produce 
high-quality software?  

   28.3.  Using box structure specifi cation, develop “fi rst-pass” analysis and design models for 
the  SafeHome  system.  

   28.4.  A bubble-sort algorithm is defi ned in the following manner:

procedure bubblesort;
var i, t, integer;
begin
repeat until t=a[1]
 t:=a[1];
 for j:= 2 to n do
  if a[j-1] > a[j] then begin
   t:=a[j-1];
   a[j-1]:=a[j];
   a[j]:=t;
   end
endrep
end 

    Partition the design into subfunctions, and defi ne a set of conditions that would enable you 
to prove that this algorithm is correct.  

   28.5.  Document a correctness verifi cation proof for the bubble sort discussed in Problem 28.4.  

   28.6.  Select a program that you use regularly (e.g., an e-mail handler, a word processor, a 
spreadsheet program). Create a set of usage scenarios for the program. Defi ne the proba-
bility of use for each scenario, and then develop a program stimuli and probability distribu-
tion table similar to the one shown in Section 28.4.1.  

pre22126_ch28_601-622.indd   620pre22126_ch28_601-622.indd   620 13/12/13   6:15 PM13/12/13   6:15 PM



CHAPTER 28  FORMAL MODELING AND VERIFICATION  621

   28.7.  For the program stimuli and probability distribution table developed in Problem 28.6, 
use a random-number generator to develop a set of test cases for use in statistical use 
testing.  

   28.8.  In your own words, describe the intent of certifi cation in the cleanroom software en-
gineering context.  

   28.9.  You have been assigned to a team that is developing software for a fax modem. Your 
job is to develop the “phone book” portion of the application. The phone book function en-
ables up to  MaxNames  people to be stored along with associated company names, fax num-
bers, and other related information. Using natural language, defi ne

     a.  The data invariant.  
    b.  The state.  

    c.  The operations that are likely.     

   28.10.  You have been assigned to a software team that is developing software called 
MemoryDoubler that provides greater apparent memory for a PC than physical memory. 
This is accomplished by identifying, collecting, and reassigning blocks of memory that have 
been assigned to an existing application but are not being used. The unused blocks are re-
assigned to applications that require additional memory. Making appropriate assumptions 
and using natural language, defi ne

     a.  The data invariant.  
    b.  The state.  
    c.  The operations that are likely.  

         FUR THER READINGS AND INFORMATION SOURCES 
  Relatively few books on advanced specifi cation and verifi cation techniques have been pub-
lished in recent years. However, some new additions to the literature are worth consider-
ing. Books by Gabbar ( Modern Formal Methods and Applications,  Springer, 2010) and Boca 
and his colleagues ( Formal Methods: State of the Art and New Directions,  Springer, 2010) 
present both fundamentals, new developments, and advanced applications. Jackson ( Soft-

ware Abstractions,  2nd ed., MIT Press, 2012) presents all of the basics and an approach that 
he calls “lightweight formal methods.” Monin and Hinchey ( Understanding Formal Methods,  
Springer, 2003) provide an excellent introduction to the subject. Butler and other editors 
( Integrated Formal Methods,  Springer, 2002) present a variety of papers on formal methods 
topics. 

   In addition to books referenced in this chapter, Prowell and his colleagues ( Clean-

room Software Engineering: Technology and Process,  Addison-Wesley, 1999) provide an in-
depth treatment of all important aspects of the cleanroom approach. Useful discussions 
of cleanroom topics have been edited by Liu ( Formal Engineering for Industrial Software 

Development: Using the SOFL Method,  Springer, 2010) and Poore and Trammell ( Cleanroom 

Software Engineering: A Reader,  Blackwell Publishing, 1996). Becker and Whittaker ( Clean-

room Software Engineering Practices,  Idea Group Publishing, 1997) present an excellent 
overview for those who are unfamiliar with cleanroom practices. 

    The Cleanroom Pamphlet  (Software Technology Support Center, Hill AF Base, April 1995) 
contains reprints of a number of important articles. The Cyber Security and Information 
Systems Information Analysis Center (CSIAC) ( www.thecsiac.com ) provides many useful 
papers, guidebooks, and other information sources on cleanroom software engineering. 

   Design verifi cation via proof of correctness lies at the heart of the cleanroom approach. 
Books by Cupillari ( The Nuts and Bolts of Proofs,  4th ed., Academic Press, 2012), Solow ( How 

to Read and Do Proofs,  5th ed., Wiley, 2009), Eccles ( An Introduction to Mathematical Reason-

ing,  Cambridge University Press, 1998), provide excellent introductions into the mathemat-
ical basics. Stavely ( Toward Zero-Defect Software,  Addison-Wesley, 1998), Baber ( Error-Free 

pre22126_ch28_601-622.indd   621pre22126_ch28_601-622.indd   621 13/12/13   6:15 PM13/12/13   6:15 PM



622 PART THREE  QUALITY MANAGEMENT

Software,  Wiley, 1991), and Schulmeyer ( Zero Defect Software,  McGraw-Hill, 1990) discuss 
proof of correctness in considerable detail. 

   In the formal methods domain, books by Hinchey and Bowan ( Industrial Strength Formal 

Methods,  Springer-Verlag, 1999) and Hussmann ( Formal Foundations for Software Engineer-

ing Methods,  Springer-Verlag, 1997). Appendix 3 of this text contains additional discussion 
on the mathematical foundations of formal methods and the role of specifi cation languages 
in software engineering. 

   A wide variety of information sources on cleanroom software engineering and formal meth-
ods is available on the Internet. An up-to-date list of World Wide Web references can be found 
under “software engineering resources” at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch28_601-622.indd   622pre22126_ch28_601-622.indd   622 13/12/13   6:15 PM13/12/13   6:15 PM



623

 SOFTWARE CONFIGURATION
MANAGEMENT 

       Change is inevitable when computer software is built and can lead to 

confusion when you and other members of a software team are work-

ing on a project. Confusion arises when changes are not analyzed be-

fore they are made, recorded before they are implemented, reported to those 

with a need to know, or controlled in a manner that will improve quality and 

reduce error. Babich [Bab86] discusses this when he states:

  The art of coordinating software development to minimize . . . confusion is called 

confi guration management. Confi guration management is the art of identifying, 

organizing, and controlling modifi cations to the software being built by a pro-

gramming team. The goal is to maximize productivity by minimizing mistakes.   

 Software confi guration management (SCM) is an umbrella activity that is 

applied throughout the software process. Because change can occur at any 

time, SCM activities are developed to (1) identify change, (2) control change,

  What is it?   When you build com-
puter software, change happens. 
And because it happens, you need to 
manage it effectively. Software confi g-

uration management (SCM), also called change 
management, is a set of activities designed to 
manage change by identifying the work prod-
ucts that are likely to change, establishing rela-
tionships among them, defi ning mechanisms for 
managing different versions of these work prod-
ucts, controlling the changes imposed, and audit-
ing and reporting on the changes made. 

   Who does it?   Everyone involved in the soft-
ware process is involved with change manage-
ment to some extent, but specialized support 
positions are sometimes created to manage 
the SCM process. 

   Why is it important?   If you don’t control 
change, it controls you. And that’s never good. 
It’s very easy for a stream of uncontrolled 
changes to turn a well-run software project into 
chaos. As a consequence, software quality suf-
fers and delivery is delayed. For that reason, 

change management is an essential part of 
quality management. 

   What are the steps?   Because many work 
products are produced when software is built, 
each must be uniquely identifi ed. Once this is 
accomplished, mechanisms for version and 
change control can be established. To ensure 
that quality is maintained as changes are 
made, the process is audited; and to ensure 
that those with a need to know are informed 
about changes, reporting is conducted. 

   What is the work product?   A Software Con-
fi guration Management Plan defi nes the project 
strategy for change management. In addition, 
when formal SCM is invoked, the change con-
trol process produces software change requests, 
reports, and engineering change orders. 

   How do I ensure that I’ve done it right?  
 When every work product can be accounted 
for, traced, and controlled; when every change 
can be tracked and analyzed; when everyone 
who needs to know about a change has been 
informed—you’ve done it right.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    baselines  . . . . . . . 626  
    change control. . . . 635  
    confi guration 
audit  . . . . . . . . . . 639  
    confi guration 
management, 
elements of. . . . . . 626  
    confi guration 
objects . . . . . . . . . 642  
    content 
management. . . . . 643  
    identifi cation. . . . . 633  
impact 
management. . . . . 638
    repository  . . . . . . 630  
    SCM process . . . . . 632  

    C H A P T E R

29 

pre22126_ch29_623-652.indd   623pre22126_ch29_623-652.indd   623 13/12/13   6:16 PM13/12/13   6:16 PM



624 PART THREE  QUALITY MANAGEMENT

(3) ensure that change is being properly implemented, and (4) report changes to 

others who may have an interest. 

 It is important to make a clear distinction between software support and soft-

ware confi guration management. Support is a set of software engineering activ-

ities that occur after software has been delivered to the customer and put into 

operation. Software confi guration management is a set of tracking and control 

activities that are initiated when a software engineering project begins and ter-

minates only when the software is taken out of operation. 

 A primary goal of software engineering is to improve the ease with which 

changes can be accommodated and reduce the amount of effort expended when 

changes must be made. In this chapter, we discuss the specifi c activities that en-

able you to manage change. 

    29.1  SOFTWARE CONFIGURATION MANAGEMENT 

  The output of the software process is information that may be divided into 

three broad categories: (1) computer programs (both source level and execut-

able forms), (2) work products that describe the computer programs (targeted at 

various stakeholders), and (3) data or content (contained within the program or 

external to it). The items that comprise all information produced as part of the 

software process are collectively called a  software confi guration .  

 As software engineering work progresses, a hierarchy of  software confi gu-

ration items  (SCIs)—a named element of information that can be as small as a 

single UML diagram or as large as the complete design document—is created. 

If each SCI simply led to other SCIs, little confusion would result. Unfortunately, 

another variable enters the process— change.  Change may occur at any time, for 

any reason. In fact, the  First Law of System Engineering  [Ber80] states: “No matter 

where you are in the system life cycle, the system will change, and the desire to 

change it will persist throughout the life cycle.” 

 What is the origin of these changes? The answer to this question is as varied as 

the changes themselves. However, there are four fundamental sources of change: 

      •  New business or market conditions dictate changes in product require-

ments or business rules.  

   •  New stakeholder needs demand modifi cation of data produced by infor-

mation systems, functionality delivered by products, or services delivered 

by a computer-based system.  

   •  Reorganization or business growth/downsizing causes changes in project 

priorities or software engineering team structure.  

   •  Budgetary or scheduling constraints cause a redefi nition of the system or 

product.  

  uote: 

 “There is nothing 
permanent except 
change.” 

 Heraclitus, 
500 B.C. 

 What is 
the origin 

of changes that 
are requested for 
software? 

?

    software confi guration 
items  . . . . . . . . . . 628  
    status reporting  . . 639  
    version control  . . . 634  
    Web and 
MobileApps  . . . . . 640  
  

pre22126_ch29_623-652.indd   624pre22126_ch29_623-652.indd   624 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  625

  Software confi guration management is a set of activities that have been devel-

oped to manage change throughout the life cycle of computer software. SCM can 

be viewed as a software quality assurance activity that is applied throughout the 

software process. In the sections that follow, we describe major SCM tasks and 

important concepts that help us to manage change. 

   29.1.1   An SCM Scenario  1        

 A typical confi guration management (CM) operational scenario involves a proj-

ect manager who is in charge of a software group, a confi guration manager who 

is in charge of the CM procedures and policies, the software engineers who are 

responsible for developing and maintaining the software product, and the cus-

tomer who uses the product. In the scenario, assume that the product is a small 

one involving about 15,000 lines of code being developed by a team of four people. 

(Note that other scenarios of smaller or larger teams are possible, but, in es-

sence, there are generic issues that each of these projects face concerning CM.) 

 At the operational level, the scenario involves various roles and tasks. For the 

project manager, the goal is to ensure that the product is developed within a certain 

time frame. Hence, the manager monitors the progress of development and rec-

ognizes and reacts to problems. This is done by generating and analyzing reports 

about the status of the software system and by performing reviews on the system. 

   The goals of the confi guration manager are to ensure that procedures and 

policies for creating, changing, and testing of code are followed, as well as to 

make information about the project accessible. To implement techniques for 

maintaining control over code changes, this manager introduces mechanisms 

for making offi cial requests for changes, for evaluating them (via a Change Con-

trol Board that is responsible for approving changes to the software system), and 

for authorizing changes. The manager creates and disseminates task lists for the 

engineers and basically creates the project context. Also, the manager collects 

statistics about components in the software system, such as information deter-

mining which components in the system are problematic. 

   For the software engineers, the goal is to work effectively. This means engi-

neers do not unnecessarily interfere with each other in the creation and test-

ing of code and in the production of supporting work products. But, at the same 

time, they try to communicate and coordinate effi ciently. Specifi cally, engineers 

use tools that help build a consistent software product. They communicate and 

coordinate by notifying one another about tasks required and tasks completed. 

Changes are propagated across each other’s work by merging fi les. Mechanisms 

exist to ensure that, for components that undergo simultaneous changes, there is 

 What are 
the goals of 

and the activities 
performed by 
each of the 
constituencies 
involved in change 
management? 

?

   There must be a 
mechanism to ensure 
that simultaneous 
changes to the same 
component are 
properly tracked, 
managed and 
executed. 

  1  This section is extracted from [Dar01]. Special permission to reproduce “Spectrum of Function-

ality in CM System” by Susan Dart [Dar01], © 2001 by Carnegie Mellon University is granted by 

the Software Engineering Institute. 

pre22126_ch29_623-652.indd   625pre22126_ch29_623-652.indd   625 13/12/13   6:16 PM13/12/13   6:16 PM



626 PART THREE  QUALITY MANAGEMENT

some way of resolving confl icts and merging changes. A history is kept of the evo-

lution of all components of the system along with a log with reasons for changes 

and a record of what actually changed. The engineers have their own workspace 

for creating, changing, testing, and integrating code. At a certain point, the code 

is made into a baseline from which further development continues and from 

which variants for other target machines are made. 

 The customer uses the product. Since the product is under CM control, the 

customer follows formal procedures for requesting changes and for indicating 

bugs in the product. 

 Ideally, a CM system used in this scenario should support all these roles and 

tasks; that is, the roles determine the functionality required of a CM system. The 

project manager sees CM as an auditing mechanism; the confi guration manager 

sees it as a controlling, tracking, and policy-making mechanism; the software 

engineer sees it as a changing, building, and access control mechanism; and the 

customer sees it as a quality assurance mechanism. 

    29.1.2   Elements of a Confi guration Management System 

 In her comprehensive white paper on software confi guration management, 

Susan Dart [Dar01] identifi es four important elements that should exist when a 

confi guration management system is developed:

    •   Component elements —A set of tools coupled within a fi le management 

system (e.g., a database) that enables access to and management of each 

software confi guration item.  

   •   Process elements —A collection of procedures and tasks that defi ne an 

effective approach to change management (and related activities) for all 

constituencies involved in the management, engineering, and use of com-

puter software.  

   •   Construction elements —A set of tools that automate the construction of 

software by ensuring that the proper set of validated components (i.e., the 

correct version) have been assembled.  

   •   Human elements —A set of tools and process features (encompassing other 

CM elements) used by the software team to implement effective SCM.    

 These elements (to be discussed in more detail in later sections) are not mu-

tually exclusive. For example, component elements work in conjunction with 

construction elements as the software process evolves. Process elements guide 

many human activities that are related to SCM and might therefore be consid-

ered human elements as well. 

    29.1.3   Baselines 

   Change is a fact of life in software development. Customers want to modify re-

quirements. Developers want to modify the technical approach. Managers want 

pre22126_ch29_623-652.indd   626pre22126_ch29_623-652.indd   626 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  627

to modify the project strategy. Why all this modifi cation? The answer is really 

quite simple. As time passes, all constituencies know more (about what they need, 

which approach would be best, and how to get it done and still make money). This 

additional knowledge is the driving force behind most changes and leads to a 

statement of fact that is diffi cult for many software engineering practitioners to 

accept:  Most changes are justifi ed!  

 A  baseline  is a software confi guration management concept that helps you 

to control change without seriously impeding justifi able change. The IEEE (IEEE 

Std. No. 610.12-1990) defi nes a baseline as:

  A specifi cation or product that has been formally reviewed and agreed upon, that 

thereafter serves as the basis for further development, and that can be changed only 

through formal change control procedures. 

 Before a software confi guration item becomes a baseline, change may be made 

quickly and informally. However, once a baseline is established, changes can be made, 

but a specifi c, formal procedure must be applied to evaluate and verify each change.   

 In the context of software engineering, a baseline is a milestone in the devel-

opment of software. A baseline is marked by the delivery of one or more software 

confi guration items that have been approved as a consequence of a technical 

review (Chapter 20). For example, the elements of a design model have been 

documented and reviewed. Errors are found and corrected. Once all parts of 

the model have been reviewed, corrected, and then approved, the design model 

becomes a baseline. Further changes to the program architecture (documented 

in the design model) can be made only after each has been evaluated and ap-

proved. Although baselines can be defi ned at any level of detail, the most com-

mon software baselines are shown in  Figure 29.1   .      

   Most software changes 
are justifi ed, so there’s 
no point in complaining 
about them. Rather, be 
certain that you have 
mechanisms in place 
to handle them. 

 FIGURE 29.1

 Baselined 
SCIs and 
the project 
database

SCIs

SCIs

Modified

Software
engineering

tasks

Technical
reviewsSCIs

Approved

SCIs

Extracted
SCM

controls

SCIs

Stored

Project database

System Specification
Software Requirements
Design Specification 
Source Code
Test Plans/Procedures/Data
Operational System   

BASELINES:

pre22126_ch29_623-652.indd   627pre22126_ch29_623-652.indd   627 13/12/13   6:16 PM13/12/13   6:16 PM



628 PART THREE  QUALITY MANAGEMENT

   The progression of events that lead to a baseline is also illustrated in  Figure 29.1   . 

Software engineering tasks produce one or more SCIs. After SCIs are reviewed and 

approved, they are placed in a  project database  (also called a  project library  or  soft-

ware repository  and discussed in Section 29.3). When a member of a software engi-

neering team wants to make a modifi cation to a baselined SCI, it is copied from the 

project database into the engineer’s private workspace. However, this extracted SCI 

can be modifi ed only if SCM controls (discussed later in this chapter) are followed. 

The arrows in  Figure 29.1    illustrate the modifi cation path for a baselined SCI. 

    29.1.4   Software Confi guration Items 

 We have already defi ned a software confi guration item as information that is 

created as part of the software engineering process. In the extreme, an SCI could 

be considered to be a single section of a large specifi cation or one test case in a 

large suite of tests. More realistically, an SCI is all or part of a work product (e.g., 

a document, an entire suite of test cases, or a named program component). 

 In addition to the SCIs that are derived from software work products, many 

software engineering organizations also place software tools under confi gura-

tion control. That is, specifi c versions of editors, compilers, browsers, and other 

automated tools are “frozen” as part of the software confi guration. Because these 

tools were used to produce documentation, source code, and data, they must be 

available when changes to the software confi guration are to be made. Although 

problems are rare, it is possible that a new version of a tool (e.g., a compiler) 

might produce different results than the original version. For this reason, tools, 

like the software that they help to produce, can be baselined as part of a compre-

hensive confi guration management process. 

 In reality, SCIs are organized to form confi guration objects that may be cat-

aloged in the project database with a single name. A  confi guration object  has a 

name, attributes, and is “connected” to other objects by relationships. Referring 

to  Figure 29.2   , the confi guration objects,  DesignSpecifi cation, DataModel, Compo-

nentN, SourceCode,  and  TestSpecifi cation  are each defi ned separately. However, 

each of the objects is related to the others as shown by the arrows. A curved arrow 

indicates a compositional relation. That is,  DataModel  and  ComponentN  are part 

of the object  DesignSpecifi cation.  A double-headed straight arrow indicates an in-

terrelationship. If a change were made to the  SourceCode  object, the interrelation-

ships enable you to determine what other objects (and SCIs) might be affected.  2           

    29.1.5   Management of Dependencies and Changes 

 We introduced the concept of traceability and the use of traceability matrices 

in Section 8.2.6. The traceability matrix is one way to document dependencies 

   Be sure that the project 
database is maintained 
in a centralized, con-
trolled location. 

  2  These relationships are defi ned within the database. The structure of the database (repository) 

is discussed in greater detail in Section 29.3. 

pre22126_ch29_623-652.indd   628pre22126_ch29_623-652.indd   628 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  629

among requirements, architectural decisions (Section 13.5), and defect causes 

(Section 21.6). These dependencies need to be taken into account when deter-

mining the impact of a proposed change and guiding the selection of test cases 

that should be used for regression testing (Section 22.3.2). Dependency manage-

ment can be viewed as impact management.  3     This helps developers to focus on 

how changes that are made affect their work [Sou08].  

  Impact analysis  focuses on organizational behavior as well as individual ac-

tions. Impact management involves two complementary aspects: (1) ensuring 

that software developers employ strategies to minimize the impact of their col-

leagues’ actions on their own work, and (2) encouraging software developers to 

use practices that minimize the impact of their own work on that of their col-

leagues. It is important to note that when a developer tries to minimize the im-

pact of her work on others she is also reducing the work others need to do to 

minimize the impact of her work on theirs [Sou08]. 

 It is important to maintain software work products to ensure that developers 

are aware of the dependencies among the SCIs. Developers must establish dis-

cipline when checking items in and out of the SCM repository and when making 

approved changes as discussed in Section 29.2. Bug tracking software is also use-

ful in helping to uncover SCI dependencies. Electronic communication (e-mail, 

wikis, social networks) provide convenient ways for developers to share undocu-

mented dependencies and problems as they arise. 

DesignSpecification

data design
architectural design
module design
interface design

ComponentN

interface description
algorithm description
PDL 

DataModel

TestSpecification

test plan
test procedure
test cases

SourceCode

 FIGURE 29.2

 Confi guration 
objects

  3  Impact management is discussed further in Section 29.3.4 

pre22126_ch29_623-652.indd   629pre22126_ch29_623-652.indd   629 13/12/13   6:16 PM13/12/13   6:16 PM



630 PART THREE  QUALITY MANAGEMENT

       29.2  THE SCM REPOSITORY 

  The SCM repository is the set of mechanisms and data structures that allow a 

software team to manage change in an effective manner. It provides the obvious 

functions of a modern database management system by ensuring data integrity, 

sharing, and integration. In addition, the SCM repository provides a hub for 

the integration of software tools, is central to the fl ow of the software process, 

and can enforce uniform structure and format for software engineering work 

products. 

 To achieve these capabilities, the repository is defi ned in terms of a me-

ta-model. The  meta-model  determines how information is stored in the repos-

itory, how data can be accessed by tools and viewed by software engineers, how 

well data security and integrity can be maintained, and how easily the existing 

model can be extended to accommodate new needs. 

   29.2.1   General Features and Content 

 The features and content of the repository are best understood by looking at it 

from two perspectives: what is to be stored in the repository and what specifi c 

services are provided by the repository. A detailed breakdown of types of repre-

sentations, documents, and other work products that are stored in the repository 

is presented in  Figure 29.3   .       

Business rules
Business functions
Organization structure
Information architecture

Project estimates
Project schedule
SCM requirements
 Change requests
 Change reports
SQA requirements
Project reports/audit reports
Project metrics

Use cases
Analysis model
 Scenario-based diagrams
 Flow-oriented diagrams
 Class-based diagrams
 Behavioral diagrams
Design model
 Architectural diagrams
 Interface diagrams
 Component-level diagrams
Technical metrics

Source code
Object code
System build instructions

Test cases
Test scripts
Test results
Quality metrics

Project plan
SCM/SQA plan
System spec
Requirements spec
Design document
Test plan and procedure
Support documents
User manual

Project
management

content

Documents

Model
content

Construction
content

V & V
content

Business
content

 FIGURE 29.3

 Content of the 
repository

pre22126_ch29_623-652.indd   630pre22126_ch29_623-652.indd   630 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  631

   A robust repository provides two different classes of services: (1) the same 

types of services that might be expected from any sophisticated database man-

agement system and (2) services that are specifi c to the software engineering 

environment. 

 A repository that serves a software engineering team should also (1) integrate 

with or directly support process management functions, (2) support specifi c rules 

that govern the SCM function and the data maintained within the repository, 

(3) provide an interface to other software engineering tools, and (4) accommo-

date storage of sophisticated data objects (e.g., text, graphics, video, audio). 

    29.2.2   SCM Features 

   To support SCM, the repository must have a tool set that provides support for the 

following features: 

  Versioning.   As a project progresses, many versions (Section 29.3.2) of individ-

ual work products will be created. The repository must be able to save all of these 

versions to enable effective management of product releases and to permit de-

velopers to go back to previous versions during testing and debugging. 

 The repository must be able to control a wide variety of object types, including 

text, graphics, bit maps, complex documents, and unique objects such as screen 

and report defi nitions, object fi les, test data, and results. A mature repository 

tracks versions of objects with arbitrary levels of granularity; for example, a sin-

gle data defi nition or a cluster of modules can be tracked. 

   Dependency tracking and change management.   The repository manages a 

wide variety of relationships among the data elements stored in it. These include 

relationships between enterprise entities and processes, among the parts of an 

application design, between design components and the enterprise informa-

tion architecture, between design elements and deliverables, and so on. Some 

of these relationships are merely associations, and some are dependencies or 

mandatory relationships. 

 The ability to keep track of all of these relationships is crucial to the integrity 

of the information stored in the repository and to the generation of deliverables 

based on it, and it is one of the most important contributions of the repository 

concept to the improvement of the software development process. For example, 

if a UML class diagram is modifi ed, the repository can detect whether related 

classes, interface descriptions, and code components also require modifi cation 

and can bring affected SCIs to the developer’s attention. 

   Requirements tracing.   This special function depends on link management and 

provides the ability to track all the design and construction components and de-

liverables that result from a specifi c requirements specifi cation (forward trac-

ing). In addition, it provides the ability to identify which requirement generated 

any given work product (backward tracing). 

 WebRef 
 An example of a 
commercially available 
repository can be 
obtained at   www
.oracle.com/
technology/
products/
repository/
index.html  . 

   The repository must be 
capable of maintaining 
SCIs related to many 
different versions 
of the software. 
More important, it 
must provide the 
mechanisms for 
assembling these SCIs 
into a version-specifi c 
confi guration. 

pre22126_ch29_623-652.indd   631pre22126_ch29_623-652.indd   631 13/12/13   6:16 PM13/12/13   6:16 PM



632 PART THREE  QUALITY MANAGEMENT

   Configuration management.   A confi guration management facility keeps track 

of a series of confi gurations representing specifi c project milestones or produc-

tion releases. 

   Audit trails.   An audit trail establishes additional information about when, why, 

and by whom changes are made. Information about the source of changes can 

be entered as attributes of specifi c objects in the repository. A repository trigger 

mechanism is helpful for prompting the developer or the tool that is being used 

to initiate entry of audit information (such as the reason for a change) whenever 

a design element is modifi ed. 

        29.3  THE SCM PROCESS   

 The software confi guration management process defi nes a series of tasks that 

have four primary objectives: (1) to identify all items that collectively defi ne the 

software confi guration, (2) to manage changes to one or more of these items, (3) to 

facilitate the construction of different versions of an application, and (4) to ensure 

that software quality is maintained as the confi guration evolves over time. 

 A process that achieves these objectives need not be bureaucratic and pon-

derous, but it must be characterized in a manner that enables a software team to 

develop answers to a set of complex questions: 

      •  How does a software team identify the discrete elements of a software 

confi guration?  

   •  How does an organization manage the many existing versions of a pro-

gram (and its documentation) in a manner that will enable change to be 

accommodated effi ciently?  

   •  How does an organization control changes before and after software is re-

leased to a customer?  

   •  How does an organization assess the impact of change and manage the 

impact effectively?  

   •  Who has responsibility for approving and ranking requested changes?  

   •  How can we ensure that changes have been made properly?  

   •  What mechanism is used to apprise others of changes that are made?  

  These questions lead to the defi nition of fi ve SCM tasks—identifi cation, ver-

sion control, change control, confi guration auditing, and reporting—illustrated 

in  Figure 29.4   .      

 Referring to the fi gure, SCM tasks can be viewed as concentric layers. SCIs 

fl ow outward through these layers throughout their useful life, ultimately becom-

ing part of the software confi guration of one or more versions of an application 

or system. As an SCI moves through a layer, the actions implied by each SCM 

  uote: 

 “Any change, 
even a change 
for the better, is 
accompanied by 
drawbacks and 
discomforts.” 

 Arnold Bennett 

 What 
questions 

should the 
SCM process 
be designed to 
answer? 

?

pre22126_ch29_623-652.indd   632pre22126_ch29_623-652.indd   632 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  633

task may or may not be applicable. For example, when a new SCI is created, it 

must be identifi ed. However, if no changes are requested for the SCI, the change 

control layer does not apply. The SCI is assigned to a specifi c version of the soft-

ware (version control mechanisms come into play). A record of the SCI (its name, 

creation date, version designation, etc.) is maintained for confi guration auditing 

purposes and reported to those with a need to know. In the sections that follow, 

we examine each of these SCM process layers in more detail. 

   29.3.1   Identifi cation of Objects in the Software Confi guration 

 To control and manage software confi guration items, each should be separately 

named and then organized using an object-oriented approach. Two types of ob-

jects can be identifi ed [Cho89]: basic objects and aggregate objects.  4     A  basic ob-

ject  is a unit of information that you create during analysis, design, code, or test. 

For example, a basic object might be a section of a requirements specifi cation, 

part of a design model, source code for a component, or a suite of test cases that 

are used to exercise the code. An  aggregate object  is a collection of basic objects 

and other aggregate objects. For example, a  DesignSpecifi cation  is an aggregate 

object. Conceptually, it can be viewed as a named (identifi ed) list of pointers that 

specify aggregate objects such as  ArchitecturalModel  and  DataModel,  and   basic 

objects  such as  ComponentN  and  UMLDiagramN .

     Each object has a set of distinct features that identify it uniquely: a name, a de-

scription, a list of resources, and a “realization.” The object name is a character 

string that identifi es the object unambiguously. The object description is a list of 

   The interrelationships 
established for 
confi guration objects 
allow you to assess the 
impact of change. 

 FIGURE 29.4

 Layers of the 
SCM process

Software
Vm.n

Reporting

Version control

Change control

Identification

Configuration auditing

SCIs

  4  The concept of an aggregate object [Gus89] has been proposed as a mechanism for represent-

ing a complete version of a software confi guration. 

pre22126_ch29_623-652.indd   633pre22126_ch29_623-652.indd   633 13/12/13   6:16 PM13/12/13   6:16 PM



634 PART THREE  QUALITY MANAGEMENT

data items that identify the SCI type (e.g., model element, program, data) repre-

sented by the object, a project identifi er, and change and/or version information. 

Resources are “entities that are provided, processed, referenced or otherwise 

required by the object” [Cho89]. For example, data types, specifi c functions, or 

even variable names may be considered to be object resources. The realization 

is a pointer to the “unit of text” for a basic object and null for an aggregate object. 

 Confi guration object identifi cation can also consider the relationships that 

exist between named objects. For example, using the simple notation

 Class diagram <part-of> requirements model; 

 Requirements model <part-of> requirements specifi cation;  

 we create a hierarchy of SCIs. 

 In many cases, objects are interrelated across branches of the object hier-

archy. These cross-structural relationships can be represented in the following 

manner: 

   data model <interrelated> data fl ow model; 

 data model  <interrelated>  test case class m; 

 In the fi rst case, the interrelationship is between a composite object, while the 

second relationship is between an aggregate object ( DataModel ) and a basic 

object ( TestCaseClassM ). 

 The identifi cation scheme for software objects must recognize that objects 

evolve throughout the software process. Before an object is baselined, it may 

change many times, and even after a baseline has been established, changes may 

be quite frequent. 

    29.3.2   Version Control 

 Version control combines procedures and tools to manage different versions of 

confi guration objects that are created during the software process. A version 

control system implements or is directly integrated with four major capabilities: 

(1) a project database (repository) that stores all relevant confi guration objects, 

(2) a  version management  capability that stores all versions of a confi guration 

object (or enables any version to be constructed using differences from past ver-

sions), (3) a  make facility  that enables you to collect all relevant confi guration ob-

jects and construct a specifi c version of the software. In addition, version control 

and change control systems often implement an  issues tracking  (also called  bug 

tracking ) capability that enables the team to record and track the status of all 

outstanding issues associated with each confi guration object. 

 A number of version control systems establish a  change set —a collection of 

all changes (to some baseline confi guration) that are required to create a spe-

cifi c version of the software. Dart [Dar91] notes that a change set “captures all 

   Even if the project 
database provides 
the ability to 
establish these 
relationships, they are 
time-consuming to 
establish and diffi cult 
to keep up to date. 
Although very useful 
for impact analysis, 
they are not essential 
for overall change 
management. 

pre22126_ch29_623-652.indd   634pre22126_ch29_623-652.indd   634 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  635

changes to all fi les in the confi guration along with the reason for changes and 

details of who made the changes and when.” 

 A number of named change sets can be identifi ed for an application or system. 

This enables you to construct a version of the software by specifying the change 

sets (by name) that must be applied to the baseline confi guration. To accomplish 

this, a  system modeling  approach is applied. The system model contains: (1) a 

 template  that includes a component hierarchy and a “build order” for the compo-

nents that describes how the system must be constructed, (2) construction rules, 

and (3) verifi cation rules.  5      

 A number of different automated approaches to version control have been 

proposed over the years. The primary difference in approaches is the sophistica-

tion of the attributes that are used to construct specifi c versions and variants of 

a system and the mechanics of the process for construction.    

    uote: 

 “The art of 
progress is to 
preserve order 
amid change and 
to preserve change 
amid order.” 

 Alfred North 
Whitehead 

  5  It is also possible to query the system model to assess how a change in one component will 

impact other components. 

  6  Download link for [CVS12]  http://olex.openlogic.com/packages/cvs  

   The Concurrent Versions System (CVS)  
 The use of tools to achieve version control is 
essential for effective change management. 

The  Concurrent Versions System  (CVS) is a widely used 
tool for version control. Originally designed for source 
code but useful for any text-based fi le, the CVS system 
(1) establishes a simple repository, (2) maintains all ver-
sions of a fi le in a single named fi le by storing only the 
differences between progressive versions of the original 
fi le, and (3) protects against simultaneous changes to 
a fi le by establishing different directories for each de-
veloper, thus insulating one from another. CVS merges 
changes when each developer completes her work. 

 It is important to note that CVS is not a “build” sys-
tem; that is, it does not construct a specifi c version of the 

software. Other tools (e.g.,  Makefi le ) must be integrated 
with CVS to accomplish this. CVS does not implement a 
change control process (e.g., change requests, change 
reports, bug tracking). 

 Even with these limitations, CVS “is a dominant 
open-source network-transparent version control system 
[that] is useful for everyone from individual developers 
to large, distributed teams” [CVS07]. Its client-server ar-
chitecture allows users to access fi les via Internet connec-
tions, and its open-source philosophy makes it available 
on most popular platforms. 

 CVS is available at no cost for Windows, Mac OS, 
LINUX, and UNIX environments and an open-source ver-
sion of the application [CVS12] is available.  6      

 SOFTWARE TOOLS 

    29.3.3   Change Control 

 The reality of change control in a software engineering context has been summed 

up beautifully by James Bach [Bac98]:

  Change control is vital. But the forces that make it necessary also make it annoying. 

We worry about change because a tiny perturbation in the code can create a big fail-

ure in the product. But it can also fi x a big failure or enable wonderful new capabili-

ties. We worry about change because a single rogue developer could sink the project; 

yet brilliant ideas originate in the minds of those rogues, and a burdensome change 

control process could effectively discourage them from doing creative work. 

pre22126_ch29_623-652.indd   635pre22126_ch29_623-652.indd   635 13/12/13   6:16 PM13/12/13   6:16 PM



636 PART THREE  QUALITY MANAGEMENT

   Bach recognizes that we face a balancing act. Too much change control and we 

create problems. Too little, and we create other problems. 

   For a large software project, uncontrolled change rapidly leads to chaos. For 

such projects, change control combines human procedures and automated tools 

to provide a mechanism for the control of change. The change control process is 

illustrated schematically in  Figure 29.5   . A  change request  is submitted and eval-

uated to assess technical merit, potential side effects, overall impact on other 

confi guration objects and system functions, and the projected cost of the change. 

The results of the evaluation are presented as a  change report,  which is used by 

a  change control authority  (CCA)—a person or group that makes a fi nal decision 

   It should be noted that 
a number of change 
requests may be 
combined to result in 
a single ECO and that 
ECOs typically result 
in changes to multiple 
confi guration objects. 

Need for change is recognized

Change request from user

Developer evaluates

Change report is generated

Change control authority decides

Request is queued for action, ECO generated

Assign individuals to configuration objects

“Check out” configuration objects (items)

Make the change

Review (audit) the change

“Check in” the configuration items that have been changed

Establish a baseline for testing

Perform quality assurance and testing activities

“Promote” changes for inclusion in next release (revision)

Rebuild appropriate version of software

Review (audit) the change to all configuration items

Include changes in new version

Distribute the new version

Change request is denied

User is informed

 FIGURE 29.5

 The change 
control process

pre22126_ch29_623-652.indd   636pre22126_ch29_623-652.indd   636 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  637

on the status and priority of the change. An  engineering change order  (ECO) is 

generated for each approved change. The ECO describes the change to be made, 

the constraints that must be respected, and the criteria for review and audit. 

 The object(s) to be changed can be placed in a directory that is controlled 

solely by the software engineer making the change. A version control system 

(see the CVS sidebar) updates the original fi le once the change has been made. 

As an alternative, the object(s) to be changed can be “checked out” of the project 

database (repository), the change is made, and appropriate SQA activities are 

applied. The object(s) is (are) then “checked in” to the database and appropriate 

version control mechanisms (Section 29.3.2) are used to create the next version 

of the software.      

 These version control mechanisms, integrated within the change control 

process, implement two important elements of change management—access 

control and synchronization control.  Access control  governs which software engi-

neers have the authority to access and modify a particular confi guration object. 

 Synchronization control  helps to ensure that parallel changes, performed by two 

different people, don’t overwrite one another. 

 You may feel uncomfortable with the level of bureaucracy implied by the 

change control process description shown in  Figure 29.5   . This feeling is not un-

common. Without proper safeguards, change control can retard progress and 

create unnecessary red tape. Most software developers who have change control 

mechanisms (unfortunately, many have none) have created a number of layers of 

control to help avoid the problems alluded to here. 

   Prior to an SCI becoming a baseline, only  informal change control  need be 

applied. The developer of the confi guration object (SCI) in question may make 

whatever changes are justifi ed by project and technical requirements (as long 

as changes do not affect broader system requirements that lie outside the devel-

oper’s scope of work). Once the object has undergone technical review and has 

been approved, a baseline can be created.  7     Once an SCI becomes a baseline,  proj-

ect level change control  is implemented. Now, to make a change, the developer 

must gain approval from the project manager (if the change is “local”) or from 

the CCA if the change affects other SCIs. In some cases, the developer dispenses 

with the formal generation of change requests, change reports, and ECOs. How-

ever, assessment of each change is conducted and all changes are tracked and 

reviewed.   
 When the software product is released to customers,  formal change control  is 

instituted. The formal change control procedure has been outlined in  Figure 29.5   . 

 The change control authority plays an active role in the second and third lay-

ers of control. Depending on the size and character of a software project, the 

   Opt for a bit more 
change control than 
you think you’ll need. 
It’s likely that too 
much will be the right 
amount. 

    uote: 

 “Change is 
inevitable, except 
for vending 
machines.” 

 Bumper sticker 

  7  A baseline can be created for other reasons as well. For example, when “daily builds” are cre-

ated, all components checked in by a given time become the baseline for the next day’s work. 

pre22126_ch29_623-652.indd   637pre22126_ch29_623-652.indd   637 13/12/13   6:16 PM13/12/13   6:16 PM



638 PART THREE  QUALITY MANAGEMENT

CCA may be composed of one person—the project manager—or a number of 

people (e.g., representatives from software, hardware, database engineering, 

support, marketing). The role of the CCA is to take a global view, that is, to as-

sess the impact of change beyond the SCI in question. How will the change affect 

hardware? How will the change affect performance? How will the change modify 

customers’ perception of the product? How will the change affect product quality 

and reliability? These and many other questions are addressed by the CCA. 

   SCM Issues     SCM Issues  

  The scene:  Doug Miller’s offi ce 
as the  SafeHome  software project 

begins. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software engi-
neering team. 

  The conversation:  

  Doug:  I know it’s early, but we’ve got to talk about 
change management. 

  Vinod (laughing):  Hardly. Marketing called this 
morning with a few “second thoughts.” Nothing major, 
but it’s just the beginning. 

  Jamie:  We’ve been pretty informal about change 
management on past projects. 

  Doug:  I know, but this is bigger and more visible, and 
as I recall . . . 

  Vinod (nodding):  We got killed by uncontrolled 
changes on the home lighting control project . . .
remember the delays that . . . 

  Doug (frowning):  A nightmare that I’d prefer not to 
relive. 

  Jamie:  So what do we do? 

  Doug:  As I see it, three things. First we have to 
develop—or borrow—a change control process. 

  Jamie:  You mean how people request changes? 

  Vinod:  Yeah, but also how we evaluate the change, 
decide when to do it (if that’s what we decide), and 
how we keep records of what’s affected by the change. 

  Doug:  Second, we’ve got to get a really good SCM 
tool for change and version control. 

  Jamie:  We can build a database for all of our work 
products. 

  Vinod:  They’re called SCIs in this context, and most 
good tools provide some support for that. 

  Doug:  That’s a good start, now we have to . . . 

  Jamie:  Uh, Doug, you said there were three things . . . 

  Doug (smiling):  Third—we’ve all got to commit to 
follow the change management process and use the 
tools—no matter what, okay?  

 SAFEHOME 

      29.3.4   Impact Management 

 A web of software work product interdependencies must be considered every 

time a change is made.  Impact management  encompasses the work required to 

properly understand these interdependencies and control their effects on other 

SCIs (and the people who are responsible for them). 

 Impact management is accomplished with three actions [Sou08]. First, an  im-

pact network  identifi es the members of a software team (and other stakeholders) 

who might effect or be affected by changes that are made to the software. A clear 

defi nition of the software architecture (Chapter 13) assists greatly in the creation 

of an impact network. Next,  forward impact management  assesses the   impact 

pre22126_ch29_623-652.indd   638pre22126_ch29_623-652.indd   638 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  639

of your own changes on the members of the impact network and then informs 

members of the impact of those changes. Finally,  backward impact management  

examines changes that are made by other team members and their impact on 

your work and incorporates mechanisms to mitigate the impact. 

    29.3.5   Confi guration Audit 

 Identifi cation, version control, and change control help you to maintain order in 

what would otherwise be a chaotic and fl uid situation. However, even the most suc-

cessful control mechanisms track a change only until an ECO is generated. How 

can a software team ensure that the change has been properly implemented? The 

answer is twofold: (1) technical reviews and (2) the software confi guration audit. 

 The technical review (Chapter 20) focuses on the technical correctness of the 

confi guration object that has been modifi ed. The reviewers assess the SCI to de-

termine consistency with other SCIs, omissions, or potential side effects. A tech-

nical review should be conducted for all but the most trivial changes. 

 A  software confi guration audit  complements the technical review by assess-

ing a confi guration object for characteristics that are generally not considered 

during review. The audit asks and answers the following questions: 

       1.  Has the change specifi ed in the ECO been made? Have any additional 

modifi cations been incorporated?  

    2.  Has a technical review been conducted to assess technical correctness?  

    3.  Has the software process been followed and have software engineering 

standards been properly applied?  

    4.  Has the change been “highlighted” in the SCI? Have the change date and 

change author been specifi ed? Do the attributes of the confi guration ob-

ject refl ect the change?  

    5.  Have SCM procedures for noting the change, recording it, and reporting it 

been followed?  

    6.  Have all related SCIs been properly updated? 

   In some cases, the audit questions are asked as part of a technical review. How-

ever, when SCM is a formal activity, the confi guration audit is conducted sep-

arately by the quality assurance group. Such formal confi guration audits also 

ensure that the correct SCIs (by version) have been incorporated into a specifi c 

build and that all documentation is up to date and consistent with the version 

that has been built.  

     29.3.6   Status Reporting 

  Confi guration status reporting  (sometimes called  status accounting ) is an SCM 

task that answers the following questions: (1) What happened? (2) Who did it? 

(3) When did it happen? (4) What else will be affected? 

 What are 
the primary 

questions that 
we ask during 
a confi guration 
audit? 

?

pre22126_ch29_623-652.indd   639pre22126_ch29_623-652.indd   639 13/12/13   6:16 PM13/12/13   6:16 PM



640 PART THREE  QUALITY MANAGEMENT

   The fl ow of information for confi guration status reporting (CSR) is illustrated 

in  Figure 29.5   . Each time an SCI is assigned new or updated identifi cation, a CSR 

entry is made. Each time a change is approved by the CCA (i.e., an ECO is is-

sued), a CSR entry is made. Each time a confi guration audit is conducted, the 

results are reported as part of the CSR task. Output from CSR may be placed in 

an online database or website, so that software developers or support staff can 

access change information by keyword category. In addition, a CSR report is gen-

erated on a regular basis and is intended to keep management and practitioners 

appraised of important changes. 

   Develop a “need to 
know” list for every 
confi guration object 
and keep it up to 
date. When a change 
is made, be sure that 
everyone on the list is 
notifi ed. 

   SCM Support  

  Objective:  SCM tools provide support 
to one or more of the process activities 

discussed in Section 29.3. 

  Mechanics:  Most modern SCM tools work in 
conjunction with a repository (a database system) and 
provide mechanisms for identifi cation, version and 
change control, auditing, and reporting. 

  Representative Tools:   8      
  Software Change Manager,  distributed by Computer 

Associates (  http://www.ca.com/us/products/
detail/ca-change-manager-enterprise-
workbench.aspx  ), is a multiplatform SCM system. 

  ClearCase,  developed by Rational, provides a family 
of SCM functions (  http://www-03.ibm.com/
software/products/us/en/clearcase  ). 

  Serena Dimensions CMF,  distributed by Serena (  http://
www.serena.com/index.php/en/products/

dimensions-cm/  ), provides a full set of SCM tools 
that are applicable for both conventional software 
and WebApps. 

  Allura,  distributed by SourceForge Inc. (  http://
sourceforge.net/p/allura/wiki/Allura%20
Wiki/  ), provides version management, build 
capabilities, issue/bug tracking, and many other 
management features. 

  SurroundSCM,  developed by Seapine Software, 
provides complete change management capabilities 
(  www.seapine.com  ). 

  Vesta,  distributed by Compac, is a public-domain SCM 
system that can support both small (<10 KLOC) and 
large (10,000 KLOC) projects (  www.vestasys.org  ). 

 A comprehensive list of commercial SCM tools and 
environments can be found at   www.cmtoday.com  .  

 SOFTWARE TOOLS 

  8  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  9  See [Pre08] for a comprehensive discussion of Web engineering methods. 

         29.4  CONFIGURATION MANAGEMENT FOR WEB AND MOBILEAPPS 

  Earlier in this book, we discussed the special nature of Web and MobileApps 

and the specialized methods  9     that are required to build them. Among the many 

characteristics that differentiate these applications from traditional software is 

the ubiquitous nature of change. 

 Web and mobile developers often use an iterative, incremental process model 

that applies many principles derived from agile software development (Chap-

ter 5). Using this approach, an engineering team often develops an increment in 

pre22126_ch29_623-652.indd   640pre22126_ch29_623-652.indd   640 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  641

a very short time period using a customer-driven approach. Subsequent incre-

ments add additional content and functionality, and each is likely to implement 

changes that lead to enhanced content, better usability, improved aesthetics, 

better navigation, enhanced performance, and stronger security. Therefore, in 

the agile world of Web and MobileApps, change is viewed somewhat differently. 

 If you’re a member of a software team that builds Web or MobileApps, you 

must embrace change. And yet, a typical agile team eschews all things that 

 appear to be process-heavy, bureaucratic, and formal. Software confi guration 

management is often viewed (albeit incorrectly) to have these characteristics. 

This seeming contradiction is remedied not by rejecting SCM principles, prac-

tices, and tools, but rather by molding them to meet the special needs of Web and 

mobile projects. 

   29.4.1   Dominant Issues 

   As Web and MobileApps become increasingly important to business survival and 

growth, the need for confi guration management grows. Why? Because without 

effective controls, improper changes to these applications (recall that immedi-

acy and continuous evolution are dominant attributes) can lead to: unauthorized 

posting of new product information, erroneous or poorly tested functionality that 

frustrates users, security holes that jeopardize internal company systems, and 

other economically unpleasant or even disastrous consequences. 

 The general strategies for software confi guration management (SCM) de-

scribed in this chapter are applicable, but tactics and tools must be adapted to 

conform to the unique nature of Web and MobileApps. 

 Four issues [Dar99] should be considered when developing tactics for WebApp 

confi guration management. 

  Content.   A typical WebApp contains a vast array of content—text, graphics, ap-

plets, scripts, audio/video fi les, forms, active page elements, tables, streaming 

data, and many others. The challenge is to organize this sea of content into a ra-

tional set of confi guration objects (Section 29.1.4) and then establish appropriate 

confi guration control mechanisms for these objects. One approach is to model the 

WebApp content using conventional data modeling techniques [Wik12], attaching 

a set of specialized properties to each object. The static/dynamic nature of each 

object and its projected longevity (e.g., temporary, fi xed existence, or permanent 

object) are examples of properties that are required to establish an effective SCM 

approach. For example, if a content item is changed hourly, it has temporary lon-

gevity. The control mechanisms for this item would be different (less formal) from 

those applied for a forms component that is a permanent object. 

   People.   Because a signifi cant percentage of WebApp development continues to 

be conducted in an ad hoc manner, any person involved in the WebApp can (and 

often does) create content. Many content creators have no software engineering 

 What 
impact does 

uncontrolled 
change have on 
a WebApp? 

?

pre22126_ch29_623-652.indd   641pre22126_ch29_623-652.indd   641 13/12/13   6:16 PM13/12/13   6:16 PM



642 PART THREE  QUALITY MANAGEMENT

background and are completely unaware of the need for confi guration manage-

ment. As a consequence, the application grows and changes in an uncontrolled 

fashion. 

   Scalability.   The techniques and controls applied to a small WebApp do not scale 

upward well. It is not uncommon for a simple WebApp to grow signifi cantly as in-

terconnections with existing information systems, databases, data warehouses, 

and portal gateways are implemented. As size and complexity grow, small 

changes can have far-reaching and unintended effects that can be problematic. 

Therefore, the rigor of confi guration control mechanisms should be directly pro-

portional to application scale. 

     Politics.   Who “owns” a WebApp? This question is argued in companies large and 

small, and its answer has a signifi cant impact on the management and control 

activities. The following questions [Dar99] help a software team understand the 

politics associated with Web engineering: Who assumes responsibility for the ac-

curacy of the information on the website? Who ensures that quality control pro-

cesses have been followed before information is published to the site? Who is 

responsible for making changes? Who assumes the cost of change? The answers 

to these questions help determine the people within an organization who must 

adopt a confi guration management process for WebApps. 

 SCM techniques for MobileApps adopt many of the same principles that are 

applied for agile software development. In addition to the conventional SCM 

tasks discussed earlier in this chapter, change management for MobileApps 

must also consider the security implications of every change and its impact on a 

broad user base operating in a diverse platform environment. 

 The dramatic growth of app stores has changed the manner in which mo-

bile software is deployed. Changes to a specifi c application can be promulgated 

widely in a matter of days, thereby requiring very careful analysis of impact 

across platforms before a new version of a MobileApp is placed in an app store 

for deployment. 

 In many instances, a conventional SCM process may be too cumbersome for 

WebApps and some MobileApps, but a new generation of  content management 

tools  that are specifi cally designed for these application areas have emerged 

over the past decade. These tools establish a process that acquires existing in-

formation (content objects), manages changes to the objects, structures it in a 

way that enables it to be presented to an end user, and then provides it to the 

client-side environment for display. 

     29.4.2   Confi guration Objects 

 Web and MobileApps encompass a broad range of confi guration objects—content 

objects (e.g., text, graphics, images, video, audio), functional components (e.g., 

scripts, applets), and interface objects (e.g., COM or CORBA for WebApps). 

 How do I 
determine 

who has 
responsibility for 
WebApp CM? 

?

pre22126_ch29_623-652.indd   642pre22126_ch29_623-652.indd   642 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  643

Objects can be identifi ed (assigned fi le names) in any manner that is appropriate 

for the organization. 

 All content has format and structure. Internal fi le formats are dictated by 

the computing environment in which the content is stored. However,  rendering 

format  (often called  display format ) is defi ned by the aesthetic style and design 

rules established for the Web or MobileApp.  Content structure  defi nes a content 

architecture; that is, it defi nes the way in which content objects are assembled to 

present meaningful information to an end user. Boiko [Boi04] defi nes structure 

as “maps that you lay over a set of content chunks [objects] to organize them and 

make them accessible to the people who need them.” 

    29.4.3   Content Management 

   Content management  is related to confi guration management in the sense that 

a content management system (CMS) establishes a process (supported by appro-

priate tools) that acquires existing content (from a broad array of WebApp and/

or MobileApp confi guration objects), structures it in a way that enables it to be 

presented to an end user, and then provides it to the client-side environment for 

display. 

 The most common use of a content management system occurs when a dy-

namic application is built. Dynamic Web or MobileApps create pages “on the fl y.” 

That is, the user typically queries the app requesting specifi c information. The 

app queries a server-side database, formats the information accordingly, and 

presents it to the user. For example, a music store (e.g., Apple iTunes) provides 

hundreds of thousands of tracks for sale. When a user requests a music track, a 

database is queried and a variety of information about the artist, the CD (e.g., its 

cover image or graphics), the musical content, and sample audio are all down-

loaded and confi gured into a standard content template. The resultant page is 

built on the server side and passed to the client side for examination by the end 

user. A generic representation for WebApps is shown in  Figure 29.6   .      

 In the most general sense, a CMS “confi gures” content for the end user by 

invoking three integrated subsystems: a collection subsystem, a management 

subsystem and a publishing subsystem [Boi04]. 

    The collection subsystem.   Content is derived from data and information that 

must be created or acquired by a content developer. The  collection subsystem  

encompasses all actions required to create and/or acquire content, and the tech-

nical functions that are necessary to (1) convert content into a form that can be 

represented by a mark-up language (e.g., HTML, XML), and (2) organize content 

into packets that can be displayed effectively on the client side. 

 Content creation and acquisition (often called  authoring ) commonly occurs in 

parallel with other development activities and is often conducted by nontechnical 

content developers. This activity combines elements of creativity and research 

    uote: 

 “Content 
management is 
an antidote to 
today’s information 
frenzy.” 

 Bob Boiko 

   The collection subsys-
tem encompasses all 
actions required to 
create, acquire, and/
or convert content 
into a form that can 
be presented on the 
client side. 

pre22126_ch29_623-652.indd   643pre22126_ch29_623-652.indd   643 13/12/13   6:16 PM13/12/13   6:16 PM



644 PART THREE  QUALITY MANAGEMENT

and is supported by tools that enable the content author to characterize content 

in a manner that can be standardized for use within the Web or MobileApp. 

 Once content exists, it must be converted to conform to the requirements of 

a CMS. This implies stripping raw content of any unnecessary information (e.g., 

redundant graphical representations), formatting the content to conform to the 

requirements of the CMS, and mapping the results into an information structure 

that will enable it to be managed and published. 

     The management subsystem.   Once content exists, it must be stored in a re-

pository, cataloged for subsequent acquisition and use, and labeled to defi ne 

(1) current status (e.g., is the content object complete or in development?), (2) the 

appropriate version of the content object, and (3) related content objects. There-

fore, the  management subsystem  implements a repository that encompasses the 

following elements:

    •   Content database —The information structure that has been established to 

store all content objects.  

   •   Database capabilities —Functions that enable the CMS to search for spe-

cifi c content objects (or categories of objects), store and retrieve objects, 

and manage the fi le structure that has been established for the content.  

   •   Confi guration management functions —The functional elements and asso-

ciated workfl ow that support content object identifi cation, version control, 

change management, change auditing, and reporting.  

   The management 
subsystem implements 
a repository for all 
content. Confi guration 
management is 
performed within this 
subsystem. 

Database

Templates

Server-side

HTML code
+ scripts

Client-side browser

Configuration objects

Content
management

system

 FIGURE 29.6

 Content 
management 
system

pre22126_ch29_623-652.indd   644pre22126_ch29_623-652.indd   644 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  645

   In addition to these elements, the management subsystem implements an ad-

ministration function that encompasses the metadata and rules that control the 

overall structure of the content and the manner in which it is supported. 

     The publishing subsystem.   Content must be extracted from the repository, con-

verted to a form that is amenable to publication, and formatted so that it can 

be transmitted to client-side browsers. The publishing subsystem accomplishes 

these tasks using a series of templates. Each  template  is a function that builds a 

publication using one of three different components [Boi04]:

    •   Static elements —Text, graphics, media, and scripts that require no further 

processing are transmitted directly to the client side.  

   •   Publication services —Function calls to specifi c retrieval and formatting 

services that personalize content (using predefi ned rules), perform data 

conversion, and build appropriate navigation links.  

   •   External services —Access to external corporate information infrastruc-

ture such as enterprise data or “back-room” applications.    

 A content management system that encompasses each of these subsystems is 

applicable for major Web and mobile projects. However, the basic philosophy and 

functionality associated with a CMS are applicable to all dynamic applications. 

   The publishing subsys-
tem extracts content 
from the repository 
and delivers it to 
client-side browsers. 

   Content Management  

  Objective:  To assist software engineers and 
content developers in managing content that 

is incorporated into WebApps. 

  Mechanics:  Tools in this category enable Web engineers 
and content providers to update WebApp content 
in a controlled manner. Most establish a simple fi le 
management system that assigns page-by-page update and 
editing permissions for various types of WebApp content. 
Some maintain a versioning system so that a previous 
version of content can be archived for historical purposes. 

  Representative Tools:   10      
  Open Text Web Experience Management,  developed by 

Vignette (  http://www.opentext.com/global/
products/web-content-management/web-
experience-management/opentext-web-
experience-management.htm  ), is a suite of 
enterprise content management tools. 

  ektron-CMS300 , developed by ektron 
(  www.ektron.com  ), is a suite of tools that provide 
content management capabilities as well as Web 
development tools. 

  OmniUpdate , developed by WebsiteASP, Inc. 
(  www.omniupdate.com  ), is a tool that allows 
authorized content providers to develop controlled 
updates to specifi ed WebApp content. 

 Additional information on SCM and content management 
tools for Web engineering can be found at one 
or more of the following websites:  WebDeveloper  
(  www.webdeveloper.com  ),  Developer Shed  
( www.devshed.com ),  webknowhow.net  
(  www.webknowhow.net  ), or  WebReference  
(  www.webreference.com  ).  

 SOFTWARE TOOLS 

  10  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch29_623-652.indd   645pre22126_ch29_623-652.indd   645 13/12/13   6:16 PM13/12/13   6:16 PM



646 PART THREE  QUALITY MANAGEMENT

       29.4.4   Change Management 

 The workfl ow associated with change control for conventional software (Sec-

tion 29.3.3) is generally too ponderous for WebApp and mobile software devel-

opment. It is unlikely that the change request, change report, and engineering 

change order sequence can be achieved in an agile manner that is acceptable 

for many Web and MobileApp development projects. How then do we manage a 

continuous stream of changes requested for content and functionality? 

 To implement effective change management within the “code and go” phi-

losophy that continues to dominate much of Web and mobile development, the 

conventional change control process must be modifi ed. Each change should be 

categorized into one of four classes:

        Class 1 —A content or function change that corrects an error or enhances 

local content or functionality.  

       Class 2 —A content or function change that has an impact on other content 

objects or functional components.  

       Class 3 —A content or function change that has a broad impact across an app 

(e.g., major extension of functionality, signifi cant enhancement or reduction in 

content, major required changes in navigation).  

       Class 4 —A major design change (e.g., a change in interface design or naviga-

tion approach) that will be immediately noticeable to one or more categories of 

user.    

 Once the requested change has been categorized, it can be processed according 

to the algorithm shown in  Figure 29.7    for WebApps but equally applicable for 

MobileApps.      

 Referring to the fi gure, class 1 and 2 changes are treated informally and are 

handled in an agile manner. For a class 1 change, you would evaluate the im-

pact of the change, but no external review or documentation is required. As the 

change is made, standard check-in and check-out procedures are enforced by 

confi guration repository tools. For class 2 changes, you should review the impact 

of the change on related objects (or ask other developers responsible for those 

objects to do so). If the change can be made without requiring signifi cant changes 

to other objects, modifi cation occurs without additional review or documenta-

tion. If substantive changes are required, further evaluation and planning are 

necessary. 

 Class 3 and 4 changes are also treated in an agile manner, but some de-

scriptive documentation and more formal review procedures are required. A 

 change description —describing the change and providing a brief assessment of 

the impact of the change—is developed for class 3 changes. The description is 

distributed to all members of the team who review it to better assess its impact. 

A change description is also developed for class 4 changes, but in this case, the 

review is conducted by all stakeholders. 

pre22126_ch29_623-652.indd   646pre22126_ch29_623-652.indd   646 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  647

Classify the
requested change

Acquire related objects and
assess impact of change

Develop brief written
description of change

Transmit to all team
members for review

Check out object(s)
to be changed

Develop brief written
description of change

Make changes
design, construct, test

Check in object(s)
that were changed

Publish to WebApp

Transmit to all stake-
holders for reviewChanges

required
in related
objects

Further
evaluation
is required

Further
evaluation
is requiredOK to make OK to make

Class 1 change Class 4 change

Class 3 changeClass 2 change

 FIGURE 29.7

 Managing 
changes for 
WebApps

   Change Management  
  Objective:  To assist Web engineers and 
content developers in managing changes as 

they are made to WebApp confi guration objects. 

  Mechanics:  Tools in this category were originally 
developed for conventional software but can be adapted 
for use by Web engineers and content developers to 
make controlled changes to WebApps. They support 
automated check-in and check-out, version control and 
rollback, reporting, and other SCM functions. 

  Representative Tools:   11      
  Dimension CM,  developed by Serena (  http://www

.serena.com/index.php/en/products/

dimensions-cm/  ), is one of a suite of change 
management tools that provide complete SCM 
capabilities. 

  ClearCase,  developed by Rational (  http://www-03
.ibm.com/software/products/us/en/
clearcase  ), is a suite of tools that provide full 
confi guration management capabilities for WebApps. 

  PTC Integrity , developed by PTC (  http://www.mks
.com/platform/our-product  ), is an SCM tool 
that can be integrated with selected development 
environments.  

 SOFTWARE TOOLS 

  11  Tools noted here do not represent an endorsement, but rather a sampling of tools in this 

category. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch29_623-652.indd   647pre22126_ch29_623-652.indd   647 13/12/13   6:16 PM13/12/13   6:16 PM



648 PART THREE  QUALITY MANAGEMENT

      29.4.5   Version Control 

 As a Web or MobileApp evolves through a series of increments, a number of dif-

ferent versions may exist at the same time. One version (the current operational 

app) is available via the Internet for end users; another version (the next app in-

crement) may be in the fi nal stages of testing prior to deployment; a third version 

is in development and represents a major update in content, interface aesthet-

ics, and functionality. Confi guration objects must be clearly defi ned so that each 

can be associated with the appropriate version. In addition, control mechanisms 

must be established. Dreilinger [Dre99] discusses the importance of version (and 

change) control when he writes:

  In an  uncontrolled  site where multiple authors have access to edit and contribute, the 

potential for confl ict and problems arises—more so when these authors work from 

different offi ces at different times of day and night. You may spend the day improving 

the fi le  index.html  for a customer. After you’ve made your changes, another devel-

oper who works at home after hours, or in another offi ce, may spend the night up-

loading their own newly revised version of the fi le  index.html , completely overwriting 

your work with no way to get it back!   

 It’s likely that you’ve experienced a similar situation. To avoid it, a version con-

trol process is required. 

     1.   A central repository for the Web or MobileApp project should be established.  

The repository will hold current versions of all confi guration objects (con-

tent, functional components, and others).  

    2.   Each Web engineer creates his or her own working folder.  The folder 

contains those objects that are being created or changed at any given 

time.  

    3.   The clocks on all developer workstations should be synchronized.  This is 

done to avoid overwriting confl icts when two developers make updates 

that are very close to one another in time.  

    4.   As new confi guration objects are developed or existing objects are 

changed, they are imported into the central repository.  The version control 

tool (see discussion of CVS in the sidebar) will manage all check-in and 

check-out functions from the working folders of each developer. The tool 

will also provide automatic e-mail updates to all interested parties when 

changes to the repository are made.  

    5.   As objects are imported or exported from the repository, an automatic, 

time-stamped log message is made.  This provides useful information for 

auditing and can become part of an effective reporting scheme.  

  The version control tool maintains different versions of the app and can revert 

to an older version if required. 

pre22126_ch29_623-652.indd   648pre22126_ch29_623-652.indd   648 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  649

    29.4.6   Auditing and Reporting 

 In the interest of agility, the auditing and reporting functions are deemphasized 

during the development of Web or MobileApps.  12     However, they are not elimi-

nated altogether. All objects that are checked into or out of the repository are 

recorded in a log that can be reviewed at any point in time. A complete log report 

can be created so that all members of the team have a chronology of changes 

over a defi ned period of time. In addition, an automated e-mail notifi cation (ad-

dressed to those developers and stakeholders who have interest) can be sent 

every time an object is checked in or out of the repository.  

  12  This is beginning to change. There is an increasing emphasis on SCM as one element of ap-

plication security [Sar06]. By providing a mechanism for tracking and reporting every change 

made to every application object, a change management tool can provide valuable protection 

against malicious changes. 

   SCM Standards  
 The following list of SCM standards (ex-
tracted in part from  www.12207.com ) is 

reasonably comprehensive: 

  IEEE Standards    standards.ieee.org/catalog/
olis/   

 IEEE 828 Software Confi guration 
Management Plans 

 IEEE 1042 Software Confi guration Management 

  ISO Standards    http://www.iso.org/iso/
home   

 ISO 10007-1995 Quality Management, Guidance 
for CM 

 ISO/IEC 12207 Information Technology-Software 
Life Cycle Processes 

 ISO/IEC TR 15271 Guide for ISO/IEC 12207 

 ISO/IEC TR 15846  Software Engineering-Software 
Life Cycle Process-Confi guration 
Management for Software Order 

  EIA Standards    www.eia.org/   

 EIA 649 National Consensus Standard for 
Confi guration Management 

 EIA CMB4-1A Confi guration Management 
Defi nitions for Digital Computer 
Programs 

 EIA CMB4-2 Confi guration Identifi cation for 
Digital Computer Programs 

 EIA CMB4-3 Computer Software Libraries 

 EIA CMB4-4 Confi guration Change Control for 
Digital Computer Programs 

 EIA CMB6-1C Confi guration and Data 
Management References Order 

 EIA CMB6-3 Confi guration Identifi cation 

 EIA CMB6-4 Confi guration Control 

 EIA CMB6-5 Textbook for Confi guration Status 
Accounting 

 EIA CMB7-1 Electronic Interchange of 
Confi guration Management Data 

  U.S. Military Standards  

 DoD MIL STD-973 Confi guration Management 

 MIL-HDBK-61 Confi guration Management Guidance 

  Other Standards  

 DO-178B Guidelines for the Development of 
Aviation Software 

 ESA PSS-05-09 Guide to Software Confi guration 
Management 

 AECL CE-1001-STD   Standard for Software Engineering 
rev.1  of Safety Critical Software 

 INFO 

pre22126_ch29_623-652.indd   649pre22126_ch29_623-652.indd   649 13/12/13   6:16 PM13/12/13   6:16 PM



650 PART THREE  QUALITY MANAGEMENT

          29.5 SUMMARY 

 Software confi guration management is an umbrella activity that is applied 

throughout the software process. SCM identifi es, controls, audits, and reports 

modifi cations that invariably occur while software is being developed and after 

it has been released to a customer. All work products created as part of software 

engineering become part of a software confi guration. The confi guration is orga-

nized in a manner that enables orderly control of change. 

 The software confi guration is composed of a set of interrelated objects, also 

called software confi guration items, that are produced as a result of some soft-

ware engineering activity. In addition to software engineering work products, 

the development environment that is used to create software can also be placed 

under confi guration control. All SCIs are stored within a repository that imple-

ments a set of mechanisms and data structures to ensure data integrity, provide 

integration support for other software tools, support information sharing among 

all members of the software team, and implement functions in support of version 

and change control. 

 Once a confi guration object has been developed and reviewed, it becomes a 

baseline. Changes to a baselined object result in the creation of a new version of 

that object. The evolution of a program can be tracked by examining the revision 

history of all confi guration objects. Version control is the set of procedures and 

tools for managing the use of these objects. 

 Change control is a procedural activity that ensures quality and consistency 

as changes are made to a confi guration object. The change control process be-

gins with a change request, leads to a decision to make or reject the request for 

change, and culminates with a controlled update of the SCI that is to be changed. 

 The confi guration audit is an SQA activity that helps to ensure that quality is 

maintained as changes are made. Status reporting provides information about 

each change to those with a need to know. 

 Confi guration management for Web and MobileApps is similar in most re-

spects to SCM for conventional software. However, each of the core SCM tasks 

 DOE SCM checklist:  http://energy.gov/cio/
downloads/software-
quality-systems-
engineering-program-
software-confi guration-
management  

 BS-6488  British Std., Confi guration 
Management of Computer-Based 
Systems 

 Best Practice—UK Offi ce of Government Commerce: 
  http://www.cabinetoffi ce.
gov.uk/content/offi ce-
government-commerce-ogc   

 CMII Institute of CM Best Practices: 
  www.icmhq.com   

 A  Confi guration Management Resource Guide  provides 
complementary information for those interested in CM 
processes and practice. It is available at   http://cmpic.
com/cmresourceguide.htm  .  

pre22126_ch29_623-652.indd   650pre22126_ch29_623-652.indd   650 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 29  SOFTWARE CONFIGURATION MANAGEMENT  651

should be streamlined to make it as lean as possible, and special provisions for 

content management must be implemented. 

     PROBLEMS AND POINTS TO PONDER 
    29.1.  Why is the First Law of System Engineering true? Provide specifi c examples for each 
of the four fundamental reasons for change.  

   29.2.  What are the four elements that exist when an effective SCM system is implemented? 
Discuss each briefl y.  

   29.3.  Discuss the reasons for baselines in your own words.  

   29.4.  Assume that you’re the manager of a small project. What baselines would you defi ne 
for the project and how would you control them?  

   29.5.  Design a project database (repository) system that would enable a software engineer 
to store, cross-reference, trace, update, change, and so forth all important software con-
fi guration items. How would the database handle different versions of the same program? 
Would source code be handled differently than documentation? How will two developers be 
precluded from making different changes to the same SCI at the same time?  

   29.6.  Research an existing SCM tool and describe how it implements control for versions, 
variants, and confi guration objects in general.  

   29.7.  The relations <part-of> and <interrelated> represent simple relationships between 
confi guration objects. Describe fi ve additional relationships that might be useful in the con-
text of an SCM repository.  

   29.8.  Research an existing SCM tool and describe how it implements the mechanics of ver-
sion control. Alternatively, read two or three papers on SCM and describe the different data 
structures and referencing mechanisms that are used for version control.  

   29.9.  Develop a checklist for use during confi guration audits.  

   29.10.  What is the difference between an SCM audit and a technical review? Can their func-
tion be folded into one review? What are the pros and cons?  

   29.11.  Briefl y describe the differences between SCM for conventional software and SCM for 
Web or MobileApps.  

   29.12.  What is content management? Use the Web to research the features of a content 
management tool and provide a brief summary.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Among the more recent SCM offerings are Aiello and his colleagues ( Confi guration Man-

agement Best Practices: Practical Methods That Work in the Real World,  Addison-Wesley, 
2010), Moreira ( Adapting Confi guration Management for Agile Teams: Balancing Sustain-

ability and Speed,  Wiley, 2009), Duvall and his colleagues ( Continuous Integration: Improving 

Software Quality and Reducing Risk,  Addison-Wesley, 2007), Leon ( Software Confi guration 

Management Handbook,  2nd ed., Artech House Publishers, 2005), Maraia ( The Build Mas-

ter: Microsoft’s Software Confi guration Management Best Practices,  Addison-Wesley, 2005), 
Keyes ( Software Confi guration Management,  Auerbach, 2004), and Hass ( Confi guration 

Management Principles and Practice,  Addison-Wesley, 2002). Each of these books presents 
the entire SCM process in substantial detail. Moreira ( Software Confi guration Management 

Implementation Roadmap,  Wiley, 2004) presents a unique how-to guide for those who must 

pre22126_ch29_623-652.indd   651pre22126_ch29_623-652.indd   651 13/12/13   6:16 PM13/12/13   6:16 PM



652 PART THREE  QUALITY MANAGEMENT

implement SCM within an organization. Lyon ( Practical CM III: Best Practices for the 21st 

Century,  Raven Publishing, 2013, available at  www.confi guration.org ) has written a compre-
hensive guide for the CM professional that includes pragmatic guidelines for implementing 
every aspect of a confi guration management system (updated yearly). Girod and Shpichko 
( IBM Rational ClearCase 7.0: Master the Tools That Monitor, Analyze, and Manage Software 

Confi gurations , Packt, 2011) and Bellagio and Mulligan present SCM within the context of 
one of the more popular SCM tools. 

   Berczuk and Appleton ( Software Confi guration Management Patterns,  Addison-
Wesley, 2003) present a variety of useful patterns that assist in understanding SCM and 
implementing effective SCM systems. Brown et al. ( Anti-Patterns and Patterns in Software 

Confi guration Management,  Wiley, 1999) discuss the things not to do (anti-patterns) when 
implementing an SCM process and then consider their remedies. Humble and Fowler 
( Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment 

Automation,  Addison-Wesley, 2010) and Bays ( Software Release Methodology,  Prentice Hall, 
1999) focuses on the mechanics of “successful product release,” an important complement 
to effective SCM. 

   As WebApps have become more dynamic, content management has become an essential 
topic for Web engineers. Books by Rockley and Cooper ( Managing Enterprise Content: A 

Unifi ed Content Strategy,  2nd ed., New Riders, 2012), Jenkins and his colleagues ( Managing 

Content in the Cloud—Enterprise Content Management 2.0,  Open Text Corporation, 2010) 
and ( Enterprise Content Management Methods,  Open Text Corporation, 2005), White ( The 

Content Management Handbook,  Curtin University Books, 2005), Boiko [Boi04], Mauthe and 
Thomas ( Professional Content Management Systems,  Wiley, 2004), Addey and his colleagues 
( Content Management Systems,  Glasshaus, 2003), Hackos ( Content Management for Dynamic 

Web Delivery,  Wiley, 2002), and Nakano ( Web Content Management,  Addison-Wesley, 2001) 
present worthwhile treatments of the subject. 

   In addition to generic discussions of the topic, Halvorson and Bach ( Content Strategy for 

the Web,  2nd ed., New Riders, 2012), Hauschildt ( CMS Made Simple 1.6: Beginners’ Guide , 
Packt, 2010), Lim and his colleagues ( Enhancing Microsoft Content Management Server with 

ASP.NET 2.0,  Packt Publishing, 2006), Ferguson ( Creating Content Management Systems in 

Java,  Charles River Media, 2006), IBM Redbooks ( IBM Workplace Web Content Management 

for Portal 5.1 and IBM Workplace Web Content Management 2.5,  Vivante, 2006), Fritz and 
his colleagues ( Typo3: Enterprise Content Management,  Packt Publishing, 2005), and Forta 
( Reality ColdFusion: Intranets and Content Management,  Pearson Education, 2002) present 
content management within the context of specifi c tools and languages. 

   A wide variety of information sources on software confi guration management and 
content management is available on the Internet. An up-to-date list of World Wide Web 
references can be found under “software engineering resources” at the SEPA website: 
 www.mhhe.com/pressman .      

pre22126_ch29_623-652.indd   652pre22126_ch29_623-652.indd   652 13/12/13   6:16 PM13/12/13   6:16 PM



653

 PRODUCT

METRICS 

        A 
key element of any engineering process is measurement. You can use 

measures to better understand the attributes of the models that you 

create and to assess the quality of the engineered products or systems 

that you build. But unlike other engineering disciplines, software engineering 

is not grounded in the basic quantitative laws of physics. Direct measures, 

such as voltage, mass, velocity, or temperature, are uncommon in the software 

world. Because software measures and metrics are often indirect, they are 

open to debate. Fenton [Fen91] addresses this issue when he states:

  Measurement is the process by which numbers or symbols are assigned to the 

attributes of entities in the real world in such a way as to defi ne them according 

to clearly defi ned rules  .  .  .  In the physical sciences, medicine, economics, and 

more recently the social sciences, we are now able to measure attributes that we 

previously thought to be unmeasurable . . . Of course, such measurements are not

 K E Y 

C O N C E P T S 

    architectural design 
metrics . . . . . . . . . 663  
    class-oriented 
metrics . . . . . . . . . 667  
    function point (FP)  . 659  
    goal/question/metric 
(GQM) . . . . . . . . . 656  
    indicator . . . . . . . . 655  
    measure . . . . . . . . 654  
    measurement  . . . . 654  
    measurement 
principles  . . . . . . . 656  

    C H A P T E R

30 

  What is it?   By its nature, engi-
neering is a quantitative discipline. 
Product metrics help software engi-
neers gain insight into the design 

and construction of the software they build by 
focusing on specifi c, measurable attributes of 
software engineering work products. 

   Who does it?   Software engineers use prod-
uct metrics to help them build higher-quality 
software. 

   Why is it important?   There will always be a 
qualitative element to the creation of computer 
software. The problem is that qualitative as-
sessment may not be enough. You need objec-
tive criteria to help guide the design of data, 
architecture, interfaces, and components. 
When testing, you need quantitative guidance 
that will help in the selection of test cases and 
their targets. Product metrics provide a basis 
from which analysis, design, coding, and test-
ing can be conducted more objectively and 
assessed more quantitatively. 

   What are the steps?   The fi rst step in the 
measurement process is to derive the software 

measures and metrics that are appropriate for 
the representation of software that is being 
considered. Next, data required to derive 
the formulated metrics are collected. Once 
computed, appropriate metrics are analyzed 
based on preestablished guidelines and past 
data. The results of the analysis are interpreted 
to gain insight into the quality of the soft-
ware, and the results of the interpretation lead 
to modifi cation of requirements and design 
models, source code, or test cases. In some 
instances, it may also lead to modifi cation of 
the software process itself. 

   What is the work product?   Product metrics 
that are computed from data collected from the 
requirements and design models, source code, 
and test cases. 

   How do I ensure that I’ve done it right?  
 You should establish the objectives of measure-
ment before data collection begins, defi ning 
each product metric in an unambiguous man-
ner. Defi ne only a few metrics and then use 
them to gain insight into the quality of a soft-
ware engineering work product.  

 Q U I C K 
L O O K 



654 PART THREE  QUALITY MANAGEMENT

as refi ned as many measurements in the physical sciences . .  .  , but they exist [and 

important decisions are made based on them]. We feel that the obligation to attempt 

to “measure the unmeasurable” in order to improve our understanding of particular 

entities is as powerful in software engineering as in any discipline.   

 But some members of the software community continue to argue that software is 

“unmeasurable” or that attempts at measurement should be postponed until we 

better understand software and the attributes that should be used to describe it. 

This is a mistake. 

 Although product metrics for computer software are imperfect, they can pro-

vide you with a systematic way to assess quality based on a set of clearly defi ned 

rules. They also provide you with on-the-spot, rather than after-the-fact, insight. 

This enables you to discover and correct potential problems before they become 

catastrophic defects. 

 In this chapter, we present measures that can be used to assess the quality of 

the product as it is being engineered. These measures of internal product attri-

butes provide you with a real-time indication of the effi cacy of the requirements, 

design, and code models; the effectiveness of test cases; and the overall quality 

of the software to be built. 

      30.1  A FRAMEWORK  FOR  PRODUCT  METRICS   

 Measurement assigns numbers or symbols to attributes of entities in the real 

word. To accomplish this, a measurement model encompassing a consistent set 

of rules is required. Although the theory of measurement (e.g., [Kyb84]) and its 

application to computer software (e.g., [Zus97]) are topics that are beyond the 

scope of this book, it is worthwhile to establish a fundamental framework and a 

set of basic principles that guide the defi nition of product metrics for software. 

   30.1.1   Measures, Metrics, and Indicators     

  Although the terms  measure, measurement,  and  metrics  are often used inter-

changeably, it is important to note the subtle differences between them. Because 

 measure  can be used either as a noun or a verb, defi nitions of the term can be-

come confusing. Within the software engineering context, a  measure  provides a 

quantitative indication of the extent, amount, dimension, capacity, or size of 

some attribute of a product or process.  Measurement  is the act of determining a 

measure. The  IEEE Standard Glossary of Software Engineering Terminology  

[IEE93b] defi nes  metric  as “a quantitative measure of the degree to which a sys-

tem, component, or process possesses a given attribute.” 

 When a single data point has been collected (e.g., the number of errors uncov-

ered within a single software component), a measure has been established. Mea-

surement occurs as the result of the collection of one or more data points (e.g., 

  uote: 

  “A science is as 
mature as its 
measurement 
tools.” 

 Louis Pasteur 

 What’s the 
difference 

between a 
measure and a 
metric? 

?

    metrics for object-
oriented design . . . 666  
    metrics  

    attributes of  . . 657  
    component-
level  . . . . . . . . 671  
    design . . . . . . . 663  
    MobileApps  . . . 672  
    requirements 
model  . . . . . . . 659  
    source code  . . . 675  
    testing. . . . . . . 676  
    user interface 
design . . . . . . . 672  
    WebApps  . . . . . 672  
  



CHAPTER 30  PRODUCT METRICS  655

a number of component reviews and unit tests are investigated to collect mea-

sures of the number of errors for each). A software metric relates the individual 

measures in some way (e.g., the average number of errors found per review or 

the average number of errors found per unit test).     

  A software engineer collects measures and develops metrics so that indica-

tors will be obtained. An  indicator  is a metric or combination of metrics that 

provides insight into the software process, a software project, or the product 

itself. An indicator provides insight that enables the project manager or soft-

ware engineers to adjust the process, the project, or the product to make things 

better. 

    30.1.2   The Challenge of Product Metrics     

  Over the past four decades, many researchers have attempted to develop a 

single metric that provides a comprehensive measure of software complexity. 

Fenton [Fen94] characterizes this research as a search for “the impossible holy 

grail.” Although dozens of complexity measures have been proposed [Zus90], 

each takes a somewhat different view of what complexity is and what attributes 

of a system lead to complexity. By analogy, consider a metric for evaluating an 

attractive car. Some observers might emphasize body design; others might con-

sider mechanical characteristics; still others might tout cost, or performance, 

or the use of alternative fuels, or the ability to recycle when the car is junked. 

Since any one of these characteristics may be at odds with others, it is diffi -

cult to derive a single value for “attractiveness.” The same problem occurs with 

computer software. 

 Yet there is a need to measure and control software complexity. And if a single 

value of this quality metric is diffi cult to derive, it should be possible to develop 

measures of different internal program attributes (e.g., effective modularity, 

functional independence, and other attributes discussed in Chapter 12). These 

measures and the metrics derived from them can be used as independent indi-

cators of the quality of requirements and design models. But here again, prob-

lems arise. Fenton [Fen94] notes this when he states: “The danger of attempting 

to fi nd measures which characterize so many different attributes is that inevita-

bly the measures have to satisfy confl icting aims. This is counter to the represen-

tational theory of measurement.” Although Fenton’s statement is correct, many 

people argue that product measurement conducted during the early stages of 

the software process provides software engineers with a consistent and objective 

mechanism for assessing quality.  1    

   An indicator is a 
metric or metrics that 
provide insight into the 
process, the product, 
or the project. 

 WebRef 

 Voluminous information 
on product metrics has 
been compiled by the 
U.S. Department of 
Homeland Security at 
  https://
buildsecurityin
.us-cert.gov/
bsi/articles/
best-practices/
measurement
.html  . 

  1  Although criticism of specifi c metrics is common in the literature, many critiques focus on 

esoteric issues and miss the primary objective of metrics in the real world: to help the software 

engineer establish a systematic and objective way to gain insight into his or her work and to 

improve product quality as a result. 



656 PART THREE  QUALITY MANAGEMENT

    30.1.3   Measurement Principles  

 Before we introduce a series of product metrics that (1) assist in the evaluation 

of the analysis and design models, (2) provide an indication of the complexity of 

procedural designs and source code, and (3) facilitate the design of more effec-

tive testing, it is important for you to understand basic measurement principles. 

Roche [Roc94] suggests a measurement process that can be characterized by fi ve 

activities: formulation, collection, analysis, interpretation, and feedback. Soft-

ware metrics will be useful only if they are characterized effectively and validated 

so that their worth is proven. The following principles [Let03b] are representative 

of many that can be proposed for metrics characterization and validation:

    •   A metric should have desirable mathematical properties.  That is, the met-

ric’s value should be in a meaningful range (e.g., 0 to 1, where 0 truly means 

absence, 1 indicates the maximum value, and 0.5 represents the “halfway 

point”). Also, a metric that purports to be on a rational scale should not be 

composed of components that are only measured on an ordinal scale.  

   •   When a metric represents a software characteristic that increases when 

positive traits occur or decreases when undesirable traits are encountered, 

the value of the metric should increase or decrease in the same manner.   

   •   Each metric should be validated empirically in a wide variety of contexts 

before being published or used to make decisions.  A metric should mea-

sure the factor of interest, independently of other factors. It should “scale 

up” to large systems and work in a variety of programming languages and 

system domains.    

 Although formulation, characterization, and validation are critical, collection and 

analysis are the activities that drive the measurement process. Roche [Roc94] sug-

gests the following guidelines for these activities: (1) whenever possible, data col-

lection and analysis should be automated; (2) valid statistical techniques should 

be applied to establish relationships between internal product attributes and ex-

ternal quality characteristics (e.g., whether the level of architectural complexity 

correlates with the number of defects reported in production use); and (3) inter-

pretative guidelines and recommendations should be established for each metric. 

    30.1.4   Goal-Oriented Software Measurement     

  The  Goal/Question/Metric  (GQM) paradigm has been developed by Basili and 

Weiss [Bas84] as a technique for identifying meaningful metrics for any part of 

the software process. GQM emphasizes the need to (1) establish an explicit mea-

surement  goal  that is specifi c to the process activity or product characteristic 

that is to be assessed, (2) defi ne a set of  questions  that must be answered in order 

to achieve the goal, and (3) identify well-formulated  metrics  that help to answer 

these questions. 

    uote: 

 “Just as 
temperature 
measurement 
began with 
an index 
fi nger . . . and 
grew to 
sophisticated 
scales, tools and 
techniques, so 
too is software 
measurement 
maturing.” 

 Shari Pfl eeger 

 WebRef 

 A useful discussion of 
GQM can be found at 
  https://www
.thecsiac.com/
resources/
ref_documents/
software-
acquisition-
gold-practice-goal-
question-metric-
gqm-approach  . 



CHAPTER 30  PRODUCT METRICS  657

 A  goal defi nition template  [Bas94] can be used to defi ne each measurement 

goal. The template takes the form:

   Analyze  {the name of activity or attribute to be measured}  for the purpose of  {the 

overall objective of the analysis}  2    with respect to  {the aspect of the activity or attribute 

that is considered}  from the viewpoint of  {the people who have an interest in the mea-

surement}  in the context of  {the environment in which the measurement takes place}.    

 As an example, consider a goal defi nition template for  SafeHome :

   Analyze  the  SafeHome  software architecture  for the purpose of  evaluating architec-

tural components  with respect to  the ability to make  SafeHome  more extensible  from 

the viewpoint of  the software engineers performing the work  in the context of  prod-

uct enhancement over the next three years.   

 With a measurement goal explicitly defi ned, a set of questions is developed. An-

swers to these questions help the software team (or other stakeholders) to deter-

mine whether the measurement goal has been achieved. Among the questions 

that might be asked are:

        Q 
1
:
 
  Are architectural components characterized in a manner that compart-

mentalizes function and related data?  

       Q 
2
:  Is the complexity of each component within bounds that will facilitate 

modifi cation and extension?    

 Each of these questions should be answered quantitatively, using one or more 

measures and metrics. For example, a metric that provides an indication of the 

cohesion (Chapter 12) of an architectural component might be useful in answer-

ing  Q 
1
. Metrics discussed later in this chapter might provide insight for  Q 

2
. In 

every case, the metrics that are chosen (or derived) should conform to the mea-

surement principles discussed in Section 30.1.3 and the measurement attributes 

discussed in Section 30.1.5. 

    30.1.5   The Attributes of Effective Software Metrics 

 Hundreds of metrics have been proposed for computer software, but not all pro-

vide practical support to the software engineer. Some demand measurement 

that is too complex, others are so esoteric that few real-world professionals have 

any hope of understanding them, and others violate the basic intuitive notions of 

what high-quality software really is.     

  Ejiogu [Eji91] defi nes a set of attributes that should be encompassed by effec-

tive software metrics. It should be relatively easy to learn how to derive the met-

ric, and its computation should not demand inordinate effort or time.The metric 

should satisfy the engineer’s intuitive notions about the product attribute under 

   Experience indicates 
that a product metric 
will be used only if it 
is intuitive and easy to 
compute. If dozens of 
“counts” have to be 
made, and complex 
computations are 
required, it is unlikely 
that the metric will be 
widely adopted. 

  2  van Solingen and Berghout [Sol99] suggest that the objective is almost always “understanding, 

controlling or improving” the process activity or product attribute. 



658 PART THREE  QUALITY MANAGEMENT

consideration (e.g., a metric that measures module cohesion should increase in 

value as the level of cohesion increases). The metric should always yield results 

that are unambiguous. The mathematical computation of the metric should use 

measures that do not lead to bizarre combinations of units. For example, multi-

plying people on the project teams by programming language variables in the 

program results in a suspicious mix of units that are not intuitively persuasive. 

Metrics should be based on the requirements model, the design model, or the 

structure of the program itself. They should not be dependent on the vagaries of 

programming language syntax or semantics. Finally, the metric should provide 

you with information that can lead to a higher-quality end product. 

 Although many software metrics satisfy all of these attributes, some commonly 

used metrics may fail to satisfy one or two of them. One example is the function 

point (discussed in Section 30.2.1)—a measure of the “functionality” delivered by 

the software. It can be argued that an independent third party may not be able to 

derive the same function point value as a colleague using the same information 

about the software.  3   Should we therefore reject the function point measure? The 

answer is of course not! FP provides useful insight and therefore provides dis-

tinct value, even if it fails to satisfy one attribute perfectly.      

  3  An equally vigorous counterargument can be made. Such is the nature of software metrics. 

  Debating Product Metrics   Debating Product Metrics 

  The scene:  Vinod’s cubicle. 

  The players:  Vinod, Jamie, and Ed—members of the 
 SafeHome  software engineering team who are continu-
ing work of component-level design and test-case design. 

  The conversation:  

  Vinod:  Doug [Doug Miller, software engineering man-
ager] told me that we should all use product metrics, 
but he was kind of vague. He also said that he wouldn’t 
push the matter . . . that using them was up to us. 

  Jamie:  That’s good, ‘cause there’s no way I have time 
to start measuring stuff. We’re fi ghting to maintain the 
schedule as it is. 

  Ed:  I agree with Jamie. We’re up against it, 
here . . . no time. 

  Vinod:  Yeah, I know, but there’s probably some merit 
to using them. 

  Jamie:  I’m not arguing that, Vinod, it’s a time 
thing . . . and I for one don’t have any to spare. 

  Vinod:  But what if measuring saves you time? 

  Ed:  Wrong, it takes time and like Jamie said . . . 

  Vinod:  No, wait . . . what it saves us is time? 

  Jamie:  How? 

  Vinod:  Rework . . . that’s how. If a measure we use 
helps us to avoid one major or even moderate problem, 
and that saves us from having to rework a part of the 
system, we save time. No? 

  Ed:  It’s possible, I suppose, but can you guarantee that 
some product metric will help us fi nd a problem? 

  Vinod:  Can you guarantee that it won’t? 

  Jamie:  So what are you proposing?” 

  Vinod:  I think we should select a few design metrics, 
probably class-oriented, and use them as part of our 
review process for every component we develop. 

  Ed:  I’m not real familiar with class-oriented metrics. 

  Vinod:  I’ll spend some time checking them out and 
make a recommendation . . . okay with you guys? 

 [Ed and Jamie nod without much enthusiasm.]  

 SAFEHOME 



CHAPTER 30  PRODUCT METRICS  659

        30.2  METRICS  FOR  THE  REQUIREMENTS  MODEL 

  Technical work in software engineering begins with the creation of the require-

ments model. It is at this stage that requirements are derived and a foundation 

for design is established. Therefore, product metrics that provide insight into the 

quality of the analysis model are desirable. 

 Although relatively few analysis and specifi cation metrics have appeared in 

the literature, it is possible to adapt metrics that are often used for project es-

timation and apply them in this context. These metrics examine the require-

ments model with the intent of predicting the “size” of the resultant system. Size 

is sometimes (but not always) an indicator of design complexity and is almost 

always an indicator of increased coding, integration, and testing effort. 

   30.2.1   Function-Based Metrics 

      The  function point  (FP)  metric  can be used effectively as a means for measuring 

the functionality delivered by a system.  4   Using historical data, the FP metric can 

then be used to (1) estimate the cost or effort required to design, code, and test 

the software; (2) predict the number of errors that will be encountered during 

testing; and (3) forecast the number of components and/or the number of pro-

jected source lines in the implemented system.  

 Function points are derived using an empirical relationship based on count-

able (direct) measures of software’s information domain and qualitative assess-

ments of software complexity. Information domain values are defi ned in the 

following manner:  5  

         Number of external inputs (EIs).  Each  external input  originates from a 

user or is transmitted from another application and provides distinct ap-

plication-oriented data or control information. Inputs are often used to 

update  internal logical fi les  (ILFs). Inputs should be distinguished from 

inquiries, which are counted separately.  

        Number of external outputs (EOs).  Each  external output  is derived data 

within the application that provides information to the user. In this con-

text external output refers to reports, screens, error messages, and the 

like. Individual data items within a report are not counted separately.  

        Number of external inquiries (EQs).  An  external inquiry  is defi ned as an 

online input that results in the generation of some immediate software 

 response in the form of an online output (often retrieved from an ILF).  

 WebRef 

 Much useful informa-
tion about function 
points can be obtained 
at   www.ifpug.org   
and   http://www
.functionpoint
.com/  . 

  4  Hundreds of books, papers, and articles have been written on FP metrics. A worthwhile bibli-

ography can be found at [IFP05]. 

  5  In actuality, the defi nition of information domain values and the manner in which they are 

counted are a bit more complex. The interested reader should see [IFP01] for more details. 



660 PART THREE  QUALITY MANAGEMENT

        Number of internal logical fi les (ILFs).  Each  internal logical fi le  is a logi-

cal grouping of data that resides within the application’s boundary and is 

maintained via external inputs.  

        Number of external interface fi les (EIFs).  Each  external interface fi le  is a 

logical grouping of data that resides external to the application but pro-

vides data that may be of use to the application.    

 Once these data have been collected, the table in   Figure 30.1   is completed and 

a complexity value is associated with each count. Organizations that use func-

tion point methods develop criteria for determining whether a particular entry 

is simple, average, or complex. Nonetheless, the determination of complexity is 

somewhat subjective.  

 To compute function points (FP), the following relationship is used:

FP 5 count total 3 [0.65 1 0.01 3 S( F  
i
 )] (30.1)

where count total is the sum of all FP entries obtained from   Figure 30.1  . 

 The  F  
i
  ( i  5 1 to 14) are  value adjustment factors  (VAF) based on responses to the 

following questions [Lon02]:     

      1.  Does the system require reliable backup and recovery?  

    2.  Are specialized data communications required to transfer information to 

or from the application?  

    3.  Are there distributed processing functions?  

    4.  Is performance critical?  

    5.  Will the system run in an existing, heavily utilized operational 

environment?  

    6.  Does the system require online data entry?  

    7.  Does the online data entry require the input transaction to be built over 

multiple screens or operations?  

    8.  Are the ILFs updated online?  

   Value adjustment 
factors are used to 
provide an indication of 
problem complexity. 

  FIGURE 30.1

 Computing 

function points   

External Inputs (EIs) 3

External Outputs (EOs) 3

External Inquiries (EQs) 3

External Interface Files (EIFs) 3

Count total

Internal Logical Files (ILFs) 3

3

4

3

5

7

=

=

=

=

=

4

5

4

7

10

6

7

6

10

15

Information
Domain Value

Weighting factor

Count Simple Average Complex



CHAPTER 30  PRODUCT METRICS  661

    9.  Are the inputs, outputs, fi les, or inquiries complex?  

    10.  Is the internal processing complex?  

    11.  Is the code designed to be reusable?  

    12.  Are conversion and installation included in the design?  

    13.  Is the system designed for multiple installations in different organizations?  

    14.  Is the application designed to facilitate change and ease of use by the 

user?  

  Each of these questions is answered using an ordinal scale that ranges from 0 

(not important or applicable) to 5 (absolutely essential). The constant values in 

Equation (30.1) and the weighting factors that are applied to information domain 

counts are determined empirically. 

      To illustrate the use of the FP metric in this context, consider a simple fl ow 

diagram for a user interaction function within  SafeHome  software, represented 

in   Figure 30.2  . The function manages user interaction, accepting a user password 

to activate or deactivate the system, and allows inquiries on the status of security 

zones and various security sensors. The function displays a series of prompting 

messages and sends appropriate control signals to various components of the 

security system.  

 The fl ow diagram is evaluated to determine a set of key information domain 

measures required for computation of the function point metric. Three external 

inputs— password, panic button,  and  activate/deactivate —are shown in the fi g-

ure along with two external inquiries— zone inquiry  and  sensor inquiry . One ILF 

( system confi guration fi le ) is shown. Two external outputs ( messages  and  sensor  

 status ) and four EIFs ( test sensor, zone setting, activate/deactivate,  and  alarm 

alert ) are also present. These data, along with the appropriate complexity, are 

shown in   Figure 30.3  . 

 WebRef 

 An online FP calculator 
can be found at 
  http://groups
.engin.umd.umich
.edu/CIS/course
.des/cis375/
projects/fp99/
main.html  . 

  FIGURE 30.2

 A fl ow model 

for  SafeHome  

user interac-

tion function   

User

SafeHome
user

interaction
function

Messages

System configuration data

Password, sensors . . .

Sensor status

Sensors

Monitoring
& response
subsystem

Alarm
alert

Activate/deactivate

Zone setting

Test sensor

User
Sensor inquiry

Panic button

Activate/deactivate

Zone inquiry

Password



662 PART THREE  QUALITY MANAGEMENT

  The count total shown in   Figure 30.3   must be adjusted using Equation (30.1). 

For the purposes of this example, we assume that S ( F  
i
 ) is 46 (a moderately com-

plex product). Therefore,

FP 5 50 3 [0.65 1 (0.01 3 46)] 5 56  

 Based on the projected FP value derived from the requirements model, the proj-

ect team can estimate the overall implemented size of the  SafeHome  user inter-

action function. Assume that past data indicates that one FP translates into 60 

lines of code (an object-oriented language is to be used) and that 12 FPs are pro-

duced for each person-month of effort. These historical data provide the project 

manager with important planning information that is based on the requirements 

model rather than preliminary estimates. Assume further that past projects 

have found an average of three errors per function point during requirements 

and design reviews and four errors per function point during unit and integra-

tion testing. These data can ultimately help you assess the completeness of your 

review and testing activities. Uemura and his colleagues [Uem99] suggest that 

function points can also be computed from UML class and sequence diagrams. 

    30.2.2   Metrics for Specifi cation Quality 

      Davis and his colleagues [Dav93] propose a list of characteristics that can be used 

to assess the quality of the requirements model and the corresponding require-

ments specifi cation:  specifi city  (lack of ambiguity),  completeness, correctness, 

understandability, verifi ability, internal and external consistency, achievability, 

concision, traceability, modifi ability, precision,  and  reusability.  In addition, the 

authors note that high-quality specifi cations are electronically stored; execut-

able or at least interpretable; annotated by relative importance; and stable, ver-

sioned, organized, cross-referenced, and specifi ed at the right level of detail. 

 Although many of these characteristics appear to be qualitative in nature, 

each can be represented using one or more metrics. [Dav93] For example, we 

assume that there are  n  
r
  requirements in a specifi cation, such that

 n  
r
  5  n  

f
  1  n  

nf
 

    uote: 

 “Rather than just 
musing on what 
‘new metric’ might 
apply . . . we 
should also be 
asking ourselves 
the more basic 
question, ‘What 
will we do with 
metrics?’” 

  Michael Mah 
and Larry 

Putnam 

   By measuring 
 characteristics of 
the specifi cation, it 
is  possible to gain 
quantitative insight 
into specifi city and 
completeness. 

  FIGURE 30.3

 Computing 

function points   

External Inputs (EIs) 3

External Outputs (EOs) 3

External Inquiries (EQs) 3

External Interface Files (EIFs) 3

Count total

Internal Logical Files (ILFs) 3

3

4

3

5

7

=

=

=

=

=

4

5

4

7

10

6

7

6

10

15

Information
Domain Value

Weighting factor

Count Simple Average Complex

9

8

6

20

50

7

3

2

2

4

1



CHAPTER 30  PRODUCT METRICS  663

where  n  
f
  is the number of functional requirements and  n  

nf
  is the number of non-

functional (e.g., performance) requirements. 

 To determine the  specifi city  (lack of ambiguity) of requirements, Davis and 

colleagues suggest a metric that is based on the consistency of the reviewers’ 

interpretation of each requirement:

 Q 
1 
5   

 n  
ui

 
 ___  n  

r
   

where  n  
ui

  is the number of requirements for which all reviewers had identical 

interpretations. The closer the value of  Q  to 1, the lower is the ambiguity of the 

specifi cation. 

 The  completeness  of functional requirements can be determined by comput-

ing the ratio

 
Q 

2 
5    

n  
u
 
 ________ 

[ n  
i
  3  n  

s
 ]
    

 where  n  
u
  is the number of unique function requirements,  n  

i
  is the number of 

inputs (stimuli) defi ned or implied by the specifi cation, and  n  
s
  is the number of 

states specifi ed. The  Q 
2
 ratio measures the percentage of necessary functions 

that have been specifi ed for a system. However, it does not address nonfunctional 

requirements. To incorporate these into an overall metric for completeness, you 

must consider the degree to which requirements have been validated:

 
Q 

3 
5    

n  
c
 
 ________ 

[ n  
c
  1  n  

nv
 ]
  

where  n  
c
  is the number of requirements that have been validated as correct and 

 n  
nv

  is the number of requirements that have not yet been validated. 

       30.3  METRICS  FOR  THE  DES IGN  MODEL 

       It is inconceivable that the design of a new aircraft, a new computer chip, or a 

new offi ce building would be conducted without defi ning design measures, de-

termining metrics for various aspects of design quality, and using them as indi-

cators to guide the manner in which the design evolves. And yet, the design of 

complex software-based systems often proceeds with virtually no measurement. 

The irony of this is that design metrics for software are available, but the vast 

majority of software engineers continue to be unaware of their existence. 

 Design metrics for computer software, like all other software metrics, are 

not perfect. Debate continues over their effi cacy and the manner in which they 

should be applied. Many experts argue that further experimentation is required 

before design measures can be used. And yet, design without measurement is an 

unacceptable alternative. 

   30.3.1   Architectural Design Metrics 

 Architectural design metrics focus on characteristics of the program archi-

tecture (Chapter 13) with an emphasis on the architectural structure and the 

    uote: 

 “Measure what 
is measurable, 
and what is not 
measurable, make 
measurable.” 

 Galileo 

   Metrics can provide 
insight into structural 
data and system com-
plexity associated with 
architectural design. 



664 PART THREE  QUALITY MANAGEMENT

effectiveness of modules or components within the architecture. These metrics 

are “black box” in the sense that they do not require any knowledge of the inner 

workings of a particular software component. 

 Card and Glass [Car90] defi ne three software design complexity measures: 

structural complexity, data complexity, and system complexity. 

 For hierarchical architectures (e.g., call-and-return architectures),  structural 

complexity  of a module  i  is defi ned in the following manner:

 S ( i ) 5  f   2 
out

(
 
i ) (30.2)

where  f 
out

(
 
i ) is the fan-out  6   of module  i.   

  Data complexity  provides an indication of the complexity in the internal inter-

face for a module  i  and is defi ned as

 D ( i ) 5    v ( i )
 _________ 

[ f 
out

(
 
i ) 1 1]

   (30.3)

where  v ( i ) is the number of input and output variables that are passed to and 

from module  i.  

 Finally,  system complexity  is defi ned as the sum of structural and data com-

plexity, specifi ed as

 C ( i ) 5  S ( i ) 1  D ( i )  (30.4)

 As each of these complexity values increases, the overall architectural complex-

ity of the system also increases. This leads to a greater likelihood that integration 

and testing effort will also increase. 

 Fenton [Fen91] suggests a number of simple morphology (i.e., shape) met-

rics that enable different program architectures to be compared using a set of 

straightforward dimensions. Referring to the call-and-return architecture in   Fig-

ure 30.4  , the following metrics can be defi ned:

Size 5  n 1 a 

where  n  is the number of nodes and  a  is the number of arcs. For the architecture 

shown in   Figure 30.4  ,

Size 5 17 1 18 5 35 

 Depth 5  longest path from the root (top) node to a leaf node. For the 

architecture shown in   Figure 30.4  , depth 5 4. 

 Width 5  maximum number of nodes at any one level of the architecture. 

For the architecture shown in   Figure 30.4  , width 5 6. 

  6   Fan-out  is defi ned as the number of modules immediately subordinate to module  i;  that is, the 

number of modules that are directly invoked by module  i.  



CHAPTER 30  PRODUCT METRICS  665

 The arc-to-node ratio,  r 5 a/n,  measures the connectivity density of the architec-

ture and may provide a simple indication of the coupling of the architecture. For 

the architecture shown in   Figure 30.4  ,  r  5 18/17 5 1.06.  

 The U.S. Air Force Systems Command [USA87] has developed a number of 

software quality indicators that are based on measurable design characteristics 

of a computer program. Using concepts similar to those proposed in IEEE Std. 

982.1-2005 [IEE05], the Air Force uses information obtained from data and archi-

tectural design to derive a  design structure quality index  (DSQI) that ranges from 

0 to 1. The following values must be ascertained to compute the DSQI [Cha89]:

 S 
1 
5  total number of modules defi ned in the program architecture

 S 
2 
5  number of modules whose correct function depends on the source 

of data input or that produce data to be used elsewhere (in general, 

control modules, among others, would not be counted as part of  S 
2
)

 
S 

3 
5  number of modules whose correct function depends on prior processing

 S 
4 
5  number of database items (includes data objects and all attributes that 

defi ne objects)

 S 
5 
5  total number of unique database items

 S 
6 
5  number of database segments (different records or individual objects)

 S 
7 
5  number of modules with a single entry and exit (exception processing 

is not considered to be a multiple exit)  

 Once values  S 
1
 through  S 

7 
are determined for a computer program, the following 

intermediate values can be computed:

        
Program structure: D 

1
, where  D 

1
 is defi ned as follows: If the architectural de-

sign was developed using a distinct method (e.g., data fl ow–oriented design or 

object-oriented design), then  D 
1 
5 1, otherwise  D 

1 
5 0. 

 

    uote: 

 “Measurement 
can be seen as 
a detour. This 
detour is necessary 
because humans 
mostly are not 
able to make clear 
and objective 
decisions [without 
quantitative 
support].” 

 Horst Zuse 

  FIGURE 30.4

 Morphology 

metrics   

j

e

n qp

k l

r

i

d

mh

b

gf

c

a

Width

Depth

Node

Arc



666 PART THREE  QUALITY MANAGEMENT

       
Module independence: D

2
  5 1 2  (   

 S 
2
 __ 

 S 
1

   )   
       Modules not dependent on prior processing:   D 

3 
5 1 2  (   

 S 
3
 __ 

 S 
1

    )  
       Database size:   D 

4 
5 1 2  (   

 S 
5
 __ 

 
S 

4

   )   
       
Database compartmentalization:   D 

5 
5 1 2  (    

S 
6
 __ 

 S 
4

   )   
       
Module entrance/exit characteristic:   D 

6 
5 1 2  (   

 S 
7
 __ 

 S 
1

   )     
 With these intermediate values determined, the DSQI is computed in the follow-

ing manner:

DSQI 5 S  w  
i
  D  

i
   (30.5)

 where  i  5 1 to 6,  w  
i
  is the relative weighting of the importance of each of the in-

termediate values, and S  w
i
  5 1 (if all  D

i
  are weighted equally, then  w  

i
  5 0.167). 

 The value of DSQI for past designs can be determined and compared to a 

design that is currently under development. If the DSQI is signifi cantly lower 

than average, further design work and review are indicated. Similarly, if major 

changes are to be made to an existing design, the effect of those changes on DSQI 

can be calculated. 

    30.3.2   Metrics for Object-Oriented Design 

 There is much about object-oriented design that is subjective—an experienced 

designer “knows” how to characterize an OO system so that it will effectively im-

plement customer requirements. But, as an OO design model grows in size and 

complexity, a more objective view of the characteristics of the design can benefi t 

both the experienced designer (who gains additional insight) and the novice (who 

obtains an indication of quality that would otherwise be unavailable). 

 In a detailed treatment of software metrics for OO systems, Whitmire [Whi97] 

describes nine distinct and measurable characteristics of an OO design.  Size  is 

defi ned by taking a static count of OO entities such as classes or operations, 

coupled with the depth of an inheritance tree.  Complexity  is defi ned in terms of 

structural characteristics by examining how classes of an OO design are inter-

related to one another.  Coupling  is measured by counting physical connections 

between elements of the OO design (e.g., the number of collaborations between 

classes or the number of messages passed between objects).  Suffi ciency  is “the 

degree to which an abstraction [class] possesses the features required of it . . .” 

[Whi97].  Completeness  determines whether a class delivers the set of properties 

that fully refl ect the needs of the problem domain.  Cohesion  is determined be ex-

amining whether all operations work together to achieve a single, well-defi ned 

purpose.  Primitiveness  is the degree to which an operation is atomic—that is, the 

operation cannot be constructed out of a sequence of other operations contained 

within a class. Similarity determines the degree to which two or more classes 

are similar in terms of their structure, function, behavior, or purpose. Volatility 

measures the likelihood that a change will occur. 



CHAPTER 30  PRODUCT METRICS  667

 In reality, product metrics for OO systems can be applied not only to the de-

sign model, but also to the requirements model. In the sections that follow, we 

discuss metrics that provide an indication of quality at the OO class level and 

the operation level. In addition, metrics applicable for project management and 

testing are also explored. 

    30.3.3   Class-Oriented Metrics—The CK Metrics Suite 

 The class is the fundamental unit of an OO system. Therefore, measures and 

metrics for an individual class, the class hierarchy, and class collaborations will 

be invaluable when you are required to assess OO design quality. A class encap-

sulates data and the function that manipulate the data. It is often the “parent” for 

subclasses (sometimes called children) that inherit its attributes and operations. 

It often collaborates with other classes. Each of these characteristics can be used 

as the basis for measurement.  7    

 Chidamber and Kemerer (CK) have proposed one of the most widely refer-

enced sets of OO software metrics [Chi94]. Often referred to as the  CK metrics 

suite,  the authors have proposed six class-based design metrics for OO systems.  8   

  Weighted methods per class (WMC).   Assume that  n  methods of complexity  c 
1, 

 
c 

2
, . . . ,  c

n
  are defi ned for a class  C.  The specifi c complexity metric that is chosen 

(e.g., cyclomatic complexity) should be normalized so that nominal complexity 

for a method takes on a value of 1.0.

WMC 5 S  c  
i
  

 for  i  5 1 to  n . The number of methods and their complexity are reasonable indi-

cators of the amount of effort required to implement and test a class. In addition, 

the larger the number of methods, the more complex is the inheritance tree (all 

subclasses inherit the methods of their parents). Finally, as the number of meth-

ods grows for a given class, it is likely to become more and more application 

specifi c, thereby limiting potential reuse. For all of these reasons, WMC should 

be kept as low as is reasonable. 

   Depth of the inheritance tree (DIT).   This metric is “the maximum length from 

the node to the root of the tree” [Chi94]. Referring to   Figure 30.5  , the value of 

DIT for the class hierarchy shown is 4. As DIT grows, it is likely that lower-level 

classes will inherit many methods. This leads to potential diffi culties when at-

tempting to predict the behavior of a class. A deep class hierarchy (DIT is large) 

  7  It should be noted that the validity of some of the metrics discussed in this chapter is currently 

debated in the technical literature. Those who champion measurement theory demand a de-

gree of formalism that some OO metrics do not provide. However, it is reasonable to state that 

the metrics noted provide useful insight for the software engineer. 

  8  Chidamber, Darcy, and Kemerer use the term  methods  rather than  operations . Their usage of 

the term is refl ected in this section. 



668 PART THREE  QUALITY MANAGEMENT

also leads to greater design complexity. On the positive side, large DIT values 

imply that many methods may be reused.  

        Number of children (NOC).   The subclasses that are immediately subordinate 

to a class in the class hierarchy are termed its children. Referring to   Figure 30.5  , 

class  C
2
  has three children—subclasses  C

21
, C

22
,  and  C

30
.  As the number of children 

grows, reuse increases, but also, as NOC increases, the abstraction represented 

by the parent class can be diluted if some of the children are not appropriate 

members of the parent class. As NOC increases, the amount of testing (required 

to exercise each child in its operational context) will also increase. 

   Coupling between object classes (CBO).   The CRC model (Chapter 10) may be 

used to determine the value for CBO. In essence, CBO is the number of collab-

orations listed for a class on its CRC index card.  9   As CBO increases, it is likely 

that the reusability of a class will decrease. High values of CBO also compli-

cate modifi cations and the testing that ensues when modifi cations are made. In 

general, the CBO values for each class should be kept as low as is reasonable. 

This is consistent with the general guideline to reduce coupling in conventional 

software.  

   Response for a class (RFC).   The response set of a class is “a set of methods that 

can potentially be executed in response to a message received by an object of 

that class” [Chi94]. RFC is the number of methods in the response set. As RFC in-

creases, the effort required for testing also increases because the test sequence 

   The concepts of 
coupling and cohe-
sion apply to both 
conventional and OO 
software. Keep class 
coupling low and class 
and operation cohesion 
high. 

  FIGURE 30.5

 A class 

hierarchy   

C

C1

C11

C211

C21 C22 C23

C2

  9  If CRC index cards are developed manually, completeness and consistency must be assessed 

before CBO can be determined reliably. 



CHAPTER 30  PRODUCT METRICS  669

(Chapter 24) grows. It also follows that, as RFC increases, the overall design com-

plexity of the class increases. 

   Lack of cohesion in methods (LCOM).   Each method within a class  C  accesses 

one or more attributes (also called instance variables). LCOM is the number of 

methods that access one or more of the same attributes.  10   If no methods access 

the same attributes, then LCOM 5 0. To illustrate the case where LCOM ± 0, con-

sider a class with six methods. Four of the methods have one or more attributes 

in common (i.e., they access common attributes). Therefore, LCOM 5 4. If LCOM 

is high, methods may be coupled to one another via attributes. This increases the 

complexity of the class design. Although there are cases in which a high value for 

LCOM is justifi able, it is desirable to keep cohesion high; that is, keep LCOM low.  11        

  10  The formal defi nition is a bit more complex. See [Chi94] for details. 

  11  The LCOM metric provides useful insight in some situations, but it can be misleading in others. 

For example, keeping coupling encapsulated within a class increases the cohesion of the sys-

tem as a whole. Therefore in at least one important sense, higher LCOM actually suggests that 

a class may have higher cohesion, not lower. 

  Applying CK Metrics    Applying CK Metrics  

  The scene:  Vinod’s cubicle. 

  The players:  Vinod, Jamie, Shakira, and Ed—
members of the  SafeHome  software engineering team 
who are continuing to work on component-level design 
and test-case design. 

  The conversation:  

  Vinod:  Did you guys get a chance to read the 
description of the CK metrics suite I sent you on 
Wednesday and make those measurements? 

  Shakira:  Wasn’t too complicated. I went back to my 
UML class and sequence diagrams, like you suggested, 
and got rough counts for DIT, RFC, and LCOM. I 
couldn’t fi nd the CRC model, so I didn’t count CBO. 

  Jamie (smiling):  You couldn’t fi nd the CRC model 
because I had it. 

  Shakira:  That’s what I love about this team, superb 
communication. 

  Vinod:  I did my counts . . . did you guys develop num-
bers for the CK metrics? 

 [Jamie and Ed nod in the affi rmative.] 

  Jamie:  Since I had the CRC cards, I took a look at 
CBO and it looked pretty uniform across most of the 
classes. There was one exception, which I noted. 

  Ed:  There are a few classes where RFC is pretty high, 
compared with the averages . . . maybe we should take 
a look at simplifying them. 

  Jamie:  Maybe yes, maybe no. I’m still concerned about 
time, and I don’t want to fi x stuff that isn’t really broken. 

  Vinod:  I agree with that. Maybe we should look 
for classes that have bad numbers in at least two or 
more of the CK metrics. Kind of two strikes and you’re 
modifi ed. 

  Shakira (looking over Ed’s list of classes with 

high RFC):  Look, see this class, it’s got a high LCOM 
as well as a high RFC. Two strikes? 

  Vinod:  Yeah I think so . . . it’ll be diffi cult to implement 
because of complexity and diffi cult to test for the same 
reason. Probably worth designing two separate classes 
to achieve the same behavior. 

  Jamie:  You think modifying it’ll save us time? 

  Vinod:  Over the long haul, yes.  

 SAFEHOME 



670 PART THREE  QUALITY MANAGEMENT

      30.3.4   Class-Oriented Metrics—The MOOD Metrics Suite 

  Harrison, Counsell, and Nithi [Har98b] propose a set of metrics for object- 

oriented design that provides quantitative indicators for OO design characteris-

tics. A sampling of MOOD metrics follows. 

  Method inheritance factor (MIF).   The degree to which the class architecture of 

an OO system makes use of inheritance for both methods (operations) and attri-

butes is defi ned as 

MIF 5   
S M  

i
 ( C  

i
 )
 

_______
 

S M  
a
 ( C  

i
 )
   

 where the summation occurs over  i  5 1 to TC. TC is defi ned as the total number 

of classes in the architecture,  C
i
  is a class within the architecture, and

 M  
a
 ( C  

i
 ) 5  M  

d
 ( C  

i
 ) 1  M  

i
 ( C  

i
 ) 

 where

        M  
a
 ( C  

i
 ) 5 number of methods that can be invoked in association with  C  

i
   

       M
d
 ( C

i
 ) 5 number of methods declared in the class  C

i
   

       M
i
 ( C

i
 ) 5 number of methods inherited (and not overridden) in  C

i
     

 The value of MIF [the attribute inheritance factor (AIF) is defi ned in an anal-

ogous manner] provides an indication of the impact of inheritance on the OO 

software. 

   Coupling factor (CF).   Earlier in this chapter I noted that coupling is an indica-

tion of the connections between elements of the OO design. The MOOD metrics 

suite defi nes coupling in the following way:

CF 5 S 
i
  S 

j
   is_client    

( C  
i
 ,  C  

j
 )
 _________ 

TC 2  2 TC
  

where the summations occur over  i  5 1 to TC and  j  5 1 to TC. The function

 is client  5  1, if and only if a relationship exists between the client class  C  
c
  

and the server class  C  
s
 , and  C  

c
  Þ  C  

s
 

5 0, otherwise 

 Although many factors affect software complexity, understandability, and main-

tainability, it is reasonable to conclude that as the value for CF increases, the 

complexity of the OO software will also increase and understandability, main-

tainability, and the potential for reuse may suffer as a result. 

 Harrison and her colleagues [Har98b] present a detailed analysis of MIF and 

CF along with other metrics and examine their validity for use in the assessment 

of design quality. 

    uote: 

 “Analyzing OO 
software in order 
to evaluate its 
quality is becoming 
increasingly 
important as the 
[OO] paradigm 
continues to 
increase in 
popularity.” 

 Rachel Harrison 
et al. 



CHAPTER 30  PRODUCT METRICS  671

     30.3.5   OO Metrics Proposed by Lorenz and Kidd 

 In their book on OO metrics, Lorenz and Kidd [Lor94] divide class-based metrics 

into four broad categories that each have a bearing on component-level design: 

size, inheritance, internals, and externals. Size-oriented metrics for an OO de-

sign class focus on counts of attributes and operations for an individual class and 

average values for the OO system as a whole. Inheritance-based metrics focus 

on the manner in which operations are reused through the class hierarchy. Met-

rics for class internals look at cohesion (Section 30.3.3) and code-oriented issues, 

and external metrics examine coupling and reuse. One example of the metrics 

 proposed by Lorenz and Kidd is as follows: 

       Class size (CS).   The overall size of a class can be determined using the following 

measures:

    •  The total number of operations (both inherited and private instance oper-

ations) that are encapsulated within the class  

   •  The number of attributes (both inherited and private instance attributes) 

that are encapsulated by the class    

 The WMC metric proposed by Chidamber and Kemerer (Section 30.3.3) is also a 

weighted measure of class size. As we noted earlier, large values for CS indicate 

that a class may have too much responsibility. This will reduce the reusability of 

the class and complicate implementation and testing. In general, inherited or 

public operations and attributes should be weighted more heavily in determin-

ing class size [Lor94]. Private operations and attributes enable specialization and 

are more localized in the design. Averages for the number of class attributes 

and operations may also be computed. The lower the average values for size, the 

more likely that classes within the system can be reused widely. 

     30.3.6   Component-Level Design Metrics 

      Component-level design metrics for conventional software components focus on 

internal characteristics of a software component and include measures of the 

“three Cs”—module cohesion [Bie94], coupling [Dha95], and complexity [Zus97]. 

These measures can help you judge the quality of a component-level design. 

 Component-level design metrics may be applied once a procedural design 

has been developed and are “glass box” in the sense that they require knowledge 

of the inner workings of the module under consideration. Alternatively, they may 

be delayed until source code is available. 

    30.3.7   Operation-Oriented Metrics 

 Because the class is the dominant unit in OO systems, fewer metrics have been 

proposed for operations that reside within a class. Churcher and Shepperd 

   During review of the 
analysis model, CRC 
index cards will provide 
a reasonable indication 
of expected values for 
CS. If you encounter a 
class with a large num-
ber of responsibilities, 
consider partitioning it. 

   It is possible to 
compute measures 
of the functional 
 independence—
coupling and 
 cohesion—of a 
component and to use 
these to assess the 
quality of a design. 



672 PART THREE  QUALITY MANAGEMENT

[Chu95] discuss this when they state: “Results of recent studies indicate that 

methods tend to be small, both in terms of number of statements and in logi-

cal complexity [Wil93], suggesting that connectivity structure of a system may be 

more important than the content of individual modules.” However, some insights 

can be gained by examining average characteristics for methods (operations). 

Three simple metrics, proposed by Lorenz and Kidd [Lor94], are appropriate: 

  Average operation size (OS
avg

).     Size can be determined by counting the 

number of lines of code or the number of messages sent by the operation. 

As the number of messages sent by a single operation increases, it is likely 

that responsibilities have not been well allocated within a class. 

  Operation complexity (OC).     The complexity of an operation can be 

 computed using any of the complexity metrics proposed for conventional 

software [Zus90]. Because operations should be limited to a specifi c 

 responsibility, the designer should strive to keep OC as low as possible. 

  Average number of parameters per operation (NP
avg

).     The larger the 

number of operation parameters, the more complex the collaboration 

 between objects. In general, NP
avg

 should be kept as low as possible. 

    30.3.8   User Interface Design Metrics 

 Although there is signifi cant literature on the design of human/computer inter-

faces (Chapter 15), relatively little information has been published on metrics 

that would provide insight into the quality and usability of the interface. 

  A study of Web page metrics [Ivo01] indicates that simple characteristics of 

the elements of the layout can also have a signifi cant impact on the perceived 

quality of the GUI design. The number of words, links, graphics, colors, and fonts 

(among other characteristics) contained within a Web page affect the perceived 

complexity and quality of that page. 

 Although UI metrics may be useful in some cases, the fi nal arbiter should be 

user input based on GUI prototypes. Nielsen and Levy [Nie94] report that “one 

has a reasonably large chance of success if one chooses between interface [de-

signs] based solely on users’ opinions. Users’ average task performance and their 

subjective satisfaction with a GUI are highly correlated.” 

       30.4  DES IGN  METRICS  FOR  WEB  AND  MOBILE  APPS 

  A useful set of measures and metrics for WebApps provides quantitative answers 

to the following questions:

    •  Does the user interface promote usability?  

   •  Are the aesthetics of the WebApp appropriate for the application domain 

and pleasing to the user?  

    uote: 

 “You can learn at 
least one principle 
of user interface 
design by loading 
a dishwasher. If 
you crowd a lot in 
there, nothing gets 
very clean.” 

 Author unknown 



CHAPTER 30  PRODUCT METRICS  673

   •  Is the content designed in a manner that imparts the most information 

with the least effort?  

   •  Is navigation effi cient and straightforward?  

   •  Has the WebApp architecture been designed to accommodate the special 

goals and objectives of WebApp users, the structure of content and func-

tionality, and the fl ow of navigation required to use the system effectively?  

   •  Are components designed in a manner that reduces procedural complex-

ity and enhances the correctness, reliability, and performance?    

 Today, each of these questions can be addressed only qualitatively because a 

 validated suite of metrics that would provide quantitative answers does not yet 

exist. 

 In the paragraphs that follow, we present a representative sampling of Web 

and MobileApp design metrics that have been proposed in the literature. It is 

important to note that many of these metrics have not as yet been validated and 

should be used judiciously.      

  Interface metrics.   For WebApps, the following interface measures can be 

considered: 

     

Suggested Metric Description

Layout appropriateness The relative position of entities within the interface

Layout complexity Number of distinct regions  12   defined for an interface 

Layout region complexity Average number of distinct links per region

Recognition complexity Average number of distinct items the user must look at before making a 
navigation or data input decision

Recognition time Average time (in seconds) that it takes a user to select the appropriate 
action for a given task

Typing effort Average number of key strokes required for a specific function

Mouse pick effort Average number of mouse picks per function

Selection complexity Average number of links that can be selected per page

Content acquisition time Average number of words of text per Web page

Memory load Average number of distinct data items that the user must remember to 
achieve a specific objective

      Aesthetic (graphic design) metrics.   By its nature, aesthetic design relies on qual-

itative judgment and is not generally amenable to measurement and metrics. 

   Many of these metrics 
are applicable to all 
user interfaces and 
should be considered 
in conjunction with 
those presented in 
Section 30.3.8. 

  12  A distinct region is an area within the layout display that accomplishes some specifi c set of 

related functions (e.g., a menu bar, a static graphical display, a content area, an animated 

display). 



674 PART THREE  QUALITY MANAGEMENT

However, Ivory and her colleagues [Ivo01] propose a set of measures that may be 

useful in assessing the impact of aesthetic design:

Suggested Metric Description

Word count Total number of words that appear on a page

Body text percentage Percentage of words that are body versus display text (e.g., headers)

Emphasized body text percentage Portion of body text that is emphasized (e.g., bold, capitalized)

Text positioning count Changes in text position from flush left

Text cluster count Text areas highlighted with color, bordered regions, rules, or lists

Link count Total links on a page

Page size Total bytes for the page as well as elements, graphics, and style 
sheets

Graphic percentage Percentage of page bytes that are for graphics

Graphics count Total graphics on a page (not including graphics specified in scripts, 
applets, and objects)

Color count Total colors employed

Font count Total fonts employed (i.e., face 1 size 1 bold 1 italic)

     Content metrics.   Metrics in this category focus on content complexity and on 

clusters of content objects that are organized into pages [Men01]. 

Suggested Metric Description

Page wait Average time required for a page to download at different connection 
speeds

Page complexity Average number of different types of media used on page, not 
including text

Graphic complexity Average number of graphics media per page

Audio complexity Average number of audio media per page

Video complexity Average number of video media per page

Animation complexity Average number of animations per page

Scanned image complexity Average number of scanned images per page

     Navigation metrics.   Metrics in this category address the complexity of the navi-

gational fl ow [Men01]. In general, they are applicable only for static Web applica-

tions, which don’t include dynamically generated links and pages. 

Suggested Metric Description

Page-linking complexity Number of links per page

Connectivity Total number of internal links, not including dynamically generated links

Connectivity density Connectivity divided by page count



CHAPTER 30  PRODUCT METRICS  675

   Using a subset of the metrics suggested, it may be possible to derive empirical 

relations that allow a WebApp development team to assess technical quality and 

predict effort based on projected estimates of complexity. Further work remains 

to be accomplished in this area. 

   Technical Metrics for WebApps  

  Objective:  To assist Web engineers in 
developing meaningful WebApp metrics that 

provide insight into the overall quality of an application. 

  Mechanics:  Tool mechanics vary. 

  Representative Tools:   13    

  Netmechanic Tools,  developed by Netmechanic ( www.

netmechanic.com ), is a collection of tools that 
help to improve website performance, focusing on 
implementation-specifi c issues. 

  NIST Web Metrics Testbed , developed by the National 
Institute of Standards and Technology ( zing.ncsl.

nist.gov/WebTools/ ) encompasses the following 
collection of useful tools that are available for 
download: 

  Web Static Analyzer Tool (WebSAT)— Checks Web 
page HTML against typical usability guidelines. 

  Web Category Analysis Tool (WebCAT) —Lets the 
usability engineer construct and conduct a Web 
category analysis. 

  Web Variable Instrumenter Program (WebVIP)—
 Provides instruments to a website to capture a log of 
user interaction. 

  Framework for Logging Usability Data (FLUD) —
Implements a fi le formatter and parser for 
representation of user interaction logs. 

  VisVIP Tool —Produces a 3D visualization of user 
navigation paths through a website. 

  TreeDec —Adds navigation aids to the pages of a 
website.  

 SOFTWARE TOOLS 

  13  Tools noted here do not represent an endorsement, but rather a sampling of tools in this 

category. 

  14  It should be noted that Halstead’s “laws” have generated substantial controversy, and many 

believe that the underlying theory has fl aws. However, experimental verifi cation for selected 

programming languages has been performed (e.g., [Fel89]). 

        30.5  METRICS  FOR  SOURCE  CODE 

   Halstead’s theory of “software science” [Hal77] proposed the fi rst analytical “laws” 

for computer software.  14   Halstead assigned quantitative laws to the development 

of computer software, using a set of primitive measures that may be derived after 

code is generated or estimated once design is complete. The measures are: 

        n 
1 
5 number of distinct operators that appear in a program  

       n 
2 
5 number of distinct operands that appear in a program  

       N 
1 
5 total number of operator occurrences  

      N 
2
 5 total number of operand occurrences  

       Halstead uses these primitive measures to develop expressions for the overall 

program length, potential minimum volume for an algorithm, the actual volume 

(number of bits required to specify a program), the program level (a measure of 

software complexity), the language level (a constant for a given language), and 

 uote: 

 “The human brain 
follows a more 
rigid set of rules 
[for developing 
algorithms] than 
it has been aware 
of.” 

 Maurice 
Halstead 



676 PART THREE  QUALITY MANAGEMENT

other features such as development effort, development time, and even the pro-

jected number of faults in the software. 

 Halstead shows that length  N  can be estimated

 N  5  n 
1
 log

2  
n 

1 
1  n 

2
 log

2  
n 

2

and program volume may be defi ned

 
V  5  N  log

2 
( n 

1  
1 n 

2
) 

 It should be noted that  V  will vary with programming language and represents 

the volume of information (in bits) required to specify a program. 

 Theoretically, a minimum volume must exist for a particular algorithm. 

Halstead defi nes a volume ratio  L  as the ratio of volume of the most compact form 

of a program to the volume of the actual program. In actuality,  L  must always be 

less than 1. In terms of primitive measures, the volume ratio may be expressed as

 L  5   2 __  n 
1

  
 
3   

  
n 

2 
 

___
 

N 
2

   

 Halstead’s work is amenable to experimental verifi cation and a large body 

of research has been conducted to investigate software science. A discussion of 

this work is beyond the scope of this book. For further information, see [Zus90], 

[Fen91], and [Zus97]. 

      30.6  METRICS  FOR  TEST ING 

  The majority of metrics proposed for testing focus on the process of testing, not 

the technical characteristics of the tests themselves. In general, testers must rely 

on analysis, design, and code metrics to guide them in the design and execution 

of test cases. 

      Architectural design metrics provide information on the ease or diffi culty as-

sociated with integration testing (Section 30.3) and the need for specialized test-

ing software (e.g., stubs and drivers). Cyclomatic complexity (a component-level 

design metric) lies at the core of basis path testing, a test-case design method 

presented in Chapter 23. In addition, cyclomatic complexity can be used to target 

modules as candidates for extensive unit testing. Modules with high cyclomatic 

complexity are more likely to be error prone than modules whose cyclomatic 

complexity is lower. For this reason, you should expend above average effort to 

uncover errors in such modules before they are integrated in a system. 

   30.6.1   Halstead Metrics Applied to Testing 

 Testing effort can be estimated using metrics derived from Halstead measures 

(Section 30.5). Using the defi nitions for program volume  V  and program level  PL,  

Halstead effort  e  can be computed as

 PL  5   1
 ______________  

[( n 
1
/2)

 
3 ( N 

2 
/n 

2
)]

   (30.6a)

 
e 5   V ___ 

PL
     (30.6b)

   Operators include all 
fl ow of control con-
structs, conditionals, 
and math operations. 
Operands encompass 
all program variables 
and constants. 

   Testing metrics fall into 
two broad categories: 
(1) metrics that 
attempt to predict the 
likely number of tests 
required at various 
testing levels, and 
(2) metrics that focus 
on test coverage for a 
given component. 



CHAPTER 30  PRODUCT METRICS  677

 The percentage of overall testing effort to be allocated to a module  k  can be esti-

mated using the following relationship:

Percentage of testing effort ( k ) 5    e ( k )
 ____ 

 Se ( i )
   (30.7)

where  e ( k ) is computed for module  k  using Equations (30.6) and the summation 

in the denominator of Equation (30.7) is the sum of Halstead effort across all mod-

ules of the system. 

    30.6.2   Metrics for Object-Oriented Testing 

 The OO design metrics noted in Section 30.3 provide an indication of design 

quality. They also provide a general indication of the amount of testing effort 

required to exercise an OO system. Binder [Bin94b] suggests a broad array of 

design metrics that have a direct infl uence on the “testability” of an OO system. 

The metrics consider aspects of encapsulation and inheritance. 

  Lack of cohesion in methods (LCOM).   15    The higher the value of LCOM, 

the more states must be tested to ensure that methods do not generate 

side effects.  

  Percent public and protected (PAP).     Public attributes are inherited 

from other classes and therefore are visible to those classes. Protected 

attributes are accessible to methods in subclasses. This metric indicates 

the percentage of class attributes that are public or protected. High 

values for PAP increase the likelihood of side effects among classes 

because public and protected attributes lead to high potential for cou-

pling.  16   Tests must be designed to ensure that such side effects are 

uncovered.     

   Public access to data members (PAD).     This metric indicates the number 

of classes (or methods) that can access another class’s attributes, a viola-

tion of encapsulation. High values for PAD lead to the potential for side 

effects among classes. Tests must be designed to ensure that such side 

effects are uncovered. 

  Number of root classes (NOR).     This metric is a count of the distinct class 

hierarchies that are described in the design model. Test suites for each 

root class and the corresponding class hierarchy must be developed. As 

NOR increases, testing effort also increases. 

  Fan-in (FIN).     When used in the OO context, fan-in in the inheritance 

 hierarchy is an indication of multiple inheritance. FIN . 1 indicates that a 

class inherits its attributes and operations from more than one root class. 

FIN . 1 should be avoided when possible. 

  15  See Section 30.3.3 for a description of LCOM. 

  16  Some people promote designs with none of the attributes being public or private, that is, 

PAP 5 0. This implies that all attributes must be accessed in other classes via methods. 

   OO testing can be 
quite complex. 
Metrics can assist you 
in targeting testing 
resources at threads, 
scenarios, and pack-
ages of classes that 
are “suspect” based 
on measured character-
istics. Use them. 



678 PART THREE  QUALITY MANAGEMENT

  Number of children (NOC) and depth of the inheritance tree (DIT).   17      As 

we mentioned in Chapter 24, superclass methods will have to be retested 

for each subclass. 

        30.7  METRICS  FOR  MAINTENANCE 

  All of the software metrics introduced in this chapter can be used for the de-

velopment of new software and the maintenance of existing software. However, 

metrics designed explicitly for maintenance activities have been proposed. 

 IEEE Std. 982.1-2005 [IEE05] suggests a  software maturity index  (SMI) that pro-

vides an indication of the stability of a software product (based on changes that 

occur for each release of the product). The following information is determined:

        M
T
  5 number of modules in the current release  

       F
c
  5 number of modules in the current release that have been changed  

       F
a
  5 number of modules in the current release that have been added  

       F
d
  5  number of modules from the preceding release that were deleted in 

the current release    

 The software maturity index is computed in the following manner:

SMI 5   
[ M  

T
  2 ( F  

a
  1  F  

c
  1  F  

d
 )]
  _________________ 

 M  
T
  
  

 As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as a 

metric for planning software maintenance activities. The mean time to produce 

a release of a software product can be correlated with SMI, and empirical models 

for maintenance effort can be developed.     

  17  See Section 30.3.3 for a description of NOC and DIT. 

  18  Tools noted here do not represent an endorsement, but rather a sampling of tools in this category. 

   Product Metrics  

  Objective:  To assist software engineers in 
developing meaningful metrics that assess 

the work products produced during analysis and design 
modeling, source code generation, and testing. 

  Mechanics:  Tools in this category span a broad array 
of metrics and are implemented either as a stand-alone 
application or (more commonly) as functionality that exists 
within tools for analysis and design, coding, or testing. 
In most cases, the metrics tool analyzes a representation 
of the software (e.g., a UML model or source code) and 
develops one or more metrics as a result. 

  Representative Tools:   18   

  Krakatau Metrics,  developed by Power Software 
(  www.powersoftware.com/products  ), 

computes complexity, Halstead, and related metrics 
for C/C11 and Java. 

  Rational Rose,  distributed by IBM (  http://www-01 

.ibm.com/software/awdtools/developer/

rose/  ), is a comprehensive tool set for UML 
modeling that incorporates a number of metrics 
analysis features. 

  RSM , developed by M-Squared Technologies (  http://

msquaredtechnologies.com/Resource-

Standard-Metrics.html  ), computes a wide variety 
of code-oriented metrics for C, C11, and Java. 

  Understand,  developed by Scientifi c Toolworks, Inc. 
(  www.scitools.com  ), calculates code-oriented 
metrics for a variety of programming languages.  

 SOFTWARE TOOLS 



CHAPTER 30  PRODUCT METRICS  679

        30.8 SUMMARY 

 Software metrics provide a quantitative way to assess the quality of internal 

product attributes, thereby enabling you to assess quality before the product is 

built. Metrics provide the insight necessary to create effective requirements and 

design models, solid code, and thorough tests. 

 To be useful in a real-world context, a software metric must be simple and 

computable, persuasive, consistent, and objective. It should be programming 

language independent and provide you with effective feedback. 

 Metrics for the requirements model focus on function, data, and behavior—

the three components of the model. Metrics for design consider architecture, 

component-level design, and interface design issues. Architectural design met-

rics consider the structural aspects of the design model. Component-level de-

sign metrics provide an indication of module quality by establishing indirect 

measures for cohesion, coupling, and complexity. User interface design metrics 

provide an indication of the ease with which a GUI can be used. WebApp metrics 

consider aspects of the user interface as well as WebApp aesthetics, content, and 

navigation. 

 Metrics for OO systems focus on measurement that can be applied to the class 

and the design characteristics—localization, encapsulation, information hiding, 

inheritance, and object abstraction techniques—that make the class unique. 

The CK metrics suite defi nes six class-oriented software metrics that focus on 

the class and the class hierarchy. The metrics suite also develops metrics to as-

sess the collaborations between classes and the cohesion of methods that reside 

within a class. At a class-oriented level, the CK metrics suite can be augmented 

with metrics proposed by Lorenz and Kidd and the MOOD metrics suite. 

 Halstead provides an intriguing set of metrics at the source code level. Using 

the number of operators and operands present in the code, software science pro-

vides a variety of metrics that can be used to assess program quality. 

 Few product metrics have been proposed for direct use in software testing 

and maintenance. However, many other product metrics can be used to guide 

the testing process and as a mechanism for assessing the maintainability of a 

computer program. A wide variety of OO metrics have been proposed to assess 

the testability of an OO system. 

     PROBLEMS  AND  POINTS  TO  PONDER 

    30.1.  Measurement theory is an advanced topic that has a strong bearing on software met-

rics. Using [Zus97], [Fen91], [Zus90] or Web-based sources, write a brief paper that outlines 

the main tenets of measurement theory. Individual project: Develop a presentation on the 

subject and present it to your class.  

   30.2.  Why is it that a single, all-encompassing metric cannot be developed for program com-

plexity or program quality? Try to come up with a measure or metric from everyday life that 

violates the attributes of effective software metrics defi ned in Section 30.1.5.  



680 PART THREE  QUALITY MANAGEMENT

   30.3.  A system has 12 external inputs, 24 external outputs, fi elds 30 different external que-

ries, manages 4 internal logical fi les, and interfaces with 6 different legacy systems (6 EIFs). 

All of these data are of average complexity and the overall system is relatively simple. Com-

pute FP for the system.  

   30.4.  Software for System X has 24 individual functional requirements and 14 nonfunctional 

requirements. What is the specifi city of the requirements? The completeness?  

   30.5.  A major information system has 1140 modules. There are 96 modules that perform 

control and coordination functions and 490 modules whose function depends on prior pro-

cessing. The system processes approximately 220 data objects that each have an average 

of three attributes. There are 140 unique database items and 90 different database seg-

ments. Finally, 600 modules have single entry and exit points. Compute the DSQI for this 

system.  

   30.6.  A class  X  has 12 operations. Cyclomatic complexity has been computed for all oper-

ations in the OO system, and the average value of module complexity is 4. For class  X , the 

complexity for operations 1 to 12 is 5, 4, 3, 3, 6, 8, 2, 2, 5, 5, 4, 4, respectively. Compute the 

weighted methods per class.  

   30.7.  Develop a software tool that will compute cyclomatic complexity for a programming 

language module. You may choose the language.  

   30.8.  Develop a small software tool that will perform a Halstead analysis on programming 

language source code of your choosing.  

   30.9.  A legacy system has 940 modules. The latest release required that 90 of these modules 

be changed. In addition, 40 new modules were added and 12 old modules were removed. 

Compute the software maturity index for the system.  

      FUR THER  READINGS  AND  INFORMATION  SOURCES 

  There is a surprisingly large number of books dedicated to software metrics, although the 

majority focus on process and project metrics to the exclusion of product metrics. Jones 

and Bonsignour ( The Economics of Software Quality,  Addison-Wesley, 2011), Lanza and her 

colleagues ( Object-Oriented Metrics in Practice,  Springer, 2010) and Jones ( Applied Software 

Measurement: Global Analysis of Productivity and Quality,  McGraw-Hill, 2008) discuss OO 

metrics and their use for assessing the quality of a design. Genero ( Metrics for Software 

Conceptual Models,  Imperial College Press, 2005) and Ejiogu ( Software Metrics,  BookSurge 

Publishing, 2005) present a wide variety of technical metrics for use cases, UML models, and 

other modeling representations. Hutcheson ( Software Testing Fundamentals: Methods and 

Metrics,  Wiley, 2003) presents a set of metrics for testing. Abran ( Software Metrics and Soft-

ware Metrology,  Wiley-IEEE Computer Society, 2010), Kan ( Metrics and Models in Software 

Quality Engineering,  Addison-Wesley, 2nd ed., 2002), Fenton and Pfl eeger ( Software Metrics: 

A Rigorous and Practical Approach,  Brooks-Cole Publishing, 1998), and Zuse [Zus97] have 

written thorough treatments of product metrics. 

   Books by Card and Glass [Car90], Zuse [Zus90], Fenton [Fen91], Ejiogu [Eji91], Moeller and 

Paulish ( Software Metrics,  Chapman and Hall, 1993), and Hetzel [Het93] all address product 

metrics in some detail. Oman and Pfl eeger ( Applying Software Metrics,  IEEE Computer So-

ciety Press, 1997) have edited an anthology of important papers on software metrics. 

   The International Function Point Users group has published a book on using function 

metrics ( The IFPUG Guide or OT and Software Measurement,  Auerbach Publications, 2012). 

Methods for establishing a metrics program and the underlying principles for software 

measurement are considered by Ebert and his colleagues ( Best Practices in Software Mea-

surement,  Springer, 2004). Shepperd ( Foundations of Software Measurement,  Prentice Hall, 

1996) also addresses measurement theory in some detail. Current research is presented in 

the  Proceedings of the Symposium on Software Metrics  (IEEE, published annually). 



CHAPTER 30  PRODUCT METRICS  681

   A comprehensive summary of dozens of useful software metrics is presented in [IEE93]. 

In general, a discussion of each metric has been distilled to the essential “primitives” (mea-

sures) required to compute the metric and the appropriate relationships to effect the com-

putation. An appendix provides discussion and many references. 

   Whitmire [Whi97] presents a comprehensive and mathematically sophisticated treat-

ment of OO metrics. Lorenz and Kidd [Lor94] and Hendersen-Sellers ( Object-Oriented Met-

rics: Measures of Complexity,  Prentice Hall, 1996) provide treatments that are dedicated to 

OO metrics. 

 A wide variety of information sources on software metrics are available on the Internet. 

An up-to-date list of World Wide Web references that are relevant to software metrics can 

be found at the SEPA website:  www.mhhe.com/pressman .      



This page intentionally left blank 



683

Four 
   P A R T

 In this part of  Software Engineering: A Practitioner’s Ap-

proach  you’ll learn the management techniques required to 

plan, organize, monitor, and control software projects. These 

questions are addressed in the chapters that follow:

    •  How must people, process, and problem be managed 

during a software project?  

   •  How can software metrics be used to manage a software 

project and the software process?  

   •  How does a software team generate reliable estimates of 

effort, cost, and project duration?  

   •  What techniques can be used to formally assess the risks 

that can have an impact on project success?  

   •  How does a software project manager select the set of soft-

ware engineering work tasks?  

   •  How is a project schedule created?  

   •  Why are maintenance and reengineering so important for 

both software engineering managers and practitioners?  

   Once these questions are answered, you’ll be better prepared 

to manage software projects in a way that will lead to timely 

delivery of a high-quality product. 

 MANAGING SOFTWARE

PROJECTS 

pre22126_ch31_683-702.indd   683pre22126_ch31_683-702.indd   683 13/12/13   6:16 PM13/12/13   6:16 PM



684

  C H A P T E R

   K E Y 
C O N C E P T S 
    agile teams. . . . . . 691  
    coordination and 
communication  . . . 692  
    critical practices  . . 699  
    people  . . . . . . . . . 687  
    problem 
decomposition. . . . 694  
    product. . . . . . . . . 693  
    project  . . . . . . . . . 697  
    software scope . . . 694  
    software team  . . . 689  
    stakeholders. . . . . 687  
    team leaders. . . . . 688  
    W 5 HH principle . . . 698         

    In the preface to his book on software project management, Meiler Page-

Jones [Pag85] makes a statement that can be echoed by many software 

engineering consultants:

  I’ve visited dozens of commercial shops, both good and bad, and I’ve observed 

scores of [IT] managers, again, both good and bad. Too often, I’ve watched in hor-

ror as these managers futilely struggled through nightmarish projects, squirmed 

under impossible deadlines, or delivered systems that outraged their users and 

went on to devour huge chunks of maintenance time.   

 What Page-Jones describes are symptoms that result from an array of man-

agement and technical problems. However, if a post mortem were to be

 PROJECT MANAGEMENT
CONCEPTS 31 

 Q U I C K 
L O O K 

  What is it?   Although many of us 
(in our darker moments) take Dilbert’s 
view of “management,” it remains 
a very necessary activity when 

computer-based systems and products are built. 
Project management involves the planning, mon-
itoring, and control of the people, process, and 
events that occur as software evolves from a pre-
liminary concept to full operational deployment. 

   Who does it?   Everyone “manages” to some 
extent, but the scope of management activities 
varies among people involved in a software 
project. A software engineer manages her 
day-to-day activities, planning, monitoring, 
and controlling technical tasks. Project manag-
ers plan, monitor, and control the work of a 
team of software engineers. Senior managers 
coordinate the interface between the business 
and software professionals. 

   Why is it important?   Building computer soft-
ware is a complex undertaking, particularly if 
it involves many people working over a rela-
tively long time. That’s why software projects 
need to be managed. 

   What are the steps?   Understand the four Ps—
people, product, process, and project. People 

must be organized to perform software work 
effectively. Communication with the customer 
and other stakeholders must occur so that prod-
uct scope and requirements are understood. 
A process that is appropriate for the people 
and the product should be selected. The proj-
ect must be planned by estimating effort and 
calendar time to accomplish work tasks: defi n-
ing work products, establishing quality check-
points, and identifying mechanisms to monitor 
and control work defi ned by the plan. 

   What is the work product?   A project plan 
is produced as management activities com-
mence. The plan defi nes the process and 
tasks to be conducted, the people who will 
do the work, and the mechanisms for assess-
ing risks, controlling change, and evaluating 
quality. 

   How do I ensure that I’ve done it right?  
 You’re never completely sure that the project 
plan is right until you’ve delivered a high-quality 
product on time and within budget. However, 
a project manager does it right when he en-
courages software people to work together as 
an effective team, focusing their attention on 
customer needs and product quality.  

pre22126_ch31_683-702.indd   684pre22126_ch31_683-702.indd   684 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  685

conducted for every project, it is very likely that a consistent theme would be 

encountered: project management was weak. 

 In this chapter and Chapters 32 through 37, we’ll present the key concepts 

that lead to effective software project management. This chapter considers basic 

software project management concepts and principles. Chapter 32 presents 

process and project metrics, the basis for effective management decision mak-

ing. The techniques that are used to estimate cost are discussed in Chapter 33. 

Chapter 34 will help you to defi ne a realistic project schedule. The management 

activities that lead to effective risk monitoring, mitigation, and management are 

presented in Chapter 35. Chapter 36 considers maintenance and reengineering 

and discusses the management issues that you’ll encounter when you must deal 

with legacy systems. Finally, Chapter 37 discussed techniques for studying and 

improving your team’s software engineering processes. 

    31.1  THE MANAGEMENT SPECTRUM 

  Effective software project management focuses on the four Ps: people, product, 

process, and project. The order is not arbitrary. The manager who forgets that 

software engineering work is an intensely human endeavor will never have suc-

cess in project management. A manager who fails to encourage comprehensive 

stakeholder communication early in the evolution of a product risks building an 

elegant solution for the wrong problem. The manager who pays little attention to 

the process runs the risk of inserting competent technical methods and tools into 

a vacuum. The manager who embarks without a solid project plan jeopardizes 

the success of the project. 

   31.1.1   The People 

 The cultivation of motivated, highly skilled software people has been discussed 

since the 1960s. In fact, the “people factor” is so important that the Software 

Engineering Institute has developed a  People Capability Maturity Model  

(People-CMM), in recognition of the fact that “every organization needs to con-

tinually improve its ability to attract, develop, motivate, organize, and retain the 

workforce needed to accomplish its strategic business objectives” [Cur01]. 

 The people capability maturity model defi nes the following key practice areas 

for software people: staffi ng, communication and coordination, work environ-

ment, performance management, training, compensation, competency analysis 

and development, career development, workgroup development, and team/

culture development, and others. Organizations that achieve high levels of 

People-CMM maturity have a higher likelihood of implementing effective soft-

ware project management practices. 

 The People-CMM is a companion to the  Software Capability Maturity Model–

Integration  (Chapter 37) that guides organizations in the creation of a mature 

pre22126_ch31_683-702.indd   685pre22126_ch31_683-702.indd   685 13/12/13   6:16 PM13/12/13   6:16 PM



686 PART FOUR  MANAGING SOFTWARE PROJECTS

software process. Issues associated with people management and structure for 

software projects are considered later in this chapter. 

    31.1.2   The Product 

 Before a project can be planned, product objectives and scope should be estab-

lished, alternative solutions should be considered, and technical and manage-

ment constraints should be identifi ed. Without this information, it is impossible 

to defi ne reasonable (and accurate) estimates of the cost, an effective assessment 

of risk, a realistic breakdown of project tasks, or a manageable project schedule 

that provides a meaningful indication of progress. 

 As a software developer, you and other stakeholders must meet to defi ne prod-

uct objectives and scope. In many cases, this activity begins as part of the system 

engineering or business process engineering and continues as the fi rst step in 

software requirements engineering (Chapter 8). Objectives identify the overall 

goals for the product (from the stakeholders’ points of view) without considering 

how these goals will be achieved. Scope identifi es the primary data, functions, 

and behaviors that characterize the product, and more important, attempts to 

bound these characteristics in a quantitative manner. 

      Once the product objectives and scope are understood, alternative solutions 

are considered. Although very little detail is discussed, the alternatives enable 

managers and practitioners to select a “best” approach, given the constraints 

imposed by delivery deadlines, budgetary restrictions, personnel availability, 

technical interfaces, and myriad other factors. 

    31.1.3   The Process  

 A software process (Chapters 3–5) provides the framework from which a com-

prehensive plan for software development can be established. A small num-

ber of framework activities are applicable to all software projects, regardless 

of their size or complexity. A number of different task sets—tasks, milestones, 

work products, and quality assurance points—enable the framework activities to 

be adapted to the characteristics of the software project and the requirements 

of the project team. Finally, umbrella activities—such as software quality assur-

ance, software confi guration management, and measurement—overlay the pro-

cess model. Umbrella activities are independent of any one framework activity 

and occur throughout the process. 

    31.1.4   The Project 

 We conduct planned and controlled software projects for one primary reason—it 

is the only known way to manage complexity. And yet, software teams still strug-

gle. In a study of 250 large software projects between 1998 and 2004, Capers Jones 

[Jon04] found that “about 25 were deemed successful in that they achieved their 

schedule, cost, and quality objectives. About 50 had delays or overruns below 

   Those who adhere 
to the agile process 
philosophy (Chapter 5) 
argue that their 
process is leaner than 
others. That may be 
true, but they still have 
a process, and agile 
software engineering 
still requires discipline. 

   uote: 

 “A project is like 
a road trip. Some 
projects are simple 
and routine, like 
driving to the store 
in broad daylight. 
But most projects 
worth doing are 
more like driving 
a truck off-road, in 
the mountains, at 
night.” 

 Cem Kaner, 
James Bach, and 
Bret Pettichord 

pre22126_ch31_683-702.indd   686pre22126_ch31_683-702.indd   686 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  687

35 percent, while about 175 experienced major delays and overruns, or were ter-

minated without completion.” Although the success rate for present-day soft-

ware projects may have improved somewhat, our project failure rate remains 

much higher than it should be.  1    

 To avoid project failure, a software project manager and the software engi-

neers who build the product must avoid a set of common warning signs, under-

stand the critical success factors that lead to good project management, and 

develop a commonsense approach for planning, monitoring, and controlling the 

project. Each of these issues is discussed in Section 31.5 and in the chapters that 

follow. 

       31.2  PEOPLE 

  People build computer software, and projects succeed because well-trained, mo-

tivated people get things done. All of us, from senior engineering vice presidents 

to the lowliest practitioner, often take people for granted. Managers argue that 

people are primary, but their actions sometimes belie their words. In this section 

we examine the stakeholders who participate in the software process and the 

manner in which they are organized to perform effective software engineering. 

   31.2.1   The Stakeholders 

 The software process (and every software project) is populated by stakeholders 

who can be categorized into one of fi ve constituencies:

     1.   Senior managers  who defi ne the business issues that often have a signifi -

cant infl uence on the project.  

    2.   Project (technical) managers  who must plan, motivate, organize, and con-

trol the practitioners who do software work.  

    3.   Practitioners  who deliver the technical skills that are necessary to engi-

neer a product or application.  

    4.   Customers  who specify the requirements for the software to be engi-

neered and other stakeholders who have a peripheral interest in the 

outcome.  

    5.   End users  who interact with the software once it is released for production 

use.    

  1  Given these statistics, it’s reasonable to ask how the impact of computers continues to grow 

exponentially. Part of the answer, we think, is that a substantial number of these “failed” proj-

ects are ill conceived in the fi rst place. Customers lose interest quickly (because what they’ve 

requested wasn’t really as important as they fi rst thought), and the projects are cancelled. 

pre22126_ch31_683-702.indd   687pre22126_ch31_683-702.indd   687 13/12/13   6:16 PM13/12/13   6:16 PM



688 PART FOUR  MANAGING SOFTWARE PROJECTS

 Every software project is populated by people who fall within this taxonomy.  2   To 

be effective, the project team must be organized in a way that maximizes each 

person’s skills and abilities. And that’s the job of the team leader.  

    31.2.2   Team Leaders 

 Project management is a people-intensive activity, and for this reason, compe-

tent practitioners often make poor team leaders. They simply don’t have the 

right mix of people skills. And yet, as Edgemon states: “Unfortunately and all too 

frequently it seems, individuals just fall into a project manager role and become 

accidental project managers” [Edg95]. 

      In an excellent book of technical leadership, Jerry Weinberg [Wei86] suggests 

an MOI model of leadership: 

  Motivation.     The ability to encourage (by “push or pull”) technical people 

to produce to their best ability. 

  Organization.     The ability to mold existing processes (or invent new ones) 

that will enable the initial concept to be translated into a fi nal product. 

  Ideas or innovation.     The ability to encourage people to create and feel 

creative even when they must work within bounds established for a partic-

ular software product or application. 

 Weinberg suggests that successful project leaders apply a problem-solving man-

agement style. That is, a software project manager should concentrate on under-

standing the problem to be solved, managing the fl ow of ideas, and at the same 

time, letting everyone on the team know (by words and, far more important, by 

actions) that quality counts and that it will not be compromised.  

 Another view [Edg95] of the characteristics that defi ne an effective project 

manager emphasizes four key traits: 

  Problem solving.   An effective software project manager can diagnose 

the technical and organizational issues that are most relevant, system-

atically structure a solution or properly motivate other practitioners to 

develop the solution, apply lessons learned from past projects to new sit-

uations, and remain fl exible enough to change direction if initial attempts 

at problem solution are fruitless. 

  Managerial identity.   A good project manager must take charge of the 

project. She must have the confi dence to assume control when necessary 

and the assurance to allow good technical people to follow their instincts. 

  Achievement.   A competent manager must reward initiative and ac-

complishment to optimize the productivity of a project team. She must 

 What do 
we look for 

when choosing 
someone to lead a 
software project? 

?

  2  When Web or mobile apps are developed, other nontechnical people may be involved in con-

tent creation. 

   uote: 

 “In simplest terms, 
a leader is one who 
knows where he 
wants to go, and 
gets up, and goes.” 

 John Erskine 

pre22126_ch31_683-702.indd   688pre22126_ch31_683-702.indd   688 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  689

demonstrate through her own actions that controlled risk taking will not 

be punished. 

  Influence and team building.   An effective project manager must be able 

to “read” people; she must be able to understand verbal and nonverbal 

signals and react to the needs of the people sending these signals. The 

manager must remain under control in high-stress situations. 

    31.2.3   The Software Team 

 There are almost as many human organizational structures for software devel-

opment as there are organizations that develop software. For better or worse, 

organizational structure cannot be easily modifi ed. Concern with the practical 

and political consequences of organizational change are not within the software 

project manager’s scope of responsibility. However, the organization of the peo-

ple directly involved in a new software project is within the project manager’s 

purview.       

 The “best” team structure depends on the management style of your organi-

zation, the number of people who will populate the team and their skill levels, 

and the overall problem diffi culty. Mantei [Man81] describes seven project fac-

tors that should be considered when planning the structure of software engi-

neering teams: (1) diffi culty of the problem to be solved; (2) “size” of the resultant 

program(s) in lines of code or function points; (3) time that the team will stay 

together (team lifetime); (4) degree to which the problem can be modularized; 

(5) quality and reliability of the system to be built; (6) rigidity of the delivery date, 

and (7) degree of sociability (communication) required for the project. 

 Constantine [Con93] suggests four “organizational paradigms” for software 

engineering teams:      

      1.  A  closed paradigm  structures a team along a traditional hierarchy of au-

thority. Such teams can work well when producing software that is quite 

similar to past efforts, but they will be less likely to be innovative when 

working within the closed paradigm.  

    2.  A  random paradigm  structures a team loosely and depends on individual 

initiative of the team members. When innovation or technological break-

through is required, teams following the random paradigm will excel. But 

such teams may struggle when “orderly performance” is required.  

    3.  An  open paradigm  attempts to structure a team in a manner that achieves 

some of the controls associated with the closed paradigm but also much of 

the innovation that occurs when using the random paradigm. Work is per-

formed collaboratively, with heavy communication and consensus-based 

decision making the trademarks of open paradigm teams. Open paradigm 

team structures are well suited to the solution of complex problems but 

may not perform as effi ciently as other teams.  

 What factors 
should be 

considered when 
the structure of a 
software team is 
chosen? 

?

 What 
options do 

we have when 
defi ning the 
structure of a 
software team? 

?

    uote: 

 “Not every group 
is a team, and 
not every team is 
effective.” 

 Glenn Parker 

pre22126_ch31_683-702.indd   689pre22126_ch31_683-702.indd   689 13/12/13   6:16 PM13/12/13   6:16 PM



690 PART FOUR  MANAGING SOFTWARE PROJECTS

    4.  A  synchronous paradigm  relies on the natural compartmentalization of a 

problem and organizes team members to work on pieces of the problem 

with little active communication among themselves.  

  As an historical footnote, one of the earliest software team organizations was 

a closed paradigm structure originally called the  chief programmer team.  This 

structure was fi rst proposed by Harlan Mills and described by Baker [Bak72]. 

As a counterpoint to the chief programmer team structure, Constantine’s ran-

dom paradigm [Con93] suggests a software team with creative independence 

whose approach to work might best be termed  innovative anarchy.  Although the 

free-spirited approach to software work has appeal, channeling creative energy 

into a high-performance team must be a central goal of a software engineering 

organization. To achieve a high-performance team: team members must have 

trust in one another, the distribution of skills must be appropriate to the prob-

lem, and mavericks may have to be excluded from the team, if team cohesive-

ness is to be maintained. 

 Regardless of team organization, the objective for every project manager 

is to help create a team that exhibits cohesiveness. In their book  Peopleware,  

DeMarco and Lister [DeM98] discuss this issue: 

       We tend to use the word  team  fairly loosely in the business world, calling any group of 

people assigned to work together a “team.” But many of these groups just don’t seem 

like teams. They don’t have a common defi nition of success or any identifi able team 

spirit. What is missing is a phenomenon that we call  jell.  

 A jelled team is a group of people so strongly knit that the whole is greater than 

the sum of the parts . . . 

 Once a team begins to jell, the probability of success goes way up. The team can 

become unstoppable, a juggernaut for success  .  .  . They don’t need to be managed 

in the traditional way, and they certainly don’t need to be motivated. They’ve got 

momentum.      

  DeMarco and Lister contend that members of jelled teams are signifi cantly more 

productive and more motivated than average. They share a common goal, a 

common culture, and in many cases, a “sense of eliteness” that makes them 

unique. 

 But not all teams jell. In fact, many teams suffer from what Jackman [Jac98] 

calls “team toxicity.” She defi nes fi ve factors that “foster a potentially toxic team 

environment”: (1) a frenzied work atmosphere, (2) high frustration that causes 

friction among team members, (3) a “fragmented or poorly coordinated” software 

process, (4) an unclear defi nition of roles on the software team, and (5) “continu-

ous and repeated exposure to failure.” 

  To avoid a frenzied work environment, the project manager should be cer-

tain that the team has access to all information required to do the job and 

that major goals and objectives, once defi ned, should not be modifi ed unless 

    uote: 

 “If you want to 
be incrementally 
better: Be 
competitive. If 
you want to be 
exponentially 
better: Be 
cooperative.” 

 Author unknown 

 What is a 
“jelled“ 

team? 
?

 Why is it 
that teams 

fail to jell? 
?

pre22126_ch31_683-702.indd   690pre22126_ch31_683-702.indd   690 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  691

absolutely necessary. A software team can avoid frustration if it is given as 

much responsibility for decision making as possible. An inappropriate process 

(e.g., unnecessary or burdensome work tasks or poorly chosen work products) 

can be avoided by understanding the product to be built, the people doing the 

work, and by allowing the team to select the process model. The team itself 

should establish its own mechanisms for accountability (technical reviews  3   

are an excellent way to accomplish this) and defi ne a series of corrective ap-

proaches when a member of the team fails to perform. And fi nally, the key to 

avoiding an atmosphere of failure is to establish team-based techniques for 

feedback and problem solving.  

 In addition to the fi ve toxins described by Jackman, a software team often 

struggles with the differing human traits of its members. Some team members 

are extroverts; others are introverts. Some people gather information intuitively, 

distilling broad concepts from disparate facts. Others process information lin-

early, collecting and organizing minute details from the data provided. Some 

team members are comfortable making decisions only when a logical, orderly 

argument is presented. Others are intuitive, willing to make a decision based on 

“feel.” Some practitioners want a detailed schedule populated by organized tasks 

that enable them to achieve closure for some element of a project. Others prefer 

a more spontaneous environment in which open issues are okay. Some work hard 

to get things done long before a milestone date, thereby avoiding stress as the 

date approaches, while others are energized by the rush to make a last-minute 

deadline. A detailed discussion of the psychology of these traits and the ways in 

which a skilled team leader can help people with opposing traits to work together 

is beyond the scope of this book.  4   However, it is important to note that recognition 

of human differences is the fi rst step toward creating teams that jell. 

    31.2.4   Agile Teams 

 Many software organizations advocate agile software development (Chapter 5) 

as an antidote to many of the problems that have plagued software project work. 

To review, the agile philosophy encourages customer satisfaction and early in-

cremental delivery of software, small highly motivated project teams, informal 

methods, minimal software engineering work products, and overall develop-

ment simplicity. 

 The small, highly motivated project team, also called an  agile team,  adopts 

many of the characteristics of successful software project teams discussed in the 

preceding section and avoids many of the toxins that create problems. However, 

the agile philosophy stresses individual (team member) competency coupled 

   uote: 

 “Do or do not. 
There is no try.” 

 Yoda from  Star 
Wars  

  3  Technical reviews are discussed in detail in Chapter 20. 

  4  An excellent introduction to these issues as they relate to software project teams can be found 

in [Fer98]. 

pre22126_ch31_683-702.indd   691pre22126_ch31_683-702.indd   691 13/12/13   6:16 PM13/12/13   6:16 PM



692 PART FOUR  MANAGING SOFTWARE PROJECTS

with group collaboration as critical success factors for the team. Cockburn and 

Highsmith [Coc01a] note this when they write:

  If the people on the project are good enough, they can use almost any process and 

accomplish their assignment. If they are not good enough, no process will repair their 

inadequacy—“people trump process” is one way to say this. However, lack of user and 

executive support can kill a project—“politics trump people.” Inadequate support 

can keep even good people from accomplishing the job . . .   

 To make effective use of the competencies of each team member and to foster 

effective collaboration through a software project, agile teams are  self-organizing.  

A self-organizing team does not necessarily maintain a single team structure but 

instead, uses elements of Constantine’s random, open, and synchronous para-

digms discussed in Section 31.2.3. 

      Many agile process models (e.g., Scrum) give the agile team signifi cant au-

tonomy to make the project management and technical decisions required to 

get the job done. Planning is kept to a minimum, and the team is allowed to se-

lect its own approach (e.g., process, methods, tools), constrained only by business 

requirements and organizational standards. As the project proceeds, the team 

self-organizes to focus individual competency in a way that is most benefi cial to 

the project at a given point in time. To accomplish this, an agile team might con-

duct daily team meetings to coordinate and synchronize the work that must be 

accomplished for that day. 

 Based on information obtained during these meetings, the team adapts its 

approach in a way that accomplishes an increment of work. As each day passes, 

continual self-organization and collaboration move the team toward a completed 

software increment. 

    31.2.5   Coordination and Communication Issues 

  There are many reasons that software projects get into trouble. The scale of many 

development efforts is large, leading to complexity, confusion, and signifi cant dif-

fi culties in coordinating team members. Uncertainty is common, resulting in a 

continuing stream of changes that ratchets the project team. Interoperability has 

become a key characteristic of many systems. New software must communicate 

with existing software and conform to predefi ned constraints imposed by the 

system or product. 

 These characteristics of modern software—scale, uncertainty, and interop-

erability—are facts of life. To deal with them effectively, you must establish ef-

fective methods for coordinating the people who do the work. To accomplish 

this, mechanisms for formal and informal communication among team mem-

bers and between multiple teams must be established. Formal communication 

is accomplished through “writing, structured meetings, and other relatively 

   An agile team is a 
self-organizing team 
that has autonomy 
to plan and make 
technical decisions. 

   uote: 

 “Collective 
ownership is 
nothing more than 
an instantiation 
of the idea that 
products should 
be attributable to 
the [agile] team, 
not individuals 
who make up the 
team.” 

 Jim Highsmith 

pre22126_ch31_683-702.indd   692pre22126_ch31_683-702.indd   692 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  693

non-interactive and impersonal communication channels” [Kra95]. Informal 

communication is more personal. Members of a software team share ideas on 

an ad hoc basis, ask for help as problems arise, and interact with one another 

on a daily basis.     

  Team Structure   Team Structure 

  The scene:  Doug Miller’s offi ce 
prior to the initiation of the  SafeHome  

software project. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software 
engineering team. 

  The conversation:  

  Doug:  Have you guys had a chance to look over 
the preliminary info on  SafeHome  that marketing has 
prepared? 

  Vinod (nodding and looking at his team-
mates):  Yes. But we have a bunch of questions. 

  Doug:  Let’s hold on that for a moment. I’d like to talk 
about how we are going to structure the team, who’s 
responsible for what . . . 

  Jamie:  I’m really into the agile philosophy, Doug. I 
think we should be a self-organizing team. 

  Vinod:  I agree. Given the tight time line and some of 
the uncertainty, and that fact that we’re all really compe-
tent [laughs], that seems like the right way to go. 

  Doug:  That’s okay with me, but you guys know the 
drill. 

  Jamie (smiling and talking as if she was 
reciting something):  “We make tactical decisions, 
about who does what and when, but it’s our 
responsibility to get product out the door on time. 

  Vinod:  And with quality. 

  Doug:  Exactly. But remember there are constraints. 
Marketing defi nes the software increments to be 
produced—in consultation with us, of course. 

  Jamie:  And? 

  Doug:  And, we’re going to use UML as our modeling 
approach. 

  Vinod:  But keep extraneous documentation to an 
absolute minimum. 

  Doug:  Who is the liaison with me? 

  Jamie:  We decided that Vinod will be the tech lead—
he’s got the most experience, so Vinod is your liaison, 
but feel free to talk to any of us. 

  Doug (laughing):  Don’t worry, I will.  

 SAFEHOME 

        31.3  THE PRODUCT 

  A software project manager is confronted with a dilemma at the very begin-

ning of a software project. Quantitative estimates and an organized plan are 

required, but solid information is unavailable. A detailed analysis of software 

requirements would provide information necessary for estimates, but analy-

sis often takes weeks or even months to complete. Worse, requirements may 

be fluid, changing regularly as the project proceeds. Yet, a plan is needed 

now! 

 Like it or not, you must examine the product and the problem it is intended to 

solve at the very beginning of the project. At a minimum, the scope of the product 

must be established and bounded. 

pre22126_ch31_683-702.indd   693pre22126_ch31_683-702.indd   693 13/12/13   6:16 PM13/12/13   6:16 PM



694 PART FOUR  MANAGING SOFTWARE PROJECTS

        31.3.1   Software Scope 

 The fi rst software project management activity is the determination of  software 

scope.  Scope is defi ned by answering the following questions:

        Context.   How does the software to be built fi t into a larger system, prod-

uct, or business context, and what constraints are imposed as a result of 

the context?  

       Information objectives.   What customer-visible data objects are produced 

as output from the software? What data objects are required for input?  

       Function and performance.   What function does the software perform to 

transform input data into output? Are any special performance character-

istics to be addressed?    

 Software project scope must be unambiguous and understandable at the man-

agement and technical levels. A statement of software scope must be bounded. 

That is, quantitative data (e.g., number of simultaneous users, size of mailing list, 

maximum allowable response time) are stated explicitly, constraints and/or lim-

itations (e.g., product cost restricts memory size) are noted, and mitigating factors 

(e.g., desired algorithms are well understood and available in Java) are described. 

    31.3.2   Problem Decomposition 

      Problem decomposition, sometimes called  partitioning  or  problem elaboration,  is 

an activity that sits at the core of software requirements analysis (Chapters 8–11). 

During the scoping activity no attempt is made to fully decompose the problem. 

Rather, decomposition is applied in two major areas: (1) the functionality and 

content (information) that must be delivered and (2) the process that will be used 

to deliver it. 

 Human beings tend to apply a divide-and-conquer strategy when they are con-

fronted with a complex problem. Stated simply, a complex problem is partitioned 

into smaller problems that are more manageable. This is the strategy that ap-

plies as project planning begins. Software functions, described in the statement 

of scope, are evaluated and refi ned to provide more detail prior to the beginning 

of estimation (Chapter 33). Because both cost and schedule estimates are func-

tionally oriented, some degree of decomposition is often useful. Similarly, major 

content or data objects are decomposed into their constituent parts, providing 

a reasonable understanding of the information to be produced by the software. 

       31.4  THE PROCESS 

  The framework activities (Chapter 2) that characterize the software process are 

applicable to all software projects. The problem is to select the process model 

that is appropriate for the software to be engineered by your project team. 

   If you can’t bound a 
characteristic of the 
software you intend to 
build, list the charac-
teristic as a project risk 
(Chapter 35). 

   In order to develop 
a reasonable project 
plan, you must decom-
pose the problem. This 
can be accomplished 
using a list of functions 
or with use cases or 
for agile work, user 
stories. 

pre22126_ch31_683-702.indd   694pre22126_ch31_683-702.indd   694 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  695

 Your team must decide which process model is most appropriate for (1) the 

customers who have requested the product and the people who will do the work, 

(2) the characteristics of the product itself, and (3) the project environment in 

which the software team works. When a process model has been selected, the 

team then defi nes a preliminary project plan based on the set of process frame-

work activities. Once the preliminary plan is established, process decomposition 

begins. That is, a complete plan, refl ecting the work tasks required to populate 

the framework activities, must be created. We explore these activities briefl y in 

the sections that follow and present a more detailed view in Chapter 33. 

   31.4.1   Melding the Product and the Process 

 Project planning begins with the melding of the product and the process. Each 

function to be engineered by your team must pass through the set of framework 

activities that have been defi ned for your software organization. 

 Assume that the organization has adopted the generic framework 

activities— communication, planning, modeling, construction,  and  deployment —

discussed in Chapter 2. The team members who work on a product function will 

apply each of the framework activities to it. In essence, a matrix similar to the 

one shown in   Figure 31.1   is created. Each major product function (the fi gure 

notes functions for the word-processing software discussed earlier) is listed in 

the left-hand column. Framework activities are listed in the top row. Software 

engineering work tasks (for each framework activity) would be entered in the 

following row.  5   The job of the project manager (and other team members) is to 

estimate resource requirements for each matrix cell, start and end dates for the 

  5  It should be noted that work tasks must be adapted to the specifi c needs of the project based 

on a number of adaptation criteria. 

 FIGURE 31.1

 Melding the 
problem and 
the process

COMMON PROCESS
FRAMEWORK ACTIVITIES

Software Engineering Tasks

Product Functions

  Text input
  Editing and formatting
  Automatic copy edit
  Page layout capability
  Automatic indexing and TOC
  File management
  Document production

co
m

m
un

ica
tio

n
pl

an
ni

ng

m
od

eli
ng

co
ns

tru
cti

on
de

pl
oy

m
en

t

pre22126_ch31_683-702.indd   695pre22126_ch31_683-702.indd   695 13/12/13   6:16 PM13/12/13   6:16 PM



696 PART FOUR  MANAGING SOFTWARE PROJECTS

tasks associated with each cell, and work products to be produced as a conse-

quence of each task. These activities are considered in Chapter 26.       

         31.4.2   Process Decomposition 

 A software team should have a signifi cant degree of fl exibility in choosing the 

software process model that is best for the project and the software engineering 

tasks that populate the process model once it is chosen. A relatively small project 

that is similar to past efforts might be best accomplished using the linear sequen-

tial approach. If the deadline is so tight that full functionality cannot reasonably be 

delivered, an incremental strategy might be best. Similarly, projects with other char-

acteristics (e.g., uncertain requirements, breakthrough technology, diffi cult custom-

ers, signifi cant reuse potential) will lead to the selection of other process models.  6    

 Once the process model has been chosen, the process framework is adapted 

to it. In every case, the generic process framework discussed earlier can be used. 

It will work for linear models, for iterative and incremental models, for evolu-

tionary models, and even for concurrent or component assembly models. The 

process framework is invariant and serves as the basis for all work performed by 

a software organization. 

 But actual work tasks do vary. Process decomposition commences when the 

project manager asks, “How do we accomplish this framework activity?” For ex-

ample, a small, relatively simple project might require the following work tasks 

for the communication activity:

     1.  Develop list of clarifi cation issues.  

    2.  Meet with stakeholders to address clarifi cation issues.  

    3.  Jointly develop a statement of scope.  

    4.  Review the statement of scope with all concerned.  

    5.  Modify the statement of scope as required.    

 These events might occur over a period of less than 48 hours. They represent a 

process decomposition that is appropriate for the small, relatively simple project. 

 Now, consider a more complex project, which has a broader scope and more 

signifi cant business impact. Such a project might require the following work 

tasks for the  communication :

     1.  Review the customer request.  

    2.  Plan and schedule a formal, facilitated meeting with all stakeholders.  

    3.  Conduct research to specify the proposed solution and existing approaches.  

    4.  Prepare a “working document” and an agenda for the formal meeting.  

   The process framework 
establishes a skeleton 
for project planning. 
It is adapted by allo-
cating a task set that 
is appropriate to the 
project. 

  6  Recall that project characteristics also have a strong bearing on the structure of the software 

team (Section 31.2.3). 

pre22126_ch31_683-702.indd   696pre22126_ch31_683-702.indd   696 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  697

    5.  Conduct the meeting.  

    6.  Jointly develop mini-specs that refl ect data, function, and behavioral 

features of the software. Alternatively, develop use cases that describe the 

software from the user’s point of view.  

    7.  Review each mini-spec or use case for correctness, consistency, and lack 

of ambiguity.  

    8.  Assemble the mini-specs into a scoping document.  

    9.  Review the scoping document or collection of use cases with all concerned.  

    10.  Modify the scoping document or use cases as required. 

   Both projects perform the framework activity that we call  communication , but 

the fi rst project team performs half as many software engineering work tasks as 

the second.    

       31.5  THE PROJECT 

       In order to manage a successful software project, you have to understand what 

can go wrong so that problems can be avoided. In an excellent paper on software 

projects, John Reel [Ree99] defi nes signs that indicate that an information systems 

project is in jeopardy. In some cases, software people don’t understand their cus-

tomer’s needs. This leads to a project with a poorly defi ned scope. In other proj-

ects, changes are managed poorly. Sometimes, the chosen technology changes or 

business needs shift and management sponsorship is lost. Management can set 

unrealistic deadlines or end users can be resistant to the new system. There are 

cases in which the project team simply does not have the requisite skills. And 

fi nally, there are developers who never seem to learn from their mistakes. 

 Jaded industry professionals often refer to the “90–90 rule” when discussing 

particularly diffi cult software projects: The fi rst 90 percent of a system absorbs 90 

percent of the allotted effort and time. The last 10 percent takes another 90 per-

cent of the allotted effort and time [Zah94]. The seeds that lead to the 90–90 rule 

are contained in the signs noted in the preceding list. 

 But enough negativity! How does a manager act to avoid the problems just noted? 

Reel [Ree99] suggests a fi ve-part commonsense approach to software projects:

     1.   Start on the right foot.  This is accomplished by working hard (very hard) to 

understand the problem that is to be solved and then setting realistic ob-

jectives and expectations for everyone who will be involved in the project. 

It is reinforced by building the right team (Section 31.2.3) and giving the 

team the autonomy, authority, and technology needed to do the job.  

    2.   Maintain momentum.  Many projects get off to a good start and then slowly 

disintegrate. To maintain momentum, the project manager must provide 

 What are the 
signs that a 

software project 
is in jeopardy? 

?

pre22126_ch31_683-702.indd   697pre22126_ch31_683-702.indd   697 13/12/13   6:16 PM13/12/13   6:16 PM



698 PART FOUR  MANAGING SOFTWARE PROJECTS

incentives to keep turnover of personnel to an absolute minimum, the 

team should emphasize quality in every task it performs, and senior man-

agement should do everything possible to stay out of the team’s way.  7  

       3.   Track progress.  For a software project, progress is tracked as work prod-

ucts (e.g., models, source code, sets of test cases) are produced and ap-

proved (using technical reviews) as part of a quality assurance activity. 

In addition, software process and project measures (Chapter 32) can be 

collected and used to assess progress against averages developed for the 

software development organization.  

    4.   Make smart decisions.  In essence, the decisions of the project manager 

and the software team should be to “keep it simple.” Whenever possible, 

decide to use commercial off-the-shelf software or existing software com-

ponents or patterns, decide to avoid custom interfaces when standard 

approaches are available, decide to identify and then avoid obvious risks, 

and decide to allocate more time than you think is needed to complex or 

risky tasks (you’ll need every minute).  

    5.   Conduct a postmortem analysis.  Establish a consistent mechanism for ex-

tracting lessons learned for each project. Evaluate the planned and actual 

schedules, collect and analyze software project metrics, get feedback from 

team members and customers, and record fi ndings in written form.    

      31.6  THE W 5 HH PRINCIPLE 

  In an excellent paper on software process and projects, Barry Boehm [Boe96] 

states: “[Y]ou need an organizing principle that scales down to provide simple 

[project] plans for simple projects.” Boehm suggests an approach that addresses 

project objectives, milestones and schedules, responsibilities, management and 

technical approaches, and required resources. He calls it the  W 5 HH Principle,  

after a series of questions that lead to a defi nition of key project characteristics 

and the resultant project plan:     

         Why is the system being developed?  All stakeholders should assess the valid-

ity of business reasons for the software work. Does the business purpose justify 

the expenditure of people, time, and money?  

       What will be done?  The task set required for the project is defi ned.  

       When will it be done?  The team establishes a project schedule by identifying 

when project tasks are to be conducted and when milestones are to be reached.  

 How do 
we defi ne 

key project 
characteristics? 

?

      7  The implication of this statement is that bureaucracy is reduced to a minimum, extraneous 

meetings are eliminated, and dogmatic adherence to process and project rules is deempha-

sized. The team should be self-organizing and autonomous. 

pre22126_ch31_683-702.indd   698pre22126_ch31_683-702.indd   698 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  699

       Who is responsible for a function?  The role and responsibility of each member 

of the software team is defi ned.  

       Where are they located organizationally?  Not all roles and responsibilities re-

side within software practitioners. The customer, users, and other stakeholders 

also have responsibilities.  

       How will the job be done technically and managerially?  Once product scope is 

established, a management and technical strategy for the project must be defi ned.  

       How much of each resource is needed?  The answer to this question is derived 

by developing estimates (Chapter 33) based on answers to earlier questions.  

      Boehm’s W 5 HH principle is applicable regardless of the size or complexity of a 

software project. The questions noted provide you and your team with an excel-

lent planning outline.  

       31.7  CRIT ICAL PRACTICES 

  The Airlie Council  8   has developed a list of “critical software practices for performance-

based management.” These practices are “consistently used by, and considered 

critical by, highly successful software projects and organizations whose ‘bottom line’ 

performance is consistently much better than industry averages” [Air99].  

 Critical practices  9   include: metric-based project management (Chapter 32), 

empirical cost and schedule estimation (Chapters 33 and 34), earned value track-

ing (Chapter 34), defect tracking against quality targets (Chapters 19 though 21), 

and people aware management (Section 31.2). Each of these critical practices is 

addressed throughout Part 4 of this book.     

  8  The Airlie Council was comprised of a team of software engineering experts chartered by the 

U.S. Department of Defense to help develop guidelines for best practices in software project 

management and software engineering. For more on best practices, see  http://www.swqual

.com/e_newsletter.html . 

  9  Only those critical practices associated with “project integrity” are noted here. 

  10  Tools noted here do not represent an endorsement, but rather a sampling of tools in this 

category. In most cases, tool names are trademarked by their respective developers. 

  Software Tools for Project Managers 
 The tools listed here are generic and apply to 
a broad range of activities performed by 

project managers. Specifi c project management tools 
(e.g., scheduling tools, estimating tools, risk analysis 
tools) are considered in later chapters. 

  Representative Tools:   10   
  Projectmanagement.com  ( http://www

.projectmanagement.com ) has developed a set 
of useful  checklists for project managers.  

  Ittoolkit.com  (  www.ittoolkit.com  ) provides “a 
collection of planning guides, process templates and 
smart worksheets” available on CD-ROM.  

 SOFTWARE TOOLS 

pre22126_ch31_683-702.indd   699pre22126_ch31_683-702.indd   699 13/12/13   6:16 PM13/12/13   6:16 PM



700 PART FOUR  MANAGING SOFTWARE PROJECTS

        31.8 SUMMARY 

 Software project management is an umbrella activity within software engineer-

ing. It begins before any technical activity is initiated and continues throughout 

the modeling, construction, and deployment of computer software. 

 Four Ps have a substantial infl uence on software project management—

people, product, process, and project. People must be organized into effective 

teams, motivated to do high-quality software work, and coordinated to achieve 

effective communication. Product requirements must be communicated from 

customer to developer, partitioned (decomposed) into their constituent parts, 

and positioned for work by the software team. The process must be adapted to 

the people and the problem. A common process framework is selected, an ap-

propriate software engineering paradigm is applied, and a set of work tasks is 

chosen to get the job done. Finally, the project must be organized in a manner 

that enables the software team to succeed. 

 The pivotal element in all software projects is people. Software engineers can 

be organized in a number of different team structures that range from traditional 

control hierarchies to “open paradigm” teams. A variety of coordination and 

communication techniques can be applied to support the work of the team. In 

general, technical reviews and informal person-to-person communication have 

the most value for practitioners. 

 The project management activity encompasses measurement and metrics, 

estimation and scheduling, risk analysis, tracking, and control. Each of these top-

ics is considered in the chapters that follow. 

     PROBLEMS AND POINTS TO PONDER 
    31.1.  Based on information contained in this chapter and your own experience, develop 
“10 commandments” for empowering software engineers. That is, make a list of 10 guide-
lines that will lead to software people who work to their full potential.  

   31.2.  The Software Engineering Institute’s People Capability Maturity Model (People-CMM) 
takes an organized look at “key practice areas” (KPAs) that cultivate good software people. 
Your instructor will assign you one KPA for analysis and summary.  

   31.3.  Describe three real-life situations in which the customer and the end user are the 
same. Describe three situations in which they are different.  

   31.4.  The decisions made by senior management can have a signifi cant impact on the effec-
tiveness of a software engineering team. Provide fi ve examples to illustrate that this is true.  

   31.5.  Review a copy of Weinberg’s book [Wei86], and write a two- or three-page summary of 
the issues that should be considered in applying the MOI model.  

   31.6.  You have been appointed a project manager within an information systems organiza-
tion. Your job is to build an application that is quite similar to others your team has built, 
although this one is larger and more complex. Requirements have been thoroughly docu-
mented by the customer. What team structure would you choose and why? What software 
process model(s) would you choose and why?  

pre22126_ch31_683-702.indd   700pre22126_ch31_683-702.indd   700 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 31  PROJECT MANAGEMENT CONCEPTS  701

   31.7.  You have been appointed a project manager for a small software products company. 
Your job is to build a breakthrough product that combines virtual reality hardware with 
state-of-the-art software. Because competition for the home entertainment market is in-
tense, there is signifi cant pressure to get the job done. What team structure would you 
choose and why? What software process model(s) would you choose and why?  

   31.8.  You have been appointed a project manager for a major software products company. 
Your job is to manage the development of the next-generation version of its widely used 
word-processing software. Because competition is intense, tight deadlines have been es-
tablished and announced. What team structure would you choose and why? What software 
process model(s) would you choose and why?  

   31.9.  You have been appointed a software project manager for a company that services the 
genetic engineering world. Your job is to manage the development of a new software prod-
uct that will accelerate the pace of gene typing. The work is R&D oriented, but the goal is to 
produce a product within the next year. What team structure would you choose and why? 
What software process model(s) would you choose and why?  

   31.10.  You have been asked to develop a small application that analyzes each course 
offered by a university and reports the average grade obtained in the course (for a given 
term). Write a statement of scope that bounds this problem.  

   31.11.  Do a fi rst-level functional decomposition of the page layout function discussed briefl y 
in Section 31.3.2.  

      FUR THER READINGS AND INFORMATION SOURCES 
  The Project Management Institute ( Guide to the Project Management Body of Knowledge,  
4th ed., PMI, 2009) covers all important aspects of project management. Wysocki ( Effective 

Software Project Management: Traditional, Agile, Extreme,  6th ed., Wiley, 2011), Slinger and 
Broderick ( The Software Project Manager’s Bridge to Agility,  Addison-Wesley, 2008), Bech-
told ( Essentials of Software Project Management,  2nd ed., Management Concepts, 2007), 
Stellman and Greene ( Applied Software Project Management,  O’Reilly, 2005), and Berkun 
( Making Things Happen: Mastering Project Management—Theory in Practice,  O’Reilly, 2008) 
teach basic skills and provide detailed guidance for all software project management tasks. 
McConnell ( Professional Software Development,  Addison-Wesley, 2004) offers pragmatic 
advice for achieving “shorter schedules, higher quality products, and more successful proj-
ects.” Henry ( Software Project Management,  Addison-Wesley, 2003) offers real-world advice 
that is useful for all project managers. 

   Tom DeMarco and his colleagues ( Adrenaline Junkies and Template Zombies,  Dorset 
House, 2008) have written an insightful treatment of the human patterns that are encoun-
tered in every software project. An excellent four-volume series written by Weinberg ( Qual-

ity Software Management,  Dorset House, 1992, 1993, 1994, 1996) introduces basic systems 
thinking and management concepts, explains how to use measurements effectively, and 
addresses “congruent action,” the ability to establish “fi t” between the manager’s needs, 
the needs of technical staff, and the needs of the business. It will provide both new and 
experienced managers with useful information. Futrell and his colleagues ( Quality Soft-

ware Project Management,  Prentice Hall, 2002) present a voluminous treatment of project 
management. Books by Neill and his colleagues ( Antipatterns: Managing Software Organi-

zations,  2nd ed., Auerbach Publications, 2011) and Brown and his colleagues ( Antipatterns 

in Project Management,  Wiley, 2000) discuss what not to do during the management of a 
software project. 

   Brooks ( The Mythical Man-Month,  Anniversary Edition, Addison-Wesley, 1995) has up-
dated his classic book to provide new insight into software project and management is-
sues. McConnell ( Software Project Survival Guide,  Microsoft Press, 1997) presents excellent 
pragmatic guidance for those who must manage software projects. Purba and Shah ( How to 

pre22126_ch31_683-702.indd   701pre22126_ch31_683-702.indd   701 13/12/13   6:16 PM13/12/13   6:16 PM



702 PART FOUR  MANAGING SOFTWARE PROJECTS

Manage a Successful Software Project,  2nd ed., Wiley, 2000) present a number of case studies 
that indicate why some projects succeed and others fail. Books by Kerzner ( Project Manage-

ment: A Systems Approach to Planning Scheduling and Controlling,  10th ed., Wiley, 2009) 
and Bennatan ( On Time Within Budget,  3rd ed., Wiley, 2000) presents useful tips and guide-
lines for software project managers. Weigers ( Practical Project Initiation,  Microsoft Press, 
2007) provides practical guidelines for getting a software project off the ground successfully. 

   It can be argued that the most important aspect of software project management is 
people management. Cockburn ( Agile Software Development,  Addison-Wesley, 2002) pre-
sents one of the best discussions of software people written to date. DeMarco and Lister 
[DeM98] have written the defi nitive book on software people and software projects. In addi-
tion, the following books on this subject have been published in recent years and are worth 
examining:

       Cantor, M.,  Software Leadership: A Guide to Successful Software Development,  
Addison-Wesley, 2001.  

      Carmel, E.,  Global Software Teams: Collaborating Across Borders and Time Zones,  
Prentice Hall, 1999.  

      Chandler, H. M.,  Game Production Handbook,  2nd ed., Charles River Media, 2008.  

      Constantine, L.,  Peopleware Papers: Notes on the Human Side of Software,  Prentice Hall, 
2001.  

      Ebert, C.,  Global Software and IT: A Guide to Distributed Development, Projects, and 

Outsourcing,  Wiley-IEEE Computer Society, 2011.  

      Fairley, R. E.,  Managing and Leading Software Projects,  Wiley-IEEE Computer Society, 
2009.  

      Garton, C., and Wegryn, K.,  Managing Without Walls,  McPress, 2006.  

      Humphrey, W. S., and Over, J. W.,  Leadership, Teamwork, and Trust: Building a Competi-

tive Software Capability,  Addison-Wesley, 2011.  

      Humphrey, W. S.,  Managing Technical People: Innovation, Teamwork, and the Software 

Process,  Addison-Wesley, 1997.  

      Humphrey, W. S.,  TSP-Coaching Development Teams,  Addison-Wesley, 2006.  

      Jones, P. H.,  Handbook of Team Design: A Practitioner’s Guide to Team Systems Develop-

ment,  McGraw-Hill, 1997.  

      Karolak, D. S.,  Global Software Development: Managing Virtual Teams and Environ-

ments,  IEEE Computer Society, 1998.  

      Misrik, I., et al.,  Collaborative Software Engineering,  Springer, 2010 .   

      Peters, L.,  Getting Results from Software Development Teams,  Microsoft Press, 2008.  

      Whitehead, R.,  Leading a Software Development Team,  Addison-Wesley, 2001.    

   Even though they do not relate specifi cally to the software world and sometimes suf-
fer from oversimplifi cation and broad generalization, best-selling “management” books by 
Kanter ( Confi dence,  Three Rivers Press, 2006), Covy ( The 8th Habit,  Free Press, 2004), Bossidy 
( Execution: The Discipline of Getting Things Done,  Crown Publishing, 2002), Drucker ( Man-

agement Challenges for the 21st Century,  Harper Business, 1999), Buckingham and Coffman 
( First, Break All the Rules: What the World’s Greatest Managers Do Differently,  Simon and 
Schuster, 1999), and Christensen ( The Innovator’s Dilemma,  Harvard Business School Press, 
1997) emphasize “new rules” defi ned by a rapidly changing economy. Older titles such as 
 Who Moved My Cheese? ,  The One-Minute Manager,  and  In Search of Excellence  continue to 
provide valuable insights that can help you to manage people and projects more effectively. 

   A wide variety of information sources on the software project management are available 
on the Internet. An up-to-date list of World Wide Web references can be found under “soft-
ware engineering resources” at the SEPA website:  www.mhhe.com/pressman.       

pre22126_ch31_683-702.indd   702pre22126_ch31_683-702.indd   702 13/12/13   6:16 PM13/12/13   6:16 PM



703

        Measurement enables us to gain insight into the process and the proj-

ect by providing a mechanism for objective evaluation. Lord Kelvin 

once said:

  When you can measure what you are speaking about and express it in numbers, 

you know something about it; but when you cannot measure, when you cannot ex-

press it in numbers, your knowledge is of a meager and unsatisfactory kind: it may 

be the beginning of knowledge, but you have scarcely, in your thoughts, advanced 

to the stage of a science.   

 The software engineering community has taken Lord Kelvin’s words to heart. 

But not without frustration and more than a little controversy! 

 Measurement can be applied to the software process with the intent of im-

proving it on a continuous basis. Measurement can be used throughout a soft-

ware project to assist in estimation, quality control, productivity assessment, 

and project control. Finally, measurement can be used by software engineers 

to help assess the quality of work products and to assist in tactical decision 

making as a project proceeds (Chapter 30). 

 PROCESS AND
PROJECT METRICS 

    C H A P T E R

32 
 K E Y 
C O N C E P T S 
    defect removal 
effi ciency (DRE)  . . 718  
    function point (FP)  . 710  
    measurement  . . . . 708  
    metrics  

    arguments for  . 720  
    baseline . . . . . . 720  
    establishing a 
program. . . . . . 722  
    function-
oriented. . . . . . 710  
    LOC-based 
metrics  . . . . . . 712  
    object-oriented. 713  
    private and 
public. . . . . . . . 706  
    process  . . . . . . 704  
    productivity . . . 712  
    project . . . . . . . 707  
    size-oriented  . . 709  

 Q U I C K 
L O O K 

  What is it?   Software process and 
project metrics are quantitative mea-
sures that enable you to gain insight 
into the effi cacy of the software pro-

cess and the projects that are conducted using 
the process as a framework. Basic quality and 
productivity data are collected. These data 
are then analyzed, compared against past 
averages, and assessed to determine whether 
quality and productivity improvements have oc-
curred. Metrics are also used to pinpoint prob-
lem areas so that remedies can be developed 
and the software process can be improved. 

   Who does it?   Software metrics are analyzed 
and assessed by software managers. Measures 
are often collected by software engineers. 

   Why is it important?   If you don’t measure, 
judgment can be based only on subjective 
evaluation. With measurement, trends (either 

good or bad) can be spotted, better estimates 
can be made, and true improvement can be 
accomplished over time. 

   What are the steps?   Begin by defi ning a 
limited set of process, project, and prod-
uct measures that are easy to collect. These 
measures are often normalized using either 
size- or function-oriented metrics. The result is 
analyzed and compared to past averages for 
similar projects performed within the organi-
zation. Trends are assessed and conclusions 
are generated. 

   What is the work product?   A set of software 
metrics that provides insight into the process 
and understanding of the project. 

   How do I ensure that I’ve done it right?   By 
applying a consistent, yet simple measurement 
scheme that is never to be used to assess, re-
ward, or punish individual performance.  

pre22126_ch32_703-726.indd   703pre22126_ch32_703-726.indd   703 13/12/13   6:16 PM13/12/13   6:16 PM



704 PART FOUR  MANAGING SOFTWARE PROJECTS

 Within the context of the software process and the projects that are conducted 

using the process, a software team is concerned primarily with productivity and 

quality metrics—measures of software development “output” as a function of ef-

fort and time applied and measures of the “fi tness for use” of the work products 

that are produced. For planning and estimating purposes, our interest is histori-

cal. What was software development productivity on past projects? What was the 

quality of the software that was produced? How can past productivity and quality 

data be extrapolated to the present? How can it help us plan and estimate more 

accurately? 

 In their guidebook on software measurement, Park, Goethert, and Florac 

[Par96b] note the reasons that we measure: (1) to  characterize  in an effort to gain 

an understanding “of processes, products, resources, and environments, and to 

establish baselines for comparisons with future assessments”; (2) to  evaluate  “to 

determine status with respect to plans”; (3) to  predict  by “gaining understand-

ings of relationships among processes and products and building models of these 

relationships”; and (4) to  improve  by “identify[ing] roadblocks, root causes, inef-

fi ciencies, and other opportunities for improving product quality and process 

performance.” 

 Measurement is a management tool. If conducted properly, it provides a proj-

ect manager with insight. And as a result, it assists the project manager and the 

software team in making decisions that will lead to a successful project. 

      32.1  METRICS IN THE PROCESS AND PROJECT DOMAINS 

   Process metrics  are collected across all projects and over long periods of time. 

Their intent is to provide a set of process indicators that lead to long-term soft-

ware process improvement (Chapter 37).  Project metrics  enable a software proj-

ect manager to (1) assess the status of an ongoing project, (2) track potential 

risks, (3) uncover problem areas before they go “critical,” (4) adjust work fl ow 

or tasks, and (5) evaluate the project team’s ability to control quality of software 

work products. 

 Measures that are collected by a project team and converted into metrics for 

use during a project can also be transmitted to those with responsibility for soft-

ware process improvement. For this reason, many of the same metrics are used 

in both the process and project domains. 

   32.1.1   Process Metrics and Software Process Improvement 

 The only rational way to improve any process is to measure specifi c attributes of 

the process, develop a set of meaningful metrics based on these attributes, and 

then use the metrics to provide indicators that will lead to a strategy for improve-

ment (Chapter 37). But before we discuss software metrics and their impact on 

    software 
quality. . . . . . . 716  
    use case-oriented . . 
714  
    WebApps . . . . . 714  

  

pre22126_ch32_703-726.indd   704pre22126_ch32_703-726.indd   704 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  705

software process improvement, it is important to note that process is only one 

of a number of “controllable factors in improving software quality and organiza-

tional performance” [Pau94].       

 Referring to   Figure 32.1  , process sits at the center of a triangle connecting 

three factors that have a profound infl uence on software quality and organiza-

tional performance. The skill and motivation of people have been shown [Boe81] 

to be the most infl uential factors in quality and performance. The complexity of 

the product can have a substantial impact on quality and team performance. The 

technology (i.e., the software engineering methods and tools) that populates the 

process also has an impact.  

 In addition, the process triangle exists within a circle of environmental condi-

tions that include the development environment (e.g., integrated software tools), 

business conditions (e.g., deadlines, business rules), and customer characteris-

tics (e.g., ease of communication and collaboration).     

  You can only measure the effi cacy of a software process indirectly. That is, you 

derive a set of metrics based on the outcomes that can be derived from the pro-

cess. Outcomes include measures of errors uncovered before release of the soft-

ware, defects delivered to and reported by end users, work products delivered 

(productivity), human effort expended, calendar time used, schedule confor-

mance, and other measures. You can also derive process metrics by measur-

ing the characteristics of specifi c software engineering tasks. For example, you 

might measure the effort and time spent performing the umbrella activities and 

the generic software engineering activities described in Chapter 2. 

   The skill and motiva-
tion of the software 
people doing the work 
are the most important 
factors that infl uence 
software quality. 

    uote: 

 “Software metrics 
let you know when 
to laugh and when 
to cry.” 

 Tom Gilb 

Process

Product

TechnologyPeople
Development
environment

Customer
characteristics

Business
conditions

  FIGURE 32.1

 Determinants 
for software 
quality and 
organizational 
effectiveness.   
 Source: Adapted 
from [Pau94]. 

pre22126_ch32_703-726.indd   705pre22126_ch32_703-726.indd   705 13/12/13   6:16 PM13/12/13   6:16 PM



706 PART FOUR  MANAGING SOFTWARE PROJECTS

 Grady [Gra92] argues that there are “private and public” uses for different 

types of process data. Because it is natural that individual software engineers 

might be sensitive to the use of metrics collected on an individual basis, these 

data should be private to the individual and serve as an indicator for the individ-

ual only. Examples of  private metrics  include defect rates (by individual), defect 

rates (by component), and errors found during development. 

 The “private process data” philosophy conforms well with the Personal Soft-

ware Process approach (Chapter 4) proposed by Humphrey [Hum05]. Humphrey 

recognized that software process improvement can and should begin at the indi-

vidual level. Private process data can serve as an important driver as you work 

to improve your software engineering approach. 

 Some process metrics are private to the software project team but public to all 

team members. Examples include defects reported for major software functions 

(that have been developed by a number of practitioners), errors found during 

technical reviews, and lines of code or function points per component or func-

tion.  1   The team reviews these data to uncover indicators that can improve team 

performance.    

 Public metrics generally assimilate information that originally was private to 

individuals and teams. Project-level defect rates (absolutely not attributed to an 

individual), effort, calendar times, and related data are collected and evaluated 

in an attempt to uncover indicators that can improve organizational process 

performance. 

 Software process metrics can provide signifi cant benefi ts as an organization 

works to improve its overall level of process maturity. However, like all metrics, 

these can be misused, creating more problems than they solve. Grady [Gra92] 

suggests a “software metrics etiquette” that is appropriate for both managers 

and practitioners as they institute a process metrics program: 

    •  Use common sense and organizational sensitivity when interpreting met-

rics data.  

   •  Provide regular feedback to the individuals and teams who collect 

measures and metrics.  

   •  Don’t use metrics to appraise individuals.  

   •  Work with practitioners and teams to set clear goals and metrics that will 

be used to achieve them.  

   •  Never use metrics to threaten individuals or teams.  

   •  Metrics data that indicate a problem area should not be considered 

“negative.” These data are merely an indicator for process improvement.  

 What is the 
difference 

between private 
and public uses 
for software 
metrics? 

?

 What 
guidelines 

should be applied 
when we collect 
software metrics? 

?

  1  Lines of code and function point metrics are discussed in Sections 32.2.1 and 32.2.2. 

pre22126_ch32_703-726.indd   706pre22126_ch32_703-726.indd   706 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  707

   •  Don’t obsess on a single metric to the exclusion of other important 

metrics.        

  As an organization becomes more comfortable with the collection and use of 

process metrics, the derivation of simple indicators gives way to a more rig-

orous approach called  statistical software process improvement  (SSPI). In es-

sence, SSPI uses software failure analysis to collect information about all errors 

and defects  2   encountered as an application, system, or product is developed 

and used.    

    32.1.2   Project Metrics 

 Unlike software process metrics that are used for strategic purposes, software 

project measures are tactical. That is, project metrics and the indicators derived 

from them are used by a project manager and a software team to adapt project 

work fl ow and technical activities. 

 The fi rst application of project metrics on most software projects occurs 

during estimation. Metrics collected from past projects are used as a basis from 

which effort and time estimates are made for current software work. As a project 

proceeds, measures of effort and calendar time expended are compared to orig-

inal estimates (and the project schedule). The project manager uses these data 

to monitor and control progress. 

 As technical work commences, other project metrics begin to have signifi -

cance. Production rates represented in terms of models created, review hours, 

function points, and delivered source lines are measured. In addition, errors 

uncovered during each software engineering task are tracked. As the software 

evolves from requirements into design, technical metrics (Chapter 30) are col-

lected to assess design quality and to provide indicators that will infl uence the 

approach taken to code generation and testing.     

  The intent of project metrics is twofold. First, these metrics are used to mini-

mize the development schedule by making the adjustments necessary to avoid 

delays and mitigate potential problems and risks. Second, project metrics are 

used to assess product quality on an ongoing basis and, when necessary, modify 

the technical approach to improve quality. 

 As quality improves, defects are minimized, and as the defect count goes 

down, the amount of rework required during the project is also reduced. This 

leads to a reduction in overall project cost.     

 How should 
we use 

metrics during the 
project itself? 

?

  2  In this book, an  error  is defi ned as some fl aw in a software engineering work product that 

is uncovered  before  the software is delivered to the end user. A  defect  is a fl aw that is 

uncovered  after  delivery to the end user. It should be noted that others do not make this 

distinction.  

pre22126_ch32_703-726.indd   707pre22126_ch32_703-726.indd   707 13/12/13   6:16 PM13/12/13   6:16 PM



708 PART FOUR  MANAGING SOFTWARE PROJECTS

        32.2  SOFTWARE MEASUREMENT 

  In Chapter 30 we noted that measurements in the physical world can be cat-

egorized in two ways: direct measures (e.g., the length of a bolt) and indirect 

measures (e.g., the “quality” of bolts produced, measured by counting rejects). 

Software metrics can be categorized similarly. 

  Direct measures  of the software process include cost and effort applied. Direct 

measures of the product include lines of code (LOC) produced, execution speed, 

memory size, and defects reported over some set period of time. Indirect mea-

sures of the product include functionality, quality, complexity, effi ciency, reliabil-

ity, maintainability, and many other “–abilities” that are discussed in Chapter 19.  

 The cost and effort required to build software, the number of lines of code 

produced, and other direct measures are relatively easy to collect, as long as 

  uote: 

 “Not everything 
that can be counted 
counts, and not 
everything that 
counts can be 
counted.” 

 Albert Einstein 

  Establishing a Metrics Approach   Establishing a Metrics Approach 

  The scene:  Doug Miller’s offi ce as 
the  SafeHome  software project is 

about to begin. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman and 
Jamie Lazar, members of the product software engineer-
ing team. 

  The conversation:  

  Doug:  Before we start work on this project, I’d like you 
guys to defi ne and collect a set of simple metrics. To 
start, you’ll have to defi ne your goals. 

  Vinod (frowning):  We’ve never done that before, 
and . . . 

  Jamie (interrupting):  And based on the time line 
management has been talking about, we’ll never have 
the time. What good are metrics anyway? 

  Doug (raising his hand to stop the onslaught):  
Slow down and take a breath, guys. The fact that we’ve 
never done it before is all the more reason to start now, 
and the metrics work I’m talking about shouldn’t take 
much time at all . . . in fact, it just might save us time. 

  Vinod:  How? 

  Doug:  Look, we’re going to be doing a lot more 
in-house software engineering as our products get 
more intelligent, become Web enabled, mobile, all 
that . . . and we need to understand the process we use 

to build software . . . and improve it so we can build 
software better. The only way to do that is to measure. 

  Jamie:  But we’re under time pressure, Doug. I’m not 
in favor of more paper pushing . . . we need the time to 
do our work, not collect data. 

  Doug (calmly):  Jamie, an engineer’s work involves 
collecting data, evaluating it, and using the results to 
improve the product and the process. Am I wrong? 

  Jamie:  No, but . . . 

  Doug:  What if we hold the number of measures we 
collect to no more than fi ve or six and focus on quality? 

  Vinod:  No one can argue against high quality . . . 

  Jamie:  True . . . but, I don’t know. I still think this isn’t 
necessary. 

  Doug:  I’m going to ask you to humor me on this one. 
How much do you guys know about software metrics? 

  Jamie (looking at Vinod):  Not much. 

  Doug:  Here are some Web refs . . . spend a few hours 
getting up to speed. 

  Jamie (smiling):  I thought you said this wouldn’t take 
any time. 

  Doug:  Time you spend learning is never 
wasted . . . go do it and then we’ll establish some 
goals, ask a few questions, and defi ne the metrics we 
need to collect.  

 SAFEHOME 

pre22126_ch32_703-726.indd   708pre22126_ch32_703-726.indd   708 13/12/13   6:16 PM13/12/13   6:16 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  709

specifi c conventions for measurement are established in advance. However, the 

quality and functionality of software or its effi ciency or maintainability are more 

diffi cult to assess and can be measured only indirectly. 

 We have partitioned the software metrics domain into process, project, and 

product metrics and noted that product metrics that are private to an individual 

are often combined to develop project metrics that are public to a software team. 

Project metrics are then consolidated to create process metrics that are public 

to the software organization as a whole. But how does an organization combine 

metrics that come from different individuals or projects? 

      To illustrate, consider a simple example. Individuals on two different project 

teams record and categorize all errors that they fi nd during the software pro-

cess. Individual measures are then combined to develop team measures. Team A 

found 342 errors during the software process prior to release. Team B found 184 

errors. All other things being equal, which team is more effective in uncovering 

errors throughout the process? Because you do not know the size or complexity 

of the projects, you cannot answer this question. However, if the measures are 

normalized, it is possible to create software metrics that enable comparison to 

broader organizational averages. 

   32.2.1   Size-Oriented Metrics 

 Size-oriented software metrics are derived by normalizing quality and/or 

productivity measures by considering the  size  of the software that has been 

produced. If a software organization maintains simple records, a table of 

 size-oriented measures, such as the one shown in   Figure 32.2  , can be created. 

The table lists each software development project that has been completed over 

the past few years and corresponding measures for that project. Referring to the 

table entry (  Figure 32.2  ) for project  alpha : 12,100 lines of code were developed 

with 24 person-months of effort at a cost of $168,000. It should be noted that the 

   Because many factors 
affect software work, 
don’t use metrics to 
compare individuals or 
teams. 

Project LOC Effort $(000) Pp. doc. Errors Defects People

alpha
beta
gamma

•
•
•

12,100
27,200
20,200

•
•
•

24
62
43

•
•
•

168
440
314

•
•
•

365
1224
1050

•
•

  •

134
321
256

•
•

  •

29
86
64

3
5
6

 FIGURE 32.2

 Size-oriented 
metrics

pre22126_ch32_703-726.indd   709pre22126_ch32_703-726.indd   709 13/12/13   6:17 PM13/12/13   6:17 PM



710 PART FOUR  MANAGING SOFTWARE PROJECTS

effort and cost recorded in the table represent all software engineering activities 

(analysis, design, code, and test), not just coding. Further information for proj-

ect  alpha  indicates that 365 pages of documentation were developed, 134 errors 

were recorded before the software was released, and 29 defects were encoun-

tered after release to the customer within the fi rst year of operation. Three peo-

ple worked on the development of software for project alpha.      

 In order to develop metrics that can be assimilated with similar metrics from 

other projects, you can choose lines of code as a normalization value. From the 

rudimentary data contained in the table, a set of simple size-oriented metrics 

can be developed for each project: 

    •  Errors per KLOC (thousand lines of code)  

   •  Defects per KLOC  

   •  $ per KLOC  

   •  Pages of documentation per KLOC  

   In addition, other interesting metrics can be computed: 

    •  Errors per person-month  

   •  KLOC per person-month  

   •  $ per page of documentation    

      Size-oriented metrics are not universally accepted as the best way to measure 

the software process. Most of the controversy swirls around the use of lines of 

code as a key measure. Proponents of the LOC measure claim that LOC is an 

“artifact” of all software development projects that can be easily counted, that 

many existing software estimation models use LOC or KLOC as a key input, and 

that a large body of literature and data predicated on LOC already exists. On the 

other hand, opponents argue that LOC measures are programming language 

dependent, that when productivity is considered, they penalize well-designed 

but shorter programs; that they cannot easily accommodate nonprocedural lan-

guages; and that their use in estimation requires a level of detail that may be 

diffi cult to achieve (i.e., the planner must estimate the LOC to be produced long 

before analysis and design have been completed). 

    32.2.2   Function-Oriented Metrics 

 Function-oriented software metrics use a measure of the functionality delivered 

by the application as a normalization value. The most widely used function- 

oriented metric is the function point (FP). Computation of the function point is 

based on characteristics of the software’s information domain and complexity. 

The mechanics of FP computation have been discussed in Chapter 30.  3      

   Size-oriented metrics 
are widely used, but 
debate about their va-
lidity and applicability 
continues. 

  3  See Section 30.2.1 for a detailed discussion of FP computation. 

pre22126_ch32_703-726.indd   710pre22126_ch32_703-726.indd   710 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  711

 The function point, like the LOC measure, is controversial. Proponents claim 

that FP is programming language–independent, making it ideal for applications 

using conventional and nonprocedural languages, and that it is based on data 

that are more likely to be known early in the evolution of a project, making FP 

more attractive as an estimation approach. Opponents claim that the method 

requires some “sleight of hand” in that computation is based on subjective rather 

than objective data, that counts of the information domain (and other dimen-

sions) can be diffi cult to collect after the fact, and that FP has no direct physical 

meaning—it’s just a number. 

    32.2.3   Reconciling LOC and FP Metrics 

 The relationship between lines of code and function points depends upon the pro-

gramming language that is used to implement the software and the quality of the 

design. A number of studies have attempted to relate FP and LOC measures. The 

following table  4   [QSM02] provides rough estimates of the average number of lines 

of code required to build one function point in various programming languages: 

LOC per Function Point
Programming 
Language Avg. Median Low High
Ada 154 — 104 205
ASP 56   50   32 106
Assembler 337 315    91 694
C 148 107   22 704
C11   59   53   20 178
C#   58   59    51 704
COBOL   80   78     8 400
ColdFusion   68   56   52 105
DBase IV   52 — — —
Easytrieve1   33   34   25   41
Focus   43   42   32   56
FORTRAN   90 118   35 __
FoxPro   32   35   25   35
HTML   43   42   35   53
Informix   42    31   24   57
J2EE   57   50   50   67
Java   55   53     9 214
JavaScript   54   55   45   63
JSP   59 — — —
Lotus Notes   23    21   15   46

  4   The data presented in the table is an abbreviated version of data developed by Quantitative 

Software Management ( www.qsm.com ) and is used with their permission, copyright 2002. 

pre22126_ch32_703-726.indd   711pre22126_ch32_703-726.indd   711 13/12/13   6:17 PM13/12/13   6:17 PM



712 PART FOUR  MANAGING SOFTWARE PROJECTS

LOC per Function Point
Programming 
Language Avg. Median Low High
Mantis   71   27 22 250
Natural   51   53 34   60
.NET   60   60 60   60
Oracle   42   29 12 217
OracleDev2K   35   30 23 100
PeopleSoft   37   32 34   40
Perl   57   57 45   60
PL/1   58   57 27   92
Powerbuilder   28   22   8 105
RPG II/III   61   49 24 155
SAS   50   35 33   49
Smalltalk   26   19 10   55
SQL   31   37 13   80
VBScript   38   37 29   50
Visual Basic   50   52 14 276

 A review of these data indicates that one LOC of C11 provides approximately 

2.4 times the “functionality” (on average) as one LOC of C. Furthermore, one LOC 

of a Smalltalk provides at least four times the functionality of an LOC for a con-

ventional programming language such as Ada, COBOL, or C. Using the informa-

tion contained in the table, it is possible to “backfi re” [Jon98] existing software to 

estimate the number of function points, once the total number of programming 

language statements are known. 

 LOC and FP measures are often used to derive productivity metrics. This 

 invariably leads to a debate about the use of such data. Should the LOC/ 

person-month (or FP/person-month) of one group be compared to similar 

data from another? Should managers appraise the performance of individuals 

by using these metrics? The answer to these questions is an emphatic no! The 

reason for this response is that many factors infl uence productivity, making for 

“ apples and oranges” comparisons that can be easily misinterpreted. 

 Function points and LOC-based metrics have been found to be relatively ac-

curate predictors of software development effort and cost. However, in order to 

use LOC and FP for estimation (Chapter 33), an historical baseline of information 

must be established. 

 Within the context of process and project metrics, you should be concerned 

primarily with productivity and quality—measures of software development 

“output” as a function of effort and time applied and measures of the “fi tness 

for use” of the work products that are produced. For process improvement and 

project planning purposes, your interest is historical. What was software devel-

opment productivity on past projects? What was the quality of the software that 

pre22126_ch32_703-726.indd   712pre22126_ch32_703-726.indd   712 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  713

was produced? How can past productivity and quality data be extrapolated to 

the present? How can it help us improve the process and plan new projects more 

accurately? 

    32.2.4   Object-Oriented Metrics 

 Conventional software project metrics (LOC or FP) can be used to estimate 

 object-oriented software projects. However, these metrics do not provide enough 

granularity for the schedule and effort adjustments that are required as you it-

erate through an evolutionary or incremental process. Lorenz and Kidd [Lor94] 

suggest the following set of metrics for OO projects: 

       Number of scenario scripts.   A scenario script (analogous to a use case) is a de-

tailed sequence of steps that describes the interaction between the user and the 

application. Each script is organized into triplets of the form 

{ initiator,   action,   participant } 

 where  initiator  is the object that requests some service (that initiates a message), 

 action  is the result of the request, and  participant  is the server object that sat-

isfi es the request. The number of scenario scripts is directly correlated to the 

size of the application and to the number of test cases that must be developed to 

exercise the system once it is constructed. 

        Number of key classes.    Key classes  are the “highly independent components” 

[Lor94] that are defi ned early in object-oriented analysis (Chapter 10).  5   Because 

key classes are central to the problem domain, the number of such classes is 

an indication of the amount of effort required to develop the software and also 

an indication of the potential amount of reuse to be applied during system 

development.    

   Number of support classes.    Support classes  are required to implement the sys-

tem but are not immediately related to the problem domain. Examples might be 

user interface (UI) classes, database access and manipulation classes, and com-

putation classes. In addition, support classes can be developed for each of the 

key classes. Support classes are defi ned iteratively throughout an evolutionary 

process. The number of support classes is an indication of the amount of effort 

required to develop the software and also an indication of the potential amount 

of reuse to be applied during system development. 

   Average number of support classes per key class.   In general, key classes are 

known early in the project. Support classes are defi ned throughout. If the aver-

age number of support classes per key class were known for a given problem do-

main, estimating (based on total number of classes) would be greatly simplifi ed. 

   It is not uncommon 
for multiple-scenario 
scripts to mention the 
same functionality or 
data objects. There-
fore, be careful when 
using script counts. 
Many scripts can 
sometimes be reduced 
to a single class or set 
of code. 

   Classes can vary in 
size and complexity. 
Therefore, it’s worth 
considering classifying 
class counts by size 
and complexity. 

  5   We referred to key classes as  analysis classes  in Chapter 10. 

pre22126_ch32_703-726.indd   713pre22126_ch32_703-726.indd   713 13/12/13   6:17 PM13/12/13   6:17 PM



714 PART FOUR  MANAGING SOFTWARE PROJECTS

Lorenz and Kidd suggest that applications with a GUI have between two and 

three times the number of support classes as key classes. Non-GUI applications 

have between one and two times the number of support classes as key classes. 

   Number of subsystems.   A  subsystem  is an aggregation of classes that support 

a function that is visible to the end user of a system. Once subsystems are identi-

fi ed, it is easier to lay out a reasonable schedule in which work on subsystems is 

partitioned among project staff. 

 To be used effectively in an object-oriented software engineering environ-

ment, metrics similar to those noted above must be collected along with project 

measures such as effort expended, errors and defects uncovered, and models or 

documentation pages produced. As the database grows (after a number of proj-

ects have been completed), relationships between the object-oriented measures 

and project measures will provide metrics that can aid in project estimation. 

     32.2.5   Use Case-Oriented Metrics 

 Use cases  6   are used widely as a method for describing customer-level or busi-

ness domain requirements that imply software features and functions. It would 

seem reasonable to use the use case as a normalization measure similar to LOC 

or FP. Like FP, the use case is defi ned early in the software process, allowing it 

to be used for estimation before signifi cant modeling and construction activities 

are initiated. Use cases describe (indirectly, at least) user-visible functions and 

features that are basic requirements for a system. The use case is independent of 

programming language. In addition, the number of use cases is directly propor-

tional to the size of the application in LOC and to the number of test cases that 

will have to be designed to fully exercise the application.    

 Because use cases can be created at vastly different levels of abstraction, 

there is no standard “size” for a use case. Without a standard “measure” of what 

a use case is, its application as a normalization measure (e.g., effort expended 

per use case) is suspect. 

 Researchers have suggested  use-case points  (UCPs) as a mechanism for esti-

mating project effort and other characteristics. The UCP is a function of the num-

ber of actors and transactions implied by the use-case models and is analogous to 

the FP in some ways. If you have further interest, see [Coh05], [Cle06], or [Col09]. 

    32.2.6   WebApp Project Metrics 

 The objective of all WebApp projects is to deliver a combination of content and 

functionality to the end user. Measures and metrics used for traditional software 

engineering projects are diffi cult to translate directly to WebApps. Yet, it is pos-

sible to develop a database that allows assess to internal productivity and quality 

  6   Use cases are introduced in Chapters 8 and 9.  

pre22126_ch32_703-726.indd   714pre22126_ch32_703-726.indd   714 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  715

measures derived over a number of projects. Among the measures that can be 

collected are the following: 

        Number of static Web pages.  These pages represent low relative com-

plexity and generally require less effort to construct than dynamic pages. 

This measure provides an indication of the overall size of the application 

and the effort required to develop it.  

       Number of dynamic Web pages.  These pages represent higher relative 

complexity and require more effort to construct than static pages. This 

measure provides an indication of the overall size of the application and 

the effort required to develop it.  

       Number of internal page links.  This measure provides an indication of 

the degree of architectural coupling within the WebApp. As the number of 

page links increases, the effort expended on navigational design and con-

struction also increases.  

       Number of persistent data objects.  As the number of persistent data 

objects (e.g., a database or data fi le) grows, the complexity of the WebApp 

also grows and the effort to implement it increases proportionally.  

       Number of external systems interfaced.  As the requirement for interfac-

ing grows, system complexity and development effort also increase.  

       Number of static content objects.  These objects represent low relative com-

plexity and generally require less effort to construct than dynamic pages.  

       Number of dynamic content objects.  These objects represent higher rela-

tive complexity and require more effort to construct than static pages.  

      Number of executable functions.  As the number of executable functions 

(e.g., a script or applet) increases, modeling and construction effort also 

increase.  

  Each of the preceding measures can be determined at a relatively early stage. For 

example, you can defi ne a metric that refl ects the degree of end-user customi-

zation that is required for the WebApp and correlate it to the effort expended on 

the project and/or the errors uncovered as reviews and testing are conducted. 

To accomplish this, you defi ne

 N sp 5 number of static Web pages

 N dp  5 number of dynamic Web pages 

 Then,

Customization index,  C  5   
 N dp
 _________ 

(  N dp 1  N sp)
   

 The value of  C  ranges from 0 to 1. As C grows larger, the level of WebApp custom-

ization becomes a signifi cant technical issue. 

pre22126_ch32_703-726.indd   715pre22126_ch32_703-726.indd   715 13/12/13   6:17 PM13/12/13   6:17 PM



716 PART FOUR  MANAGING SOFTWARE PROJECTS

 Similar WebApp metrics can be computed and correlated with project mea-

sures such as effort expended, errors and defects uncovered, and models or doc-

umentation pages produced. As the database grows (after a number of projects 

have been completed), relationships between the WebApp measures and project 

measures will provide indicators that can aid in project estimation.     

  Project and Process Metrics 

  Objective:  To assist in the defi nition, 
collection, evaluation, and reporting of 

software measures and metrics. 

  Mechanics:  Each tool varies in its application, but all 
provide mechanisms for collecting and evaluating data 
that lead to the computation of software metrics. 

  Representative Tools:   7      
  Function Point WORKBENCH,  developed by 

Charismatek (  www.charismatek.com.au  ),
 offers a wide array of FP-oriented metrics. 
 DataDrill,  developed by Distributive Software 
(  www.distributive.com  ), supports automating 
data collection, analysis, chart formatting, report 
generation, and other measurement tasks. 

  PSM Insight,  developed by Practical Software and 
Systems Measurement (  www.psmsc.com  ), assists 
in the creation and subsequent analysis of a project 
measurement database. 

  SLIM tool set,  developed by QSM (  www.qsm.com  ), 
provides a comprehensive set of metrics and 
estimation tools. 

  SPR tool set,  developed by Software Productivity 
Research (  www.spr.com  ), offers a comprehensive 
collection of FP-oriented tools. 

  TychoMetrics,  developed by Predicate Logic 
(  www.predicate.com  ), is a tool suite for 
management metrics collection and reporting.  

 SOFTWARE TOOLS 

  7   Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

        32.3  METRICS FOR SOFTWARE QUALITY 

       The quality of a system, application, or product is only as good as the require-

ments that describe the problem, the design that models the solution, the code 

that leads to an executable program, and the tests that exercise the software to 

uncover errors. You can use measurement to assess the quality of the require-

ments and design models, the source code, and the test cases that have been 

created as the software is engineered. To accomplish this real-time assessment, 

you apply product metrics (Chapter 30) to evaluate the quality of software engi-

neering work products in objective, rather than subjective ways. 

 A project manager must also evaluate quality as the project progresses. Pri-

vate metrics collected by individual software engineers are combined to provide 

project-level results. Although many quality measures can be collected, the pri-

mary thrust at the project level is to measure errors and defects. Metrics derived 

from these measures provide an indication of the effectiveness of individual and 

group software quality assurance and control activities. 

   Software is a complex 
entity. Therefore, errors 
are to be expected 
as work products are 
developed. Process 
metrics are intended to 
improve the software 
process so that errors 
are uncovered in the 
most effective manner. 

pre22126_ch32_703-726.indd   716pre22126_ch32_703-726.indd   716 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  717

 Metrics such as work product errors per function point, errors uncovered per 

review hour, and errors uncovered per testing hour provide insight into the effi -

cacy of each of the activities implied by the metric. Error data can also be used to 

compute the  defect removal effi ciency  (DRE) for each process framework activity. 

DRE is discussed in Section 32.3.3. 

   32.3.1   Measuring Quality 

      Although there are many measures of software quality,  8   correctness, maintain-

ability, integrity, and usability provide useful indicators for the project team. Gilb 

[Gil88] suggests defi nitions and measures for each. 

          Correctness.  Correctness is the degree to which the software performs 

its required function. Defects (lack of correctness) are those problems re-

ported by a user of the program after the program has been released for 

general use. For quality assessment purposes, defects are counted over 

a standard period of time, typically one year. The most common measure 

for correctness is defects per KLOC, where a defect is defi ned as a verifi ed 

lack of conformance to requirements.  

       Maintainability.  Maintainability is the ease with which a program can be 

corrected if an error is encountered, adapted if its environment changes, 

or enhanced if the customer desires a change in requirements. There is 

no way to measure maintainability directly; therefore, we must use indi-

rect measures. A simple time-oriented metric is  mean-time-to-change  

(MTTC), the time it takes to analyze the change request, design an ap-

propriate modifi cation, implement the change, test it, and distribute the 

change to all users.  

       Integrity.  This attribute measures a system’s ability to withstand attacks 

(both accidental and intentional) to its security. To measure integrity, two 

additional attributes must be defi ned: threat and security.  Threat  is the 

probability (which can be estimated or derived from empirical evidence) 

that an attack of a specifi c type will occur within a given time.  Security  

is the probability (which can be estimated or derived from empirical evi-

dence) that the attack of a specifi c type will be repelled. The integrity of a 

system can then be defi ned as:

Integrity 5 S [1 – (threat 3 (1 2 security))] 

   For example, if threat (the probability that an attack will occur) is 0.25 and 

security (the likelihood of repelling an attack) is 0.95, the integrity of the 

system is 0.99 (very high). If, on the other hand, the threat probability is 

 WebRef 
 An excellent source 
of information on 
software quality and re-
lated topics (including 
metrics) can be found 
at   http://search
softwarequality
.techtarget.com/
resources  . 

  8  A detailed discussion of the factors that infl uence software quality and the metrics that can be 

used to assess software quality has been presented in Chapter 30. 

pre22126_ch32_703-726.indd   717pre22126_ch32_703-726.indd   717 13/12/13   6:17 PM13/12/13   6:17 PM



718 PART FOUR  MANAGING SOFTWARE PROJECTS

0.50 and the likelihood of repelling an attack is only 0.25, the integrity of 

the system is 0.63 (unacceptably low).  

       Usability.  Usability is an attempt to quantify ease of use and can be mea-

sured in terms of the characteristics presented in Chapter 15.  

  These four factors are only a sampling of those that have been proposed as mea-

sures for software quality. Chapter 30 considers this topic in additional detail. 

    32.3.2   Defect Removal Effi ciency 

 A quality metric that provides benefi t at both the project and process level is 

  defect removal effi ciency  (DRE). In essence, DRE is a measure of the fi ltering 

 ability of quality assurance and control actions as they are applied throughout 

all process framework activities. 

 When considered for a project as a whole, DRE is defi ned in the following 

manner: 

DRE 5    E  ______ 
 E  1  D  

  

 where  E  is the number of errors found before delivery of the software to the end 

user and  D  is the number of defects found after delivery. 

      The ideal value for DRE is 1. That is, no defects are found in the software. Re-

alistically,  D  will be greater than 0, but the value of DRE can still approach 1. As  E  

increases (for a given value of  D ), the overall value of DRE begins to approach 1. 

In fact, as  E  increases, it is likely that the fi nal value of  D  will decrease (errors 

are fi ltered out before they become defects). If used as a metric that provides an 

indicator of the fi ltering ability of quality control and assurance activities, DRE 

encourages a software project team to institute techniques for fi nding as many 

errors as possible before delivery. 

 DRE can also be used within the project to assess a team’s ability to fi nd er-

rors before they are passed to the next framework activity or software engineer-

ing task. For example, requirements analysis produces a requirements model 

that can be reviewed to fi nd and correct errors. Those errors that are not found 

during the review of the requirements model are passed on to design (where 

they may or may not be found). When used in this context, we redefi ne DRE as 

DRE 
i
  5   

 E  
i
 
 ________ 

 E  
i
  1  E  

i1
 1 
  

 where  E  
i
  is the number of errors found during software engineering action  i  

and  E  
i
1 1 is the number of errors found during software engineering action  i 1  1 

that are traceable to errors that were not discovered in software engineering 

action  i.  

 A quality objective for a software team (or an individual software engineer) is 

to achieve DRE 
i
  that approaches 1. That is, errors should be fi ltered out before 

they are passed on to the next activity or action. 

   If DRE is low as you 
move through analysis 
and design, spend 
some time improving 
the way you conduct 
formal technical 
reviews. 

pre22126_ch32_703-726.indd   718pre22126_ch32_703-726.indd   718 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  719

            32.4  INTEGRATING METRICS WITHIN THE SOFTWARE PROCESS 

  The majority of software developers still do not measure, and sadly, most have 

little desire to begin. As we noted previously in this chapter, the problem is cul-

tural. Attempting to collect measures where none have been collected in the 

past often precipitates resistance. “Why do we need to do this?” asks a harried 

project manager. “I don’t see the point,” complains an overworked practitioner. 

 In this section, we consider some arguments for software metrics and present 

an approach for instituting a metrics collection program within a software engi-

neering organization. But before we begin, some words of wisdom (now almost 

three decades old) are offered by Grady and Caswell [Gra87]: 

  Some of the things we describe here will sound quite easy. Realistically, though, es-

tablishing a successful company-wide software metrics program is hard work. When 

we say that you must wait at least three years before broad organizational trends are 

available, you get some idea of the scope of such an effort.   

 The caveat suggested by the authors is well worth heeding, but the benefi ts of 

measurement are so compelling that the hard work is worth it. 

  Establishing a Metrics Approach   Establishing a Metrics Approach 

  The scene:  Doug Miller’s offi ce two 
days after initial meeting on software 

metrics. 

  The players:  Doug Miller (manager of the   SafeHome  
software engineering team) and Vinod Raman 
and Jamie Lazar, members of the product software 
 engineering team. 

  The conversation:  

  Doug:  You both had a chance to learn a little about 
process and project metrics? 

  Vinod and Jamie:  [Both nod.] 

  Doug:  It’s always a good idea to establish goals when 
you adopt any metrics. What are yours? 

  Vinod:  Our metrics should focus on quality. In fact, our 
overall goal is to keep the number of errors we pass on 
from one software engineering activity to the next to an 
absolute minimum. 

  Doug:  And be very sure you keep the number of de-
fects released with the product to as close to zero as 
possible. 

  Vinod (nodding):  Of course. 

  Jamie:  I like DRE as a metric, and I think we can use 
it for the entire project, but also as we move from one 
framework activity to the next. It’ll encourage us to fi nd 
errors at each step. 

  Vinod:  I’d also like to collect the number of hours we 
spend on reviews. 

  Jamie:  And the overall effort we spend on each soft-
ware engineering task. 

  Doug:  You can compute a review-to-development 
ratio . . . might be interesting. 

  Jamie:  I’d like to track some use-case data as well. 
Like the amount of effort required to develop a use 
case, the amount of effort required to build software to 
implement a use case, and . . . 

  Doug (smiling):  I thought we were going to keep this 
simple. 

  Vinod:  We should, but once you get into this metrics 
stuff, there’s a lot of interesting things to look at. 

  Doug:  I agree, but let’s walk before we run and stick 
to our goal. Limit data to be collected to fi ve or six 
items, and we’re ready to go.  

 SAFEHOME 

pre22126_ch32_703-726.indd   719pre22126_ch32_703-726.indd   719 13/12/13   6:17 PM13/12/13   6:17 PM



720 PART FOUR  MANAGING SOFTWARE PROJECTS

   32.4.1   Arguments for Software Metrics 

 Why is it so important to measure the process of software engineering and the 

product (software) that it produces? The answer is relatively obvious. If you do 

not measure, there no real way of determining whether you are improving. And 

if you are not improving, you are lost. 

  By requesting and evaluating productivity and quality measures, a software 

team (and its management) can establish meaningful goals for improvement of 

the software process. Early in this book, we noted that software is a strategic 

business issue for many companies. If the process through which it is developed 

can be improved, a direct impact on the bottom line can result. But to estab-

lish goals for improvement, the current status of software development must be 

understood. Hence, measurement is used to establish a process baseline from 

which improvements can be assessed. 

 The day-to-day rigors of software project work leave little time for strategic 

thinking. Software project managers are concerned with more mundane (but 

equally important) issues: developing meaningful project estimates, producing 

higher quality systems, getting product out the door on time. By using measure-

ment to establish a project baseline, each of these issues becomes more manage-

able. We have already noted that the baseline serves as a basis for estimation. 

Additionally, the collection of quality metrics enables an organization to “tune” 

its software process to remove the “vital few” causes of defects that have the 

greatest impact on software development.  9      

    32.4.2   Establishing a Baseline 

 By establishing a metrics baseline, benefi ts can be obtained at the process, 

 project, and product (technical) levels. Yet the information that is collected 

need not be fundamentally different. The same metrics can serve many masters. 

The metrics baseline consists of data collected from past software development 

 projects and can be as simple as the table presented in   Figure 32.2   or as complex 

as a comprehensive database containing dozens of project measures and the 

metrics derived from them.     

  To be an effective aid in process improvement and/or cost and effort estima-

tion, baseline data must have the following attributes: (1) data must be reason-

ably accurate—“guestimates” about past projects are to be avoided, (2) data 

should be collected for as many projects as possible, (3) measures must be con-

sistent (for example, a line of code must be interpreted consistently across all 

projects for which data are collected), (4) applications should be similar to work 

that is to be estimated—it makes little sense to use a baseline for batch informa-

tion systems work to estimate a real-time, embedded application. 

    uote: 

 “We manage things 
by the numbers in 
many aspects of 
our lives . . . These 
numbers give us 
insight and help 
steer our actions.” 

 Michael Mah 
and Larry 

Putnam 

 What is 
a metrics 

baseline and 
what benefi t 
does it provide 
to a software 
engineer? 

?

  9  These ideas have been formalized into an approach called  statistical software quality assurance . 

pre22126_ch32_703-726.indd   720pre22126_ch32_703-726.indd   720 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  721

          32.4.3   Metrics Collection, Computation, and Evaluation 

 The process for establishing a metrics baseline is illustrated in   Figure 32.3  . Ideally, 

data needed to establish a baseline have been collected in an ongoing manner. 

Sadly, this is rarely the case. Therefore, data collection requires an historical 

investigation of past projects to reconstruct required data. Once measures have 

been collected (unquestionably the most diffi cult step), metrics computation is 

possible. Depending on the breadth of measures collected, metrics can span 

a broad range of application-oriented metrics (e.g., LOC, FP, object-oriented, 

 WebApp) as well as other quality- and project-oriented metrics. Finally, metrics 

must be evaluated and applied during estimation, technical work, project con-

trol, and process improvement. Metrics evaluation focuses on the underlying 

reasons for the results obtained and produces a set of indicators that guide the 

project or process.                

       32.5  METRICS FOR SMALL ORGANIZATIONS 

  The vast majority of software development organizations have fewer than 20 soft-

ware people. It is unreasonable, and in most cases unrealistic, to expect that such 

organizations will develop comprehensive software metrics programs. However, 

it is reasonable to suggest that software organizations  10   of all sizes measure and 

then use the resultant metrics to help improve their local software process and 

the quality and timeliness of the products they produce. 

    A small organization can begin by focusing not on measurement but rather 

on results. The software group is polled to defi ne a single objective that requires 

   If you’re just starting 
to collect metrics data, 
remember to keep it 
simple. If you bury 
yourself with data, 
your metrics effort 
will fail. 

  10  This discussion is equally relevant to software teams that have adopted an agile software de-

velopment process (Chapter 5). 

Software
engineering

process

Software
project

Software
product

Data
collection

Metrics
computation

Metrics
evaluation

Measures

Metrics

Indicators

 FIGURE 32.3

 Software 
 metrics 
 collection 
process

pre22126_ch32_703-726.indd   721pre22126_ch32_703-726.indd   721 13/12/13   6:17 PM13/12/13   6:17 PM



722 PART FOUR  MANAGING SOFTWARE PROJECTS

improvement. For example, “reduce the time to evaluate and implement change 

requests.” A small organization might select the following set of easily collected 

measures: 

    •  Time (hours or days) elapsed from the time a request is made until evalua-

tion is complete,  t queue . 

   •  Effort (person-hours) to perform the evaluation,  W eval . 

   •  Time (hours or days) elapsed from completion of evaluation to assignment 

of change order to personnel,  t eval . 

   •  Effort (person-hours) required to make the change,  W change . 

   •  Time required (hours or days) to make the change,  t change . 

   •  Errors uncovered during work to make change,  E change . 

   •  Defects uncovered after change is released to the customer base,  D change .   

 Once these measures have been collected for a number of change requests, 

it is possible to compute the total elapsed time from change request to imple-

mentation of the change and the percentage of elapsed time absorbed by ini-

tial queuing, evaluation and change assignment, and change implementation. 

Similarly, the percentage of effort required for evaluation and implementation 

can be determined. These metrics can be assessed in the context of quality data, 

 E change and  D change. The percentages provide insight into where the change request 

process slows down and may lead to process improvement steps to reduce  t queue, 

 W eval,  t eval,  W change, and/or  E change. In addition, the defect removal effi ciency can be 

computed as

DRE 5   
 E change
 _____________  

 E change 1  D change 
  

 DRE can be compared to elapsed time and total effort to determine the impact 

of quality assurance activities on the time and effort required to make a change. 

      32.6  ESTABL ISHING A SOFTWARE METRICS PROGRAM 

  The Software Engineering Institute has developed a comprehensive guidebook 

[Par96b] for establishing a “goal-driven” software metrics program. The guide-

book suggests the following steps: (1) identify your business goals; (2) identify 

what you want to know or learn; (3) identify your subgoals; (4) identify the en-

tities and attributes related to your subgoals; (5) formalize your measurement 

goals; (6) identify quantifi able questions and the related indicators that you will 

use to help you achieve your measurement goals; (7) identify the data elements 

that you will collect to construct the indicators; (8) identify the measures to be 

used, and make these defi nitions operational; (9) identify the actions that you will 

take to implement the measures, and (10) prepare a plan for implementing the 

 How should 
we derive a 

set of “simple” 
software metrics? 

?

pre22126_ch32_703-726.indd   722pre22126_ch32_703-726.indd   722 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  723

measures. A detailed discussion of these steps is best left to the SEI’s guidebook. 

However, a brief overview of key points is worthwhile. 

      Because software supports business functions, differentiates computer-based 

systems or products, or acts as a product in itself, goals defi ned for the busi-

ness can almost always be traced downward to specifi c goals at the software 

engineering level. For example, consider the  SafeHome  product. Working as a 

team, software engineering and business managers develop a list of prioritized 

 business goals:

     1.  Improve our customers’ satisfaction with our products.  

    2.  Make our products easier to use.  

    3.  Reduce the time it takes us to get a new product to market.  

    4.  Make support for our products easier.  

    5.  Improve our overall profi tability.    

 The software organization examines each business goal and asks: “What ac-

tivities do we manage, execute, or support and what do we want to improve 

within these activities?” To answer these questions the SEI recommends the 

creation of an “entity-question list” in which all things (entities) within the 

software process that are managed or influenced by the software organiza-

tion are noted. Examples of entities include development resources, work 

products, source code, test cases, change requests, software engineering 

tasks, and schedules. For each entity listed, software people develop a set of 

questions that assess quantitative characteristics of the entity (e.g., size, cost, 

time to develop). The questions derived as a consequence of the creation of 

an entity-question list lead to the derivation of a set of subgoals that relate 

directly to the entities created and the activities performed as part of the 

software process. 

 Consider the fourth goal: “Make support for our products easier.” The follow-

ing list of questions might be derived for this goal [Par96b]: 

    •  Do customer change requests contain the information we require to ade-

quately evaluate the change and then implement it in a timely manner?  

   •  How large is the change request backlog?  

   •  Is our response time for fi xing bugs acceptable based on customer need?  

   •  Is our change control process (Chapter 29) followed?  

   •  Are high-priority changes implemented in a timely manner?    

 Based on these questions, the software organization can derive the following sub-

goal:  Improve the performance of the change management process.  The software 

process entities and attributes that are relevant to the subgoal are identifi ed, 

and the measurement goals associated with them are delineated. 

   The software metrics 
you choose should be 
driven by the business 
and technical goals you 
wish to accomplish. 

pre22126_ch32_703-726.indd   723pre22126_ch32_703-726.indd   723 13/12/13   6:17 PM13/12/13   6:17 PM



724 PART FOUR  MANAGING SOFTWARE PROJECTS

 The SEI [Par96b] provides detailed guidance for steps 6 through 10 of its goal-

driven measurement approach. In essence, you refi ne measurement goals into 

questions that are further refi ned into entities and attributes that are then re-

fi ned into metrics. 

       32.7 SUMMARY 

 Measurement enables managers and practitioners to improve the software pro-

cess; assist in the planning, tracking, and control of software projects; and assess 

the quality of the product (software) that is produced. Measures of specifi c attri-

butes of the process, project, and product are used to compute software metrics. 

These metrics can be analyzed to provide indicators that guide management and 

technical actions. 

 Process metrics enable an organization to take a strategic view by provid-

ing insight into the effectiveness of a software process. Project metrics are tac-

tical. They enable a project manager to adapt project work fl ow and technical 

approach in a real-time manner. 

 Both size- and function-oriented metrics are used throughout the industry. 

Size-oriented metrics use the line of code as a normalizing factor for other 

measures such as person-months or defects. The function point is derived from 

measures of the information domain and a subjective assessment of problem 

complexity. In addition, object-oriented metrics and Web application metrics can 

be used. 

 Software quality metrics, like productivity metrics, focus on the process, the 

project, and the product. By developing and analyzing a metrics baseline for 

quality, an organization can correct those areas of the software process that are 

the cause of software defects. 

 Measurement results in cultural change. Data collection, metrics computa-

tion, and metrics analysis are the three steps that must be implemented to begin 

a metrics program. In general, a goal-driven approach helps an organization 

focus on the right metrics for its business. By creating a metrics baseline—a da-

tabase containing process and product measurements—software engineers and 

their managers can gain better insight into the work that they do and the product 

that they produce. 

     PROBLEMS AND POINTS TO PONDER 
    32.1.  Describe the difference between process and project metrics in your own words.  

   32.2.  Why should some software metrics be kept “private”? Provide examples of three met-
rics that should be private. Provide examples of three metrics that should be public.  

   32.3.  What is an indirect measure, and why are such measures common in software metrics 
work?  

pre22126_ch32_703-726.indd   724pre22126_ch32_703-726.indd   724 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 32  PROCESS AND PROJECT METRICS  725

   32.4.  Grady suggests an etiquette for software metrics. Can you add three more rules to 
those noted in Section 32.1.1?  

   32.5.  Team A found 342 errors during the software engineering process prior to release. 
Team B found 184 errors. What additional measures would have to be made for projects A 
and B to determine which of the teams eliminated errors more effi ciently? What metrics 
would you propose to help in making the determination? What historical data might be 
useful?  

   32.6.  Present an argument against lines of code as a measure for software productivity. Will 
your case hold up when dozens or hundreds of projects are considered?  

   32.7.  Compute the function point value for a project with the following information domain 
characteristics: 

         Number of user inputs: 32  
        Number of user outputs: 60  
        Number of user inquiries: 24  
        Number of fi les: 8  
        Number of external interfaces: 2    

    Assume that all complexity adjustment values are average. Use the algorithm noted in 
Chapter 30.  

   32.8.  Using the table presented in Section 32.2.3, make an argument against the use of as-
sembler language based on the functionality delivered per statement of code. Again refer-
ring to the table, discuss why C11 would present a better alternative than C.  

   32.9.  The software used to control a photocopier requires 32,000 lines of C and 4,200 lines of 
Smalltalk. Estimate the number of function points for the software inside the copier.  

   32.10.  A Web engineering team has built an e-commerce WebApp that contains 145 individ-
ual pages. Of these pages, 65 are dynamic; that is, they are internally generated based on 
end-user input. What is the customization index for this application?  

   32.11.  A WebApp and its support environment have not been fully fortifi ed against attack. 
Web engineers estimate that the likelihood of repelling an attack is only 30 percent. The 
system does not contain sensitive or controversial information, so the threat probability is 
25 percent. What is the integrity of the WebApp?  

   32.12.  At the conclusion of a project, it has been determined that 30 errors were found 
during the modeling phase and 12 errors were found during the construction phase that 
were traceable to errors that were not discovered in the modeling phase. What is the DRE 
for these two phases?  

   32.13.  A software team delivers a software increment to end users. The users uncover eight 
defects during the fi rst month of use. Prior to delivery, the software team found 242 errors 
during formal technical reviews and all testing tasks. What is the overall DRE for the project 
after one month’s usage?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Software process improvement (SPI) has received a signifi cant amount of attention over the 
past two decades. Since measurement and software metrics are key to successfully improv-
ing the software process, many books on SPI also discuss metrics. Books by Arban ( Soft-

ware Metrics and Software Methodology,  Wiley-IEEE Computer Society, 2010), Rico ( ROI of 

Software Process Improvement,  J. Ross Publishing, 2004) provides an in-depth discussion of 
SPI and the metrics that can help an organization achieve it. Ebert and his colleagues ( Best 

Practices in Software Measurement,  Springer, 2004) address the use of measurement within 

pre22126_ch32_703-726.indd   725pre22126_ch32_703-726.indd   725 13/12/13   6:17 PM13/12/13   6:17 PM



726 PART FOUR  MANAGING SOFTWARE PROJECTS

the context of ISO and CMMI standards. Kan ( Metrics and Models in Software Quality Engi-

neering,  2nd ed., Addison-Wesley, 2002) presents a collection of relevant metrics. 
 Ebert and Dumke ( Software Measurement,  Springer, 2007) provide a useful treatment of 

measurement and metrics as they should be applied for IT projects. McGarry and his col-
leagues ( Practical Software Measurement,  Addison-Wesley, 2001) present in-depth advice 
for assessing the software process. A worthwhile collection of papers has been edited by 
Haug and his colleagues ( Software Process Improvement: Metrics, Measurement, and Pro-

cess Modeling,  Springer-Verlag, 2001). Florac and Carlton ( Measuring the Software Process,  
Addison-Wesley, 1999) and Fenton and Pfl eeger ( Software Metrics: A Rigorous and Practical 

Approach,  Revised, Brooks/Cole Publishers, 1998) discuss how software metrics can be used 
to provide the indicators necessary to improve the software process. 

 Wohlin and his colleagues ( Experimentation in Software Engineering,  Springer, 2012) dis-
cusses the manner in which measures used in analyzing software process. Jones ( Applied 

Software Measurement: Global Analysis of Productivity and Quality,  McGraw-Hill, 2008), 
Laird and Brennan ( Software Measurement and Estimation,  Wiley-IEEE Computer Society 
Press, 2006), and Goodman ( Software Metrics: Best Practices for Successful IT Management , 
Rothstein Associates, 2004) discuss the use of software metrics for project management and 
estimation. Putnam and Myers ( Five Core Metrics,  Dorset House, 2003) draw on a database 
of more than the 6,000 software projects to demonstrate how fi ve core metrics—time, effort, 
size, reliability, and process productivity—can be used to control software projects. Max-
well ( Applied Statistics for Software Managers,  Prentice Hall, 2003) presents techniques for 
analyzing software project data. Munson ( Software Engineering Measurement,  Auerbach, 
2003) discusses a broad array of software engineering measurement issues. Jones ( Software 

Assessments, Benchmarks and Best Practices,  Addison-Wesley, 2000) describes both quan-
titative measurement and qualitative factors that help an organization assess its software 
process and practices. 

 Function point measurement has become a widely used technique in many areas of soft-
ware engineering work. The International Function Point Users Group published a collec-
tion of papers on the use of function point metrics ( The IFPUC Guide to IT and Software 

Measurement,  Auerbach, 2012). Parthasarathy ( Practical Software Estimation: Function 

Point Methods for Insourced and Outsourced Projects,  Addison-Wesley, 2007) provide a com-
prehensive guide. Garmus and Herron ( Function Point Analysis: Measurement Practices for 

Successful Software Projects,  Addison-Wesley, 2000) discuss process metrics with an empha-
sis on function point analysis. 

 Relatively little has been published on metrics for Web engineering work, Clifton 
(  Advanced Web Metrics with Google Analytics,  3rd ed., Sybex, 2012), However, Kaushik ( Web 

Analytics 2.0: Accountability and Science of Customer Centricity , Sybex, 2009) and  (Web 

 Analytics: An Hour a Day,  Sybex, 2007), Stern ( Web Metrics: Proven Methods for Measur-

ing Web Site Success,  Wiley, 2002), Inan and Kean ( Measuring the Success of Your Website,  
 Longman, 2002), and Nobles and Grady ( Web Site Analysis and Reporting,  Premier Press, 
2001) address Web metrics from a business and marketing perspective. 

 The latest research in the metrics area is summarized by the IEEE ( Symposium on 

Software Metrics,  published yearly). A wide variety of information sources on the process 
and project metrics is available on the Internet. An up-to-date list of World Wide Web 
references can be found under “software engineering resources” at the SEPA website: 
 www.mhhe.com/pressman .      

pre22126_ch32_703-726.indd   726pre22126_ch32_703-726.indd   726 13/12/13   6:17 PM13/12/13   6:17 PM



727

        Software project management begins with a set of activities that are col-

lectively called  project planning.  Before the project can begin, the soft-

ware team should estimate the work to be done, the resources that will 

be required, and the time that will elapse from start to fi nish. Once these ac-

tivities are accomplished, the software team should establish a project sched-

ule that defi nes software engineering tasks and milestones, identifi es who is 

responsible for conducting each task, and specifi es the intertask dependen-

cies that may have a strong bearing on progress. 

 In an excellent guide to “software project survival,” Steve McConnell 

[McC98] presents a real-world view of project planning:

  Many technical workers would rather do technical work than spend time plan-

ning. Many technical managers do not have suffi cient training in technical man-

agement to feel confi dent that their planning will improve a project’s outcome. 

Since neither party wants to do planning, it often doesn’t get done. 

 ESTIMATION FOR 
SOFTWARE PROJECTS 

    C H A P T E R

33 
 K E Y 
C O N C E P T S 
    estimation  

    agile 
development  . . 746  
    decomposition 
techniques  . . . . 734  
    empirical 
models. . . . . . . 743  
    FP-based . . . . . 738  
    make-buy  . . . . 748  
    object-oriented 
projects . . . . . . 746  
    outsourcing  . . . 750  
    problem-based  . 735  
    process-based  . 739  
    reconciliation  . . 742  

 Q U I C K 
L O O K 

  What is it?   A real need for software 
has been established; stakeholders 
are onboard, software engineers 
are ready to start, and the project is 

about to begin. But how do you proceed? Soft-
ware project planning encompasses fi ve major 
activities—estimation, scheduling, risk analysis, 
quality management planning, and change man-
agement planning. In the context of this chapter, 
we consider only estimation—your attempt to de-
termine how much money, effort, resources, and 
time it will take to build a specifi c software-based 
system or product. 

   Who does it?   Software project managers—
using information solicited from project stake-
holders and software metrics data collected 
from past projects. 

   Why is it important?   Would you build a house 
without knowing how much you were about to 
spend, the tasks that you need to perform, and 
the time line for the work to be conducted? Of 
course not, and since most computer-based 
systems and products cost considerably more 
to build than a large house, it would seem 

reasonable to develop an estimate before you 
start creating the software. 

   What are the steps?   Estimation begins with 
a description of the scope of the product. The 
problem is then decomposed into a set of 
smaller problems, and each of these is esti-
mated using historical data and experience as 
guides. Problem complexity and risk are con-
sidered before a fi nal estimate is made. 

   What is the work product?   A simple table 
delineating the tasks to be performed, the func-
tions to be implemented, and the cost, effort, 
and time involved for each is generated. 

   How do I ensure that I’ve done it right?  
 That’s hard, because you won’t really know 
until the project has been completed. However, 
if you have experience and follow a system-
atic approach, generate estimates using solid 
historical data, create estimation data points 
using at least two different methods, establish 
a realistic schedule, and continually adapt it 
as the project moves forward, you can feel 
confi dent that you’ve given it your best shot.  

pre22126_ch33_727-753.indd   727pre22126_ch33_727-753.indd   727 13/12/13   6:17 PM13/12/13   6:17 PM



728 PART FOUR  MANAGING SOFTWARE PROJECTS

 But failure to plan is one of the most critical mistakes a project can make  .  .  .

effective planning is needed to resolve problems upstream [early in the project] at 

low cost, rather than downstream [late in the project] at high cost. The average proj-

ect spends  80 percent  of its time on rework—fi xing mistakes that were made earlier 

in the project.   

 McConnell argues that every project can fi nd the time to plan (and to adapt the 

plan throughout the project) simply by taking a small percentage of the time 

that would have been spent on rework that occurs because planning was not 

conducted. 

      33.1  OBSERVATIONS ON EST IMATION 

  Planning requires you to make an initial commitment, even though it’s likely 

that this “commitment” will be proven wrong. Whenever estimates are made, you 

look into the future and accept some degree of uncertainty as a matter of course. 

To quote Frederick Brooks [Bro95]:

  . . . our techniques of estimating are poorly developed. More seriously, they refl ect an 

unvoiced assumption that is quite untrue, i.e., that all will go well. . . . because we are 

uncertain of our estimates, software managers often lack the courteous stubbornness 

to make people wait for a good product.    

 Although estimating is as much art as it is science, this important action need not 

be conducted in a haphazard manner. Useful techniques for time and effort esti-

mation do exist. Process and project metrics can provide historical perspective 

and powerful input for the generation of quantitative estimates. Past experience 

(of all people involved) can aid immeasurably as estimates are developed and 

reviewed. Because estimation lays a foundation for all other project planning 

actions, and project planning provides the road map for successful software en-

gineering, we would be ill advised to embark without it. 

 Estimation of resources, cost, and schedule for a software engineering effort 

requires experience, access to good historical information (metrics), and the 

courage to commit to quantitative predictions when qualitative information is all 

that exists. Estimation carries inherent risk,  1   and this risk leads to uncertainty.    

       Project complexity  has a strong effect on the uncertainty inherent in plan-

ning. Complexity, however, is a relative measure that is affected by familiarity 

with past effort. The fi rst-time developer of a sophisticated e-commerce appli-

cation might consider it to be exceedingly complex. However, a Web engineering 

team developing its tenth e-commerce WebApp would consider such work run 

of the mill. A number of quantitative software complexity measures have been 

proposed [Zus97]. Such measures are applied at the design or code level and 

  uote: 

 “Good estimating 
approaches and 
solid historical data 
offer the best hope 
that reality will win 
out over impossible 
demands.” 

 Caper Jones 

    use cases . . . . . 740  
    WebApps . . . . . 747  

    project planning  . . 729  
    resources  . . . . . . . 731  
    software 
equation . . . . . . . . 744  
    software scope . . . 730  
    software sizing. . . 734  
    use case points 
(UCPs) . . . . . . . . . 742  
  

  1  Systematic techniques for risk analysis are presented in Chapter 35. 

pre22126_ch33_727-753.indd   728pre22126_ch33_727-753.indd   728 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  729

are therefore diffi cult to use during software planning (before a design and code 

exist). However, other, more subjective assessments of complexity (e.g., function 

point complexity adjustment factors described in Chapter 30) can be established 

early in the planning process. 

  Project size  is another important factor that can affect the accuracy and effi cacy 

of estimates. As size increases, the interdependency among various elements of 

the software grows rapidly.  2   Problem decomposition, an important approach to 

estimating, becomes more diffi cult because the refi nement of problem elements 

may still be formidable. To paraphrase Murphy’s law: “What can go wrong will go 

wrong”—and if there are more things that can fail, more things will fail.    

 The  degree of structural uncertainty  also has an effect on estimation risk. In 

this context, structure refers to the degree to which requirements have been 

solidifi ed, the ease with which functions can be compartmentalized, and the hi-

erarchical nature of the information that must be processed.  

 The availability of historical information has a strong infl uence on estimation 

risk. By looking back, you can emulate things that worked and improve areas 

where problems arose. When comprehensive software metrics (Chapter 32) are 

available for past projects, estimates can be made with greater assurance, sched-

ules can be established to avoid past diffi culties, and overall risk is reduced. 

 Estimation risk is measured by the degree of uncertainty in the quantitative es-

timates established for resources, cost, and schedule. If project scope is poorly un-

derstood or project requirements are subject to change, uncertainty and estimation 

risk become dangerously high. As a planner, you and the customer should recognize 

that variability in software requirements means instability in cost and schedule. 

 However, you should not become obsessive about estimation. Modern soft-

ware engineering approaches (e.g., evolutionary process models) take an itera-

tive view of development. In such approaches, it is possible—although not always 

politically acceptable—to revisit the estimate (as more information is known) 

and revise it when the customer makes changes to requirements.     

       33.2  THE PROJECT PLANNING PROCESS 

  The objective of software project planning is to provide a framework that enables 

the manager to make reasonable estimates of resources, cost, and schedule. In 

addition, estimates should attempt to defi ne best-case and worst-case scenarios 

so that project outcomes can be bounded. Although there is an inherent degree 

of uncertainty, the software team embarks on a plan that has been established as 

a consequence of these tasks. Therefore, the plan must be adapted and updated 

   Project complexity, 
project size, and the 
degree of structural un-
certainty all affect the 
reliability of estimates. 

  uote: 

 “It is the mark 
of an instructed 
mind to rest 
satisfi ed with the 
degree of precision 
that the nature 
of the subject 
admits, and not 
to seek exactness 
when only an 
approximation 
of the truth is 
possible.” 

 Aristotle 

   The more you know, 
the better you 
estimate. Therefore, 
update your estimates 
as the project 
progresses. 

  2  Size often increases due to “scope creep” that occurs when problem requirements change. 

Increases in project size can have a geometric impact on project cost and schedule (Michael 

Mah, personal communication). 

pre22126_ch33_727-753.indd   729pre22126_ch33_727-753.indd   729 13/12/13   6:17 PM13/12/13   6:17 PM



730 PART FOUR  MANAGING SOFTWARE PROJECTS

as the project proceeds. In the following sections, each of the activities associ-

ated with software project planning is discussed.     

  Task Set for Project Planning 
    1.  Establish project scope.  
   2.  Determine feasibility.  

    3.  Analyze risks (Chapter 35).  
    4.  Defi ne required resources. 

    a.  Determine required human resources.  
   b.  Defi ne reusable software resources.  
   c.  Identify environmental resources.    

    5.  Estimate cost and effort. 
    a.  Decompose the problem.  

   b.  Develop two or more estimates using size, func-
tion points, process tasks, or use cases.  

   c.  Reconcile the estimates.    
    6.  Develop a project schedule (Chapter 34). 

    a.  Establish a meaningful task set.  
   b.  Defi ne a task network.  
   c.  Use scheduling tools to develop a time-line 

chart.  
   d.  Defi ne schedule tracking mechanisms.      

 TASK SET 

       33.3  SOFTWARE SCOPE AND FEASIB IL ITY 

   Software scope  describes the functions and features that are to be delivered to 

end users; the data that are input and output; the “content” that is presented to 

users as a consequence of using the software; and the performance, constraints, 

interfaces, and reliability that  bound  the system. Scope is defi ned using one of 

two techniques: 

     1.  A narrative description of software scope is developed after communica-

tion with all stakeholders.  

    2.  A set of use cases  3   is developed by end users.       

       Functions described in the statement of scope (or within the use cases) are eval-

uated and in some cases refi ned to provide more detail prior to the beginning of 

estimation. Because both cost and schedule estimates are functionally oriented, 

some degree of decomposition is often useful. Performance considerations en-

compass processing and response time requirements. Constraints identify limits 

placed on the software by external hardware, available memory, or other exist-

ing systems. 

 Once scope has been identifi ed (with the concurrence of the customer), it is 

reasonable to ask: “Can we build software to meet this scope? Is the project fea-

sible?” All too often, software engineers rush past these questions (or are pushed 

past them by impatient managers or other stakeholders), only to become mired 

in a project that is doomed from the onset. 

   Project feasibility is 
important, but a con-
sideration of business 
need is even more 
important. It does no 
good to build a high-
tech system or product 
that no one wants. 

      3  Use cases have been discussed in detail throughout Part 2 of this book. A use case is a scenario-

based description of the user’s interaction with the software from the user’s point of view. 

pre22126_ch33_727-753.indd   730pre22126_ch33_727-753.indd   730 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  731

 Putnam and Myers [Put97a] suggest that scoping is not enough. Once scope 

is understood, you must work to determine if it can be accomplished within the 

dimensions of available technology, dollars, time, and resources. This is a crucial, 

although often overlooked, part of the estimation process. 

      33.4  RESOURCES 

  The second planning task is estimation of the resources required to accomplish 

the software development effort.   Figure 33.1   depicts the three major categories 

of software engineering resources—people, reusable software components, and 

the development environment (hardware and software tools). Each resource is 

specifi ed with four characteristics: description of the resource, a statement of 

availability, time when the resource will be required, and duration of time that 

the resource will be applied. The last two characteristics can be viewed as a  time 

window . Availability of the resource for a specifi ed window must be established 

at the earliest practical time.      

   33.4.1   Human Resources 

 The planner begins by evaluating software scope and selecting the skills re-

quired to complete development. Both organizational position (e.g., manager, 

senior software engineer) and specialty (e.g., telecommunications, database, 

client-server) are specifi ed. For relatively small projects (a few person-months), 

Project

People Environment

Reusable
software

Number

Skills

Location Network
resources

Hardware

Software
tools

COTS
components

New
components

Full-experience
components

Part-experience
components

 FIGURE 33.1

 Project 
resources

pre22126_ch33_727-753.indd   731pre22126_ch33_727-753.indd   731 13/12/13   6:17 PM13/12/13   6:17 PM



732 PART FOUR  MANAGING SOFTWARE PROJECTS

a single individual may perform all software engineering tasks, consulting with 

specialists as required. For larger projects, the software team may be geograph-

ically dispersed across a number of different locations. Hence, the location of 

each human resource is specifi ed. 

 The number of people required for a software project can be determined only 

after an estimate of development effort (e.g., person-months) is made. Tech-

niques for estimating effort are discussed later in this chapter. 

    33.4.2   Reusable Software Resources 

 Component-based software engineering (CBSE)  4   emphasizes reusability—that is, 

the creation and reuse of software building blocks. Such building blocks, often 

called  components,  must be cataloged for easy reference, standardized for easy 

application, and validated for easy integration. Bennatan [Ben00] suggests four 

software resource categories that should be considered as planning proceeds: 

 off-the-shelf components  (existing software that can be acquired from a third 

party or from a past project),  full-experience components  (existing specifi cations, 

designs, code, or test data developed for past projects that are similar to the soft-

ware to be built for the current project),  partial-experience components  (existing 

specifi cations, designs, code, or test data developed for past projects that are 

related to the software to be built for the current project but will require substan-

tial modifi cation), and  new components  (components built by the software team 

specifi cally for the needs of the current project).    

 Ironically, reusable software components are often neglected during plan-

ning, only to become a paramount concern during the development phase of the 

software process. It is better to specify software resource requirements early. In 

this way technical evaluation of the alternatives can be conducted and timely 

acquisition can occur. 

    33.4.3   Environmental Resources 

 The environment that supports a software project, often called the  software engi-

neering environment  (SEE), incorporates hardware and software. Hardware pro-

vides a platform that supports the tools (software) required to produce the work 

products that are an outcome of good software engineering practice.  5   Because 

most software organizations have multiple constituencies that require access to 

the SEE, you must prescribe the time window required for hardware and soft-

ware and verify that these resources will be available.   

 When a computer-based system (incorporating specialized hardware and soft-

ware) is to be engineered, the software team may require access to hardware 

  4  CBSE was considered in Chapter 14. 

  5  Other hardware—the  target environment —is the computer on which the software will execute 

when it has been released to the end user. 

pre22126_ch33_727-753.indd   732pre22126_ch33_727-753.indd   732 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  733

elements being developed by other engineering teams. For example, software for 

a robotic device used within a manufacturing cell may require a specifi c robot (e.g., 

a robotic welder) as part of the validation test step; a software project for advanced 

page layout may need a high-speed digital printing system at some point during 

development. Each hardware element must be specifi ed as part of planning. 

       33.5  SOFTWARE PROJECT EST IMATION   

 Software cost and effort estimation will never be an exact science. Too many vari-

ables—human, technical, environmental, political—can affect the ultimate cost 

of software and effort applied to develop it. However, software project estimation 

can be transformed from a black art to a series of systematic steps that provide 

estimates with acceptable risk. To achieve reliable cost and effort estimates, a 

number of options arise:

     1.  Delay estimation until late in the project (obviously, we can achieve 

100 percent accurate estimates after the project is complete!).  

    2.  Base estimates on similar projects that have already been completed.  

    3.  Use relatively simple decomposition techniques to generate project cost 

and effort estimates.  

    4.  Use one or more empirical models for software cost and effort estimation.    

 Unfortunately, the fi rst option, however attractive, is not practical. Cost esti-

mates must be provided up front. However, you should recognize that the longer 

you wait, the more you know, and the more you know, the less likely you are to 

make serious errors in your estimates.  

 The second option can work reasonably well, if the current project is quite 

similar to past efforts and other project infl uences (e.g., the customer, business 

conditions, the software engineering environment, deadlines) are roughly equiv-

alent. Unfortunately, past experience has not always been a good indicator of 

future results. 

 The remaining options are viable approaches to software project estima-

tion. Ideally, the techniques noted for each option should be applied in tandem; 

each used as a cross-check for the other. Decomposition techniques take a 

divide-and-conquer approach to software project estimation. By decomposing 

a project into major functions and related software engineering activities, cost 

and effort estimation can be performed in a stepwise fashion. Empirical estima-

tion models can be used to complement decomposition techniques and offer a 

potentially valuable estimation approach in their own right. A model is based on 

experience (historical data) and takes the form

 d  5  f  ( v  
i
 ) 

  uote: 

 “In an age of 
outsourcing 
and increased 
competition, 
the ability to 
estimate more 
accurately . . . has 
emerged as a 
critical success 
factor for many IT 
groups.” 

 Rob Thomsett 

  uote: 

 “It is very diffi cult 
to make a 
vigorous, plausible 
and job-risking 
defense of an 
estimate that 
is derived by 
no quantitative 
method, supported 
by little data, and 
certifi ed chiefl y by 
the hunches of the 
managers.” 

 Fred Brooks 

pre22126_ch33_727-753.indd   733pre22126_ch33_727-753.indd   733 13/12/13   6:17 PM13/12/13   6:17 PM



734 PART FOUR  MANAGING SOFTWARE PROJECTS

 where  d  is one of a number of estimated values (e.g., effort, cost, project duration) 

and  v  
i
  are selected independent parameters (e.g., estimated LOC or FP). 

 Automated estimation tools implement one or more decomposition tech-

niques or empirical models and provide an attractive option for estimating. In 

such systems, the characteristics of the development organization (e.g., expe-

rience, environment) and the software to be developed are described. Cost and 

effort estimates are derived from these data. 

 Each of the viable software cost estimation options is only as good as the his-

torical data used to seed the estimate. If no historical data exist, costing rests on 

a very shaky foundation. In Chapter 32, we examined the characteristics of some 

of the software metrics that provide the basis for historical estimation data. 

      33.6  DECOMPOSIT ION TECHNIQUES 

  Software project estimation is a form of problem solving, and in most cases, the 

problem to be solved (i.e., developing a cost and effort estimate for a software 

project) is too complex to be considered in one piece. For this reason, you should 

decompose the problem, recharacterizing it as a set of smaller (and hopefully, 

more manageable) problems. 

 In Chapter 31, the decomposition approach was discussed from two different 

points of view: decomposition of the problem and decomposition of the process. 

Estimation uses one or both forms of partitioning. But before an estimate can be 

made, you must understand the scope of the software to be built and generate an 

estimate of its “size.” 

        33.6.1   Software Sizing 

 The accuracy of a software project estimate is predicated on a number of things: 

(1) the degree to which you have properly estimated the size of the product to 

be built; (2) the ability to translate the size estimate into human effort, calendar 

time, and dollars (a function of the availability of reliable software metrics from 

past projects); (3) the degree to which the project plan refl ects the abilities of the 

software team; and (4) the stability of product requirements and the environment 

that supports the software engineering effort. 

 Because a project estimate is only as good as the estimate of the size of the 

work to be accomplished,  software sizing  represents your fi rst major challenge 

as a planner. In the context of project planning, size refers to a quantifi able out-

come of the software project. If a direct approach is taken, size can be measured 

in lines of code (LOC). If an indirect approach is chosen, size is represented as 

function points (FP). Size can be estimated by considering the type of project and 

its application domain, the functionality delivered (i.e., the number of function 

points), the number of components to be delivered, the degree to which a set of 

existing components must be modifi ed for the new system. 

   The “size” of software 
to be built can be es-
timated using a direct 
measure, LOC, or an 
indirect measure, FP. 

pre22126_ch33_727-753.indd   734pre22126_ch33_727-753.indd   734 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  735

 Putnam and Myers [Put92] suggest that the results of each of these sizing 

approaches be combined statistically to create a  three-point  or  expected-value  

estimate. This is accomplished by developing optimistic (low), most likely, and 

pessimistic (high) values for size and combining them using Equation (33.1), de-

scribed in Section 33.6.2. 

    33.6.2   Problem-Based Estimation 

 In Chapter 32, lines of code and function points were described as measures 

from which productivity metrics can be computed. LOC and FP data are used in 

two ways during software project estimation: (1) as estimation variables to “size” 

each element of the software and (2) as baseline metrics collected from past proj-

ects and used in conjunction with estimation variables to develop cost and effort 

projections. 

      LOC and FP estimation are distinct estimation techniques. Yet both have a 

number of characteristics in common. You begin with a bounded statement of 

software scope and from this statement attempt to decompose the statement of 

scope into problem functions that can each be estimated individually. LOC or FP 

(the estimation variable) is then estimated for each function. Alternatively, you 

may choose another component for sizing, such as classes or objects, changes, or 

business processes affected. 

      Baseline productivity metrics (e.g., LOC/pm or FP/pm)  6   are then applied to 

the appropriate estimation variable, and cost or effort for the function is derived. 

Function estimates are combined to produce an overall estimate for the entire 

project.    

 It is important to note, however, that there is often substantial scatter in pro-

ductivity metrics for an organization, making the use of a single-baseline pro-

ductivity metric suspect. In general, LOC/pm or FP/pm averages should be 

computed by project domain. That is, projects should be grouped by team size, 

application area, complexity, and other relevant parameters. Local domain aver-

ages should then be computed. When a new project is estimated, it should fi rst be 

allocated to a domain, and then the appropriate domain average for productivity 

should be used in generating the estimate. 

 The LOC and FP estimation techniques differ in the level of detail required 

for decomposition and the target of the partitioning. When LOC is used as the 

estimation variable, decomposition is absolutely essential and is often taken to 

considerable levels of detail. The greater the degree of partitioning, the more 

likely reasonably accurate estimates of LOC can be developed. 

 For FP estimates, decomposition works differently. Rather than focusing on 

function, each of the information domain characteristics—inputs, outputs, data 

fi les, inquiries, and external interfaces—as well as the 14 complexity adjustment 

 What do 
LOC- and FP-

based estimation 
have in common? 

?

   When collecting 
productivity metrics 
for projects, be 
sure to establish a 
taxonomy of project 
types. This will enable 
you to compute 
domain-specifi c 
averages, making 
estimation more 
accurate. 

  6  The acronym  pm  means person-month of effort. 

pre22126_ch33_727-753.indd   735pre22126_ch33_727-753.indd   735 13/12/13   6:17 PM13/12/13   6:17 PM



736 PART FOUR  MANAGING SOFTWARE PROJECTS

values discussed in Chapter 30—are estimated. The resultant estimates can then 

be used to derive an FP value that can be tied to past data and used to generate 

an estimate.     

  Regardless of the estimation variable that is used, you should begin by esti-

mating a range of values for each function or information domain value. Using 

historical data or (when all else fails) intuition, estimate an optimistic, most 

likely, and pessimistic size value for each function or count for each information 

domain value. An implicit indication of the degree of uncertainty is provided 

when a range of values is specifi ed. 

 A three-point or expected value can then be computed. The  expected value  

for the estimation variable (size)  S  can be computed as a weighted average of the 

optimistic ( s opt), most likely ( s  
m

 ), and pessimistic ( s pess) estimates. For example, 

 S  5   
 s opt 1 4 s  

m
  1  s pess  ________________ 6   (33.1)

 gives heaviest credence to the “most likely” estimate and follows a beta probabil-

ity distribution. We assume that there is a very small probability the actual size 

result will fall outside the optimistic or pessimistic values. 

 Once the expected value for the estimation variable has been determined, 

historical LOC or FP productivity data are applied. Are the estimates correct? 

The only reasonable answer to this question is, we can’t be sure. Any estimation 

technique, no matter how sophisticated, must be cross-checked with another ap-

proach. Even then, common sense and experience must prevail. 

    33.6.3   An Example of LOC-Based Estimation 

 As an example of LOC and FP problem-based estimation techniques, we consider 

a software package to be developed for a computer-aided design application for 

mechanical components. The software is to execute on a desktop workstation 

and must interface with various computer graphics peripherals including a 

mouse, digitizer, high-resolution color display, and laser printer. A preliminary 

statement of software scope can be developed: 

       The mechanical CAD software will accept two- and three-dimensional geometric 

data from a designer. The designer will interact and control the CAD system through 

a user interface that will exhibit characteristics of good human/machine interface 

design. All geometric data and other supporting information will be maintained in a 

CAD database. Design analysis modules will be developed to produce the required 

output, which will be displayed on a variety of devices. The software will be designed 

to control and interact with peripheral devices that include a mouse, scanner, laser 

printer, and plotter.  

 This statement of scope is preliminary—it is not bounded. Every sentence would 

have to be expanded to provide concrete detail and quantitative bounding. 

For example, before estimation can begin, the planner must determine what 

 How do we 
compute the 

“expected value“ 
for software size? 

?

   Many modern 
applications reside 
on a network or are 
part of a client-server 
architecture. Therefore, 
be sure that your 
estimates include the 
effort required to de-
velop “infrastructure” 
software. 

pre22126_ch33_727-753.indd   736pre22126_ch33_727-753.indd   736 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  737

“characteristics of good human/machine interface design” means or what the 

size and sophistication of the “CAD database” are to be. 

 For our purposes, assume that further refi nement has occurred and that the 

major software functions listed in   Figure 33.2   are identifi ed. Following the de-

composition technique for LOC, an estimation table (  Figure 33.2  ) is developed. A 

range of LOC estimates is developed for each function. For example, the range 

of LOC estimates for the 3D geometric analysis function is optimistic, 4600 LOC; 

most likely, 6900 LOC; and pessimistic, 8600 LOC. Applying Equation (33.1), the 

expected value for the 3D geometric analysis function is 6800 LOC. Other esti-

mates are derived in a similar fashion. By summing vertically in the estimated 

LOC column, an estimate of 33,200 lines of code is established for the CAD system.      

      A review of historical data indicates that the organizational average produc-

tivity for systems of this type is 620 LOC/pm. Based on a burdened labor rate of 

$8,000 per month, the cost per line of code is approximately $13. Based on the 

LOC estimate and the historical productivity data, the total estimated project 

cost is $431,000 and the estimated effort is 54 person-months.  7      

   Do not succumb to 
the temptation to use 
this result as your 
project estimate. You 
should derive another 
result using a different 
approach. 

  7  Estimates are rounded to the nearest $1,000 and person-month. Further precision is unneces-

sary and unrealistic, given the limitations of estimation accuracy. 

Function

User interface and control facilities (UICF)
Two-dimensional geometric analysis (2DGA)
Three-dimensional geometric analysis (3DGA)
Database management (DBM)
Computer graphics display facilities (CGDF)
Peripheral control function (PCF)
Design analysis modules (DAM)

Estimated lines of code

Estimated LOC

2,300
5,300
6,800
3,350
4,950
2,100
8,400

33,200

 FIGURE 33.2

 Estimation 
table for the 
LOC methods

  Estimating   Estimating 

  The scene:  Doug Miller’s offi ce as 
project planning begins. 

  The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software engi-
neering team. 

  The conversation:  

  Doug:  We need to develop an effort estimate for the 
project and then we’ve got to defi ne a micro schedule 
for the fi rst increment and a macro schedule for the 
remaining increments. 

 SAFEHOME 

pre22126_ch33_727-753.indd   737pre22126_ch33_727-753.indd   737 13/12/13   6:17 PM13/12/13   6:17 PM



738 PART FOUR  MANAGING SOFTWARE PROJECTS

         33.6.4   An Example of FP-Based Estimation 

 Decomposition for FP-based estimation focuses on information domain values 

rather than software functions. Referring to the table presented in   Figure 33.3  , 

you would estimate inputs, outputs, inquiries, fi les, and external interfaces for 

the CAD software. An FP value is computed using the technique discussed in 

Chapter 30. For the purposes of this estimate, the complexity weighting factor is 

assumed to be average.   Figure 33.3   presents the results of this estimate.      

 Each of the complexity weighting factors is estimated, and the value adjust-

ment factor is computed as described in Chapter 30: 

Factor Value
Backup and recovery 4
Data communications 2
Distributed processing 0
Performance critical 4
Existing operating environment 3
Online data entry 4
Input transaction over multiple screens 5
Master files updated online 3
Information domain values complex 5
Internal processing complex 5
Code designed for reuse 4
Conversion/installation in design 3
Multiple installations 5
Application designed for change 5
Value adjustment factor 1.17

  Vinod (nodding):  Okay, but we haven’t defi ned any 
increments yet. 

  Doug:  True, but that’s why we need to estimate. 

  Jamie (frowning):  You want to know how long it’s 
going to take us? 

  Doug:  Here’s what I need. First, we need to function-
ally decompose the  SafeHome  software . . . at a high 
level . . . then we’ve got to estimate the number of lines 
of code that each function will take . . . then . . . 

  Jamie:  Whoa! How are we supposed to do that? 

  Vinod:  I’ve done it on past projects. You begin with 
use cases, determine the functionality required to im-
plement each, then guesstimate the LOC count for each 
piece of the function. The best approach is to have ev-
eryone do it independently and then compare results. 

  Doug:  Or you can do a functional decomposition for 
the entire project. 

  Jamie:  But that’ll take forever and we’ve got to get 
started. 

  Vinod:  No . . . it can be done in a few hours . . . this 
morning, in fact. 

  Doug:  I agree . . . we can’t expect exactitude, just a 
ballpark idea of what the size of  SafeHome  will be. 

  Jamie:  I think we should just estimate effort . . . that’s 
all. 

  Doug:  We’ll do that too. Then use both estimates as a 
cross-check. 

  Vinod:  Let’s go do it . . .  

pre22126_ch33_727-753.indd   738pre22126_ch33_727-753.indd   738 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  739

 Finally, the estimated number of FP is derived:

FPestimated 5 count total 3 [0.65 1 0.01 3 S( F  
i
 )] 5 375 

 The organizational average productivity for systems of this type is 6.5 FP/pm. 

Based on a burdened labor rate of $8,000 per month, the cost per FP is ap-

proximately $1,230. Based on the FP estimate and the historical productivity 

data, the total estimated project cost is $461,000 and the estimated effort is 58 

person-months. 

    33.6.5   Process-Based Estimation 

 The most common technique for estimating a project is to base the estimate on 

the process that will be used. That is, the process is decomposed into a relatively 

small set of activities, actions, and tasks and the effort required to accomplish 

each is estimated. 

 Like the problem-based techniques, process-based estimation begins with a 

delineation of software functions obtained from the project scope. A series of 

framework activities must be performed for each function. Functions and related 

framework activities  8   may be represented as part of a table similar to the one 

presented in   Figure 33.4  .              

 Once problem functions and process activities are melded, you estimate the 

effort (e.g., person-months) that will be required to accomplish each software 

process activity for each software function. These data constitute the central ma-

trix of the table in   Figure 33.4  . Average labor rates (i.e., cost/unit effort) are then 

applied to the effort estimated for each process activity. 

 If process-based estimation is performed independently of LOC or FP es-

timation, you now have two or three estimates for cost and effort that may be 

   If time permits, use 
fi ner granularity when 
specifying tasks in 
  Figure 33.4  . For ex-
ample, break analysis 
into its major tasks 
and estimate each 
separately. 

Information domain value

Number of external inputs

Number of external outputs

Number of external inquiries

Number of internal logical files

Number of external interface files

Count total

FP 
count

97

78

88

42

15

320

Opt.

20

12

16

4

2

Likely

24

15

22

4

2

Pess.

30

22

28

5

3

Est.
count

24

16

22

4

2

Weight

4

5

5

10

7

 FIGURE 33.3

 Estimating 
information 
domain values

  8  The framework activities chosen for this project differ somewhat from the generic activities 

discussed in Chapter 3. They are: customer communication (CC), planning, risk analysis, engi-

neering, and construction/release. 

pre22126_ch33_727-753.indd   739pre22126_ch33_727-753.indd   739 13/12/13   6:17 PM13/12/13   6:17 PM



740 PART FOUR  MANAGING SOFTWARE PROJECTS

compared and reconciled. If both sets of estimates show reasonable agreement, 

there is good reason to believe that the estimates are reliable. If, on the other 

hand, the results of these decomposition techniques show little agreement, fur-

ther investigation and analysis must be conducted. 

    33.6.6   An Example of Process-Based Estimation 

 To illustrate the use of process-based estimation, we again consider the CAD 

software introduced in Section 33.6.3. The system confi guration and all software 

functions remain unchanged and are indicated by project scope.  

 Referring to the completed process-based table shown in   Figure 33.4  , esti-

mates of effort (in person-months) for each software engineering activity are pro-

vided for each CAD software function (abbreviated for brevity). The engineering 

and construction release activities are subdivided into the major software engi-

neering tasks shown. Gross estimates of effort are provided for customer com-

munication, planning, and risk analysis. These are noted in the total row at the 

bottom of the table. Horizontal and vertical totals provide an indication of esti-

mated effort required for analysis, design, code, and test. It should be noted that 

53 percent of all effort is expended on front-end engineering tasks (requirements 

analysis and design), indicating the relative importance of this work. 

 Based on an average burdened labor rate of $8,000 per month, the total esti-

mated project cost is $368,000 and the estimated effort is 46 person-months. If 

desired, labor rates could be associated with each framework activity or software 

engineering task and computed separately. 

    33.6.7   Estimation with Use Cases 

 As we have noted throughout Part 2 of this book, use cases provide a software 

team with insight into software scope and requirements. Once use cases have 

    uote: 

 “It’s best to 
understand the 
background of an 
estimate before 
you use it.” 

 Barry Boehm 
and Richard 

Fairley 

Activity

Task

Function

UICF
2DGA
3DGA

DBM
PCF

CGDF

DAM

Totals

% effort

CC Planning Risk
analysis Engineering Construction

release TotalsCE

Analysis Design Code Test

0.25 0.25 0.25 3.50 20.50 4.50 16.50 46.00

1% 1% 1% 8% 45% 10% 36%

CC = customer communication   CE = customer evaluation

0.50
0.75
0.50
0.50
0.50
0.25

2.50
4.00
4.00
3.00
3.00
2.00

0.40
0.60
1.00
1.00
0.75
0.50

5.00
2.00
3.00
1.50
1.50
1.50

8.40
7.35
8.50
6.00
5.75
4.25

0.50 2.00 0.50 2.00 5.00

n/a
n/a
n/a
n/a
n/a
n/a
n/a

 FIGURE 33.4

 Process-based 
estimation 
table

pre22126_ch33_727-753.indd   740pre22126_ch33_727-753.indd   740 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  741

been developed they can be used to estimate the projected “size” of a software 

project. However, developing an estimation approach with use cases presents 

challenges [Smi99]. Use cases are described using many different formats and 

styles and represent an external view (the user’s view) of the software. Therefore, 

they can be written at many different levels of abstraction. Use cases do not ad-

dress the complexity of the functions and features that are described, and they 

can describe complex behavior (e.g., interactions) that involve many functions 

and features.     

  Even with these constraints, it is possible to compute  use case points  (UCPs) in 

a manner that is analogous to the computation of functions points (Chapter 30). 

 Cohn (Coh05) indicates that the computation of use case points must take the 

following characteristics into account:

    •  The number and complexity of the use cases in the system.  

   •  The number and complexity of the actors on the system.  

   •  Various nonfunctional requirements (such as portability, performance, 

maintainability) that are not written as use cases.  

   •  The environment in which the project will be developed (e.g., the pro-

gramming language, the software team’s motivation).    

 To begin, each use case is assessed to determine its relative complexity. A sim-

ple use case indicates a simple user interface, a single database, and three or 

fewer transactions and fi ve or fewer class implementations. An average use case 

indicates a more complex UI, 2 or 3 databases, and 4 to 7 transactions with 5 to 

10 classes. Finally, a complex use case implies a complex UI with multiple data-

bases, using eight or more transactions and 11 or more classes. Each use case is 

assessed using these criteria and the count of each type is weighted by a factor of 

5, 10, and 15, respectively. A total  unadjusted use case weight  (UUCW) is the sum 

of all weighted counts [Nun11]. 

 Next, each actor is assessed. Simple actors are automatons (another system, 

a machine or device) that communicate through an API. Average actors are au-

tomatons that communicate through a protocol or a data store, and complex 

actors are humans who communicate through a GUI or other human interface. 

Each actor is assessed using these criteria and the count of each type is weighted 

by a factor of 1, 2, and 3, respectively. The total  unadjusted actor weight  (UAW) is 

the sum of all weighted counts. 

 These unadjusted values are modifi ed by considering technical complexity 

factors (TCFs) and environment complexity factors (ECFs). Thirteen factors con-

tribute to an assessment of the fi nal TCF, and eight factors contribute to the com-

putation of the fi nal ECF [Coh05]. Once these values have been determined, the 

fi nal UCP value is computed in the following manner:

 UCP 5 (UUCW 1 UAW) 3 TCF 3 ECF  (33.2)

 Why is it 
diffi cult 

to develop 
an estimation 
technique using 
use cases? 

?

pre22126_ch33_727-753.indd   741pre22126_ch33_727-753.indd   741 13/12/13   6:17 PM13/12/13   6:17 PM



742 PART FOUR  MANAGING SOFTWARE PROJECTS

    33.6.8   An Example of Estimation Using Use Case Points 

 The CAD software introduced in Section 33.6.3 is composed of three subsystem 

groups: user interface subsystem (includes UICF), engineering subsystem group 

(includes the 2DGA, 3DGA, and DAM subsystems), and infrastructure subsystem 

group (includes CGDF and PCF subsystems). Sixteen complex use cases describe 

the user interface subsystem. The engineering subsystem group is described by 

14 average use cases and 8 simple use cases. And the infrastructure subsystem is 

described with 10 simple use cases. Therefore,

UUCW 5  (16 use cases 3 15) 1 [(14 use cases 3 10) 1 (8 use cases 3 5)] 

1 (10 use cases 3 5) 5 470 

 Analysis of the use cases indicates that there are 8 simple actors, 12 average 

actors, and 4 complex actors. Therefore,

UAW 5 (8 actors 3 1) 1 (12 actors 3 2) 1 4 actors 3 3) 5 44 

 After evaluation of the technology and the environment,

TCF 5 1.04

ECF 5 0.96 

 Using relationship 33.2,

UCP 5 (470 1 44) 3 1.04 3 0.96 5 513 

 Using past project data as a guide, the development group has produced 85 LOC 

per UCP. Therefore, an estimate of the overall size of the CAD project is 43,600 

LOC. Similar computations can be made for applied effort or project duration. 

 Using 620 LOC/pm as the average productivity for systems of this type and 

a burdened labor rate of $8,000 per month, the cost per line of code is approxi-

mately $13. Based on the use-case estimate and the historical productivity data, 

the total estimated project cost is $552,000 and the estimated effort is about 70 

person-months. 

    33.6.9   Reconciling Estimates 

 The estimation techniques discussed in the preceding sections result in multiple es-

timates that must be reconciled to produce a single estimate of effort, project dura-

tion, or cost. The total estimated effort for the CAD software (section 33.6.3) ranges 

from a low of 46 person-months (derived using a process-based estimation approach) 

to a high of 68 person-months (derived with use-case estimation). The average esti-

mate (using all four approaches) is 56 person-months. The variation from the average 

estimate is approximately 18 percent on the low side and 21 percent on the high side.  
 What happens when agreement between estimates is poor? The answer to 

this question requires a reevaluation of information used to make the estimates. 

Widely divergent estimates can often be traced to one of two causes: (1) the scope 

    uote: 

 “Complicated 
methods might 
not yield a more 
accurate estimate, 
particularly when 
developers can 
incorporate their 
own intuition into 
the estimate.” 

 Philip Johnson 
et al. 

pre22126_ch33_727-753.indd   742pre22126_ch33_727-753.indd   742 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  743

of the project is not adequately understood or has been misinterpreted by the 

planner, or (2) productivity data used for problem-based estimation techniques is 

inappropriate for the application, obsolete (in that it no longer accurately refl ects 

the software engineering organization), or has been misapplied. You should de-

termine the cause of divergence and then reconcile the estimates.     

  Automated Estimation Techniques for Software Projects 
 Automated estimation tools allow the planner 
to estimate cost and effort and to perform 

what-if analyses for important project variables such as 
delivery date or staffi ng. Although many automated es-
timation tools exist (see sidebar later in this chapter), all 
exhibit the same general characteristics and all perform 
the following six generic functions [Jon96]:

     1.   Sizing of project deliverables.  The “size” of one or 
more software work products is estimated. Work 
products include the external representation of 
software (e.g., screen, reports), the software 
itself (e.g., KLOC), functionality delivered 
(e.g., function points), and descriptive information 
(e.g., documents).  

    2.   Selecting project activities.  The appropriate 
process framework is selected, and the software 
engineering task set is specifi ed.  

    3.   Predicting staffi ng levels.  The number of people 
who will be available to do the work is specifi ed. 
Because the relationship between people available 
and work (predicted effort) is highly nonlinear, this 
is an important input.  

    4.   Predicting software effort.  Estimation tools use one 
or more models (Section 33.7) that relate the size 
of the project deliverables to the effort required to 
produce them.  

    5.   Predicting software cost.  Given the results of 
step 4, costs can be computed by allocating labor 
rates to the project activities noted in step 2.  

    6.   Predicting software schedules.  When effort, 
staffi ng level, and project activities are known, 
a draft schedule can be produced by allocating 
labor across software engineering activities based 
on recommended models for effort distribution 
discussed later in this chapter.    

 When different estimation tools are applied to the same 
project data, a relatively large variation in estimated 
results can be encountered. More important, predicted 
values sometimes are signifi cantly different than actual 
values. This reinforces the notion that the output of esti-
mation tools should be used as one “data point” from 
which estimates are derived—not as the only source for 
an estimate.  

 INFO 

        33.7  EMPIR ICAL EST IMATION MODELS 

  An estimation model for computer software uses empirically derived formulas 

to predict effort as a function of LOC or FP.  9   Values for LOC or FP are estimated 

using the approach described in Sections 33.6.3 and 33.6.4. But instead of using 

the tables described in those sections, the resultant values for LOC or FP are 

plugged into the estimation model.    

      The empirical data that support most estimation models are derived from a 

limited sample of projects. For this reason, no estimation model is appropriate 

for all classes of software and in all development environments. Therefore, you 

should use the results obtained from such models judiciously. 

   An estimation model 
refl ects the population 
of projects from which 
it has been derived. 
Therefore, the model is 
domain sensitive. 

  9  An empirical model using use cases as the independent variable is suggested in Section 33.6.6. 

However, relatively few have appeared in the literature to date. 

pre22126_ch33_727-753.indd   743pre22126_ch33_727-753.indd   743 13/12/13   6:17 PM13/12/13   6:17 PM



744 PART FOUR  MANAGING SOFTWARE PROJECTS

 An estimation model should be calibrated to refl ect local conditions. The 

model should be tested by applying data collected from completed projects, plug-

ging the data into the model, and then comparing actual to predicted results. If 

agreement is poor, the model must be tuned and retested before it can be used. 

   33.7.1   The Structure of Estimation Models 

 A typical estimation model is derived using regression analysis on data collected 

from past software projects. The overall structure of such models takes the form 

[Mat94] 

 E 5 A 1 B  3 ( e  
v
 )  C   (33.3)

 where  A, B,  and  C  are empirically derived constants,  E  is effort in person-months, 

and  e  
v
  is the estimation variable (either LOC or FP). In addition to the relation-

ship noted in Equation (33.3), the majority of estimation models have some form 

of project adjustment component that enables  E  to be adjusted by other project 

characteristics (e.g., problem complexity, staff experience, development envi-

ronment). A quick examination of any empirically derived model indicates that 

it must be calibrated for local needs. 

    33.7.2   The COCOMO II Model 

 In his classic book on software engineering economics, Barry Boehm [Boe81] in-

troduced a hierarchy of software estimation models bearing the name COCOMO, 

for  COnstructive COst MOdel.  The original COCOMO model became one of the 

most widely used and discussed software cost estimation models in the industry. 

It has evolved into a more comprehensive estimation model, called COCOMO II 

[Boe00]. Like its predecessor, COCOMO II is actually a hierarchy of estimation 

models that address different “stages” of the software process. 

 Like all estimation models for software, the COCOMO II models require siz-

ing information. Three different sizing options are available as part of the model 

hierarchy: object points,  10   function points, and lines of source code.    

    33.7.3   The Software Equation 

 The  software equation  [Put92] is a dynamic multivariable model that assumes a 

specifi c distribution of effort over the life of a software development project. The 

model has been derived from productivity data collected for over 4,000 contem-

porary software projects. Based on these data, we derive an estimation model of 

the form

 E   5   LOC 3  B  0.333   ____________ 
 P3 

   3   1 __ 
 t  4 

    (33.4)

  10  An  object point  is an indirect software measure that is computed using counts of the number of 

(1) screens (at the user interface), (2) reports, and (3) components likely to be required to build 

the application, along with complexity factors. 

pre22126_ch33_727-753.indd   744pre22126_ch33_727-753.indd   744 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  745

 where 

 E  5 effort in person-months or person-years

 t  5 project duration in months or years

 B  5 “special skills factor” 11 

 P  5  “productivity parameter” that refl ects: overall process maturity and 

management practices, the extent to which good software engineering 

practices are used, the level of programming languages used, the state 

of the software environment, the skills and experience of the software 

team, and the complexity of the application    

 Typical values might be  P  5 2,000 for development of real-time embedded soft-

ware,  P  5 10,000 for telecommunication and systems software, and  P  5 28,000 

for business systems applications. The productivity parameter can be derived 

for local conditions using historical data collected from past development 

efforts. 

 You should note that the software equation has two independent parameters: 

(1) an estimate of size (in LOC) and (2) an indication of project duration in calen-

dar months or years. 

 To simplify the estimation process and use a more common form for their esti-

mation model, Putnam and Myers [Put92] suggest a set of equations derived from 

the software equation. Minimum development time is defi ned as

 t min 5 8.14   LOC _____ 
 P  0.43 

   in months for  t min . 6 months (33.5a)

 E  5 180  Bt  3  in person-months for  E  $ 20 person-months  (33.5b)

 Note that  t  in Equation (33.5b) is represented in years. 

 Using Equation (33.5) with  P   5 12,000 (the recommended value for scientifi c 

software) for the CAD software discussed previously in this chapter, 

 t min 5 8.14 3   33,200 _________ 
12,000 0.43    5 12.6 calendar months

 E  5 180 3 0.28 3 (1.05) 3  5 58 person-months 

 The results of the software equation correspond favorably with the estimates de-

veloped in Section 33.6. Like the COCOMO model noted in Section 33.7.2, the 

software equation continues to evolve. Further discussion of an extended version 

of this estimation approach can be found in [Put97b]. 

  11   B  increases slowly as “the need for integration, testing, quality assurance, documentation, and 

management skills grows” [Put92]. For small programs (KLOC 5 5 to 15),  B  5 0.16. For programs 

greater than 70 KLOC,  B  5 0.39. 

pre22126_ch33_727-753.indd   745pre22126_ch33_727-753.indd   745 13/12/13   6:17 PM13/12/13   6:17 PM



746 PART FOUR  MANAGING SOFTWARE PROJECTS

       33.8  EST IMATION FOR OBJECT-ORIENTED PROJECTS 

  It is worthwhile to supplement conventional software cost estimation methods 

with a technique that has been designed explicitly for OO software. Lorenz and 

Kidd [Lor94] suggest the following approach:

     1.  Develop estimates using effort decomposition, FP analysis, and any other 

method that is applicable for conventional applications.  

    2.  Using the requirements model (Chapter 10), develop use cases and deter-

mine a count. Recognize that the number of use cases may change as the 

project progresses.  

    3.  From the requirements model, determine the number of key classes 

(called analysis classes in Chapter 10).  

    4.  Categorize the type of interface for the application and develop a multi-

plier for support classes, where the multipliers for no GUI, a text-based 

user interface, a conventional GUI, and a complex GUI are: 2.0, 2.25, 2.5, 

and 3.0, respectively. Multiply the number of key classes (step 3) by the 

multiplier to obtain an estimate for the number of support classes.  

    5.  Multiply the total number of classes (key 1 support) by the average num-

ber of work units per class. Lorenz and Kidd suggest 15 to 20 person-days 

per class.  

    6.  Cross-check the class-based estimate by multiplying the average number 

of work units per use case.    

      33.9  SPECIAL IZED EST IMATION TECHNIQUES 

  The estimation techniques discussed in Sections 33.6 through 33.8 can be used 

for any software project. However, when a software team encounters an ex-

tremely short project duration (weeks rather than months) that is likely to have 

a continuing stream of changes, project planning in general, and estimation in 

particular should be abbreviated.  12   In the sections that follow, I examine two spe-

cialized estimation techniques.    

   33.9.1   Estimation for Agile Development 

 Because the requirements for an agile project (Chapter 5) are defi ned by a set of 

user scenarios (e.g., “stories” in Extreme Programming), it is possible to develop 

an estimation approach that is informal, reasonably disciplined, and meaningful 

  12  “Abbreviated” does  not  mean eliminated. Even short-duration projects must be planned, and 

estimation is the foundation of solid planning. 

pre22126_ch33_727-753.indd   746pre22126_ch33_727-753.indd   746 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  747

within the context of project planning for each software increment. Estimation 

for agile projects uses a decomposition approach that encompasses the following 

steps:

     1.  Each user scenario (the equivalent of a mini use case created at the very 

start of a project by end users or other stakeholders) is considered sepa-

rately for estimation purposes.  

    2.  The scenario is decomposed into the set of software engineering tasks 

that will be required to develop it.  

    3a.  Each task is estimated separately. Note: Estimation can be based on his-

torical data, an empirical model, or “experience.”  

    3b.  Alternatively, the “volume” of the scenario can be estimated in LOC, FP, or 

some other volume-oriented measure (e.g., use case count).  

    4a.  Estimates for each task are summed to create an estimate for the 

scenario.  

    4b.  Alternatively, the volume estimate for the scenario is translated into effort 

using historical data.  

    5.  The effort estimates for all scenarios that are to be implemented for a 

given software increment are summed to develop the effort estimate for 

the increment.        

       Because the project duration required for the development of a software incre-

ment is quite short (typically three to six weeks), this estimation approach serves 

two purposes: (1) to be certain that the number of scenarios to be included in the 

increment conforms to the available resources, and (2) to establish a basis for 

allocating effort as the increment is developed. 

    33.9.2   Estimation for WebApp Projects 

 WebApp projects often adopt the agile process model. A modifi ed function point 

measure, coupled with the steps outlined in Section 33.9.1, can be used to de-

velop an estimate for the WebApp. Roetzheim [Roe00] suggests the following ap-

proach when adapting function points for WebApp estimation:

    •   Inputs  are each input screen or form (for example, CGI or Java), each maintenance 

screen, and if you use a tab notebook metaphor anywhere, each tab.  

   •   Outputs  are each static Web page, each dynamic Web page script (for example, 

ASP, ISAPI, or other DHTML script), and each report (whether Web based or ad-

ministrative in nature).  

   •   Tables  are each logical table in the database plus, if you are using XML to store 

data in a fi le, each XML object (or collection of XML attributes).  

   •   Interfaces  retain their defi nition as logical fi les (for example, unique record for-

mats) into our out-of-the-system boundaries.  

 How are 
estimates 

developed when 
an agile process is 
applied? 

?

   In the context of 
estimation for agile 
projects, “volume” 
is an estimate of the 
overall size of a user 
scenario in LOC or FP. 

pre22126_ch33_727-753.indd   747pre22126_ch33_727-753.indd   747 13/12/13   6:17 PM13/12/13   6:17 PM



748 PART FOUR  MANAGING SOFTWARE PROJECTS

   •   Queries  are each externally published or use a message-oriented interface. A typ-

ical example is DCOM or COM external references.    

 Function points (interpreted in the manner noted) are a reasonable indicator of 

volume for a WebApp.     

  Effort and Cost Estimation 

  Objective:  The objective of effort and 
cost estimation tools is to provide a 

project team with estimates of effort required, project 
duration, and cost in a manner that addresses the 
specifi c characteristics of the project at hand and the 
environment in which the project is to be built. 

  Mechanics:  In general, cost estimation tools make use 
of an historical database derived from local projects 
and data collected across the industry, and an empirical 
model (e.g., COCOMO II) that is used to derive effort, 
duration, and cost estimates. Characteristics of the 
project and the development environment are input and 
the tool provides a range of estimation outputs. 

  Representative Tools:   13      
  Costar,  developed by Softstar Systems 

( www.softstarsystems.com ), uses the 
COCOMO II model to develop software estimates. 

  Cost Xpert,  developed by Cost Xpert Group 
( www.costxpert.com ), integrates multiple 
estimation models and an historical project database. 

  Construx Professional,  developed by Construx 
( http://www.construx.com/Resources/
Construx_Estimate/ ), is based on Putnam Model 
and COCOMO II. 

  Knowledge Plan,  developed by Software Productivity 
Research ( www.spr.com ), uses function point 
input as the primary driver for a complete estimation 
package. 

  Price S,  developed by Price Systems 
( www.pricesystems.com ), is one of the oldest 
and most widely used estimating tools for large-scale 
software development projects. 

  SEER/SEM,  developed by Galorath 
( www.galorath.com ), provides comprehensive 
estimation capability, sensitivity analysis, risk 
assessment, and other features. 

  SLIM-Estimate,  developed by QSM ( www.qsm.com ), 
draws on comprehensive “industry knowledge bases” 
to provide a “sanity check” for estimates derived 
using local data.  

 SOFTWARE TOOLS 

  13  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

        33.10  THE MAKE/BUY DECIS ION 

  In many software application areas, it is often more cost-effective to acquire 

than develop computer software. Software engineering managers are faced 

with a make/buy decision that can be further complicated by a number of 

acquisition options: (1) software may be purchased (or licensed) off-the-shelf, 

(2) “full-experience” or “partial-experience” software components (see Sec-

tion 33.4.2) may be acquired and then modifi ed and integrated to meet specifi c 

needs, or (3) software may be custom built by an outside contractor to meet the 

purchaser’s specifi cations. 

 The steps involved in the acquisition of software are defi ned by the criticality 

of the software to be purchased and the end cost. In some cases (e.g., low-cost 

pre22126_ch33_727-753.indd   748pre22126_ch33_727-753.indd   748 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  749

apps), it is less expensive to purchase and experiment than to conduct a lengthy 

evaluation of potential software packages. In the fi nal analysis, the make/buy 

decision is made based on the following conditions: (1) Will the delivery date 

of the software product be sooner than that for internally developed software? 

(2) Will the cost of acquisition plus the cost of customization be less than the cost 

of developing the software internally? (3) Will the cost of outside support (e.g., a 

maintenance contract) be less than the cost of internal support? These condi-

tions apply for each of the acquisition options. 

   33.10.1   Creating a Decision Tree 

 The steps just described can be augmented using statistical techniques such as 

decision tree analysis.  14   For example,   Figure 33.5   depicts a decision tree for a 

software-based system X. In this case, the software engineering organization can 

(1) build system X from scratch, (2) reuse existing partial-experience components 

to construct the system, (3) buy an available software product and modify it to 

meet local needs, or (4) contract the software development to an outside 

vendor.              

 If the system is to be built from scratch, there is a 70 percent probability that 

the job will be diffi cult. Using the estimation techniques discussed previously in 

this chapter, the project planner projects that a diffi cult development effort will 

 Is there a 
systematic 

way to sort 
through the 
options associated 
with the make/
buy decision? 

?

$380,000

$450,000

Simple (0.30)

$275,000

$310,000

$490,000

$210,000

$400,000

Minor changes
(0.70)

Major changes (0.30)

$350,000

$500,000

Without changes
(0.60)

With changes (0.40)

Complex (0.80)

Simple (0.20)
Major

changes
(0.60)

Minor changes
(0.40)

Difficult (0.70)
Build

Reuse

Buy

Contract

System X

 FIGURE 33.5

 A decision tree 
to support the 
make/buy 
decision

  14  A worthwhile introduction to decision tree analysis can be found at  http://en.wikipedia.org/

wiki/Decision_tree . 

pre22126_ch33_727-753.indd   749pre22126_ch33_727-753.indd   749 13/12/13   6:17 PM13/12/13   6:17 PM



750 PART FOUR  MANAGING SOFTWARE PROJECTS

cost $450,000. A “simple” development effort is estimated to cost $380,000. The 

expected value for cost, computed along any branch of the decision tree, is

Expected cost 5 S (path probability) 
i
  3 (estimated path cost) 

i
  

 where  i  is the decision tree path. For the build path,

Expected costbuild 5 0.30 ($380K) 1 0.70 ($450K) 5 $429K 

 Following other paths of the decision tree, the projected costs for reuse, 

purchase, and contract, under a variety of circumstances, are also shown. The 

expected costs for these paths are

Expected costreuse 5 0.40 ($275K) 1 0.60 [0.20 ($310K) 1 0.80 ($490K)] 5 $382K

Expected costbuy 5 0.70 ($210K) 1 0.30 ($400K) 5 $267K

Expected costcontract 5 0.60 ($350K) 1 0.40 ($500K) 5 $410K 

 Based on the probability and projected costs that have been noted in   Figure 33.5  , 

the lowest expected cost is the “buy” option. 

 It is important to note, however, that many criteria—not just cost— must be 

considered during the decision-making process. Availability, experience of the 

developer/vendor/contractor, conformance to requirements, local “politics,” 

and the likelihood of change are but a few of the criteria that may affect the ulti-

mate decision to build, reuse, buy, or contract. 

    33.10.2   Outsourcing 

 Sooner or later, every company that develops computer software asks a funda-

mental question: “Is there a way that we can get the software and systems we 

need at a lower price?” The answer to this question is not a simple one, and the 

emotional discussions that occur in response to the question always lead to a 

single word:  outsourcing.  

 In concept, outsourcing is extremely simple. Software engineering activities 

are contracted to a third party who does the work at lower cost and, hopefully, 

higher quality. Software work conducted within a company is reduced to a con-

tract management activity.  15       

 The decision to outsource can be either strategic or tactical. At the strategic 

level, business managers consider whether a signifi cant portion of all software 

work can be contracted to others. At the tactical level, a project manager deter-

mines whether part or all of a project can be best accomplished by subcontract-

ing the software work. 

    uote: 

 “As a rule 
outsourcing 
requires even 
more skillful 
management 
than in-house 
development.” 

 Steve McConnell 

  15  Outsourcing can be viewed more generally as any activity that leads to the acquisition of soft-

ware or software components from a source outside the software engineering organization. 

pre22126_ch33_727-753.indd   750pre22126_ch33_727-753.indd   750 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  751

 Regardless of the breadth of focus, the outsourcing decision is often a fi nancial 

one. A detailed discussion of the fi nancial analysis for outsourcing is beyond the 

scope of this book and is best left to others (e.g., [Min95]). However, a brief review 

of the pros and cons of the decision is worthwhile. 

 On the positive side, cost savings can usually be achieved by reducing the 

number of software people and the facilities (e.g., computers, infrastructure) that 

support them. On the negative side, a company loses some control over the soft-

ware that it needs. Since software is a technology that differentiates its systems, 

services, and products, a company runs the risk of putting the fate of its compet-

itiveness into the hands of a third party. 

 The trend toward outsourcing will undoubtedly continue. The only way to 

blunt the trend is to recognize that software work is extremely competitive at 

all levels. The only way to survive is to become as competitive as the outsourcing 

vendors themselves.     

  Outsourcing   Outsourcing 

  The scene:  Meeting room at CPI 
Corporation early in the project. 

  The players:  Mal Golden, senior manager, product 
development; Lee Warren, engineering manager; Joe 
Camalleri, executive VP, business development; and 
Doug Miller, project manager, software engineering. 

  The conversation:  

  Joe:  We’re considering outsourcing the  SafeHome  soft-
ware engineering portion of the product. 

  Doug (shocked):  When did this happen? 

  Lee:  We got a quote from an offshore developer. It 
comes in at 30 percent below what your group seems 
to believe it will cost. Here. 

 [Hands the quote to Doug who reads it.] 

  Mal:  As you know, Doug, we’re trying to keep costs 
down and 30 percent is 30 percent. Besides, these 
people come highly recommended. 

  Doug (taking a breath and trying to remain 
calm):  You guys caught me by surprise here, but be-
fore you make a fi nal decision a few comments? 

  Joe (nodding):  Sure, go ahead. 

  Doug:  We haven’t worked with this outsourcing com-
pany before, right? 

  Mal:  Right, but . . . 

  Doug:  And they note that any changes to spec will be 
billed at an additional rate, right? 

  Joe (frowning):  True, but we expect that things will 
be reasonably stable. 

  Doug:  A bad assumption, Joe. 

  Joe:  Well, . . . 

  Doug:  It’s likely that we’ll release new versions of this 
product over the next few years. And it’s reasonable 
to assume that software will provide many of the new 
features, right? 

 [All nod.] 

  Doug:  Have we ever coordinated an international 
project before? 

  Lee (looking concerned):  No, but I’m told . . . 

  Doug (trying to suppress his anger):  So what 
you’re telling me is: (1) we’re about to work with an un-
known vendor, (2) the costs to do this are not as low as 
they seem, (3) we’re de facto committing to work with 
them over many product releases, no matter what they 
do on the fi rst one, and (4) we’re going to learn on the 
job relative to an international project. 

 [All remain silent.] 

 SAFEHOME 

pre22126_ch33_727-753.indd   751pre22126_ch33_727-753.indd   751 13/12/13   6:17 PM13/12/13   6:17 PM



752 PART FOUR  MANAGING SOFTWARE PROJECTS

         33.11 SUMMARY 

 A software project planner must estimate three things before a project begins: 

how long it will take, how much effort will be required, and how many people will 

be involved. In addition, the planner must predict the resources (hardware and 

software) that will be required and the risk involved. 

 The statement of scope helps the planner to develop estimates using one or 

more techniques that fall into two broad categories: decomposition and empiri-

cal modeling. Decomposition techniques require a delineation of major software 

functions, followed by estimates of either (1) the number of LOC, (2) selected val-

ues within the information domain, (3) the number of use cases, (4) the num-

ber of person-months required to implement each function, or (5) the number of 

person-months required for each software engineering activity. Empirical tech-

niques use empirically derived expressions for effort and time to predict these 

project quantities. Automated tools can be used to implement a specifi c empir-

ical model. 

 Accurate project estimates generally use at least two of the three techniques 

just noted. By comparing and reconciling estimates developed using different 

techniques, the planner is more likely to derive an accurate estimate. Software 

project estimation can never be an exact science, but a combination of good his-

torical data and systematic techniques can improve estimation accuracy. 

     PROBLEMS AND POINTS TO PONDER 
    33.1.  Assume that you are the project manager for a company that builds software for 
household robots. You have been contracted to build the software for a robot that mows the 
lawn for a homeowner. Write a statement of scope that describes the software. Be sure your 
statement of scope is bounded. If you’re unfamiliar with robots, do a bit of research before 
you begin writing. Also, state your assumptions about the hardware that will be required. 
Alternate: Replace the lawn-mowing robot with another problem that is of interest to you.  

   33.2.  Software project complexity is discussed briefl y in Section 33.1. Develop a list of soft-
ware characteristics (e.g., concurrent operation, graphical output) that affect the complex-
ity of a project. Prioritize the list.  

  Doug:  Guys . . . I think this is a mistake, and I’d like 
you to take a day to reconsider. We’ll have far more 
control if we do the work in-house. We have the ex-
pertise, and I can guarantee that it won’t cost us much 
more . . . the risk will be lower, and I know you’re all 
risk averse, as I am. 

  Joe (frowning):  You’ve made a few good points, 
but you have a vested interest in keeping this project 
in-house. 

  Doug:  That’s true, but it doesn’t change the facts. 

  Joe (with a sigh):  Okay, let’s table this for a day or 
two, give it some more thought, and meet again for a 
fi nal decision. Doug, can I speak with you privately? 

  Doug:  Sure . . . I really do want to be sure we do the 
right thing.  

pre22126_ch33_727-753.indd   752pre22126_ch33_727-753.indd   752 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 33  ESTIMATION FOR SOFTWARE PROJECTS  753

   33.3.  Performance is an important consideration during planning. Discuss how perfor-
mance can be interpreted differently depending upon the software application area.  

   33.4.  Do a functional decomposition of the robot software you described in Problem 33.1. 
Estimate the size of each function in LOC. Assuming that your organization produces 
450 LOC/pm with a burdened labor rate of $7,000 per person-month, estimate the effort and 
cost required to build the software using the LOC-based estimation technique described in 
this chapter.  

   33.5.  Use the software equation to estimate the lawn-mowing robot software. Assume that 
Equation (33.4) is applicable and that  P  5 8,000.  

   33.6.  Develop a spreadsheet model that implements one or more of the estimation tech-
niques described in this chapter. Alternatively, acquire one or more online models for esti-
mation from Web-based sources.  

   33.7.  For a project team: Develop a software tool that implements each of the estimation 
techniques developed in this chapter.  

   33.8.  It seems odd that cost and schedule estimates are developed during software project 
planning—before detailed software requirements analysis or design has been conducted. 
Why do you think this is done? Are there circumstances when it should not be done?  

      FUR THER READINGS AND INFORMATION SOURCES 
  Most software project management books contain discussions of project estimation. The 
Project Management Institute ( PMBOK Guide,  PMI, 2001), Wysoki ( Effective Project Manage-

ment: Traditional, Agile, Extreme,  6th ed., Wiley, 2011), Lewis ( Project Planning Scheduling 

and Control,  5th ed., McGraw-Hill, 2010), Kerzner ( Project Management: A Systems Ap-

proach to Planning, Scheduling, and Controlling,  10th ed., Wiley, 2009), Bennatan ( On Time, 

Within Budget: Software Project Management Practices and Techniques,  3rd ed., Wiley, 2000), 
and Phillips [Phi98] provide useful estimation guidelines. 

 McConnell ( Software Estimation: Demystifying the Black Art , Microsoft Press, 2006) has 
written a pragmatic guide that provides worthwhile guidance for anyone who must estimate 
the cost of software. Parthasarathy ( Practical Software Estimation,  Addison-Wesley, 2007) 
emphasizes function points as an estimation metric. Hill ( Practical Software Project Esti-

mation,  McGraw-Hill Osborne Media, 2010) and Laird and Brennan ( Software Measurement 

and Estimation: A Practical Approach,  Wiley-IEEE Computer Society Press, 2006) addresses 
measurement and its use in software estimation. Pfl eeger ( Software Cost Estimation and 

Sizing Methods, Issues, and Guidelines,  RAND Corporation, 2005) has developed an abbrevi-
ated guidebook that addresses many estimation fundamentals. Jones ( Estimating Software 

Costs,  2nd ed., McGraw-Hill, 2007) has written one of the most comprehensive treatments 
of models and data that are applicable to software estimating in every application domain. 
Coombs ( IT Project Estimation,  Cambridge University Press, 2002, and Roetzheim and 
Beasley ( Software Project Cost and Schedule Estimating: Best Practices,  Prentice Hall, 1997) 
present many useful models and suggest step-by-step guidelines for generating the best 
possible estimates. 

 A wide variety of information sources on software estimation is available on the Internet. 
An up-to-date list of World Wide Web references can be found under “software engineering 
resources” at the SEPA website:  www.mhhe.com/pressman .      

pre22126_ch33_727-753.indd   753pre22126_ch33_727-753.indd   753 13/12/13   6:17 PM13/12/13   6:17 PM



754

   C H A P T E R

        In the late 1960s, a bright-eyed young engineer was chosen to “write” a com-

puter program for an automated manufacturing application. The reason 

for his selection was simple. He was the only person in his technical group 

who had attended a computer programming seminar. He knew the ins and 

outs of assembly language and FORTRAN but nothing about software engi-

neering and even less about project scheduling and tracking. 

 His boss gave him the appropriate manuals and a verbal description of 

what had to be done. He was informed that the project must be completed in 

two months. 

 He read the manuals, considered his approach, and began writing code. After 

two weeks, the boss called him into his offi ce and asked how things were going. 

 “Really great,” said the young engineer with youthful enthusiasm. “This is 

much simpler than I thought. I’m probably close to 75 percent fi nished.” 

 PROJECT
SCHEDULING 34 

  What is it?   You’ve selected an 
appropriate process model, you’ve 
identifi ed the software engineering 
tasks that have to be performed, you 

estimated the amount of work and the number 
of people, you know the deadline, you’ve even 
considered the risks. Now it’s time to connect the 
dots. That is, you have to create a network of 
software engineering tasks that will enable you 
to get the job done on time. Once the network 
is created, you have to assign responsibility for 
each task, make sure it gets done, and adapt 
the network as risks become reality. In a nutshell, 
that’s software project scheduling and tracking. 

   Who does it?   At the project level, software 
project managers using information solicited 
from software engineers. At an individual 
level, software engineers themselves. 

   Why is it important?   In order to build a 
complex system, many software engineering 
tasks occur in parallel, and the result of work 
performed during one task may have a pro-
found effect on work to be conducted in an-
other task. These interdependencies are very 

diffi cult to understand without a schedule. It’s 
also virtually impossible to assess progress on 
a moderate or large software project without a 
detailed schedule. 

   What are the steps?   The software engineer-
ing tasks dictated by the software process 
model are refi ned for the functionality to be 
built. Effort and duration are allocated to each 
task and a task network (also called an “activ-
ity network”) is created in a manner that en-
ables the software team to meet the delivery 
deadline established. 

   What is the work product?   The proj-
ect schedule and related information are 
produced. 

   How do I ensure that I’ve done it right?  
 Proper scheduling requires that: (1) all tasks 
appear in the network, (2) effort and timing 
are intelligently allocated to each task, (3) in-
terdependencies between tasks are properly 
indicated, (4) resources are allocated for the 
work to be done, and (5) closely spaced mile-
stones are provided so that progress can be 
tracked.  

 Q U I C K 
L O O K 

 K E Y 
C O N C E P T S 
    critical path. . . . . . 757  
    earned value. . . . . 772  
    effort distribution. . 760  
    people and effort  . 759  
    scheduling  

    principles of . . . 758  
    WebApp and mobile 
projects . . . . . . 769  

    task network  . . . . 764  
    time-boxing  . . . . . 768  
    time-line charts. . . 766  
    tracking  . . . . . . . . 767  
    work breakdown  . 765  
  

pre22126_ch34_754-776.indd   754pre22126_ch34_754-776.indd   754 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  755

 The boss smiled and encouraged the young engineer to keep up the good 

work. They planned to meet again in a week’s time. 

 A week later the boss called the engineer into his offi ce and asked, “Where 

are we?” 

 “Everything’s going well,” said the youngster, “but I’ve run into a few small 

snags. I’ll get them ironed out and be back on track soon.” 

 “How does the deadline look?” the boss asked. 

 “No problem,” said the engineer. “I’m close to 90 percent complete.” 

 If you’ve been working in the software world for more than a few years, you 

can fi nish the story. It’ll come as no surprise that the young engineer  1   stayed 

90 percent complete for the entire project duration and fi nished (with the help of 

others) only one month late.    

 This story has been repeated tens of thousands of times by software develop-

ers during the past fi ve decades. The big question is why? 

      34.1  BASIC CONCEPTS 

  Although there are many reasons why software is delivered late, most can be 

traced to one or more of the following root causes:

    •  An unrealistic deadline established by someone outside the software team 

and forced on managers and practitioners on the group.  

   •  Changing customer requirements that are not refl ected in schedule 

changes.  

   •  An honest underestimate of the amount of effort and/or the number of re-

sources that will be required to do the job.  

   •  Predictable and/or unpredictable risks that were not considered when 

the project commenced.  

   •  Technical diffi culties that could not have been foreseen in advance.  

   •  Human diffi culties that could not have been foreseen in advance.  

   •  Miscommunication among project staff that results in delays.  

   •  A failure by project management to recognize that the project is falling 

behind schedule and a lack of action to correct the problem.     

 Aggressive (read “unrealistic”) deadlines are a fact of life in the software busi-

ness. Sometimes such deadlines are demanded for reasons that are legitimate, 

from the point of view of the person who sets the deadline. But common sense 

says that legitimacy must also be perceived by the people doing the work. 

  uote: 

 “Excessive or 
irrational schedules 
are probably 
the single most 
destructive 
infl uence in all of 
software.” 

 Capers Jones 

  1.  In case you were wondering, this story is autobiographical (RSP). 

pre22126_ch34_754-776.indd   755pre22126_ch34_754-776.indd   755 13/12/13   10:02 PM13/12/13   10:02 PM



756 PART FOUR  MANAGING SOFTWARE PROJECTS

 The estimation methods discussed in Chapter 33 and the scheduling tech-

niques described in this chapter are often implemented under the constraint of 

a defi ned deadline. If best estimates indicate that the deadline is unrealistic, a 

competent project manager should “protect his or her team from undue [sched-

ule] pressure . . . [and] refl ect the pressure back to its originators” [Pag85]. 

  To illustrate, assume that your software team has been asked to build a 

real-time controller for a medical diagnostic instrument that is to be introduced 

to the market in nine months. After careful estimation and risk analysis (Chapter 

35), you come to the conclusion that the software, as requested, will require 14 

calendar months to create with available staff. How should you proceed? 

 It is unrealistic to march into the customer’s offi ce (in this case the likely cus-

tomer is marketing/sales) and demand that the delivery date be changed. Exter-

nal market pressures have dictated the date, and the product must be released. 

It is equally foolhardy to refuse to undertake the work (from a career standpoint). 

So, what to do? we recommend the following steps in this situation:

     1.  Perform a detailed estimate using historical data from past projects. 

Determine the estimated effort and duration for the project.  

            2.  Using an incremental process model (Chapter 4), develop a software engi-

neering strategy that will deliver critical functionality by the imposed 

deadline, but delay other functionality until later. Document the plan.  

    3.  Meet with the customer and (using the detailed estimate), explain why 

the imposed deadline is unrealistic. Be certain to note that all estimates 

are based on performance on past projects. Also be certain to indicate the 

percent improvement that would be required to achieve the deadline as it 

currently exists.  2   The following comment is appropriate:      

      I think we may have a problem with the delivery date for the XYZ controller soft-

ware. I’ve given each of you an abbreviated breakdown of development rates for 

past software projects and an estimate that we’ve done a number of different ways. 

You’ll note that I’ve assumed a 20 percent improvement in past development rates, 

but we still get a delivery date that’s 14 calendar months rather than 9 months away.    

    4.  Offer the incremental development strategy as an alternative: 

      We have a few options, and I’d like you to make a decision based on them. First, we 

can increase the budget and bring on additional resources so that we’ll have a shot 

at getting this job done in nine months. But understand that this will increase the 

risk of poor quality due to the tight time line.  3   Second, we can remove a number of 

  uote: 

 “I love deadlines. I 
like the whooshing 
sound they make 
as they fl y by.” 

 Douglas Adams 

 What should 
we do when 

management 
demands that 
we make a 
deadline that is 
impossible? 

?

      2.  If the required improvement is 10 to 25 percent, it may actually be possible to get the job done. 

But, more likely, the required improvement in team performance will be greater than 50 per-

cent. This is an unrealistic expectation. 

  3.  You might also add that increasing the number of people does not reduce calendar time 

proportionally. 

pre22126_ch34_754-776.indd   756pre22126_ch34_754-776.indd   756 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  757

the software functions and capabilities that you’re requesting. This will make the 

preliminary version of the product somewhat less functional, but we can announce 

all functionality and then deliver over the 14-month period. Third, we can dispense 

with reality and wish the project complete in nine months. We’ll wind up with noth-

ing that can be delivered to a customer. The third option, I hope you’ll agree, is 

unacceptable. Past history and our best estimates say that it is unrealistic and a 

recipe for disaster.       

 There will be some grumbling, but if solid estimates based on good historical 

data are presented, it’s likely that negotiated versions of option 1 or 2 will be 

chosen. The unrealistic deadline evaporates. 

      34.2  PROJECT SCHEDULING 

  Fred Brooks was once asked how software projects fall behind schedule. His re-

sponse was as simple as it was profound: “One day at a time.” 

 The reality of a technical project (whether it involves building a hydroelectric 

plant or developing an operating system) is that hundreds of small tasks must 

occur to accomplish a larger goal. Some of these tasks lie outside the mainstream 

and may be completed without worry about impact on project completion date. 

Other tasks lie on the  critical path . If these “critical” tasks fall behind schedule, 

the completion date of the entire project is put into jeopardy. 

      As a project manager, your objective is to defi ne all project tasks, build a net-

work that depicts their interdependencies, identify the tasks that are critical 

within the network, and then track their progress to ensure that delay is recog-

nized “one day at a time.” To accomplish this, you must have a schedule that has 

been defi ned at a degree of resolution that allows progress to be monitored and 

the project to be controlled. 

  Software project scheduling  is an activity that distributes estimated effort 

across the planned project duration by allocating the effort to specifi c software 

engineering tasks. It is important to note, however, that the schedule evolves 

over time. During early stages of project planning, a macroscopic schedule is de-

veloped. This type of schedule identifi es all major process framework activities 

and the product functions to which they are applied. As the project gets under 

way, each entry on the macroscopic schedule is refi ned into a detailed schedule. 

Here, specifi c software actions and tasks (required to accomplish an activity) are 

identifi ed and scheduled.  

 Scheduling for software engineering projects can be viewed from two rather 

different perspectives. In the fi rst, an end date for release of a computer-based 

system has already (and irrevocably) been established. The software organiza-

tion is constrained to distribute effort within the prescribed time frame. The 

second view of software scheduling assumes that rough chronological bounds 

have been discussed but that the end date is set by the software engineering 

   The tasks required to 
achieve a project man-
ager’s objective should 
not be performed man-
ually. There are many 
excellent scheduling 
tools. Use them. 

  uote: 

 “Overly optimistic 
scheduling doesn’t 
result in shorter 
actual schedules, 
it results in longer 
ones.” 

 Steve McConnell 

pre22126_ch34_754-776.indd   757pre22126_ch34_754-776.indd   757 13/12/13   10:02 PM13/12/13   10:02 PM



758 PART FOUR  MANAGING SOFTWARE PROJECTS

organization. Effort is distributed to make best use of resources, and an end date 

is defi ned after careful analysis of the software. Unfortunately, the fi rst situation 

is encountered far more frequently than the second. 

   34.2.1   Basic Principles 

      Like all other areas of software engineering, a number of basic principles guide 

software project scheduling:

        Compartmentalization.  The project must be compartmentalized into a num-

ber of manageable activities and tasks. To accomplish compartmentalization, 

both the product and the process are decomposed.  

       Interdependency.  The interdependency of each compartmentalized activity 

or task must be determined. Some tasks must occur in sequence, while others 

can occur in parallel. Some activities cannot commence until the work product 

produced by another is available. Other activities can occur independently.  

      Time allocation.  Each task to be scheduled must be allocated some num-

ber of work units (e.g., person-days of effort). In addition, each task must be 

assigned a start date and a completion date that are a function of the interde-

pendencies and whether work will be conducted on a full-time or part-time 

basis.  

       Effort validation.  Every project has a defi ned number of people on the soft-

ware team. As time allocation occurs, you must ensure that no more than the 

allocated number of people has been scheduled at any given time. For exam-

ple, consider a project that has three assigned software engineers (e.g., three 

person-days are available per day of assigned effort).  4   On a given day, seven 

concurrent tasks must be accomplished. Each task requires 0.50 person-days of 

effort. More effort has been allocated than there are people to do the work. 

            Defi ned responsibilities.  Every task that is scheduled should be assigned to a 

specifi c team member.  

       Defi ned outcomes.  Every task that is scheduled should have a defi ned out-

come. For software projects, the outcome is normally a work product (e.g., the 

design of a component) or a part of a work product. Work products are often 

combined in deliverables.  

       Defi ned milestones.  Every task or group of tasks should be associated with a 

project milestone. A milestone is accomplished when one or more work prod-

ucts has been reviewed for quality (Chapter 19) and has been approved.    

 Each of these principles is applied as the project schedule evolves. 

   When you develop 
a schedule, 
compartmentalize 
the work, note task 
interdependencies, 
allocate effort and 
time to each task, and 
defi ne responsibilities, 
outcomes, and 
milestones. 

      4.  In reality, less than three person-days of effort are available because of unrelated meetings, 

sickness, vacation, and a variety of other reasons. For our purposes, however, we assume 

100 percent availability. 

pre22126_ch34_754-776.indd   758pre22126_ch34_754-776.indd   758 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  759

    34.2.2   The Relationship between People and Effort 

      There is a common myth that is still believed by many managers who are respon-

sible for software development work: “If we fall behind schedule, we can always 

add more programmers and catch up later in the project.” Unfortunately, add-

ing people late in a project often has a disruptive effect on the project, causing 

schedules to slip even further. The people who are added must learn the system, 

and the people who teach them are the same people who were doing the work. 

While teaching, no work is done, and the project falls further behind. 

 In addition to the time it takes to learn the system, more people increase the 

number of communication paths and the complexity of communication through-

out a project. Although communication is absolutely essential to successful soft-

ware development, every new communication path requires additional effort 

and therefore additional time. 

 Over the years, empirical data and theoretical analysis have demonstrated 

that project schedules are elastic. That is, it is possible to compress a desired 

project completion date (by adding additional resources) to some extent. It is 

also possible to extend a completion date (by reducing the number of resources). 

 The  Putnam-Norden-Rayleigh (PNR) Curve   5   provides an indication of the rela-

tionship between effort applied and delivery time for a software project. A ver-

sion of the curve, representing project effort as a function of delivery time, is 

shown in   Figure 34.1  . The curve indicates a minimum value  t  
o
  that indicates the 

least cost for delivery (i.e., the delivery time that will result in the least effort 

expended). As we move left of  t  
o
  (i.e., as we try to accelerate delivery), the curve 

rises nonlinearly.         

      As an example, we assume that a project team has estimated a level of effort 

 E  
d
  will be required to achieve a nominal delivery time  t  

d
  that is optimal in terms 

   If you must add 
people to a late 
project, be sure that 
you’ve assigned them 
work that is highly 
compartmentalized. 

  5.  Original research can be found in [Nor70] and [Put78]. 

 FIGURE 34.1

 The 
relationship 
between effort 
and delivery 
time

Effort
cost

Ed

Ea = m (td4/ta4)

Eo

td to Development time
Tmin = 0.75Td

Impossible
region

Ea = effort in person-months
td = nominal delivery time for schedule
to = optimal development time (in terms of cost)
ta = actual delivery time desired

pre22126_ch34_754-776.indd   759pre22126_ch34_754-776.indd   759 13/12/13   10:02 PM13/12/13   10:02 PM



760 PART FOUR  MANAGING SOFTWARE PROJECTS

of schedule and available resources. Although it is possible to accelerate deliv-

ery, the curve rises very sharply to the left of  t  
d
 . In fact, the PNR curve indicates 

the project delivery time cannot be compressed much beyond 0.75 t  
d
 . If we at-

tempt further compression, the project moves into “the impossible region” and 

risk of failure becomes very high. The PNR curve also indicates that the lowest 

cost delivery option,  t  
o
  5 2 t  

d
 . The implication here is that delaying project deliv-

ery can reduce costs signifi cantly. Of course, this must be weighed against the 

business cost associated with the delay. 

 The software equation [Put92] introduced in Chapter 33 is derived from the 

PNR curve and demonstrates the highly nonlinear relationship between chrono-

logical time to complete a project and human effort applied to the project. The 

number of delivered lines of code (source statements),  L,  is related to effort and 

development time by the equation: 

       L  5  P  3  E  1/3  t  4/3  

 where  E  is development effort in person-months,  P  is a productivity parameter 

that refl ects a variety of factors that leads to high-quality software engineering 

work (typical values for  P  range between 2000 and 12,000), and  t  is the project 

duration in calendar months. 

 Rearranging this software equation, we can arrive at an expression for devel-

opment effort E:

 E  5   L
3
 ____ 

P3t4   (34.1) 

 where  E  is the effort expended (in person-years) over the entire life cycle for 

software development and maintenance and  t  is the development time in years. 

The equation for development effort can be related to development cost by the 

inclusion of a burdened labor rate factor ($/person-year). 

 This leads to some interesting results. Consider a complex, real-time software 

project estimated at 33,000 LOC, 12 person-years of effort. If eight people are 

assigned to the project team, the project can be completed in approximately 

1.3 years. If, however, we extend the end date to 1.75 years, the highly nonlinear 

nature of the model described in Equation (34.1) yields:

 E  5   L
3
 ____ 

P3t4   ~ 3.8 person-years 

 This implies that, by extending the end date by six months, we can reduce the 

number of people from eight to four! The validity of such results is open to de-

bate, but the implication is clear: benefi t can be gained by using fewer people 

over a somewhat longer time span to accomplish the same objective. 

    34.2.3   Effort Distribution 

      Each of the software project estimation techniques discussed in Chapter 33 leads 

to estimates of work units (e.g., person-months) required to complete software 

   If delivery can be 
delayed, the PNR curve 
indicates that project 
costs can be reduced 
substantially. 

   As the project deadline 
becomes tighter and 
tighter, you reach 
a point at which 
the work cannot 
be completed on 
schedule, regardless of 
the number of people 
doing the work. Face 
reality and defi ne a 
new delivery date. 

pre22126_ch34_754-776.indd   760pre22126_ch34_754-776.indd   760 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  761

development. A recommended distribution of effort across the software process 

is often referred to as the  40220240 rule.  Forty percent of all effort is allocated to 

front-end analysis and design. A similar percentage is applied to back-end test-

ing. You can correctly infer that coding (20 percent of effort) is deemphasized.  

 This effort distribution should be used as a guideline only.  6   The characteris-

tics of each project dictate the distribution of effort. Work expended on project 

planning rarely accounts for more than 2 to 3 percent of effort, unless the plan 

commits an organization to large expenditures with high risk. Customer com-

munication and requirements analysis may comprise 10 to 25 percent of project 

effort. Effort expended on analysis or prototyping should increase in direct pro-

portion with project size and complexity. A range of 20 to 25 percent of effort is 

normally applied to software design. Time expended for design review and sub-

sequent iteration must also be considered.    

 Because of the effort applied to software design, code should follow with rela-

tively little diffi culty. A range of 15 to 20 percent of overall effort can be achieved. 

Testing and subsequent debugging can account for 30 to 40 percent of software 

development effort. The criticality of the software often dictates the amount of 

testing that is required. If software is human rated (i.e., software failure can re-

sult in loss of life), even higher percentages are typical. 

       34.3  DEFINING A TASK SET FOR THE SOFTWARE PROJECT 

  Regardless of the process model that is chosen, the work that a software team 

performs is achieved through a set of tasks that enable you to defi ne, develop, 

and ultimately support computer software. No single task set is appropriate for 

all projects. The set of tasks that would be appropriate for a large, complex sys-

tem would likely be perceived as overkill for a small, relatively simple software 

product. Therefore, an effective software process should defi ne a collection of 

task sets, each designed to meet the needs of different types of projects. 

 As we noted in Chapter 3, a task set is a collection of software engineering 

work tasks, milestones, work products, and quality assurance fi lters that must 

be accomplished to complete a particular project. The task set must provide 

enough discipline to achieve high software quality. But, at the same time, it must 

not burden the project team with unnecessary work. 

 In order to develop a project schedule, a task set must be distributed on the 

project time line. The task set will vary depending upon the project type and the 

degree of rigor with which the software team decides to do its work. Although it 

 How should 
effort 

be distributed 
across the 
software process 
workfl ow? 

?

  6.  Today, the 40-20-40 rule is under attack. Some believe that more than 40 percent of overall 

effort should be expended during analysis and design. On the other hand, some proponents of 

agile development (Chapter 5) argue that less time should be expended “up front” and that a 

team should move quickly to construction. 

pre22126_ch34_754-776.indd   761pre22126_ch34_754-776.indd   761 13/12/13   10:02 PM13/12/13   10:02 PM



762 PART FOUR  MANAGING SOFTWARE PROJECTS

is diffi cult to develop a comprehensive taxonomy of software project types, most 

software organizations encounter the following projects:

     1.   Concept development projects  that are initiated to explore some new 

business concept or application of some new technology.  

    2.   New application development  projects that are undertaken as a 

consequence of a specifi c customer request.  

    3.   Application enhancement  projects that occur when existing software 

undergoes major modifi cations to function, performance, or interfaces 

that are observable by the end user.  

    4.   Application maintenance projects  that correct, adapt, or extend 

existing software in ways that may not be immediately obvious to the end 

user.  

    5.   Reengineering projects  that are undertaken with the intent of rebuilding 

an existing (legacy) system in whole or in part.    

      Even within a single project type, many factors infl uence the task set to be 

chosen. These include [Pre05]: size of the project, number of potential users, 

mission criticality, application longevity, stability of requirements, ease of 

customer/developer communication, maturity of applicable technology, perfor-

mance constraints, embedded and nonembedded characteristics, project staff, 

and reengineering factors. When taken in combination, these factors provide 

an indication of the  degree of rigor  with which the software process should be 

applied. 

   34.3.1   A Task Set Example 

 Concept development projects are initiated when the potential for some new tech-

nology must be explored. There is no certainty that the technology will be applica-

ble, but a customer (e.g., marketing) believes that potential benefi t exists. Concept 

development projects are approached by applying the following major tasks:

     1.1   Concept scoping  determines the overall scope of the project.  

    1.2   Preliminary concept planning  establishes the organization’s ability to 

undertake the work implied by the project scope.  

    1.3   Technology risk assessment  evaluates the risk associated with the 

technology to be implemented as part of the project scope.  

    1.4   Proof of concept  demonstrates the viability of a new technology in the 

software context.  

    1.5   Concept implementation  implements the concept representation 

in a manner that can be reviewed by a customer and is used for 

“marketing” purposes when a concept must be sold to other customers or 

management.  

 WebRef 
 An adaptable process 
model (APM) has been 
developed to assist 
in defi ning task sets 
for various software 
projects. A complete 
description of the 
APM can be found at 
  www.rspa.com/
apm  . 

pre22126_ch34_754-776.indd   762pre22126_ch34_754-776.indd   762 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  763

    1.6   Customer reaction  to the concept solicits feedback on a new technology 

concept and targets specifi c customer applications.    

 A quick scan of these tasks should yield few surprises. In fact, the software 

engineering fl ow for concept development projects (and for all other types of 

projects as well) is little more than common sense. 

    34.3.2    Refi nement of Major Tasks 

 The major tasks (i.e., software engineering actions) described in the preceding 

section may be used to defi ne a macroscopic schedule for a project. However, 

the macroscopic schedule must be refi ned to create a detailed project schedule. 

Refi nement begins by taking each major task and decomposing it into a set of 

subtasks (with related work products and milestones). 

 As an example of task decomposition, consider Task 1.1, Concept Scoping. 

Task refi nement can be accomplished using an outline format, but in this book, 

a process design language approach is used to illustrate the fl ow of the concept 

scoping activity:

Task defi nition: Task 1.1 Concept Scoping

1.1.1 Identify need, benefi ts and potential customers;

1.1.2 Defi ne desired output/control and input events that drive the application;

 Begin Task 1.1.2

 1.1.2.1 TR: Review written description of need  7  

 1.1.2.2 Derive a list of customer visible outputs/inputs

 1.1.2.3 TR: Review outputs/inputs with customer and revise as required;

 endtask Task 1.1.2

1.1.3 Defi ne the functionality/behavior for each major function;

 Begin Task 1.1.3

 1.1.3.1 TR: Review output and input data objects derived in task 1.1.2;

 1.1.3.2 Derive a model of functions/behaviors;

 1.1.3.3 TR: Review functions/behaviors with customer and revise as required;

 endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;

1.1.5 Research availability of existing software;

1.1.6 Defi ne technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a Scope Defi nition;

endtask defi nition: Task 1.1 

    The tasks and subtasks noted in the process design language refi nement form 

the basis for a detailed schedule for the concept scoping activity. 

  7.  TR indicates that a technical review (Chapter 20) is to be conducted. 

pre22126_ch34_754-776.indd   763pre22126_ch34_754-776.indd   763 13/12/13   10:02 PM13/12/13   10:02 PM



764 PART FOUR  MANAGING SOFTWARE PROJECTS

       34.4  DEFINING A TASK NETWORK 

       Individual tasks and subtasks have interdependencies based on their sequence. 

In addition, when more than one person is involved in a software engineering 

project, it is likely that development activities and tasks will be performed in 

parallel. When this occurs, concurrent tasks must be coordinated so that they 

will be complete when later tasks require their work product(s). 

 A  task network,  also called an  activity network,  is a graphic representation of 

the task fl ow for a project. It is sometimes used as the mechanism through which 

task sequence and dependencies are input to an automated project scheduling 

tool. In its simplest form (used when creating a macroscopic schedule), the task 

network depicts major software engineering tasks.   Figure 34.2   shows a sche-

matic task network for a concept development project.   

    The concurrent nature of software engineering activities leads to a number 

of important scheduling requirements. Because parallel tasks occur asynchro-

nously, you should determine intertask dependencies to ensure continuous 

progress toward completion. In addition, you should be aware of those tasks that 

lie on the  critical path.  That is, tasks that must be completed on schedule if the 

project as a whole is to be completed on schedule. These issues are discussed in 

more detail later in this chapter. 

 It is important to note that the task network shown in   Figure 34.2   is macro-

scopic. In a detailed task network (a precursor to a detailed schedule), each ac-

tivity shown in the fi gure would be expanded. For example, Task 1.1 would be 

expanded to show all tasks detailed in the refi nement of Tasks 1.1 shown in Sec-

tion 34.3.2. 

   The task network is 
a useful mechanism 
for depicting intertask 
dependencies and 
determining the critical 
path. 

I.1
Concept
scoping

I.2
Concept
planning

I.3b
Tech. risk

assessment 

I.4
Proof of
concept

I.5b
Concept

implement

Integrate
a, b, c

I.6
Customer
reaction

I.3a
Tech. risk

assessment

I.5a
Concept

implement

I.3c
Tech. risk

assessment

I.5c
Concept

implement

Three I.5 tasks are
applied in parallel to
3 different concept
functions

 FIGURE 34.2  A task network for concept development

pre22126_ch34_754-776.indd   764pre22126_ch34_754-776.indd   764 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  765

      34.5  SCHEDULING   

 Scheduling of a software project does not differ greatly from scheduling of any 

multitask engineering effort. Therefore, generalized project scheduling tools 

and techniques can be applied with little modifi cation for software projects. 

  Program evaluation and review technique  (PERT) and the  critical path method  

(CPM) are two project scheduling methods that can be applied to software devel-

opment. Both techniques are driven by information already developed in earlier 

project planning activities: estimates of effort, a decomposition of the product 

function, the selection of the appropriate process model and task set, and de-

composition of the tasks that are selected. 

 Interdependencies among tasks may be defi ned using a task network. Tasks, 

sometimes called the project  work breakdown structure  (WBS), are defi ned for 

the product as a whole or for individual functions. 

 Both PERT and CPM provide quantitative tools that allow you to (1) determine 

the critical path—the chain of tasks that determines the duration of the project, 

(2) establish “most likely” time estimates for individual tasks by applying statis-

tical models, and (3) calculate “boundary times” that defi ne a time “window” for 

a particular task. 

  uote: 

 “ All  we have to 
decide is what to 
do with the time 
that is given to us.” 

 Gandalf in 
 The Lord of 
the Rings: 

Fellowship of 
the Rings  

  Project Scheduling 

     Objective:   The objective of project 
scheduling tools is to enable a project 

manager to defi ne work tasks; establish their 
dependencies; assign human resources to tasks; and 
develop a variety of graphs, charts, and tables that aid 
in tracking and control of the software project. 

   Mechanics:   In general, project scheduling tools require 
the specifi cation of a work breakdown structure of tasks 
or the generation of a task network. Once the task 
breakdown (an outline) or network is defi ned, start and 
end dates, human resources, hard deadlines, and other 
data are attached to each. The tool then generates a 
variety of time-line charts and other tables that enable a 
manager to assess the task fl ow of a project. These data 
can be updated continually as the project is under way. 

    Representative Tools:  8   
           AMS Realtime,  developed by Advanced Management 

Systems (  www.amsusa.com  ), provides scheduling 
capabilities for projects of all sizes and types.  

       Microsoft Project,  developed by Microsoft (  www.
microsoft.com  ), is the most widely used PC-based 
project scheduling tool.  

       4C,  developed by  4C Systems  (  www.4csys.com  ), 
supports all aspects of project planning including 
scheduling.  

  A comprehensive list of project management software 
vendors and products can be found at   www.infogoal.
com/pmc/pmcswr.htm  .   

 SOFTWARE TOOLS 

  8.  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch34_754-776.indd   765pre22126_ch34_754-776.indd   765 13/12/13   10:02 PM13/12/13   10:02 PM



766 PART FOUR  MANAGING SOFTWARE PROJECTS

        34.5.1   Time-Line Charts 

 When creating a software project schedule, you begin with a set of tasks (the 

work breakdown structure). If automated tools are used, the work breakdown is 

input as a task network or task outline. Effort, duration, and start date are then 

input for each task. In addition, tasks may be assigned to specifi c individuals. 

      As a consequence of this input, a  time-line chart,  also called a  Gantt chart,  

is generated. A time-line chart can be developed for the entire project. Alter-

natively, separate charts can be developed for each project function or for each 

individual working on the project. 

   Figure 34.3   illustrates the format of a time-line chart. It depicts a part of a 

software project schedule that emphasizes the  concept scoping  task for a 

word-processing (WP) software product. All project tasks (for concept scoping) 

are listed in the left-hand column. The horizontal bars indicate the duration of 

each task. When multiple bars occur at the same time on the calendar, task con-

currency is implied. The diamonds indicate milestones.      

 Once the information necessary for the generation of a time-line chart has 

been input, the majority of software project scheduling tools produce  project 

   A time-line chart 
enables you to 
determine what tasks 
will be conducted at a 
given point in time. 

Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required 
Milestone: OCI defined
Define the function/behavior
Define keyboard functions
Define voice input functions
Describe modes of interaction
Describe spell/grammar check
Describe other WP functions
FTR: Review OCI definition with customer
Revise as required
Milestone: OCI definition complete
Isolation software elements
Milestone: Software elements defined
Research availability of existing software
Research text editing components
Research voice input components
Research file management components
Research spell/grammar check components
Milestone: Reusable components identified
Define technical feasibility
Evaluate voice input
Evaluate grammar checking
Milestone: Technical feasibility assessed
Make quick estimate of size
Create a scope definition
Review scope document with customer
Revise document as required
Milestone: Scope document complete

I.1.1

I.1.2

I.1.3

I.1.4

I.1.5

I.1.6

I.1.7
I.1.8

Work tasks Week 1 Week 2 Week 3 Week 4 Week 5

 FIGURE 34.3  An example time-line chart

pre22126_ch34_754-776.indd   766pre22126_ch34_754-776.indd   766 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  767

tables —a tabular listing of all project tasks, their planned and actual start and 

end dates, and a variety of related information (  Figure 34.4  ). Used in conjunction 

with the time-line chart, project tables enable you to track progress.      

    34.5.2   Tracking the Schedule 

  If it has been properly developed, the project schedule becomes a road map that 

defi nes the tasks and milestones to be tracked and controlled as the project pro-

ceeds. Tracking can be accomplished in a number of different ways:

    •  Conducting periodic project status meetings in which each team member 

reports progress and problems.  

   •  Evaluating the results of all reviews conducted throughout the software 

engineering process.  

   •  Determining whether formal project milestones (the diamonds shown in 

  Figure 34.3  ) have been accomplished by the scheduled date.  

   •  Comparing the actual start date to the planned start date for each project 

task listed in the resource table (  Figure 34.4  ).  

   •  Meeting informally with practitioners to obtain their subjective assess-

ment of progress to date and problems on the horizon.  

   •  Using earned value analysis (Section 34.6) to assess progress 

quantitatively.  

   In reality, all of these tracking techniques are used by experienced project 

managers. 

    uote: 

 “The basic rule of 
software status 
reporting can be 
summarized in a 
single phrase: ‘No 
surprises’.“ 

 Capers Jones 

Planned
start

Actual
start

Planned
complete

Actual
complete

Assigned
person

Effort
allocated Notes

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3
wk2, d1
wk2, d1
wk1, d4
wk2, d1
wk2, d3
wk2, d4
wk2, d5

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3

wk1, d4

wk1, d2
wk1, d2
wk1, d3
wk1, d3

wk2, d2
wk2, d2
wk2, d3
wk2, d2
wk2, d3
wk2, d3
wk2, d3
wk2, d4
wk2, d5

wk1, d2
wk1, d2
wk1, d3
wk1, d3

BLS
JPP
BLS/JPP

BLS
JPP
MLL
BLS
JPP
MLL
all
all

2 p-d
1 p-d
1 p-d

1.5 p-d
2 p-d
1 p-d
1.5 p-d
2 p-d
3 p-d
3 p-d
3 p-d

Scoping will
require more
effort/time

Work tasks

Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnostics
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined
Define the function/behavior

I.1.1

I.1.2

I.1.3

 FIGURE 34.4  An example project table

pre22126_ch34_754-776.indd   767pre22126_ch34_754-776.indd   767 13/12/13   10:02 PM13/12/13   10:02 PM



768 PART FOUR  MANAGING SOFTWARE PROJECTS

      Control is employed by a software project manager to administer project re-

sources, cope with problems, and direct project staff. If things are going well 

(i.e., the project is on schedule and within budget, reviews indicate that real 

progress is being made and milestones are being reached), control is light. But 

when problems occur, you must exercise control to reconcile them as quickly 

as possible. After a problem has been diagnosed, additional resources may be 

focused on the problem area: staff may be redeployed or the project schedule 

can be redefi ned. 

 When faced with severe deadline pressure, experienced project managers 

sometimes use a project scheduling and control technique called  time-boxing  

[Jal04]. The time-boxing strategy recognizes that the complete product may not 

be deliverable by the predefi ned deadline. Therefore, an incremental software 

paradigm (Chapter 4) is chosen, and a schedule is derived for each incremental 

delivery. 

 The tasks associated with each increment are then time-boxed. This means 

that the schedule for each task is adjusted by working backward from the de-

livery date for the increment. A “box” is put around each task. When a task hits 

the boundary of its time box (plus or minus 10 percent), work stops and the next 

task begins. 

 The initial reaction to the time-boxing approach is often negative: “If the 

work isn’t fi nished, how can we proceed?” The answer lies in the way work is 

accomplished. By the time the time-box boundary is encountered, it is likely that 

90 percent of the task has been completed.  9   The remaining 10 percent, although 

important, can (1) be delayed until the next increment or (2) be completed later 

if required. Rather than becoming “stuck” on a task, the project proceeds toward 

the delivery date.    

    34.5.3   Tracking Progress for an OO Project 

 Although an iterative model is the best framework for an OO project, task par-

allelism makes project tracking diffi cult. You may have diffi culty establishing 

meaningful milestones for an OO project because a number of different things 

are happening at once. In general, the following major milestones can be consid-

ered “completed” when the criteria noted have been met. 

     Technical milestone: OO analysis completed 

   •  All classes and the class hierarchy have been defi ned and reviewed.  

   •  Class attributes and operations associated with a class have been defi ned 

and reviewed.  

   •  Class relationships (Chapter 10) have been established and reviewed.  

   The best indication 
of progress is the 
completion and 
successful review of a 
defi ned software work 
product. 

  9.  A cynic might recall the saying: “The fi rst 90 percent of the system takes 90 percent of the time; 

the remaining 10 percent of the system takes 90 percent of the time.” 

pre22126_ch34_754-776.indd   768pre22126_ch34_754-776.indd   768 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  769

   •  A behavioral model (Chapter 11) has been created and reviewed.  

   •  Reusable classes have been noted.    

     Technical milestone: OO design completed 

   •  The set of subsystems has been defi ned and reviewed.  

   •  Classes are allocated to subsystems and reviewed.  

   •  Task allocation has been established and reviewed.  

   •  Responsibilities and collaborations have been identifi ed.  

   •  Attributes and operations have been designed and reviewed.  

   •  The communication model has been created and reviewed.    

     Technical milestone: OO programming completed 

   •  Each new class has been implemented in code from the design model.  

   •  Extracted classes (from a reuse library) have been implemented.  

   •  Prototype or increment has been built.        

      Technical milestone: OO testing 

   •  The correctness and completeness of OO analysis and design models have 

been reviewed.  

   •  A class-responsibility-collaboration network (Chapter 10) has been devel-

oped and reviewed.  

   •  Test cases are designed, and class-level tests (Chapter 24) have been con-

ducted for each class.  

   •  Test cases are designed, and cluster testing (Chapter 24) is completed and 

the classes are integrated.  

   •  System-level tests have been completed.    

 Recalling that the OO process model is iterative, each of these milestones may 

be revisited as different increments are delivered to the customer. 

    34.5.4   Scheduling for WebApp and Mobile Projects 

  Web and MobileApp project scheduling  distributes estimated effort across the 

planned time line (duration) for building each increment. This is accomplished 

by allocating the effort to specifi c tasks. It is important to note, however, that 

the overall schedule evolves over time. During the fi rst iteration, a macroscopic 

schedule is developed. This type of schedule identifi es all Web or MobileApp 

increments and projects the dates on which each will be deployed. As the de-

velopment of an increment gets under way, the entry for the increment on the 

macroscopic schedule is refi ned into a detailed schedule. Here, specifi c devel-

opment tasks (required to accomplish an activity) are identifi ed and scheduled. 

   Debugging and testing 
occur in concert with 
one another. The 
status of debugging 
is often assessed by 
considering the type 
and number of “open” 
errors (bugs). 

pre22126_ch34_754-776.indd   769pre22126_ch34_754-776.indd   769 13/12/13   10:02 PM13/12/13   10:02 PM



770 PART FOUR  MANAGING SOFTWARE PROJECTS

 Let’s consider the   SafeHomeAssured.com   to better understand macroscopic 

scheduling. Recalling previous discussions of   SafeHomeAssured.com  , seven in-

crements can be identifi ed for the Web-based component of the project:

       Increment 1: Basic company and product information  

      Increment 2: Detailed product information and downloads  

      Increment 3: Product quotes and processing product orders  

      Increment 4: Space layout and security system design  

      Increment 5: Information and ordering of monitoring services  

      Increment 6: Online control of monitoring equipment  

      Increment 7: Accessing account information    

 The team consults and negotiates with stakeholders and develops a  prelim-

inary  deployment schedule for all seven increments. A time-line chart for this 

schedule is illustrated in   Figure 34.5  .      

 It is important to note that the deployment dates (represented by diamonds on 

the time-line chart) are preliminary and may change as more detailed scheduling 

of the increments occurs. However, this macroscopic schedule provides manage-

ment with an indication of when content and functionality will be available and 

when the entire project will be completed. As a preliminary estimate, the team 

will work to deploy all increments with a 12-week time line. It’s also worth noting 

that some of the increments will be developed in parallel (e.g., increments 3, 4, and 

7). This assumes that the team will have suffi cient people to do this parallel work. 

#1.
Basic company and product information

Weeks

Increments 1 2 3 4 5 6 7 8 9 10 11 12 13

#2.
Detailed product information and downloads

#3.
Product quotes and processing product orders

#4.
Space layout and security system design

#5.
Information and ordering of monitoring services

#6.
On line control of monitoring equipment

#7.
Accessing account information

 FIGURE 34.5  Time line for macroscopic project schedule

pre22126_ch34_754-776.indd   770pre22126_ch34_754-776.indd   770 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  771

  Once the macroscopic schedule has been developed, the team is ready to 

schedule work tasks for a specifi c increment. To accomplish this, you can use 

a generic process framework that is applicable for all increments. A  task list  is 

created by using the generic tasks derived as part of the framework as a starting 

point and then adapting these by considering the content and functions to be 

derived for a specifi c WebApp increment. 

 Each framework action (and its related tasks) can be adapted in one of four 

ways: (1) a task is applied as is, (2) a task is eliminated because it is not neces-

sary for the increment, (3) a new (custom) task is added, and (4) a task is refi ned 

(elaborated) into a number of named subtasks that each becomes part of the 

schedule. 

 To illustrate, consider a generic  design modeling  action for WebApps that can 

be accomplished by noting the generic design tasks for WebApps discussed in 

Chapter 17. As an example, consider the generic task  Design the Interface  as 

it is applied to the fourth increment of   SafeHomeAssured.com  . Recall that the 

fourth increment implements the content and function for describing the living 

or business space to be secured by the  SafeHome  security system. Referring to 

  Figure 34.5  , the fourth increment commences at the beginning of the fi fth week 

and terminates at the end of the ninth week. 

 There is little question that the  Design the Interface  task must be conducted. 

The team recognizes that the interface design is pivotal to the success of the 

increment and decides to refi ne (elaborate) the task. The following subtasks are 

derived for the  Design the Interface  task for the fourth increment:

    •  Develop a sketch of the page layout for the space design page.  

   •  Review layout with stakeholders.  

   •  Design space layout navigation mechanisms.  

   •  Design “drawing board” layout.  10         

   •  Develop procedural details for the graphical wall layout function.  

   •  Develop procedural details for the wall length computation and display 

function.  

   •  Develop procedural details for the graphical window layout function.  

   •  Develop procedural details for the graphical door layout function.  

   •  Design mechanisms for selecting security system components (sensors, 

cameras, microphones, etc.).  

      10.  At this stage, the team envisions creating the space by literally drawing the walls, windows, 

and doors using graphical functions. Wall lines will “snap” onto grip points. Dimensions of the 

wall will be displayed automatically. Windows and doors will be positioned graphically. The end 

user can also select specifi c sensors, cameras, etc., and position them once the space has been 

defi ned. 

pre22126_ch34_754-776.indd   771pre22126_ch34_754-776.indd   771 13/12/13   10:02 PM13/12/13   10:02 PM



772 PART FOUR  MANAGING SOFTWARE PROJECTS

   •  Develop procedural details for the graphical layout of security system 

components.  

   •  Conduct pair walkthroughs as required.    

 These tasks become part of the increment schedule for the fourth WebApp incre-

ment and are allocated over the increment development schedule. They can be input 

to scheduling software (e.g., Microsoft  Project ) and used for tracking and control.     

  Tracking the Schedule   Tracking the Schedule 

        The scene:  Doug Miller’s offi ce 
prior to the initiation of the  SafeHome  

software project.  

       The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software 
engineering team.  

       The conversation:   

       Doug (glancing at a PowerPoint slide):  The 
schedule for the fi rst  SafeHome  increment seems reason-
able, but we’re going to have trouble tracking progress.  

       Vinod (a concerned look on his face):  Why? We 
have tasks scheduled on a daily basis, plenty of work 
products, and we’ve been sure that we’re not overallo-
cating resources.  

       Doug:  All good, but how do we know when the re-
quirements model for the fi rst increment is complete?  

       Jamie:  Things are iterative, so that’s diffi cult.  

       Doug:  I understand that, but . . . well, for instance, 
take “analysis classes defi ned.” You indicated that as a 
milestone.  

       Vinod:  We have.  

       Doug:  Who makes that determination?  

       Jamie (aggravated):  They’re done when they’re done.  

       Doug:  That’s not good enough, Jamie. We have to 
schedule TRs [technical reviews, Chapter 20], and you 
haven’t done that. The successful completion of a review 
on the analysis model, for instance, is a reasonable 
milestone. Understand?  

       Jamie (frowning):  Okay, back to the drawing 
board.  

       Doug:  It shouldn’t take more than an hour to make the 
corrections . . . everyone else can get started now.    

 SAFEHOME 

        34.6  EARNED VALUE ANALYS IS 

        We discussed a number of qualitative approaches to project tracking in Sec-

tion 34.5. Each provides the project manager with an indication of progress, but 

an assessment of the information provided is somewhat subjective. It is reason-

able to ask whether there is a quantitative technique for assessing progress as 

the software team progresses through the work tasks allocated to the project 

schedule. In fact, a technique for performing quantitative analysis of progress 

does exist. It is called  earned value analysis  (EVA). Humphrey [Hum95] discusses 

earned value in the following manner:

  The earned value system provides a common value scale for every [software project] 

task, regardless of the type of work being performed. The total hours to do the whole 

project are estimated, and every task is given an earned value based on its estimated 

percentage of the total.   

   Earned value provides 
a quantitative indica-
tion of progress. 

pre22126_ch34_754-776.indd   772pre22126_ch34_754-776.indd   772 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  773

 Stated even more simply, earned value is a measure of progress. It enables 

you to assess the “percent of completeness” of a project using quantitative anal-

ysis rather than rely on a gut feeling. In fact, Fleming and Koppleman [Fle98] 

argue that earned value analysis “provides accurate and reliable readings of per-

formance from as early as 15 percent into the project.” To determine the earned 

value, the following steps are performed:     

       1.  The  budgeted cost of work scheduled  (BCWS) is determined for each work 

task represented in the schedule. During estimation, the work (in 

person-hours or person-days) of each software engineering task is 

planned. Hence, BCWS 
i
  is the effort planned for work task  i.  To determine 

progress at a given point along the project schedule, the value of BCWS is 

the sum of the BCWS 
i
  values for all work tasks that should have been 

completed by that point in time on the project schedule.  

    2.  The BCWS values for all work tasks are summed to derive the  budget at 

completion  (BAC). Hence, 

   BAC 5 S (BCWS 
k
 ) for all tasks  k   

    3.  Next, the value for  budgeted cost of work performed  (BCWP) is computed. 

The value for BCWP is the sum of the BCWS values for all work tasks that 

have actually been completed by a point in time on the project schedule.    

      Wilkens [Wil99] notes that “the distinction between the BCWS and the BCWP 

is that the former represents the budget of the activities that were planned to 

be completed and the latter represents the budget of the activities that actually 

were completed.” Given values for BCWS, BAC, and BCWP, important progress 

indicators can be computed:

Schedule performance index, SPI 5   BCWP _______ 
BCWS

  

Schedule variance, SV 5 BCWP 2 BCWS 

 SPI is an indication of the effi ciency with which the project is utilizing sched-

uled resources. An SPI value close to 1.0 indicates effi cient execution of the proj-

ect schedule. SV is simply an absolute indication of variance from the planned 

schedule.

Percent scheduled for completion 5   BCWS _______ 
BAC

   

 provides an indication of the percentage of work that should have been com-

pleted by time  t. 

Percent complete 5   BCWP _______ 
BAC

   

 provides a quantitative indication of the percent of completeness of the project 

at a given point in time  t.  

 How do I 
compute 

earned value and 
use it to assess 
progress? 

?

 WebRef 
 A wide array of 
earned value analysis 
resources can be found 
at   http://www
.acq.osd.mil/evm/  . 

pre22126_ch34_754-776.indd   773pre22126_ch34_754-776.indd   773 13/12/13   10:02 PM13/12/13   10:02 PM



774 PART FOUR  MANAGING SOFTWARE PROJECTS

 It is also possible to compute the  actual cost of work performed  (ACWP). The 

value for ACWP is the sum of the effort actually expended on work tasks that 

have been completed by a point in time on the project schedule. It is then possi-

ble to compute

Cost performance index, CPI 5   BCWP _______ 
ACWP

  

Cost variance, CV 5 BCWP 2 ACWP 

 A CPI value close to 1.0 provides a strong indication that the project is within 

its defi ned budget. CV is an absolute indication of cost savings (against planned 

costs) or shortfall at a particular stage of a project. 

 Like over-the-horizon radar, earned value analysis illuminates scheduling dif-

fi culties before they might otherwise be apparent. This enables you to take cor-

rective action before a project crisis develops. 

 34.7       SUMMARY 

 Scheduling is the culmination of a planning activity that is a primary component 

of software project management. When combined with estimation methods and 

risk analysis, scheduling establishes a road map for the project manager. 

 Scheduling begins with process decomposition. The characteristics of the 

project are used to adapt an appropriate task set for the work to be done. A 

task network depicts each engineering task, its dependency on other tasks, and 

its projected duration. The task network is used to compute the critical path, 

a time-line chart, and a variety of project information. Using the schedule as a 

guide, you can track and control each step in the software process. 

     PROBLEMS AND POINTS TO PONDER 
    34.1.  “Unreasonable” deadlines are a fact of life in the software business. How should you 
proceed if you’re faced with one?  

   34.2.  What is the difference between a macroscopic schedule and a detailed schedule? Is it 
possible to manage a project if only a macroscopic schedule is developed? Why?  

   34.3.  Is there ever a case where a software project milestone is not tied to a review? If so, 
provide one or more examples.  

   34.4.  “Communication overhead” can occur when multiple people work on a software proj-
ect. The time spent communicating with others reduces individual productively (LOC/
month), and the result can be less productivity for the team. Illustrate (quantitatively) how 
engineers who are well versed in good software engineering practices and use technical 
reviews can increase the production rate of a team (when compared to the sum of individual 
production rates). Hint: You can assume that reviews reduce rework and that rework can 
account for 20 to 40 percent of a person’s time.  

   34.5.  Although adding people to a late software project can make it later, there are circum-
stances in which this is not true. Describe them.  

pre22126_ch34_754-776.indd   774pre22126_ch34_754-776.indd   774 13/12/13   10:02 PM13/12/13   10:02 PM



CHAPTER 34  PROJECT SCHEDULING  775

   34.6.  The relationship between people and time is highly nonlinear. Using Putnam’s soft-
ware equation (described in Section 34.2.2), develop a table that relates number of people 
to project duration for a software project requiring 50,000 LOC and 15 person-years of effort 
(the productivity parameter is 5000 and  B  5 0.37). Assume that the software must be deliv-
ered in 24 months plus or minus 12 months.  

   34.7.  Assume that you have been contracted by a university to develop an online course reg-
istration system (OLCRS). First, act as the customer (if you’re a student, that should be easy) 
and specify the characteristics of a good system. (Alternatively, your instructor will provide 
you with a set of preliminary requirements for the system.) Using the estimation methods 
discussed in Chapter 33, develop an effort and duration estimate for OLCRS. Suggest how 
you would: 

     a.  Defi ne parallel work activities during the OLCRS project.  
    b.  Distribute effort throughout the project.  
    c.  Establish milestones for the project.    

   34.8.  Select an appropriate task set for the OLCRS project.  

   34.9.  Defi ne a task network for OLCRS described in Problem 34.7, or alternatively, for an-
other software project that interests you. Be sure to show tasks and milestones and to attach 
effort and duration estimates to each task. If possible, use an automated scheduling tool to 
perform this work.  

   34.10.  If an automated scheduling tool is available, determine the critical path for the net-
work defi ned in problem 34.9.  

   34.11.  Using a scheduling tool (if available) or paper and pencil (if necessary), develop a 
time-line chart for the OLCRS project.  

   34.12.  Assume you are a software project manager and that you’ve been asked to compute 
earned value statistics for a small software project. The project has 56 planned work tasks 
that are estimated to require 582 person-days to complete. At the time that you’ve been 
asked to do the earned value analysis, 12 tasks have been completed. However the project 
schedule indicates that 15 tasks should have been completed. The following scheduling data 
(in person-days) are available:

Task Planned Effort Actual Effort

1 12.0 12.5

2 15.0 11.0

3 13.0 17.0

4 8.0 9.5

5 9.5 9.0

6 18.0 19.0

7 10.0 10.0

8 4.0 4.5

9 12.0 10.0

10 6.0 6.5

11 5.0 4.0

12 14.0 14.5

13 16.0  —

14 6.0  —

15 8.0  —

    Compute the SPI, schedule variance, percent scheduled for completion, percent complete, 
CPI, and cost variance for the project.  

pre22126_ch34_754-776.indd   775pre22126_ch34_754-776.indd   775 13/12/13   10:02 PM13/12/13   10:02 PM



776 PART FOUR  MANAGING SOFTWARE PROJECTS

      FUR THER READINGS AND INFORMATION SOURCES 
  Virtually every book written on software project management contains a discussion of 
scheduling. The Project Management Institute ( PMBOK Guide,  5th ed., PMI, 2013), Wysoki 
( Effective Project Management: Traditional, Agile, Extreme,  6th ed., Wiley, 2011), Lewis ( Proj-

ect Planning Scheduling and Control,  5th ed., McGraw-Hill, 2010), Kerzner ( Project Manage-

ment: A Systems Approach to Planning, Scheduling, and Controlling,  10th ed., Wiley, 2009), 
Chemuturi and Cagley ( Mastering Software Project Management: Best Practices, Tools, and 

Techniques,  J. Ross Publishing, 2010), Hughes and Cotterel ( Software Project Management,  
5th ed., McGraw-Hill, 2009), Luckey and Phillips ( Software Project Management for Dum-

mies,  For Dummies, 2006), Lewin ( Better Software Project Management,  Wiley, 2001), and 
Bennatan ( On Time, Within Budget: Software Project Management Practices and Techniques,  
3rd ed., Wiley, 2000) contain worthwhile discussions of the subject. Although application 
specifi c, Harris ( Planning and Scheduling Using Microsoft Offi ce Project 2010,  Eastwood Har-
ris Pty Ltd., 2010) provides a useful discussion of how scheduling tools can be used to suc-
cessfully track and control a software project. 

 Fleming and Koppelman ( Earned Value Project Management,  3rd ed., Project Manage-
ment Institute Publications, 2010), Budd ( A Practical Guide to Earned Value Project Man-

agement , 2nd ed., Management Concepts, 2009), and Webb and Wake ( Using Earned Value: 

A Project Manager’s Guide,  Ashgate Publishing, 2003) discuss the use of earned value tech-
niques for project planning, tracking, and control in considerable detail. 

 A wide variety of information sources on software project scheduling is available on the 
Internet. An up-to-date list of World Wide Web references can be found under “software 
engineering resources” at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch34_754-776.indd   776pre22126_ch34_754-776.indd   776 13/12/13   10:02 PM13/12/13   10:02 PM



777

 RISK
MANAGEMENT 

        In his book on risk analysis and management, Robert Charette [Cha89] 

presents a conceptual defi nition of risk: 

  First, risk concerns future happenings. Today and yesterday are beyond active 

concern, as we are already reaping what was previously sowed by our past ac-

tions. The question is, can we, therefore, by changing our actions today, create an 

opportunity for a different and hopefully better situation for ourselves tomorrow. 

This means, second, that risk involves change, such as in changes of mind, opin-

ion, actions, or places  .  .  .  [Third,] risk involves choice, and the uncertainty that 

choice itself entails. Thus paradoxically, risk, like death and taxes, is one of the 

few certainties of life.   

 When you consider risk in the context of software engineering, Charette’s 

three conceptual underpinnings are always in evidence. The future is your 

concern—what risks might cause the software project to go awry? Change 

is your concern—how will changes in customer requirements, development

 K E Y 
C O N C E P T S 
    assessment. . . . . . 781  
    identifi cation. . . . . 780  
    projection . . . . . . . 782  
    refi nement  . . . . . . 787  
    risk categories  . . . 779  
    risk exposure  . . . . 786  
    risk item 
checklist . . . . . . . . 781  
    risk table  . . . . . . . 783  
    RMMM. . . . . . . . . 790  
    safety and 
hazards  . . . . . . . . 790  
    strategies. . . . . . . 778  

    proactive . . . . . 778  
    reactive . . . . . . 778  

  

   C H A P T E R

35 

  What is it?   Risk analysis and man-
agement are a series of steps that 
help a software team understand and 
manage uncertainty. Many problems 

can plague a software project. A risk is a poten-
tial problem—it might happen, it might not. But, 
regardless of the outcome, it’s a really good idea 
to identify it, assess its probability of occurrence, 
estimate its impact, and establish a contingency 
plan should the problem actually occur. 

   Who does it?   Everyone involved in the soft-
ware process—managers, software engineers, 
and other stakeholders—participate in risk 
analysis and management. 

   Why is it important?   Think about the Boy 
Scout motto: “Be prepared.” Software is a dif-
fi cult undertaking. Lots of things can go wrong, 
and frankly, many often do. It’s for this rea-
son that being prepared—understanding the 
risks and taking proactive measures to avoid 
or manage them—is a key element of good 
software project management. 

   What are the steps?   Recognizing what can 
go wrong is the fi rst step, called “risk identi-
fi cation.” Next, each risk is analyzed to de-
termine the likelihood that it will occur and 
the damage that it will do if it does occur. 
Once this information is established, risks are 
ranked, by probability and impact. Finally, a 
plan is developed to manage those risks that 
have high probability and high impact. 

   What is the work product?   A risk mitiga-
tion, monitoring, and management (RMMM) 
plan or a set of risk information sheets is 
produced. 

   How do I ensure that I’ve done it right?  
 The risks that are analyzed and managed 
should be derived from a thorough study of 
the people, the product, the process, and the 
project. The RMMM should be revisited as the 
project proceeds to ensure that risks are kept 
up to date. Contingency plans for risk manage-
ment should be realistic.  

 Q U I C K 
L O O K 

pre22126_ch35_777-794.indd   777pre22126_ch35_777-794.indd   777 13/12/13   6:17 PM13/12/13   6:17 PM



778 PART FOUR  MANAGING SOFTWARE PROJECTS

technologies, target environments, and all other entities connected to the proj-

ect affect timeliness and overall success? Last, you must grapple with choices—

what methods and tools should you use, how many people should be involved, 

how much emphasis on quality is “enough”? 

 Peter Drucker [Dru75] once said, “While it is futile to try to eliminate risk, and 

questionable to try to minimize it, it is essential that the risks taken be the right 

risks.” Before you can identify the “right risks” to be taken during a software 

project, it is important to identify all risks that are obvious to both managers and 

practitioners. 

      35.1  REACTIVE VERSUS PROACTIVE RISK STRATEGIES   

  Reactive  risk strategies have been laughingly called the “Indiana Jones school of 

risk management” [Tho92]. In the movies that carried his name, Indiana Jones, 

when faced with overwhelming diffi culty, would invariably say, “Don’t worry, I’ll 

think of something!” Never worrying about problems until they happened, Indy 

would react in some heroic way. 

 Sadly, the average software project manager is not Indiana Jones and the 

members of the software project team are not his trusty sidekicks. Yet, the ma-

jority of software teams rely solely on reactive risk strategies. At best, a reactive 

strategy monitors the project for likely risks. Resources are set aside to deal 

with them, should they become actual problems. More commonly, the software 

team does nothing about risks until something goes wrong. Then, the team fl ies 

into action in an attempt to correct the problem rapidly. This is often called a 

 fi re-fi ghting mode.  When this fails, “crisis management” [Cha92] takes over and 

the project is in real jeopardy. 

 A considerably more intelligent strategy for risk management is to be pro-

active. A  proactive  strategy begins long before technical work is initiated. Po-

tential risks are identifi ed, their probability and impact are assessed, and they 

are ranked by importance. Then, the software team establishes a plan for man-

aging risk. The primary objective is to avoid risk, but because not all risks can 

be avoided, the team works to develop a contingency plan that will enable it to 

respond in a controlled and effective manner. Throughout the remainder of this 

chapter, we discuss a proactive strategy for risk management. 

      35.2  SOFTWARE RISKS 

  Although there has been considerable debate about the proper defi nition for 

software risk, there is general agreement that risk always involves two char-

acteristics:  uncertainty —the risk may or may not happen; that is, there are no 

  uote: 

 “If you don’t 
actively attack 
the risks, they will 
actively attack 
you.” 

 Tom Gilb 

pre22126_ch35_777-794.indd   778pre22126_ch35_777-794.indd   778 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  779

100 percent probable risks  1  —and  loss —if the risk becomes a reality, unwanted 

consequences or losses will occur [Hig95]. When risks are analyzed, it is import-

ant to quantify the level of uncertainty and the degree of loss associated with 

each risk. To accomplish this, different categories of risks are considered.    

       Project risks  threaten the project plan. That is, if project risks become real, 

it is likely that the project schedule will slip and that costs will increase. Project 

risks identify potential budgetary, schedule, personnel (staffi ng and organiza-

tion), resource, stakeholder, and requirements problems and their impact on a 

software project. In Chapter 33, project complexity, size, and the degree of 

structural uncertainty were also defi ned as project (and estimation) risk 

factors. 

  Technical risks  threaten the quality and timeliness of the software to be pro-

duced. If a technical risk becomes a reality, implementation may become diffi cult 

or impossible. Technical risks identify potential design, implementation, inter-

face, verifi cation, and maintenance problems. In addition, specifi cation ambigu-

ity, technical uncertainty, technical obsolescence, and “leading-edge” technology 

are also risk factors. Technical risks occur because the problem is harder to solve 

than you thought it would be. 

  Business risks  threaten the viability of the software to be built and often jeop-

ardize the project or the product. Candidates for the top fi ve business risks are 

(1) building an excellent product or system that no one really wants (market 

risk), (2) building a product that no longer fi ts into the overall business strategy 

for the company (strategic risk), (3) building a product that the sales force doesn’t 

understand how to sell (sales risk), (4) losing the support of senior management 

due to a change in focus or a change in people (management risk), and (5) losing 

budgetary or personnel commitment (budget risks). 

 It is extremely important to note that simple risk categorization won’t always 

work. Some risks are simply unpredictable in advance.  

 Another general categorization of risks has been proposed by Charette 

[Cha89].  Known risks  are those that can be uncovered after careful evaluation of 

the project plan, the business and technical environment in which the project is 

being developed, and other reliable information sources (e.g., unrealistic deliv-

ery date, lack of documented requirements or software scope, poor development 

environment).  Predictable risks  are extrapolated from past project experience 

(e.g., staff turnover, poor communication with the customer, dilution of staff ef-

fort as ongoing maintenance requests are serviced).  Unpredictable risks  are the 

joker in the deck. They can and do occur, but they are extremely diffi cult to iden-

tify in advance. 

 What types 
of risks 

are we likely 
to encounter as 
software is built? 

?

  uote: 

 “Projects with 
no real risks are 
losers. They are 
almost always 
devoid of benefi t; 
that’s why they 
weren’t done years 
ago.” 

 Tom DeMarco 
and Tim Lister 

  1  A risk that is 100 percent probable is a constraint on the software project. 

pre22126_ch35_777-794.indd   779pre22126_ch35_777-794.indd   779 13/12/13   6:17 PM13/12/13   6:17 PM



780 PART FOUR  MANAGING SOFTWARE PROJECTS

           35.3  RISK IDENTIF ICATION 

  Risk identifi cation is a systematic attempt to specify threats to the project plan 

(estimates, schedule, resource loading, etc.). By identifying known and predict-

able risks, the project manager takes a fi rst step toward avoiding them when 

possible and controlling them when necessary. 

      There are two distinct types of risks for each of the categories that have been 

presented in Section 35.2.  Generic risks  are a potential threat to every software 

project.  Product-specifi c risks  can be identifi ed only by those with a clear under-

standing of the technology, the people, and the environment that is specifi c to the 

software that is to be built. To identify product-specifi c risks, the project plan and 

the software statement of scope are examined, and an answer to the following 

question is developed: “What special characteristics of this product may threaten 

our project plan?” 

 One method for identifying risks is to create a risk item checklist. The check-

list can be used for risk identifi cation and focuses on some subset of known and 

predictable risks in the following generic subcategories: 

    •   Product size —Risks associated with the overall size of the software to be 

built or modifi ed.  

   •   Business impact —Risks associated with constraints imposed by manage-

ment or the marketplace.  

   •   Stakeholder characteristics —Risks associated with the sophistication of 

the stakeholders and the developer’s ability to communicate with stake-

holders in a timely manner.  

   Although generic 
risks are important 
to consider, it’s the 
product-specifi c risks 
that cause the most 
headaches. Be certain 
to spend the time 
to identify as many 
product-specifi c risks as 
possible. 

  Seven Principles of Risk Management 
 The Software Engineering Institute (SEI) 
(  www.sei.cmu.edu  ) identifi es seven prin-

ciples that “provide a framework to accomplish effective 
risk management.” They are: 

      Maintain a global perspective —view software 
risks within the context of a system in which it is 
a component and the business problem that it is 
intended to solve.  

     Take a forward-looking view —think about the 
risks that may arise in the future (e.g., due to changes 
in the software); establish contingency plans so that 
future events are manageable.  

     Encourage open communication —if someone states 
a potential risk, don’t discount it. If a risk is proposed 

in an informal manner, consider it. Encourage all 
stakeholders and users to suggest risks at any time.  

     Integrate —a consideration of risk must be integrated 
into the software process.  

     Emphasize a continuous process —the team must 
be vigilant throughout the software process, modifying 
identifi ed risks as more information is known and 
adding new ones as better insight is achieved.  

     Develop a shared product vision —if all stakeholders 
share the same vision of the software, it is likely that 
better risk identifi cation and assessment will occur.  

     Encourage teamwork —the talents, skills, and 
knowledge of all stakeholders should be pooled 
when risk management activities are conducted.    

 INFO 

pre22126_ch35_777-794.indd   780pre22126_ch35_777-794.indd   780 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  781

   •   Process defi nition —Risks associated with the degree to which the soft-

ware process has been defi ned and is followed by the development 

organization.  

   •   Development environment —Risks associated with the availability and 

quality of the tools to be used to build the product.  

   •   Technology to be built —Risks associated with the complexity of the system to 

be built and the “newness” of the technology that is packaged by the system.  

   •   Staff size and experience —Risks associated with the overall technical and 

project experience of the software engineers who will do the work.    

 The risk item checklist can be organized in different ways. Questions relevant 

to each of the topics can be answered for each software project. The answers to 

these questions allow you to estimate the impact of risk. A different risk item 

checklist format simply lists characteristics that are relevant to each generic 

subcategory. Finally, a set of “risk components and drivers” [AFC88] are listed 

along with their probability of occurrence. Drivers for performance, support, 

cost, and schedule are discussed in answer to later questions. 

 A number of comprehensive checklists for software project risk are available 

on the Web (e.g., [Baa07], [NAS07], [Wor04]). You can use these checklists to gain 

insight into generic risks for software projects. In addition to the use of check-

lists,  risk patterns  [Mil04] have been proposed as a systematic approach to risk 

identifi cation. 

   35.3.1   Assessing Overall Project Risk 

 The following questions have been derived from risk data obtained by surveying 

experienced software project managers in different parts of the world [Kei98]. 

The questions are ordered by their relative importance to the success of a project.     

      1.  Have top software and customer managers formally committed to support 

the project?  

    2.  Are end users enthusiastically committed to the project and the system/

product to be built?  

    3.  Are requirements fully understood by the software engineering team and 

its customers?  

           4.  Have customers been involved fully in the defi nition of requirements?  

    5.  Do end users have realistic expectations?  

    6.  Is the project scope stable?  

    7.  Does the software engineering team have the right mix of skills?  

    8.  Are project requirements stable?  

    9.  Does the project team have experience with the technology to be 

implemented?  

 Is the 
software 

project we’re 
working on at 
serious risk? 

?

 WebRef 
  Risk radar  is a 
database and tools that 
help managers identify, 
rank, and communicate 
project risks. It can be 
found at 
  www.spmn.com  . 

pre22126_ch35_777-794.indd   781pre22126_ch35_777-794.indd   781 13/12/13   6:17 PM13/12/13   6:17 PM



782 PART FOUR  MANAGING SOFTWARE PROJECTS

    10.  Is the number of people on the project team adequate to do the job?  

    11.  Do all customer/user constituencies agree on the importance of the proj-

ect and on the requirements for the system/product to be built?  

  If any one of these questions is answered negatively, mitigation, monitoring, 

and management steps should be instituted without fail. The degree to which the 

project is at risk is directly proportional to the number of negative responses to 

these questions. 

    35.3.2   Risk Components and Drivers 

  The U.S. Air Force [AFC88] has published a pamphlet that contains excellent 

guidelines for software risk identifi cation and abatement. The Air Force ap-

proach requires that the project manager identify the risk drivers that affect soft-

ware risk components—performance, cost, support, and schedule. In the context 

of this discussion, the risk components are defi ned in the following manner:

    •   Performance risk —The degree of uncertainty that the product will meet its 

requirements and be fi t for its intended use.  

   •   Cost risk —The degree of uncertainty that the project budget will be 

maintained.  

   •   Support risk —The degree of uncertainty that the resultant software will be 

easy to correct, adapt, and enhance.  

   •   Schedule risk —The degree of uncertainty that the project schedule will be 

maintained and that the product will be delivered on time.    

 The impact of each risk driver on the risk component is divided into one of 

four impact categories—negligible, marginal, critical, or catastrophic. Referring 

to   Figure 35.1   [Boe89], a characterization of the potential consequences of errors 

(rows labeled 1) or a failure to achieve a desired outcome (rows labeled 2) are 

described. The impact category is chosen based on the characterization that best 

fi ts the description in the table.  

       35.4  RISK PROJECTION 

   Risk projection , also called  risk estimation,  attempts to rate each risk in two 

ways—(1) the likelihood or probability that the risk is real and will occur and (2) 

the consequences of the problems associated with the risk, should it occur. You 

work along with other managers and technical staff to perform four risk projec-

tion steps: 

     1.  Establish a scale that refl ects the perceived likelihood of a risk.  

    2.  Delineate the consequences of the risk.  

    uote: 

 “Risk management 
is project 
management for 
adults.” 

 Tim Lister 

pre22126_ch35_777-794.indd   782pre22126_ch35_777-794.indd   782 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  783

    3.  Estimate the impact of the risk on the project and the product.  

    4.  Assess the overall accuracy of the risk projection so that there will be no 

misunderstandings.    

 The intent of these steps is to consider risks in a manner that leads to priori-

tization. No software team has the resources to address every possible risk with 

the same degree of rigor. By prioritizing risks, you can allocate resources where 

they will have the most impact. 

   35.4.1   Developing a Risk Table 

 A risk table provides you with a simple technique for risk projection.  2   A sample 

risk table is illustrated in   Figure 35.2  . 

  FIGURE 35.1

 Impact 
assessment
    Source: [Boe89]. 

Components

Category

Catastrophic

Critical

Marginal

Negligible

Performance Support Cost Schedule

Failure to meet the requirement
would result in mission failure

Significant
degradation to
nonachievement
of technical
performance

Nonresponsive or
unsupportable
software

Significant financial
shortages, budget
overrun likely

Unachievable 
IOC

Failure results in increased costs
and schedule delays with expected 
values in excess of $500K

1

2

Failure to meet the requirement would
degrade system performance to a point
where mission success is questionable

Some reduction
in technical 
performance

Minor delays in
software
modifications

Some shortage of
financial resources,
possible overruns

Possible 
slippage
in IOC

Failure results in operational delays 
and/or increased costs with expected 
value of $100K to $500K

1

2

Failure to meet the requirement would
result in degradation of secondary 
mission

Minimal to small
reduction in
technical
performance

Responsive 
software
support

Sufficient financial
resources

Realistic, 
achievable
schedule

Costs, impacts, and/or recoverable 
schedule slips with expected value 
of $1K to $100K

1

2

Failure to meet the requirement would
create inconvenience or nonoperational
impact

No reduction in
technical
performance

Easily supportable
software

Possible budget
underrun

Early 
achievable 
IOC

Error results in minor cost and/or 
schedule impact with expected value 
of less than $1K

1

2

Note: (1) The potential consequence of undetected software errors or faults.
 (2) The potential consequence if the desired outcome is not achieved.

  2  The risk table can be implemented as a spreadsheet model. This enables easy manipulation 

and sorting of the entries. 

pre22126_ch35_777-794.indd   783pre22126_ch35_777-794.indd   783 13/12/13   6:17 PM13/12/13   6:17 PM



784 PART FOUR  MANAGING SOFTWARE PROJECTS

              You begin by listing all risks (no matter how remote) in the fi rst column of 

the table. This can be accomplished with the help of the risk item checklists ref-

erenced in Section 35.3. Each risk is categorized in the second column (e.g., PS 

implies a project size risk, BU implies a business risk). The probability of occur-

rence of each risk is entered in the next column of the table. The probability 

value for each risk can be estimated by team members individually. One way to 

accomplish this is to poll individual team members in round-robin fashion until 

their collective assessment of risk probability begins to converge. 

 Next, the impact of each risk is assessed. Each risk component is assessed 

using the characterization presented in   Figure 35.1  , and an impact category is 

determined. The categories for each of the four risk components—performance, 

support, cost, and schedule—are averaged  3   to determine an overall impact value.    

      Once the fi rst four columns of the risk table have been completed, the table 

is sorted by probability and by impact. High-probability, high-impact risks per-

colate to the top of the table, and low-probability risks drop to the bottom. This 

accomplishes fi rst-order risk prioritization. 

 You can study the resultant sorted table and defi ne a cutoff line. The  cutoff 

line  (drawn horizontally at some point in the table) implies that only risks that 

lie above the line will be given further attention. Risks that fall below the line are 

   Think hard about 
the software you’re 
about to build and ask 
yourself, “what can go 
wrong?” Create your 
own list and ask other 
members of the team 
to do the same. 

   A risk table is sorted by 
probability and impact 
to rank risks. 

Risks

Size estimate may be significantly low
Larger number of users than planned
Less reuse than planned
End users resist system
Delivery deadline will be tightened
Funding will be lost
Customer will change requirements
Technology will not meet expectations
Lack of training on tools
Staff inexperienced
Staff turnover will be high

PS
PS
PS
BU
BU
CU
PS
TE
DE
ST
ST

60%
30%
70%
40%
50%
40%
80%
30%
80%
30%
60%

2
3
2
3
2
1
2
1
3
2
2

Probability

Impact values:
1—catastrophic
2—critical
3—marginal
4—negligible

Impact RMMMCategory

∑
∑
∑

 FIGURE 35.2

 Sample risk 
table prior to 
sorting

  3  A weighted average can be used if one risk component has more signifi cance for a project. 

pre22126_ch35_777-794.indd   784pre22126_ch35_777-794.indd   784 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  785

reevaluated to accomplish second-order prioritization. Referring to   Figure 35.3  , 

risk impact and probability have a distinct infl uence on management concern. A 

risk factor that has a high impact but a very low probability of occurrence should 

not absorb a signifi cant amount of management time. However, high-impact 

risks with moderate to high probability and low-impact risks with high probabil-

ity should be carried forward into the risk analysis steps that follow.       

 All risks that lie above the cutoff line should be managed. The column labeled 

RMMM contains a pointer into a  risk mitigation, monitoring, and management 

plan  or, alternatively, a collection of risk information sheets developed for all 

risks that lie above the cutoff. The RMMM plan and risk information sheets are 

discussed in Sections 35.5 and 35.6. 

 Risk probability can be determined by making individual estimates and then 

developing a single consensus value. Although that approach is workable, more 

sophisticated techniques for determining risk probability have been developed 

(e.g., [McC09]). 

    35.4.2   Assessing Risk Impact 

 Three factors affect the consequences that are likely if a risk does occur: its na-

ture, its scope, and its timing. The nature of the risk indicates the problems that 

are likely if it occurs. For example, a poorly defi ned external interface to cus-

tomer hardware (a technical risk) will preclude early design and testing and will 

likely lead to system integration problems late in a project. The scope of a risk 

combines the severity (just how serious is it?) with its overall distribution (how 

    uote: 

 “[Today,] no one 
has the luxury of 
getting to know a 
task so well that it 
holds no surprises, 
and surprises mean 
risk.” 

 Stephen Grey 

1.0

0

Very low

Very high

Impact

Management
concern

HighDisregard
risk factor

Probability
of occurrence

 FIGURE 35.3

 Risk and 
management 
concern

pre22126_ch35_777-794.indd   785pre22126_ch35_777-794.indd   785 13/12/13   6:17 PM13/12/13   6:17 PM



786 PART FOUR  MANAGING SOFTWARE PROJECTS

much of the project will be affected or how many stakeholders are harmed?). Fi-

nally, the timing of a risk considers when and for how long the impact will be felt. 

In most cases, you want the “bad news” to occur as soon as possible, but in some 

cases, the longer the delay, the better.     

  Returning once more to the risk analysis approach proposed by the U.S. Air 

Force [AFC88], you can apply the following steps to determine the overall conse-

quences of a risk: (1) determine the average probability of occurrence value for 

each risk component; (2) using   Figure 35.1  , determine the impact for each com-

ponent based on the criteria shown, and (3) complete the risk table and analyze 

the results as described in the preceding sections. 

 The overall  risk exposure,  RE, is determined using the following relationship  

 [Hal98]:

RE 5  P  3  C  

 where  P  is the probability of occurrence for a risk, and  C  is the cost to the project 

should the risk occur. 

 For example, assume that the software team defi nes a project risk in the fol-

lowing manner: 

      Risk identifi cation.   Only 70 percent of the software components sched-

uled for reuse will, in fact, be integrated into the application. The remain-

ing functionality will have to be custom developed.  

     Risk probability.   Eighty percent (likely).  

     Risk impact.   Sixty reusable software components were planned. If only 

70 percent can be used, 18 components would have to be developed from 

scratch (in addition to other custom software that has been scheduled for 

development). Since the average component is 100 LOC and local data 

indicate that the software engineering cost for each LOC is $14.00, the 

overall cost (impact) to develop the components would be 18 3 100 3 14 

5 $25,200.  

     Risk exposure.   RE 5 0.80 3 25,200 ~ $20,200.    

      Risk exposure can be computed for each risk in the risk table, once an estimate 

of the cost of the risk is made. The total risk exposure for all risks (above the cut-

off in the risk table) can provide a means for adjusting the fi nal cost estimate for 

a project. It can also be used to predict the probable increase in staff resources 

required at various points during the project schedule. 

 The risk projection and analysis techniques described in Sections 35.4.1 and 

35.4.2 are applied iteratively as the software project proceeds.  4   The project 

team should revisit the risk table at regular intervals, reevaluating each risk to 

 How do we 
assess the 

consequences of 
a risk? 

?

   Compare RE for all 
risks to the cost 
estimate for the 
project. If RE is greater 
than 50 percent of 
the project cost, the 
viability of the project 
must be evaluated. 

  4  If you have further interest, a more mathematical treatment of the cost of risk is presented in 

[Ben10]. 

pre22126_ch35_777-794.indd   786pre22126_ch35_777-794.indd   786 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  787

determine when new circumstances cause its probability and impact to change. 

As a consequence of this activity, it may be necessary to add new risks to the 

table, remove some risks that are no longer relevant, and change the relative 

positions of still others.        

  Risk Analysis   Risk Analysis 

       The scene:  Doug Miller’s offi ce 
prior to the initiation of the  SafeHome  

software project.  

     The players:  Doug Miller (manager of the  SafeHome  
software engineering team) and Vinod Raman, Jamie 
Lazar, and other members of the product software engi-
neering team.  

     The conversation:   

     Doug:  I’d like to spend some time brainstorming risks 
for the  SafeHome  project.  

     Jamie:  As in what can go wrong?  

     Doug:  Yep. Here are a few categories where things 
can go wrong.  

    [He shows everyone the categories noted in the in-
troduction to Section 35.3.]  

     Vinod:  Umm . . . do you want us to just call them out, 
or . . .  

     Doug:  No here’s what I thought we’d do. Everyone 
make a list of risks . . . right now . . .  

   [Ten minutes pass, everyone is writing.] 

       Doug:  Okay, stop.  

     Jamie:  But I’m not done!  

     Doug:  That’s okay. We’ll revisit the list again. Now, for 
each item on your list, assign a percent likelihood that 

the risk will occur. Then, assign an impact to the project 
on a scale of 1 (minor) to 5 (catastrophic).  

     Vinod:  So if I think that the risk is a coin fl ip, I specify 
a 50 percent likelihood, and if I think it’ll have a 
moderate project impact, I specify a 3, right?  

     Doug:  Exactly.  

   [Five minutes pass, everyone is writing.] 

       Doug:  Okay, stop. Now we’ll make a group list on the 
whiteboard. I’ll do the writing; we’ll call out one entry 
from your list in round-robin format.  

   [Fifteen minutes pass; the list is created.] 

       Jamie (pointing at the board and laughing):  
Vinod, that risk (pointing toward an entry on the board) 
is ridiculous. There’s a higher likelihood that we’ll all get 
hit by lightning. We should remove it.  

     Doug:  No, let’s leave it for now. We consider all risks, 
no matter how weird. Later we’ll winnow the list.  

     Jamie:  But we already have over 40 risks . . . how on 
earth can we manage them all?  

     Doug:  We can’t. That’s why we’ll defi ne a cut-off after 
we sort these guys. I’ll do that off-line and we’ll meet 
again tomorrow. For now, get back to work . . . and 
in your spare time, think about any risks that we’ve 
missed.     

 SAFEHOME 

        35.5  RISK REFINEMENT 

  During early stages of project planning, a risk may be stated quite generally. As 

time passes and more is learned about the project and the risk, it may be possi-

ble to refi ne the risk into a set of more detailed risks, each somewhat easier to 

mitigate, monitor, and manage.     

  One way to do this is to represent the risk in  condition-transition-consequence  

(CTC) format [Glu94]. That is, the risk is stated in the following form:

  Given that <condition> then there is concern that (possibly) <consequence>.   

 What’s a 
good way to 

describe a risk? 
?

pre22126_ch35_777-794.indd   787pre22126_ch35_777-794.indd   787 13/12/13   6:17 PM13/12/13   6:17 PM



788 PART FOUR  MANAGING SOFTWARE PROJECTS

 Using the CTC format for the reuse risk noted in Section 35.4.2, you could write:

  Given that all reusable software components must conform to specifi c design standards 

and that some do not conform, then there is concern that (possibly) only 70 percent of 

the planned reusable modules may actually be integrated into the as-built system, re-

sulting in the need to custom engineer the remaining 30 percent of components.   

 This general condition can be refi ned in the following manner: 

      Subcondition 1.  Certain reusable components were developed by a third 

party with no knowledge of internal design standards.  

     Subcondition 2.  The design standard for component interfaces has not been 

solidifi ed and may not conform to certain existing reusable components.  

     Subcondition 3.  Certain reusable components have been implemented in a 

language that is not supported on the target environment.    

 The consequences associated with these refi ned subconditions remain the 

same (i.e., 30 percent of software components must be custom engineered), but 

the refi nement helps to isolate the underlying risks and might lead to easier 

analysis and response. 

      35.6  RISK MITIGATION, MONITORING, AND MANAGEMENT   

 All of the risk analysis activities presented to this point have a single goal—to 

assist the project team in developing a strategy for dealing with risk. An effective 

strategy must consider three issues: risk avoidance, risk monitoring, and risk 

management and contingency planning. 

 If a software team adopts a proactive approach to risk, avoidance is always the 

best strategy. This is achieved by developing a plan for  risk mitigation.  For ex-

ample, assume that high staff turnover is noted as a project risk  r 1. Based on past 

history and management intuition, the likelihood  l 1 of high turnover is estimated 

to be 0.70 (70 percent, rather high) and the impact  x 1 is projected as critical. That 

is, high turnover will have a critical impact on project cost and schedule. 

      To mitigate this risk, you would develop a strategy for reducing turnover. 

Among the possible steps to be taken are: 

    •  Meet with current staff to determine causes for turnover (e.g., poor work-

ing conditions, low pay, competitive job market).  

   •  Mitigate those causes that are under your control before the project starts.  

   •  Once the project commences, assume turnover will occur and develop 

techniques to ensure continuity when people leave.  

   •  Organize project teams so that information about each development ac-

tivity is widely dispersed.  

  uote: 

 “If I take so many 
precautions, it is 
because I leave 
nothing to chance.” 

 Napolean 

 What can 
we do to 

mitigate a risk? 
?

pre22126_ch35_777-794.indd   788pre22126_ch35_777-794.indd   788 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  789

   •  Defi ne work product standards and establish mechanisms to be sure that 

all models and documents are developed in a timely manner.  

   •  Conduct peer reviews of all work (so that more than one person is “up to 

speed”).  

   •  Assign a backup staff member for every critical technologist.    

 As the project proceeds,  risk-monitoring  activities commence. The project 

manager monitors factors that may provide an indication of whether the risk 

is becoming more or less likely. In the case of high staff turnover, the general 

attitude of team members based on project pressures, the degree to which the 

team has jelled, interpersonal relationships among team members, potential 

problems with compensation and benefi ts, and the availability of jobs within the 

company and outside it are all monitored. 

 In addition to monitoring these factors, a project manager should monitor the 

effectiveness of risk mitigation steps. For example, a risk mitigation step noted 

here called for the defi nition of work product standards and mechanisms to be 

sure that work products are developed in a timely manner. This is one mechanism 

for ensuring continuity, should a critical individual leave the project. The project 

manager should monitor work products carefully to ensure that each can stand on 

its own and that each imparts information that would be necessary if a newcomer 

were forced to join the software team somewhere in the middle of the project. 

       Risk management and contingency planning  assumes that mitigation efforts 

have failed and that the risk has become a reality. Continuing the example, the 

project is well under way and a number of people announce that they will be leav-

ing. If the mitigation strategy has been followed, backup is available, information 

is documented, and knowledge has been dispersed across the team. In addition, 

you can temporarily refocus resources (and readjust the project schedule) to those 

functions that are fully staffed, enabling newcomers who must be added to the 

team to “get up to speed.” Those individuals who are leaving are asked to stop all 

work and spend their last weeks in “knowledge transfer mode.” This might include 

video-based knowledge capture, the development of “commentary documents or 

Wikis,” and/or meeting with other team members who will remain on the project. 

 It is important to note that risk mitigation, monitoring, and management 

(RMMM) steps incur additional project cost. For example, spending the time to 

back up every critical technologist costs money. Part of risk management, there-

fore, is to evaluate when the benefi ts accrued by the RMMM steps are outweighed 

by the costs associated with implementing them. In essence, you perform a clas-

sic cost-benefi t analysis. If risk aversion steps for high turnover will increase both 

project cost and duration by an estimated 15 percent, but the predominant cost 

factor is “backup,” management may decide not to implement this step. On the 

other hand, if the risk aversion steps are projected to increase costs by 5 percent 

and duration by only 3 percent, management will likely put all into place. 

   If RE for a specifi c risk 
is less than the cost of 
risk mitigation, don’t 
try to mitigate the 
risk but continue to 
monitor it. 

pre22126_ch35_777-794.indd   789pre22126_ch35_777-794.indd   789 13/12/13   6:17 PM13/12/13   6:17 PM



790 PART FOUR  MANAGING SOFTWARE PROJECTS

 For a large project, 30 or 40 risks may be identifi ed. If between three and seven 

risk management steps are identifi ed for each, risk management may become a 

project in itself. For this reason, you should adapt the Pareto 80–20 rule to soft-

ware risk. Experience indicates that 80 percent of the overall project risk (i.e., 

80 percent of the potential for project failure) can be accounted for by only 20 

percent of the identifi ed risks. The work performed during earlier risk analysis 

steps will help you to determine which of the risks reside in that 20 percent (e.g., 

risks that lead to the highest risk exposure). For this reason, some of the risks 

identifi ed, assessed, and projected may not make it into the RMMM plan—they 

don’t fall into the critical 20 percent (the risks with highest project priority). 

 Risk is not limited to the software project itself. Risks can occur after the soft-

ware has been successfully developed and delivered to the customer. These risks 

are typically associated with the consequences of software failure in the fi eld. 

  Software safety and hazard analysis  (e.g., [Dun02], [Her00], [Lev95]) are soft-

ware quality assurance activities (Chapter 21) that focus on the identifi cation and 

assessment of potential hazards that may affect software negatively and cause an 

entire system to fail. If hazards can be identifi ed early in the software engineer-

ing process, software design features can be specifi ed that will either eliminate 

or control potential hazards. 

      35.7  THE RMMM PLAN 

  A risk management strategy can be included in the software project plan, or the 

risk management steps can be organized into a separate  risk mitigation, moni-

toring and management plan.  The RMMM plan documents all work performed 

as part of risk analysis and is used by the project manager as part of the overall 

project plan. 

 Some software teams do not develop a formal RMMM document. Rather, each 

risk is documented individually using a  risk information sheet  (RIS) [Wil97]. In 

most cases, the RIS is maintained using a database system so that creation and 

information entry, priority ordering, searches, and other analysis may be accom-

plished easily. The format of the RIS is illustrated in   Figure 35.4  .  

 Once RMMM has been documented and the project has begun, risk mitigation 

and monitoring steps commence. As we have already discussed, risk mitigation 

is a problem avoidance activity. Risk monitoring is a project tracking activity 

with three primary objectives: (1) to assess whether predicted risks do, in fact, 

occur; (2) to ensure that risk aversion steps defi ned for the risk are being prop-

erly applied; and (3) to collect information that can be used for future risk anal-

ysis. In many cases, the problems that occur during a project can be traced to 

more than one risk. Another job of risk monitoring is to attempt to allocate origin 

[what risk(s) caused which problems throughout the project].     

pre22126_ch35_777-794.indd   790pre22126_ch35_777-794.indd   790 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  791

Risk information sheet

Date:  5/9/09 Prob:  80% Impact: highRisk ID:  P02-4-32

Description:
Only 70 percent of the software components scheduled for reuse will, in fact, be
integrated into the application.  The remaining functionality will have to be custom 
developed.

Refinement/context:
Subcondition 1: Certain reusable components were developed by a third party 
with no knowledge of internal design standards. 
Subcondition 2: The design standard for component interfaces has not been 
solidified and may not conform to certain existing reusable components.
Subcondition 3:  Certain reusable components have been implemented in a 
language that is not supported on the target environment.

Mitigation/monitoring:
1.  Contact third party to determine conformance with design standards.
2.  Press for interface standards completion; consider component structure when 
deciding on interface protocol.
3.  Check to determine number of components in subcondition 3 category; check 
to determine if language support can be acquired.

Management/contingency plan/trigger:
RE computed to be $20,200. Allocate this amount within project contingency cost. 
Develop revised schedule assuming that 18 additional components will have to be 
custom built; allocate staff accordingly.
Trigger:  Mitigation steps unproductive as of 7/1/09.

Current status:
5/12/09: Mitigation steps initiated.

Originator: D. Gagne  Assigned: B. Laster

  FIGURE 35.4

 Risk informa-
tion sheet   
 Source: [Wil97]. 

  5  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  Risk Management 

     Objective:   The objective of risk 
management tools is to assist a project team 

in defi ning risks, assessing their impact and probability, 
and tracking risks throughout a software project. 

   Mechanics:   In general, risk management tools assist in 
generic risk identifi cation by providing a list of typical 
project and business risks, provide checklists or other 
“interview” techniques that assist in identifying project 
specifi c risks, assign probability and impact to each risk, 
support risk mitigation strategies, and generate many 
different risk-related reports. 

    Representative Tools:  5   
          @risk,  developed by Palisade Corporation 

(  www.palisade.com  ), is a generic risk analysis 
tool that uses Monte Carlo simulation to drive its 
analytical engine.  

     Riskman,  distributed by ABS Consulting 
(  www.absconsulting.com/riskmansoftware/
index.html  ), is a risk evaluation expert system that 
identifi es project-related risks.  

 SOFTWARE TOOLS 

pre22126_ch35_777-794.indd   791pre22126_ch35_777-794.indd   791 13/12/13   6:17 PM13/12/13   6:17 PM



792 PART FOUR  MANAGING SOFTWARE PROJECTS

        35.8 SUMMARY 

 Whenever a lot is riding on a software project, common sense dictates risk anal-

ysis. And yet, most software project managers do it informally and superfi cially, 

if they do it at all. The time spent identifying, analyzing, and managing risk pays 

itself back in many ways—less upheaval during the project, a greater ability to 

track and control a project, and the confi dence that comes with planning for 

problems before they occur. 

 Risk analysis can absorb a signifi cant amount of project planning effort. Iden-

tifi cation, projection, assessment, management, and monitoring all take time. 

But the effort is worth it. To quote Sun Tzu, a Chinese general who lived 2,500 

years ago, “If you know the enemy and know yourself, you need not fear the re-

sult of a hundred battles.” For the software project manager, the enemy is risk. 

     PROBLEMS AND POINTS TO PONDER 
    35.1.  Provide fi ve examples from other fi elds that illustrate the problems associated with a 
reactive risk strategy.  

   35.2.  Describe the difference between “known risks” and “predictable risks.”  

   35.3.  Add three additional questions or topics to each of the risk item checklists presented 
at the SEPA website.  

   35.4.  You’ve been asked to build software to support a low-cost video editing system. The 
system accepts digital video as input, stores the video on disk, and then allows the user 
to do a wide range of edits to the digitized video. The result can then be output to DVD or 
other media. Do a small amount of research on systems of this type and then make a list of 
technology risks that you would face as you begin a project of this type.  

   35.5.  You’re the project manager for a major software company. You’ve been asked to lead 
a team that’s developing “next generation” word-processing software. Create a risk table 
for the project.  

   35.6.  Describe the difference between risk components and risk drivers.  

   35.7.  Develop a risk mitigation strategy and specifi c risk mitigation activities for three of 
the risks noted in   Figure 35.2  .  

     Risk Radar,  developed by SPMN (  www.spmn.com  ), 
assists project managers in identifying and managing 
project risks.  

     ARM,  developed by Deltek (  www.deltek.com  ), 
Web-based tool that allows suppliers, customers 
and geographically disbursed project teams to 
collaborate on essential risk knowledge.  

     X:PRIMER,  developed by GrafP Technologies 
(  www.grafp.com  ) is a generic Web-based tool 
that predicts what can go wrong on a project and 
identifi es root causes for potential failures and 
effective countermeasures.      

pre22126_ch35_777-794.indd   792pre22126_ch35_777-794.indd   792 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 35  RISK MANAGEMENT  793

   35.8.  Develop a risk monitoring strategy and specifi c risk monitoring activities for three 
of the risks noted in   Figure 35.2  . Be sure to identify the factors that you’ll be monitoring to 
determine whether the risk is becoming more or less likely.  

   35.9.  Develop a risk management strategy and specifi c risk management activities for three 
of the risks noted in   Figure 35.2  .  

   35.10.  Attempt to refi ne three of the risks noted in   Figure 35.2  , and then create risk infor-
mation sheets for each.  

   35.11.  Represent three of the risks noted in   Figure 35.2   using a CTC format.  

   35.12.  Recompute the risk exposure discussed in Section 35.4.2 when cost/LOC is $16 and 
the probability is 60 percent.  

   35.13.  Can you think of a situation in which a high-probability, high-impact risk would not 
be considered as part of your RMMM plan?  

   35.14.  Describe fi ve software application areas in which software safety and hazard analysis 
would be a major concern.  

      FUR THER READINGS AND INFORMATION SOURCES 
  The software risk management literature has expanded signifi cantly over the past few de-
cades. Mun ( Modeling Risk,  2nd ed., Wiley, 2010) presents a detailed mathematical treat-
ment of risk analysis that can be applied to software projects. Mulcahy ( Risk Management, 

Tricks of the Trade for Project Managers,  2nd ed., RMC Publications, 2010), Kendrick ( Identi-

fying and Managing Project Risk,  2nd ed., American Management Association, 2009), Crohy 
and his colleagues ( The Essentials of Risk Management,  McGraw-Hill, 2006), and Marrison 
( The Fundamentals of Risk Measurement,  McGraw-Hill, 2002) present useful methods and 
tools that every project manager can use. Jindal and his colleagues ( Risk Management in 

Software Engineering,  Create Space Independent Publishing, 2012) discuss embedding se-
curity risk assessment as part system development. 

 DeMarco and Lister ( Dancing with Bears,  Dorset House, 2003) have written an entertain-
ing and insightful book that guides software managers and practitioners through risk man-
agement. Moynihan ( Coping with IT/IS Risk Management,  Springer-Verlag, 2002) presents 
pragmatic advice from project managers who deal with risk on a continuing basis. Royer 
( Project Risk Management,  Management Concepts, 2002) and Smith and Merritt ( Proactive 

Risk Management,  Productivity Press, 2002) suggest a proactive process for risk manage-
ment. Karolak ( Software Engineering Risk Management,  Wiley, 2002) has written a guide-
book that introduces an easy-to-use risk analysis model with worthwhile checklists and 
questionnaires supported by a software package. 

 Capers Jones ( Assessment and Control of Software Risks,  Prentice Hall, 1994) presents 
a detailed discussion of software risks that includes data collected from hundreds of soft-
ware projects. Jones defi nes 60 risk factors that can affect the outcome of software projects. 
Boehm [Boe89] suggests excellent questionnaire and checklist formats that can prove in-
valuable in identifying risk. Charette [Cha89] presents a detailed treatment of the mechan-
ics of risk analysis, calling on probability theory and statistical techniques to analyze risks. 
In a companion volume, Charette ( Application Strategies for Risk Analysis,  McGraw-Hill, 
1990) discusses risk in the context of both system and software engineering and suggests 
pragmatic strategies for risk management. Gilb ( Principles of Software Engineering Man-

agement,  Addison-Wesley, 1988) presents a set of “principles” (which are often amusing and 
sometimes profound) that can serve as a worthwhile guide for risk management. 

  Ewusi-Mensah ( Software Development Failures: Anatomy of Abandoned Projects,  MIT 
Press, 2003) and Yourdon ( Death March,  Prentice Hall, 1997) discuss what happens when 

pre22126_ch35_777-794.indd   793pre22126_ch35_777-794.indd   793 13/12/13   6:17 PM13/12/13   6:17 PM



794 PART FOUR  MANAGING SOFTWARE PROJECTS

risks overwhelm a software project team. Bernstein ( Against the Gods,  Wiley, 1998) presents 
an entertaining history of risk that goes back to ancient times. 

 The Software Engineering Institute has published many detailed reports and guidebooks 
on risk analysis and management. The Air Force Systems Command pamphlet AFSCP 800-
45 [AFC88] describes risk identifi cation and reduction techniques. Every issue of the  ACM 

Software Engineering Notes  has a section entitled “Risks to the Public” (editor, P. G. Neu-
mann). If you want the latest and best software horror stories, this is the place to go. 

 A wide variety of information sources on software risk management is available on the 
Internet. An up-to-date list of World Wide Web references can be found under “software 
engineering resources” at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch35_777-794.indd   794pre22126_ch35_777-794.indd   794 13/12/13   6:17 PM13/12/13   6:17 PM



795

        Regardless of its application domain, its size, or its complexity, computer 

software will evolve over time. Change drives this process. For computer 

software, change occurs when errors are corrected, when the software 

is adapted to a new environment, when the customer requests new features 

or functions, and when the application is reengineered to provide benefi t in 

a modern context. Over the past 40 years, Manny Lehman [e.g., Leh97a] and 

his colleagues have performed detailed analyses of industry-grade software 

and systems in an effort to develop a  unifi ed theory for software evolution.  The

 MAINTENANCE AND 
REENGINEERING 

   C H A P T E R

36 
 K E Y 
C O N C E P T S 
    business process 
reengineering 
(BPR) . . . . . . . . . . 799  
    document 
restructuring. . . . . 804  
    forward 
engineering. . . . . . 811  
    inventory analysis  . 803  
    maintainability  . . . 797  

 Q U I C K 
L O O K 

  What is it?   Consider any tech-
nology product that has served you 
well. You use it regularly, but it’s get-
ting old. It breaks too often, takes 

longer to repair than you’d like, and no longer 
represents the newest technology. What to do? 
For a time, you try to fi x it, patch it, even extend 
its functionality. That’s called maintenance. But 
maintenance becomes increasingly diffi cult as 
the years pass. There comes a time when you’ll 
need to rebuild it. You’ll create a product with 
added functionality, better performance and 
reliability, and improved maintainability. That’s 
what we call reengineering. 

   Who does it?   At an organizational level, main-
tenance is performed by support staff that are 
part of the software engineering organization. 
Reengineering is performed by business spe-
cialists (often consulting companies), and at 
the software level, reengineering is performed 
by software engineers. 

   Why is it important?   We live in a rapidly 
changing world. The demands on business 
functions and the information technology that 
supports them are changing at a pace that 
puts enormous competitive pressure on every 
commercial organization. That’s why software 
must be maintained continually, and at the ap-
propriate time, reengineered to keep pace. 

   What are the steps?   Maintenance corrects 
defects, adapts the software to meet a chang-
ing environment, and enhances functionality 
to meet the evolving needs of customers. At 
a strategic level, business process reengineer-
ing (BPR) defi nes business goals, identifi es and 
evaluates existing business processes, and 
creates revised business processes that better 
meet current goals. Software reengineering 
encompasses inventory analysis, document re-
structuring, reverse engineering, program and 
data restructuring, and forward engineering. 
The intent of these activities is to create ver-
sions of existing programs that exhibit higher 
quality and better maintainability. 

   What is the work product?   A variety of 
maintenance and reengineering work products 
(e.g., use cases, analysis and design models, 
test procedures) are produced. The fi nal output 
is upgraded software. 

   How do I ensure that I’ve done it right?   
Use the same SQA practices that are applied 
in every software engineering process— 
technical reviews assess the analysis and 
design models; specialized reviews consider 
business applicability and compatibility; and 
testing is applied to uncover errors in content, 
functionality, and interoperability.   

pre22126_ch36_795-816.indd   795pre22126_ch36_795-816.indd   795 13/12/13   6:17 PM13/12/13   6:17 PM



796 PART FOUR  MANAGING SOFTWARE PROJECTS

details of this work are beyond the scope of this book, but the underlying laws 

that have been derived are worthy of note [Leh97b]: 

         The Law of Continuing Change (1974):  Software that has been implemented in a 

 real-world computing context and will therefore evolve over time (called  E-type sys-

tems ) must be continually adapted else they become progressively less satisfactory. 

  The Law of Increasing Complexity (1974):  As an E-type system evolves its complex-

ity increases unless work is done to maintain or reduce it. 

  The Law of Self Regulation (1974):  The E-type system evolution process is self- 

regulating with distribution of product and process measures close to normal. 

  The Law of Conservation of Organizational Stability (1980):  The average effective 

global activity rate in an evolving E-type system is invariant over product lifetime. 

  The Law of Conservation of Familiarity (1980):  As an E-type system evolves all as-

sociated with it, developers, sales personnel, users, for example, must maintain mas-

tery of its content and behavior to achieve satisfactory evolution. Excessive growth 

diminishes that mastery. Hence the average incremental growth remains invariant 

as the system evolves. 

  The Law of Continuing Growth (1980):  The functional content of E-type systems 

must be continually increased to maintain user satisfaction over their lifetime. 

  The Law of Declining Quality (1996):  The quality of E-type systems will appear to 

be declining unless they are rigorously maintained and adapted to operational envi-

ronment changes. 

  The Feedback System Law (1996):  E-type evolution processes constitute multi-

level, multi-loop, multi-agent feedback systems and must be treated as such to 

achieve signifi cant improvement over any reasonable base.   

 The laws that Lehman and his colleagues have defi ned are an inherent part of 

a software engineer’s reality. In this chapter, we’ll discuss the challenge of soft-

ware maintenance and the reengineering activities that are required to extend 

the effective life of legacy systems. 

      36.1  SOFTWARE MAINTENANCE 

  It begins almost immediately. Software is released to end users, and within days, 

bug reports fi lter back to the software engineering organization. Within weeks, 

one class of users indicates that the software must be changed so that it can 

accommodate the special needs of their environment. And within months, an-

other corporate group that wanted nothing to do with the software when it was 

released now recognizes that it may provide unexpected benefi t. They’ll need a 

few enhancements to make it work in their world. 

 The challenge of software maintenance has begun. You’re faced with a growing 

queue of bug fi xes, adaptation requests, and outright enhancements that must be 

planned, scheduled, and ultimately accomplished. Before long, the queue has 

 Why do 
legacy 

systems evolve as 
time passes? 

?

    restructuring. . . . . 809  
    code  . . . . . . . . 809  
    data  . . . . . . . . 810  

    reverse 
engineering. . . . . . 805  

    data  . . . . . . . . 807  
    processing  . . . . 807  
    user interfaces . 808  

    software 
maintenance . . . . . 796  
    software 
reengineering  . . . . 802  
    supportability . . . . 798  
  

pre22126_ch36_795-816.indd   796pre22126_ch36_795-816.indd   796 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  797

grown long, and the work it implies threatens to overwhelm the available re-

sources. As time passes, your organization fi nds that it’s spending more money 

and time maintaining existing programs than it is engineering new applications. 

In fact, it’s not unusual for a software organization to expend as much as 60 to 

70 percent of all resources on software maintenance. 

 You may ask why so much maintenance is required and why so much effort is 

expended. Osborne and Chikofsky [Osb90] provide a partial answer: 

  Much of the software we depend on today is on average 10 to 15 years old. Even when 

these programs were created using the best design and coding techniques known 

at the time [and most were not], they were created when program size and storage 

space were principle concerns. They were then migrated to new platforms, adjusted 

for changes in machine and operating system technology and enhanced to meet 

new user needs—all without enough regard to overall architecture. The result is the 

poorly designed structures, poor coding, poor logic, and poor documentation of the 

software systems we are now called on to keep running . . .   

 Another reason for the software maintenance problem is the mobility of software 

people. It is likely that the software team (or person) that did the original work 

is no longer around. Worse, other generations of software people have modifi ed 

the system and moved on. And today, there may be no one left who has any direct 

knowledge of the legacy system.   

  As we noted in Chapter 29, the ubiquitous nature of change underlies all soft-

ware work. Change is inevitable when computer-based systems are built; there-

fore, you must develop mechanisms for evaluating, controlling, and making 

modifi cations. 

 Throughout this book, we’ve emphasized the importance of understanding the 

problem (analysis) and developing a well-structured solution (design). In fact, Part 2 

of the book is dedicated to the mechanics of these software engineering actions, and 

Part 3 focuses on the techniques required to be sure you’ve done them correctly. 

Both analysis and design lead to an important software characteristic that we call 

maintainability. In essence,  maintainability  is a qualitative indication  1   of the ease 

with which existing software can be corrected, adapted, or enhanced. Much of what 

software engineering is about is building systems that exhibit high maintainability.    

 But what is maintainability? Maintainable software exhibits effective modu-

larity (Chapter 12). It makes use of design patterns (Chapter 16) that allow ease of 

understanding. It has been constructed using well-defi ned coding standards and 

conventions, leading to source code that is self-documenting and understand-

able. It has undergone a variety of quality assurance techniques (Part 3 of this 

book) that have uncovered potential maintenance problems before the software 

is released. It has been created by software engineers who recognize that they 

  uote: 

 “Program 
maintainability 
and program 
understandability 
are parallel 
concepts: the more 
diffi cult a program 
is to understand, 
the more diffi cult it 
is to maintain. 

 Gerald Berns 

  1  There are many quantitative measures that provide an indirect indication of maintainability 

(e.g., [Sch99], [SEI02]). 

pre22126_ch36_795-816.indd   797pre22126_ch36_795-816.indd   797 13/12/13   6:17 PM13/12/13   6:17 PM



798 PART FOUR  MANAGING SOFTWARE PROJECTS

may not be around when changes must be made. Therefore, the design and im-

plementation of the software must “assist” the person who is making the change. 

      36.2  SOFTWARE SUPPOR TABIL ITY 

  In order to effectively support industry-grade software, your organization (or its 

designee) must be capable of making the corrections, adaptations, and enhance-

ments that are part of the maintenance activity. But in addition, the organization 

must provide other important support activities that include ongoing opera-

tional support, end-user support, and reengineering activities over the complete 

life cycle of the software. A reasonable defi nition of  software supportability  is 

   . . . the capability of supporting a software system over its whole product life. This im-

plies satisfying any necessary needs or requirements, but also the provision of equip-

ment, support infrastructure, additional software, facilities, manpower, or any other 

resource required to maintain the software operational and capable of satisfying its 

function. [SSO08]   

 In essence, supportability is one of many quality factors that should be consid-

ered during the analysis and design actions that are part of the software process. 

It should be addressed as part of the requirements model (or specifi cation) and 

considered as the design evolves and construction commences. 

      For example, the need to “antibug” software at the component and code level 

has been discussed previously in the book. The software should contain facili-

ties to assist support personnel when a defect is encountered in the operational 

environment (and make no mistake, defects  will  be encountered). In addition, 

support personnel should have access to a database that contains records of all 

defects that have already been encountered—their characteristics, cause, and 

cure. This will enable support personnel to examine “similar” defects and may 

provide a means for more rapid diagnosis and correction. 

 Although defects encountered in an application are a critical support issue, 

supportability also demands that resources be provided to support day-to-day 

end-user issues. The job of end-user support personnel is to answer user queries 

about the installation, operation, and use of the application. 

      36.3  REENGINEERING 

  In a seminal article written for the  Harvard Business Review,  Michael Hammer 

[Ham90] laid the foundation for a revolution in management thinking about busi-

ness processes and computing:

  It is time to stop paving the cow paths. Instead of embedding outdated processes in 

silicon and software, we should obliterate them and start over. We should “reengi-

neer” our businesses: use the power of modern information technology to radically 

 WebRef 
 A wide array of 
downloadable docu-
ments on software 
supportability can be 
found at   www 
.software-
supportability
.org/
Downloads
.html  . 

pre22126_ch36_795-816.indd   798pre22126_ch36_795-816.indd   798 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  799

redesign our business processes in order to achieve dramatic improvements in their 

performance.     

  The hype associated with reengineering waned, but the process itself contin-

ues in companies large and small. The nexus between business reengineering 

and software engineering lies in a “system view.” 

 As managers work to modify business rules to achieve greater effectiveness 

and competitiveness, software must keep pace. In some cases, this means the 

creation of major new computer-based systems.  2   But in many others, it means 

the modifi cation or rebuilding of existing applications.    

 In the sections that follow, we examine reengineering in a top-down manner, 

beginning with a brief overview of business process reengineering and proceed-

ing to a more detailed discussion of the technical activities that occur when soft-

ware is reengineered. 

           36.4  BUS INESS PROCESS REENGINEERING 

  Business process reengineering (BPR) extends far beyond the scope of informa-

tion technologies and software engineering. Among the many defi nitions (most 

somewhat abstract) that have been suggested for BPR is one published in  Fortune  

magazine [Ste93]: “[T]he search for, and the implementation of, radical change in 

business process to achieve breakthrough results.” But how is the search con-

ducted, and how is the implementation achieved? More important, how can we 

ensure that the “radical change” suggested will in fact lead to “breakthrough 

results” instead of organizational chaos? 

   36.4.1   Business Processes 

      A business process is “a set of logically related tasks performed to achieve a 

defi ned business outcome” [Dav90]. Within the business process, people, equip-

ment, material resources, and business procedures are combined to produce a 

specifi ed result. Examples of business processes include designing a new prod-

uct, purchasing services and supplies, hiring a new employee, and paying sup-

pliers. Each demands a set of tasks, and each draws on diverse resources within 

the business. 

 Every business process has a defi ned customer—a person or group that re-

ceives the outcome (e.g., an idea, a report, a design, a service, a product). In 

addition, business processes cross organizational boundaries. They require that 

different organizational groups participate in the “logically related tasks” that 

defi ne the process. 

  uote: 

 “To face tomorrow 
with the thought of 
using the methods 
of yesterday is to 
envision life at a 
standstill.” 

 James Bell 

   BPR often results in 
new software function-
ality, whereas software 
reengineering works to 
replace existing soft-
ware functionality with 
better, more maintain-
able software. 

   As a software engi-
neer, your work occurs 
at the bottom of this 
hierarchy. Be sure, 
however, that some-
one has given serious 
thought to the level 
above. If this hasn’t 
been done, your work 
is at risk. 

  2  The explosion of Web and mobile applications and systems is indicative of this trend. 

pre22126_ch36_795-816.indd   799pre22126_ch36_795-816.indd   799 13/12/13   6:17 PM13/12/13   6:17 PM



800 PART FOUR  MANAGING SOFTWARE PROJECTS

 Every system is actually a hierarchy of subsystems. A business is no exception. 

The overall business is segmented in the following manner:

   The business  business systems  business processes  business 

subprocesses    

 Each business system (also called  business function ) is composed of one or more 

business processes, and each business process is defi ned by a set of subprocesses. 

 BPR can be applied at any level of the hierarchy, but as the scope of BPR 

broadens (i.e., as we move upward in the hierarchy), the risks associated with 

BPR grow dramatically. For this reason, most BPR efforts focus on individual pro-

cesses or subprocesses. 

    36.4.2   A BPR Model 

 Like most engineering activities, business process reengineering is iterative. 

Business goals and the processes that achieve them must be adapted to a chang-

ing business environment. For this reason, there is no start and end to BPR—it is 

an evolutionary process. A model for business process reengineering is depicted 

in Figure 36.1. The model defi nes six activities:  

      1.   Business defi nition.  Business goals are identifi ed within the context of 

four key drivers: cost reduction, time reduction, quality improvement, and 

personnel development and empowerment. Goals may be defi ned at the 

business level or for a specifi c component of the business.  

    2.   Process identifi cation.  Processes that are critical to achieving the goals 

defi ned in the business defi nition are identifi ed. They may then be ranked 

Business
definition

Refinement &
instantiation

Prototyping

Process
specification
and design

Process
identification

Process
evaluation

 FIGURE 36.1

A BPR model    

pre22126_ch36_795-816.indd   800pre22126_ch36_795-816.indd   800 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  801

by importance, by need for change, or in any other way that is appropriate 

for the reengineering activity.  

           3.   Process evaluation.  The existing process is thoroughly analyzed and mea-

sured. Process tasks are identifi ed; the costs and time consumed by pro-

cess tasks are noted; and quality/performance problems are isolated.  

    4.   Process specifi cation and design.  Based on information obtained during the 

fi rst three BPR activities, use cases (Chapters 8 and 9) are prepared for each 

process that is to be redesigned. Within the context of BPR, use cases identify 

a scenario that delivers some outcome to a customer. With the use case as the 

specifi cation of the process, a new set of tasks are designed for the process.  

    5.   Prototyping.  A redesigned business process must be prototyped before it 

is fully integrated into the business. This activity “tests” the process so that 

refi nements can be made.  

    6.   Refi nement and instantiation.  Based on feedback from the prototype, the 

business process is refi ned and then instantiated within a business system.  

   These BPR activities are sometimes used in conjunction with workfl ow analysis 

tools. The intent of these tools is to build a model of existing workfl ow in an effort 

to better analyze existing processes.     

    uote: 

 “As soon as we are 
shown something 
old in a new thing, 
we are pacifi ed.” 

 F. W. Nietzsche 

  Business Process Reengineering (BPR) 

     Objective:    The objective of BPR tools is 
to support the analysis and assessment of 

existing business processes and the specifi cation and 
design of new ones. 

   Mechanics:   Tools mechanics vary. In general, BPR 
tools allow a business analyst to model existing business 
processes in an effort to assess workfl ow ineffi ciencies 
or functional problems. Once existing problems are 
identifi ed, tools allow the analysis to prototype and/or 
simulate revised business processes. 

    Representative Tools:  3      
      ExtendSim,  developed by ImagineThat 

(  www.imaginethatinc.com  ), is a simulation 
tool for modeling existing processes and exploring 
new ones. Extend provides comprehensive what-if 
capability that enables a business analysis to explore 
different process scenarios.  

     Metastrom BPM,  developed by OpentText 
( http://bps.opentext.com/ ), provides business 

process management support for both manual and 
automated processes.  

     IceTools,  developed by Blue Ice 
( http://www.icetools.com/home.html ), is a 
collection of BPR templates for Microsoft Offi ce and 
Microsoft Visio.  

     OMNIBUS,  developed by Kovair 
(  http://www.kovair.com/  ), is one of many 
tools that enable an organization to model process 
workfl ow (in this case, IT workfl ow).  

     ProcessMaker,  open-source workfl ow suite developed 
by Colosa ( http://www.processmaker.com/ ), 
incorporates a suite of tools for workfl ow modeling, 
simulation, and scheduling.  

    A useful list of BPR tool links can be found at 
  www.opfro.org/index.
html?Components/Producers/Tools/
BusinessProcessReengineeringTools.
html~Contents  .     

 SOFTWARE TOOLS 

  3   Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch36_795-816.indd   801pre22126_ch36_795-816.indd   801 13/12/13   6:17 PM13/12/13   6:17 PM



802 PART FOUR  MANAGING SOFTWARE PROJECTS

        36.5  SOFTWARE REENGINEERING 

  The scenario is all too common: An application has served the business needs of 

a company for 10 or 15 years. During that time it has been corrected, adapted, 

and enhanced many times. People approached this work with the best inten-

tions, but good software engineering practices were always shunted to the side 

(due to the urgency of other matters). Now the application is unstable. It still 

works, but every time a change is attempted, unexpected and serious side effects 

occur. Yet the application must continue to evolve. What to do? 

 Unmaintainable software is not a new problem. In fact, the broadening em-

phasis on software reengineering has been spawned by software maintenance 

problems that have been building for almost half a century. 

   36.5.1   A Software Reengineering Process Model 

 Reengineering takes time, it costs signifi cant amounts of money, and it absorbs 

resources that might be otherwise occupied on immediate concerns. For all of 

these reasons, reengineering is not accomplished in a few months or even a few 

years. Reengineering of information systems is an activity that will absorb in-

formation technology resources for many years. That’s why every organization 

needs a pragmatic strategy for software reengineering. 

      A workable strategy is encompassed in a reengineering process model. We’ll 

discuss the model later in this section, but fi rst, some basic principles. 

 Reengineering is a rebuilding activity. To better understand it, consider an 

analogous activity: the rebuilding of a house. Consider the following situation. 

You’ve purchased a house in another state. You’ve never actually seen the prop-

erty, but you acquired it at an amazingly low price, with the warning that it might 

have to be completely rebuilt. How would you proceed? 

    •  Before you can start rebuilding, it would seem reasonable to inspect the 

house. To determine whether it is in need of rebuilding, you (or a pro-

fessional inspector) would create a list of criteria so that your inspection 

would be systematic.  

   •  Before you tear down and rebuild the entire house, be sure that the struc-

ture is weak. If the house is structurally sound, it may be possible to “re-

model” without rebuilding (at much lower cost and in much less time).  

   •  Before you start rebuilding be sure you understand how the original was 

built. Take a peek behind the walls. Understand the wiring, the plumbing, 

and the structural internals. Even if you trash them all, the insight you’ll 

gain will serve you well when you start construction.  

   •  If you begin to rebuild, use only the most modern, long-lasting materials. 

This may cost a bit more now, but it will help you to avoid expensive and 

time-consuming maintenance later.  

 WebRef 
 An excellent source 
of information on 
software reengineering 
can be found at 
  reengineer 
.org  . 

pre22126_ch36_795-816.indd   802pre22126_ch36_795-816.indd   802 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  803

   •  If you decide to rebuild, be disciplined about it. Use practices that will re-

sult in high quality—today and in the future.    

 Although these principles focus on the rebuilding of a house, they apply equally 

well to the reengineering of computer-based systems and applications. 

 To implement these principles, you can use a software reengineering process 

model that defi nes six activities, shown in Figure 36.2. In some cases, these ac-

tivities occur in a linear sequence, but this is not always the case. For example, it 

may be that reverse engineering (understanding the internal workings of a pro-

gram) may have to occur before document restructuring can commence.  

         36.5.2   Software Reengineering Activities 

 The reengineering paradigm shown in Figure 36.2 is a cyclical model. This means 

that each of the activities presented as a part of the paradigm may be revis-

ited. For any particular cycle, the process can terminate after any one of these 

activities. 

  Inventory analysis.   Every software organization should have an inventory of 

all applications. The inventory can be nothing more than a spreadsheet model 

containing information that provides a detailed description (e.g., size, age, busi-

ness criticality) of every active application. By sorting this information according 

to business criticality, longevity, current maintainability and supportability, and 

other locally important criteria, candidates for reengineering appear. Resources 

can then be allocated to candidate applications for reengineering work. 

   If time and resources 
are in short supply, you 
might consider apply-
ing the Pareto principle 
to the software that 
is to be reengineered. 
Apply the reengineer-
ing process to the 
20 percent of the 
software that accounts 
for 80 percent of the 
problems. 

Forward
engineering

Document
restructuring

Reverse
engineering

Inventory
analysis

Data
restructuring

Code
restructuring

 FIGURE 36.2

A software 
reengineering 
process model    

pre22126_ch36_795-816.indd   803pre22126_ch36_795-816.indd   803 13/12/13   6:17 PM13/12/13   6:17 PM



804 PART FOUR  MANAGING SOFTWARE PROJECTS

 It is important to note that the inventory should be revisited on a regular basis. 

The status of applications (e.g., business criticality) can change as a function of 

time, and as a result, priorities for reengineering will shift. 

   Document restructuring.   Weak documentation is the trademark of many legacy 

systems. But what can you do about it? What are your options? In some cases, 

creating documentation when none exists is simply too costly. If the software 

works, let it be! In other cases, some documentation must be created, but only 

when changes are made. If a modifi cation occurs, document it. Finally, there are 

situations in which a critical system must be fully documented, but even here, 

documents should achieve an essential minimum. Your software organization 

must choose the documentation option that is most appropriate for each case. 

   Reverse engineering.   Reverse engineering for software is the process of an-

alyzing a program in an effort to create a representation of the program at a 

higher level of abstraction than source code. Reverse engineering is a process of 

 design recovery . Reverse engineering tools extract data, architectural, and pro-

cedural design information from an existing program. 

   Code restructuring.   The most common type of reengineering (actually, the use 

of the term  reengineering  is questionable in this case) is  code restructuring.   4   Some 

legacy systems have a relatively solid program architecture, but individual mod-

ules were coded in a way that makes them diffi cult to understand, test, and main-

tain. In such cases, the code within the suspect modules can be restructured.    

 To accomplish this activity, the source code is analyzed using a restructuring 

tool. Violations of structured programming constructs are noted and code is then 

restructured (this can be done automatically) or even rewritten in a more mod-

ern programming language. The resultant restructured code is reviewed and 

tested to ensure that no anomalies have been introduced. Internal code docu-

mentation is updated. 

   Data restructuring.   A program with weak data architecture will be diffi cult to 

adapt and enhance. In fact, for many applications, information architecture has 

more to do with the long-term viability of a program than the source code itself. 

 Unlike code restructuring, which occurs at a relatively low level of abstrac-

tion, data restructuring is a full-scale reengineering activity. In most cases, data 

restructuring begins with a reverse engineering activity. Current data architec-

ture is dissected, and necessary data models are defi ned. Data objects and attri-

butes are identifi ed, and existing data structures are reviewed for quality. 

 When data structure is weak (e.g., fl at fi les are currently implemented, 

when a relational approach would greatly simplify processing), the data are 

reengineered. 

  4  Code restructuring has some of the elements of “refactoring,” a redesign concept introduced 

in Chapter 12 and discussed elsewhere in this book. 

Create only as much 
documentation as you 
need to understand the 
software, not one page 
more.

pre22126_ch36_795-816.indd   804pre22126_ch36_795-816.indd   804 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  805

 Because data architecture has a strong infl uence on program architecture 

and the algorithms that populate it, changes to the data will invariably result in 

either architectural or code-level changes. 

   Forward engineering.   In an ideal world, applications would be rebuilt using an 

automated “reengineering engine.” The old program would be fed into the en-

gine, analyzed, restructured, and then regenerated in a form that exhibited the 

best aspects of software quality. In the short term, it is unlikely that such an “en-

gine” will appear, but vendors have introduced tools that provide a limited subset 

of these capabilities that addresses specifi c application domains (e.g., applica-

tions that are implemented using a specifi c database system). More important, 

these reengineering tools are becoming increasingly more sophisticated. 

 Forward engineering not only recovers design information from existing soft-

ware but uses this information to alter or reconstitute the existing system in an 

effort to improve its overall quality. In most cases, reengineered software rec-

reates the function of the existing system and also adds new functions and/or 

improves overall performance. 

        36.6  REVERSE ENGINEERING 

  Reverse engineering conjures an image of the “magic slot.” You feed a haphaz-

ardly designed, undocumented source fi le into the slot and out the other end 

comes a complete design description (and full documentation) for the computer 

program. Unfortunately, the magic slot doesn’t exist. Reverse engineering can 

extract design information from source code, but the abstraction level, the com-

pleteness of the documentation, the degree to which tools and a human analyst 

work together, and the directionality of the process are highly variable. 

 The  abstraction level  of a reverse engineering process and the tools used to 

effect it refers to the sophistication of the design information that can be ex-

tracted from source code. Ideally, the abstraction level should be as high as 

possible. That is, the reverse engineering process should be capable of deriving 

procedural design representations (a low-level abstraction), program and data 

structure information (a somewhat higher level of abstraction), object models, 

data and/or control fl ow models (a relatively high level of abstraction), and data 

models (a high level of abstraction). As the abstraction level increases, you are 

provided with information that will allow easier understanding of the program. 

 The  completeness  of a reverse engineering process refers to the level of de-

tail that is provided at an abstraction level. In most cases, the completeness 

decreases as the abstraction level increases. For example, given a source code 

listing, it is relatively easy to develop a complete procedural design representa-

tion. Simple architectural design representations may also be derived, but it is 

far more diffi cult to develop a complete set of UML diagrams or models. 

pre22126_ch36_795-816.indd   805pre22126_ch36_795-816.indd   805 13/12/13   6:17 PM13/12/13   6:17 PM



806 PART FOUR  MANAGING SOFTWARE PROJECTS

 Completeness improves in direct proportion to the amount of analysis per-

formed by the person doing reverse engineering.  Interactivity  refers to the 

degree to which the human is “integrated” with automated tools to create an 

effective reverse engineering process. In most cases, as the abstraction level in-

creases, interactivity must increase or completeness will suffer. 

 If the  directionality  of the reverse engineering process is one-way, all infor-

mation extracted from the source code is provided to the software engineer who 

can then use it during any maintenance activity. If directionality is two-way, the 

information is fed to a reengineering tool that attempts to restructure or regen-

erate the old program. 

           The reverse engineering process is represented in Figure 36.3. Before reverse 

engineering activities can commence, unstructured (“dirty”) source code is re-

structured (Section 36.5.1) so that it contains only the structured programming 

constructs.  5   This makes the source code easier to read and provides the basis for 

all the subsequent reverse engineering activities.     

 The core of reverse engineering is an activity called  extract abstractions . You 

must evaluate the old program and from the (often undocumented) source code, 

develop a meaningful specifi cation of the processing that is performed, the user 

interface that is applied, and the program data structures or database that is 

used. 

   Three reverse engi-
neering issues must be 
addressed: abstraction 
level, completeness, 
and directionality. 

 WebRef 
 Useful resources for 
“design recovery and 
program understand-
ing” can be found at  
  http://www
.softpanorama
.net/SE/reverse_
engineering_links
.shtml  . 

  5  Code can be restructured using a  restructuring engine —a tool that restructures source code. 

 FIGURE 36.3

The reverse 
engineering 
process    

Refine &
simplify

Final specification

Extract
abstractions

Initial specification

Restructure
code

Clean source code

Dirty source code

Database

Interface

Processing

pre22126_ch36_795-816.indd   806pre22126_ch36_795-816.indd   806 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  807

   36.6.1   Reverse Engineering to Understand Data 

      Reverse engineering of data occurs at different levels of abstraction and is often 

the fi rst reengineering task. At the program level, internal program data struc-

tures must often be reverse engineered as part of an overall reengineering ef-

fort. At the system level, global data structures (e.g., fi les, databases) are often 

reengineered to accommodate new database management paradigms (e.g., the 

move from fl at fi le to relational or object-oriented database systems). Reverse 

engineering of the current global data structures sets the stage for the introduc-

tion of a new systemwide database. 

       Internal data structures.   Reverse engineering techniques for internal program 

data focus on the defi nition of classes of objects. This is accomplished by exam-

ining the program code with the intent of grouping related program variables. In 

many cases, the data organization within the code identifi es abstract data types. 

For example, record structures, fi les, lists, and other data structures often pro-

vide an initial indicator of classes. 

   Database structure.    Regardless of its logical organization and physical struc-

ture, a database allows the defi nition of data objects and supports some method 

for establishing relationships among the objects. Therefore, reengineering one 

database schema into another requires an understanding of existing objects and 

their relationships. 

 The following steps [Pre94] may be used to defi ne the existing data model as 

a precursor to reengineering a new database model: (1) build an initial object 

model, (2) determine candidate keys (the attributes are examined to determine 

whether they are used to point to another record or table; those that serve as 

pointers become candidate keys), (3) refi ne the tentative classes, (4) defi ne gen-

eralizations, and (5) discover associations using techniques that are analogous to 

the CRC approach. Once information defi ned in the preceding steps is known, a 

series of transformations [Pre94] can be applied to map the old database struc-

ture into a new database structure. 

     36.6.2   Reverse Engineering to Understand Processing 

    Reverse engineering to understand processing begins with an attempt to under-

stand and then extract procedural abstractions represented by the source code. 

To understand procedural abstractions, the code is analyzed at varying levels of 

abstraction: system, program, component, pattern, and statement. 

 The overall functionality of the entire application must be understood before 

more detailed reverse engineering work occurs. This establishes a context for 

further analysis and provides insight into interoperability issues among appli-

cations within a larger system. Each of the programs that make up the system 

represents a functional abstraction at a high level of detail. A block diagram, rep-

resenting the interaction between these functional abstractions, is created. Each 

   In some cases, the fi rst 
reengineering activity 
attempts to construct a 
UML class diagram. 

   The approach to 
reverse engineering for 
data for conventional 
software follows 
an analogous path: 
(1) build a data 
model, (2) identify 
attributes of data 
objects, and (3) defi ne 
relationships. 

    uote: 

 “There exists 
a passion for 
comprehension, 
just as there exists 
a passion for 
music. That passion 
is rather common 
in children, but 
gets lost in most 
people later on.” 

 Albert Einstein 

pre22126_ch36_795-816.indd   807pre22126_ch36_795-816.indd   807 13/12/13   6:17 PM13/12/13   6:17 PM



808 PART FOUR  MANAGING SOFTWARE PROJECTS

component performs some subfunction and represents a defi ned procedural 

abstraction. A processing narrative for each component is developed. In some 

situations, system, program, and component specifi cations already exist. When 

this is the case, the specifi cations are reviewed for conformance to existing code.  6      

 Things become more complex when the code inside a component is consid-

ered. You should look for sections of code that represent generic procedural 

patterns. In almost every component, a section of code prepares data for pro-

cessing (within the module), a different section of code does the processing, and 

another section of code prepares the results of processing for export from the 

component. Within each of these sections, you can encounter smaller patterns; 

for example, data validation and bounds checking often occur within the section 

of code that prepares data for processing. 

 For large systems, reverse engineering is generally accomplished using a semi-

automated approach. Automated tools can be used to help you understand the 

semantics of existing code. The output of this process is then passed to restruc-

turing and forward engineering tools to complete the reengineering process. 

    36.6.3   Reverse Engineering User Interfaces 

 Sophisticated GUIs have become de rigueur for computer-based products and 

systems of every type. Therefore, the redevelopment of user interfaces has be-

come one of the most common types of reengineering activity. But before a user 

interface can be rebuilt, reverse engineering should occur. 

 To fully understand an existing user interface, the structure and behavior of the 

interface must be specifi ed. Merlo and his colleagues [Mer93] suggest three basic 

questions that must be answered as reverse engineering of the UI commences:      

      •  What are the basic actions (e.g., keystrokes and mouse clicks) that the in-

terface must process?  

   •  What is a compact description of the behavioral response of the system to 

these actions?  

   •  What is meant by a “replacement,” or more precisely, what concept of 

equivalence of interfaces is relevant here?    

 Behavioral modeling notation (Chapter 11) can provide a means for developing 

answers to the fi rst two questions. Much of the information necessary to create a 

behavioral model can be obtained by observing the external manifestation of the 

existing interface. But additional information necessary to create the behavioral 

model must be extracted from the code. 

 It is important to note that a replacement GUI may not mirror the old in-

terface exactly (in fact, it may be radically different). It is often worthwhile to 

develop a new interaction metaphor. For example, an old UI requests that a user 

 How do I 
understand 

the working of 
an existing user 
interface? 

?

  6  Often, specifi cations written early in the life history of a program are never updated. As 

changes are made, the code no longer conforms to the specifi cation. 

pre22126_ch36_795-816.indd   808pre22126_ch36_795-816.indd   808 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  809

provide a scale factor (ranging from 1 to 10) to shrink or magnify a graphical 

image. A reengineered GUI might use a touch-screen slide bar to accomplish 

the same function.     

  Reverse Engineering 

     Objective:   To help software engineers 
understand the internal design structure of 

complex programs. 

   Mechanics:   In most cases, reverse engineering tools 
accept source code as input and produce a variety of 
structural, procedural, data, and behavioral design 
representations. 

    Representative Tools:  7   
          Imagix 4D,  developed by Imagix (  www.imagix

.com  ), “helps software developers understand 

complex or legacy C and C11 software” by reverse 
engineering and documenting source code.  

     Understand,  developed by Scientifi c Toolworks 
(  www.scitools.com  ), parse Ada, Fortran, C, 
C11, C#, PHP, HTML, JavaScript, Python, and 
Java “to reverse-engineer, automatically document, 
calculate code metrics, and help you understand, 
navigate and maintain source code.”    

 A list of reverse engineering tools can be found at 
 http://www.eclipse.org/gmt/modisco/
relatedProjects.php .   

 SOFTWARE TOOLS 

  7  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

  8  It is sometimes diffi cult to make a distinction between extensive restructuring and redevelop-

ment. Both are reengineering. 

        36.7  RESTRUCTURING 

  Software restructuring modifi es source code and/or data in an effort to make it 

amenable to future changes. In general, restructuring does not modify the over-

all program architecture. It tends to focus on the design details of individual 

modules and on local data structures defi ned within modules. If the restructur-

ing effort extends beyond module boundaries and encompasses the software ar-

chitecture, restructuring becomes forward engineering (Section 36.8). 

 Restructuring occurs when the basic architecture of an application is solid, 

even though technical internals need work. It is initiated when major parts of 

the software are serviceable and only a subset of all modules and data need 

 extensive modifi cation.  8         

    36.7.1   Code Restructuring 

  Code restructuring  is performed to yield a design that produces the same function 

but with higher quality than the original program. In general, code restructur-

ing techniques (e.g., Warnier’s logical simplifi cation techniques [War74]) model 

program logic using Boolean algebra and then apply a series of transformation 

rules that yield restructured logic. The objective is to take “spaghetti-bowl” code 

and derive a procedural design that conforms to the structured programming 

philosophy (Chapter 19). 

   Although code restruc-
turing can alleviate 
immediate problems 
associated with debug-
ging or small changes, 
it is not reengineering. 
Real benefi t is 
achieved only when 
data and architecture 
are restructured. 

pre22126_ch36_795-816.indd   809pre22126_ch36_795-816.indd   809 13/12/13   6:17 PM13/12/13   6:17 PM



810 PART FOUR  MANAGING SOFTWARE PROJECTS

 Other restructuring techniques have also been proposed for use with reengi-

neering tools. A resource exchange diagram maps each program module and the 

resources (data types, procedures, and variables) that are exchanged between it 

and other modules. By creating representations of resource fl ow, the program 

architecture can be restructured to achieve minimum coupling among modules. 

    36.7.2   Data Restructuring 

 Before data restructuring can begin, a reverse engineering activity called  anal-

ysis of source code  should be conducted. All programming language statements 

that contain data defi nitions, fi le descriptions, I/O, and interface descriptions 

are evaluated. The intent is to extract data items and objects, to get information 

on data fl ow, and to understand the existing data structures that have been im-

plemented. This activity is sometimes called  data analysis . 

 Once data analysis has been completed,  data redesign  commences. In its 

simplest form, a  data record standardization  step clarifi es data defi nitions to 

achieve consistency among data item names or physical record formats within 

an existing data structure or fi le format. Another form of redesign, called  data 

name rationalization,  ensures that all data naming conventions conform to local 

standards and that aliases are eliminated as data fl ow through the system. 

 When restructuring moves beyond standardization and rationalization, phys-

ical modifi cations to existing data structures are made to make the data design 

more effective. This may mean a translation from one fi le format to another, or in 

some cases, translation from one type of database to another.     

  Software Restructuring 

     Objective:   The objective of restructuring 
tools is to transform older unstructured 

computer software into modern programming languages 
and design structures. 

   Mechanics:   In general, source code is input and 
transformed into a better structured program. In some 
cases, the transformation occurs within the same 
programming language. In other cases, an older 
programming language is transformed into a more 
modern language. 

    Representative Tools  9   
          DMS Software Reengineering Toolkit,  developed by 

Semantic Design (  www.semdesigns.com  ), 
provide a variety of restructuring capabilities for 
COBOL, C/C11, Java, Fortran 90, and VHDL.  

     Clone Doctor,  developed by Semantic Designs 
(  www.semdesigns.com  ), analyzes and 
transforms programs written in C, C11, Java, or 
COBOL or any other text-based computer language.  

     plusFORT,  developed by Polyhedron 
(  www.polyhedron.com  ), is a suite of FORTRAN 
tools that contains capabilities for restructuring poorly 
designed FORTRAN programs into the modern 
FORTRAN or C standard.  

   Pointers to a variety of reengineering and reverse engi-
neering tools can be found at    http://www.comp
.lancs.ac.uk/projects/renaissance/
RenaissanceWeb/Reengineering/Tools.html    
and   http://www.fujaba.de/projects.html  .   

 SOFTWARE TOOLS 

  9  Tools noted here do not represent an endorsement, but rather a sampling of tools in this cate-

gory. In most cases, tool names are trademarked by their respective developers. 

pre22126_ch36_795-816.indd   810pre22126_ch36_795-816.indd   810 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  811

        36.8  FORWARD ENGINEERING 

  A program with control fl ow that is the graphic equivalent of a bowl of spaghetti, 

with “modules” that are 2,000 statements long, with few meaningful comment 

lines in 290,000 source statements and no other documentation must be modifi ed 

to accommodate changing user requirements. You have the following options:  

           1.  You can struggle through modifi cation after modifi cation, fi ghting the ad 

hoc design and tangled source code to implement the necessary changes.  

    2.  You can attempt to understand the broader inner workings of the pro-

gram in an effort to make modifi cations more effectively.  

    3.  You can redesign, recode, and test those portions of the software that 

require modifi cation, applying a software engineering approach to all 

 revised segments.  

    4.  You can completely redesign, recode, and test the program, using reengi-

neering tools to assist us in understanding the current design.    

 There is no single “correct” option. Circumstances may dictate the fi rst option 

even if the others are more desirable. 

      Rather than waiting until a maintenance request is received, the development 

or support organization uses the results of inventory analysis to select a program 

that (1) will remain in use for a preselected number of years, (2) is currently being 

used successfully, and (3) is likely to undergo major modifi cation or enhance-

ment in the near future. Then, option 2, 3, or 4 is applied. 

 At fi rst glance, the suggestion that you redevelop a large program when 

a working version already exists may seem quite extravagant. Before pass-

ing judgment, consider the following arguments. The cost to maintain one line 

of source code may be 20 to 40 times the cost of initial development of that 

line. In addition, redesign of the software architecture (program and/or data 

structure), using modern design concepts, can greatly facilitate future main-

tenance. Because a prototype of the software already exists, development pro-

ductivity should be much higher than average. The user now has experience 

with the software. Therefore, new requirements and the direction of change 

can be ascertained with greater ease. Automated tools for reengineering will 

facilitate some parts of the job. And fi nally, a complete software confi gura-

tion (documents, programs, and data) will exist upon completion of preventive 

maintenance. 

 A large in-house software developer (e.g., a business systems software de-

velopment group for a large consumer products company) may have 500 to 

2,000 production programs within its domain of responsibility. These programs 

can be ranked by importance and then reviewed as candidates for forward 

engineering. 

 What 
options 

exist when we’re 
faced with a 
poorly designed 
and implemented 
program? 

?

   Reengineering is a lot 
like getting your teeth 
cleaned. You can think 
of a thousand reasons 
to delay it, and you’ll 
get away with pro-
crastinating for quite a 
while. But eventually, 
your delaying tactics 
will come back to 
cause pain. 

pre22126_ch36_795-816.indd   811pre22126_ch36_795-816.indd   811 13/12/13   6:17 PM13/12/13   6:17 PM



812 PART FOUR  MANAGING SOFTWARE PROJECTS

 In most cases, forward engineering does not simply create a modern equiv-

alent of an older program. Rather, new user and technology requirements are 

integrated into the reengineering effort. The redeveloped program extends the 

capabilities of the older application. 

   36.8.1   Forward Engineering for Client-Server Architectures 

      Over the past few decades, centralized computing resources (including soft-

ware) have been distributed among many client platforms. Although a variety 

of different distributed environments can be designed, the typical central-

ized application that has been reengineered into a client-server architecture 

has the following features: application functionality migrates to each client 

computer, new GUI interfaces are implemented at the client sites, database 

functions are allocated to the server, specialized functionality (e.g., com-

pute-intensive analysis) may remain at the server site, and new communica-

tions, security, archiving, and control requirements must be established at 

both the client and server sites. It is important to note that the migration from 

centralized computing to client-server computing requires both business and 

software reengineering. 

 Reengineering for client-server applications begins with a thorough analysis 

of the business environment that encompasses the existing mainframe. Three 

layers of abstraction can be identifi ed. The  database sits  at the foundation of 

a client-server architecture and manages transactions and queries from server 

applications. Yet these transactions and queries must be controlled within the 

context of a set of business rules (defi ned by an existing or reengineered busi-

ness process). Client applications provide targeted functionality to the user 

community. 

 The functions of the existing database management system and the data ar-

chitecture of the existing database must be reverse engineered as a precursor 

to the redesign of the database foundation layer. The client-server database is 

reengineered to ensure that transactions are executed in a consistent manner, 

that all updates are performed only by authorized users, that core business rules 

are enforced (e.g., before a vendor record is deleted, the server ensures that no 

related accounts payable, contracts, or communications exist for that vendor), 

that queries can be accommodated effi ciently, and that full archiving capability 

has been established. 

 The business rules layer represents software resident at both the client and 

the server. This software performs control and coordination tasks to ensure that 

transactions and queries between the client application and the database con-

form to the established business process. 

 The client applications layer implements business functions that are required 

by specifi c groups of end users. In many instances, an older centralized applica-

tion is segmented into a number of smaller, reengineered desktop applications. 

   In some cases, migra-
tion to a client-server 
architecture should 
be approached not as 
reengineering, but as 
a new development 
effort. Reengineering 
enters the picture 
only when specifi c 
functionality from the 
old system is to be 
integrated into the 
new architecture. 

pre22126_ch36_795-816.indd   812pre22126_ch36_795-816.indd   812 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  813

Communication among the desktop applications (when necessary) is controlled 

by the business rules layer. 

 A comprehensive discussion of client-server software design and reengineer-

ing is best left to books dedicated to the subject. If you have further interest, see 

[Van02], [Cou00], or [Orf99]. 

    36.8.2   Forward Engineering for Object-Oriented Architectures 

 Object-oriented software engineering has become the development paradigm 

of choice for many software organizations. But what about existing applica-

tions that were developed using conventional methods? In some cases, the an-

swer is to leave such applications “as is.” In others, older applications must be 

reengineered so that they can be easily integrated into large, object-oriented 

systems. 

 Reengineering conventional software into an object-oriented implementa-

tion uses many of the same techniques discussed in Part 2 of this book. First, the 

existing software is reverse engineered so that appropriate data, functional, 

and behavioral models can be created. If the reengineered system extends 

the functionality or behavior of the original application, use cases (Chapters 8 

and 9) are created. The data models created during reverse engineering are 

then used in conjunction with CRC modeling (Chapter 10) to establish the basis 

for the defi nition of classes. Class hierarchies, object-relationship models, 

 object-behavior models, and subsystems are defi ned, and object-oriented de-

sign commences. 

 As object-oriented forward engineering progresses from analysis to design, 

a CBSE process model (Chapter 10) can be invoked. If the existing application 

resides within a domain that is already populated by many object-oriented appli-

cations, it is likely that a robust component library exists and can be used during 

forward engineering. 

 For those classes that must be engineered from scratch, it may be possible 

to reuse algorithms and data structures from the existing conventional appli-

cation. However, these must be redesigned to conform to the object-oriented 

architecture. 

       36.9  THE ECONOMICS OF REENGINEERING    

  In a perfect world, every unmaintainable program would be retired immediately, 

to be replaced by high-quality, reengineered applications developed using mod-

ern software engineering practices. But we live in a world of limited resources. 

Reengineering drains resources that can be used for other business purposes. 

Therefore, before an organization attempts to reengineer an existing applica-

tion, it should perform a cost-benefi t analysis. 

  uote: 

 “You can pay a little 
now, or you can pay 
a lot more later.” 

 Sign in an auto 
dealership 

suggesting a 
tune-up 

pre22126_ch36_795-816.indd   813pre22126_ch36_795-816.indd   813 13/12/13   6:17 PM13/12/13   6:17 PM



814 PART FOUR  MANAGING SOFTWARE PROJECTS

 A cost-benefi t analysis model for reengineering has been proposed by Sneed 

[Sne95]. Nine parameters are defi ned: 

      P  1  5 Current annual maintenance cost for an application  

     P  2  5 Current annual operations cost for an application  

     P  3  5 Current annual business value of an application  

     P  4  5 Predicted annual maintenance cost after reengineering  

     P  5  5 Predicted annual operations cost after reengineering  

     P  6  5 Predicted annual business value after reengineering  

     P  7  5 Estimated reengineering costs  

     P  8  5 Estimated reengineering calendar time  

     P  9  5 Reengineering risk factor ( P  9  5 1.0 is nominal)  

     L   5  Expected life of the system    

 The cost associated with continuing maintenance of a candidate application (i.e., 

reengineering is not performed) can be defi ned as 

   C  maint  5 [ P  3  2 ( P  1  1  P  2 )] 3 L (36.1)   

 The costs associated with reengineering are defi ned using the following 

relationship:

   C  reeng  5  P  6  2 ( P  4  1  P  5 ) 3 ( L  2  P  8 ) 2 ( P  7  3  P  9 ) (36.2)   

 Using the costs presented in Equations (36.1) and (36.2), the overall benefi t of re-

engineering can be computed as 

  Cost benefi t 5  C  reeng  2  C  maint  (36.3)   

 The cost-benefi t analysis presented in these equations can be performed for all 

high-priority applications identifi ed during inventory analysis (Section 36.4.2). 

Those applications that show the highest cost-benefi t can be targeted for reengi-

neering, while work on others can be postponed until resources are available. 

       36.10 SUMMARY 

 Software maintenance and support are ongoing activities that occur throughout 

the life cycle of an application. During these activities, defects are corrected, 

applications are adapted to a changing operational or business environment, en-

hancements are implemented at the request of stakeholders, and users are sup-

ported as they integrate an application into their personal or business workfl ow. 

 Reengineering occurs at two different levels of abstraction. At the business 

level, reengineering focuses on the business process with the intent of making 

changes to improve competitiveness in some area of the business. At the soft-

ware level, reengineering examines information systems and applications with 

the intent of restructuring or reconstructing them so that they exhibit higher 

quality. 

pre22126_ch36_795-816.indd   814pre22126_ch36_795-816.indd   814 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 36  MAINTENANCE AND REENGINEERING  815

 Business process reengineering defi nes business goals; identifi es and evaluates 

existing business processes (in the context of defi ned goals); specifi es and designs 

revised processes; and prototypes, refi nes, and instantiates them within a business. 

BPR has a focus that extends beyond software. The result of BPR is often the defi -

nition of ways in which information technologies can better support the business. 

 Software reengineering encompasses a series of activities that include inventory 

analysis, document restructuring, reverse engineering, program and data restruc-

turing, and forward engineering. The intent of these activities is to create versions of 

existing programs that exhibit higher quality and better  maintainability—programs 

that will be viable well into the twenty-fi rst century. 

 The cost-benefi t of reengineering can be determined quantitatively. The cost of 

the status quo, that is, the cost associated with ongoing support and maintenance 

of an existing application, is compared to the projected costs of reengineering and 

the resultant reduction in maintenance and support costs. In almost every case 

in which a program has a long life and currently exhibits poor maintainability or 

supportability, reengineering represents a cost-effective business strategy. 

     PROBLEMS AND POINTS TO PONDER 
     36.1.  Consider any job that you’ve held in the last fi ve years. Describe the business process 
in which you played a part. Use the BPR model described in Section 36.4.2 to recommend 
changes to the process in an effort to make it more effi cient.  

   36.2.  Do some research on the effi cacy of business process reengineering. Present pro and 
con arguments for this approach.  

   36.3.  Your instructor will select one of the programs that everyone in the class has devel-
oped during this course. Exchange your program randomly with someone else in the class. 
Do not explain or walk through the program. Now, implement an enhancement (specifi ed 
by your instructor) in the program you have received.  

     a.   Perform all software engineering tasks including a brief walkthrough (but not with 
the author of the program).  

    b.  Keep careful track of all errors encountered during testing.  
    c.  Discuss your experiences in class.    

   36.4.  Explore the inventory analysis checklist presented at the SEPA website and attempt to 
develop a quantitative software rating system that could be applied to existing programs in 
an effort to pick candidate programs for reengineering. Your system should extend beyond 
the economic analysis presented in Section 36.9.  

   36.5.  Suggest alternatives to paper and ink or conventional electronic documentation that 
could serve as the basis for document restructuring. (Hint: Think of new descriptive tech-
nologies that could be used to communicate the intent of the software.)  

   36.6.  Some people believe that artifi cial intelligence technology will increase the abstrac-
tion level of the reverse engineering process. Do some research on this subject (i.e., the use 
of AI for reverse engineering), and write a brief paper that takes a stand on this point.  

   36.7.  Why is completeness diffi cult to achieve as abstraction level increases?  

   36.8.  Why must interactivity increase if completeness is to increase?  

   36.9.  Using information obtained via the Web, present characteristics of three reverse engi-
neering tools to your class.  

pre22126_ch36_795-816.indd   815pre22126_ch36_795-816.indd   815 13/12/13   6:17 PM13/12/13   6:17 PM



816 PART FOUR  MANAGING SOFTWARE PROJECTS

   36.10.  There is a subtle difference between restructuring and forward engineering. What is it?  

   36.11.  Research the literature and/or Internet sources to fi nd one or more papers that 
 discuss case studies of mainframe to client-server reengineering. Present a summary.  

   36.12.  How would you determine  P  4  through  P  7  in the cost-benefi t model presented in 
 Section 36.9?    

     FUR THER READINGS AND INFORMATION SOURCES 
  It is ironic that software maintenance and support represent the most costly activities in the 
life of an application, and yet, fewer books have been written about maintenance and support 
than any other major software engineering topics. Among recent additions to the literature 
are books by Reifer ( Software Maintenance Success Recipes,  Auerbach, 2011),  Jarzabek ( Effec-

tive Software Maintenance and Evolution,  Auerbach, 2007), Grubb and Takang  (Software Main-

tenance: Concepts and Practice,  World Scientifi c Publishing Co., 2nd ed., 2003), and Pigoski 
( Practical Software Maintenance,  Wiley, 1996). These books cover basic maintenance and sup-
port practices and present useful management guidance. Maintenance techniques that focus 
on client-server environments are discussed by Schneberger ( Client/Server Software Mainte-

nance,  McGraw-Hill, 1997). Current research in “software evolution” is presented in an anthol-
ogy edited by Mens and Demeyer ( Software Evolution,  Springer, 2008). 

 Like many hot topics in the business community, the hype surrounding business process 
reengineering has given way to a more pragmatic view of the subject. Hammer and Champy 
( Reengineering the Corporation , HarperBusiness, revised edition, 2003) precipitated early 
interest with their best-selling book. Other books by Jacka and Keller ( Business Process 

Mapping: Improving Customer Satisfaction,  2nd ed., Wiley, 2009), Sharp and  McDermott 
( Workfl ow Modeling,  2nd ed., Artech House, 2008), Andersen ( Business Process Improve-

ment Toolbox,  2nd   ed.,   American Society for Quality, 2007), Smith and Fingar [ Business 

Process Management (BPM): The Third Wave,  Meghan-Kiffer Press, 2003], and Harrington 
et al. ( Business Process Improvement Workbook,  McGraw-Hill, 1997) present case studies 
and  detailed guidelines for BPR. 

 Abfalter ( Software Reengineering,  VDM Verlag, 2008), Fong ( Information Systems Reengi-

neering and Integration,  Springer, 2006) describes database conversion techniques, reverse 
engineering, and forward engineering as they are applied for major information systems. 
Nierstrasz and his colleagues ( Object Oriented Reengineering Patterns,  Square Bracket As-
sociates, 2009) provides a patterns-based view of how to refactor and/or reengineer OO 
systems. Secord and his colleagues ( Modernizing Legacy Systems,  Addison-Wesley, 2003), 
Ulrich ( Legacy Systems: Transformation Strategies,  Prentice Hall, 2002), Valenti ( Successful 

Software Reengineering,  IRM Press, 2002), and Rada ( Reengineering Software: How to Reuse 

Programming to Build New, State-of-the-Art Software,  Fitzroy Dearborn Publishers, 1999) 
focus on strategies and practices for reengineering at a technical level. Miller ( Reengineer-

ing Legacy Software Systems,  Digital Press, 1998) “provides a framework for keeping appli-
cation systems synchronized with business strategies and technology changes.” 

 Cameron ( Reengineering Business for Success in the Internet Age,  Computer Technology 
Research, 2000) and Umar ( Application (Re)Engineering: Building Web-Based Applications 

and Dealing with Legacies,  Prentice Hall, 1997) provide worthwhile guidance for organiza-
tions that want to transform legacy systems into a Web-based environment. Cook ( Building 

Enterprise Information Architectures: Reengineering Information Systems,  Prentice Hall, 1996) 
discusses the bridge between BPR and information technology. Aiken ( Data Reverse Engi-

neering,  McGraw-Hill, 1996) discusses how to reclaim, reorganize, and reuse organizational 
data. Arnold ( Software Reengineering,  IEEE Computer Society Press, 1993) has put together 
an excellent anthology of early papers that focus on software reengineering technologies. 

 A wide variety of information sources on software reengineering is available on the In-
ternet. An up-to-date list of World Wide Web references can be found under “software engi-
neering resources” at the SEPA website:  www.mhhe.com/pressman .     

pre22126_ch36_795-816.indd   816pre22126_ch36_795-816.indd   816 13/12/13   6:17 PM13/12/13   6:17 PM



817

Five 
   P A R T

  In this part of  Software Engineering: A Practitioner’s Ap-

proach,  we consider a number of advanced topics that will 

extend your understanding of software engineering. The fol-

lowing questions are addressed in the chapters that follow:

    •  What is software process improvement and how can it be 

used to improve the state of software engineering practice?  

   •  What emerging trends can be expected to have a signifi -

cant infl uence on software engineering practice in the next 

decade?  

   •  What is the road ahead for software engineers?  

   Once these questions are answered, you’ll understand topics 

that may have a profound impact on software engineering in 

the years to come. 

 ADVANCED

TOPICS 

pre22126_ch37_817-838.indd   817pre22126_ch37_817-838.indd   817 13/12/13   6:17 PM13/12/13   6:17 PM



818

  C H A P T E R

37  SOFTWARE
PROCESS IMPROVEMENT 

        Long before the phrase “software process improvement” was widely used, 

RSP worked with major corporations in an attempt to improve the state 

of their software engineering practices. As a consequence of his experi-

ences, he wrote a book entitled  Making Software Engineering Happen  [Pre88]. 

In the preface of that book he made the following comment:

  For the past ten years I have had the opportunity to help a number of large compa-

nies implement software engineering practices. The job is diffi cult and rarely goes 

as smoothly as one might like—but when it succeeds, the results are profound. 

Software projects are more likely to be completed on time. Communication be-

tween all constituencies involved in software development is improved. The level 

of confusion and chaos that is often prevalent for large software projects is re-

duced substantially. The number of errors encountered by the customer drops 

substantially. The credibility of the software organization increases. And manage-

ment has one less problem to worry about. 

  But all is not sweetness and light. Many companies attempt to implement soft-

ware engineering practice and give up in frustration. Others do it half-way and never 

see the benefi ts noted above. Still others do it in a heavy-handed fashion that results 

in open rebellion among technical staff and managers and subsequent loss of morale. 

 K E Y 
C O N C E P T S 
    assessment. . . . . . 823  
    CMMI. . . . . . . . . . 828  
    education and 
training  . . . . . . . . 825  
    evaluation  . . . . . . 826  
    installation/
migration  . . . . . . . 826  
    justifi cation  . . . . . 825  
    maturity models  . . 821  
    people CMM . . . . . 832  
    return on 
investment . . . . . . 834  
    risk management  . 827  
    selection. . . . . . . . 825  
    software process 
improvement (SPI)  

    applicability . . . 822  
    defi nition of . . . 819  
    frameworks . . . 819  
    process  . . . . . . 823    

 Q U I C K 
L O O K 

  What is it?   Software process im-
provement encompasses a set of 
activities that will lead to a better 
software process and, as a conse-

quence, higher quality software delivered in a 
more timely manner. 

   Who does it?   The people who champion SPI 
come from three groups: technical managers, 
software engineers, and individuals who have 
quality assurance responsibility. 

   Why is it important?   Some software organi-
zations have little more than an ad hoc software 
process. As they work to improve their software 
engineering practices, they must address weak-
nesses in their existing process and work to 
 improve their approach to software work. 

   What are the steps?   The approach to SPI is 
iterative and continuous, but it can be viewed 

in fi ve steps: (1) assessment of the current soft-
ware process, (2) education and training of 
practitioners and managers, (3) selection and 
justifi cation of process elements, software en-
gineering methods, and tools, (4) implemen-
tation of the SPI plan, and (5) evaluation and 
tuning based on the results of the plan. 

   What is the work product?   Although there 
are many intermediate SPI work products, the 
end result is an improved software process that 
leads to higher quality software. 

   How do I ensure that I’ve done it right?  
 The software your organization produces will 
be delivered with fewer defects, rework at 
each stage of the software process will be re-
duced, and on-time delivery will become much 
more likely.  

pre22126_ch37_817-838.indd   818pre22126_ch37_817-838.indd   818 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  819

   Although those words were written almost three decades ago, they remain 

equally true today.     

  Today, virtually every major software engineering organization has attempted 

to “make software engineering happen.” Some have implemented individual 

practices that have helped to improve the quality of the product they build and 

the timeliness of their delivery. Others have established a “mature” software pro-

cess that guides their technical and project management activities. But others 

continue to struggle. Their practices are hit-and-miss, and their process is ad 

hoc. Occasionally, their work is spectacular, but in the main, each project is an 

adventure, and no one knows whether it will end badly or well. 

 So, which of these two cohorts needs software process improvement? The 

answer (which may surprise you) is  both.  Those that have succeeded in mak-

ing software engineering happen cannot become complacent. They must work 

continually to improve their approach to software engineering. And those that 

struggle must begin their journey down the road toward improvement. 

      37.1  WHAT IS  SPI?    

  The term  software process improvement  (SPI) implies many things. First, it im-

plies that elements of an effective software process can be defi ned in an effective 

manner; second, that an existing organizational approach to software develop-

ment can be assessed against those elements; and third, that a meaningful strat-

egy for improvement can be defi ned. The SPI strategy transforms the existing 

approach to software development into something that is more focused, more 

repeatable, and more reliable (in terms of the quality of the product produced 

and the timeliness of delivery). 

 Because SPI is not free, it must deliver a return on investment. The effort and 

time that is required to implement an SPI strategy must pay for itself in some 

measurable way. To do this, the results of improved process and practice must 

lead to a reduction in software “problems” that cost time and money. It must re-

duce the number of defects that are delivered to end users, reduce the amount 

of rework due to quality problems, reduce the costs associated with software 

maintenance and support (Chapter 36), and reduce the indirect costs that occur 

when software is delivered late. 

   37.1.1   Approaches to SPI 

 Although an organization can choose a relatively informal approach to SPI, the 

vast majority choose one of a number of SPI frameworks. An  SPI framework  de-

fi nes (1) a set of characteristics that must be present if an effective software pro-

cess is to be achieved, (2) a method for assessing whether those characteristics 

are present, (3) a mechanism for summarizing the results of any assessment, and 

   SPI implies a defi ned 
software process, 
an organizational 
 approach, and 
a  strategy for 
improvement. 

  uote: 

 “Much of the 
software crisis is 
self-infl icted, as 
when a CIO says, 
‘I’d rather have it 
wrong than have it 
late. We can always 
fi x it later.’” 

 Mark Paulk 

pre22126_ch37_817-838.indd   819pre22126_ch37_817-838.indd   819 13/12/13   6:17 PM13/12/13   6:17 PM



820 PART FIVE  ADVANCED TOPICS

(4) a strategy for assisting a software organization in implementing those process 

characteristics that have been found to be weak or missing. 

 An SPI framework assesses the “maturity” of an organization’s software pro-

cess and provides a qualitative indication of a maturity level. In fact, the term 

“maturity model” (Section 37.1.2) is often applied. In essence, the SPI framework 

encompasses a maturity model that in turn incorporates a set of process quality 

indicators that provide an overall measure of the process quality that will lead 

to product quality. 

   Figure 37.1   provides an overview of a typical SPI framework. The key elements 

of the framework and their relationship to one another are shown.      

  You should note that there is no universal SPI framework. In fact, the SPI frame-

work that is chosen by an organization refl ects the constituency that is championing 

the SPI effort. Conradi [Con96] defi nes six different SPI support constituencies: 

  Quality certifiers.   Process improvement efforts championed by this 

group focus on the following relationship:

    Quality ( Process ) ⇒  Quality ( Product )   

 Their approach is to emphasize assessment methods and to examine a 

well-defi ned set of characteristics that allows them to determine whether 

the process exhibits quality. They are most likely to adopt a process 

framework such as the CMMI, SPICE, TickIT, or Bootstrap.  1    

 What groups 
champion an 

SPI effort? 
?

Software
process

Assessment

Is a foundation for

Leads to Leads to

Is
examined

by
Identifies capabilities,
strengths, and weaknesses of

Identifies maturity of

Identifies changes to

Suggests improvement
approach for

Capability
determination

Improvement
strategy

  FIGURE 37.1

 Elements of an 
SPI framework   
 Source: Adapted 
from [Rou02]. 

  1  Each of these SPI frameworks is discussed later in this chapter. 

pre22126_ch37_817-838.indd   820pre22126_ch37_817-838.indd   820 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  821

  Formalists.    This group wants to understand (and when possible, opti-

mize) process workfl ow. To accomplish this, they use process modeling 

languages (PMLs) to create a model of the existing process and then 

design extensions or modifi cations that will make the process more 

effective. 

  Tool advocates.   This group insists on a tool-assisted approach to SPI that 

models workfl ow and other process characteristics in a manner that can 

be analyzed for improvement. 

  Practitioners.   This constituency uses a pragmatic approach, “empha-

sizing mainstream project-, quality- and product management, applying 

project-level planning and metrics, but with little formal process modeling 

or enactment support” [Con96]. 

  Reformers.   The goal of this group is organizational change that might 

lead to a better software process. They tend to focus more on human 

issues (Section 37.5) and emphasize measures of human capability and 

structure. 

  Ideologists.   This group focuses on the suitability of a particular pro-

cess model for a specifi c application domain or organizational structure. 

Rather than typical software process models (e.g., iterative models), ideol-

ogists would have a greater interest in a process that would, say, support 

reuse or reengineering. 

 As an SPI framework is applied, the sponsoring constituency (regardless of its 

overall focus) must establish mechanisms to: (1) support technology transition, 

(2) determine the degree to which an organization is ready to absorb process 

changes that are proposed, and (3) measure the degree to which changes have 

been adopted. 

    37.1.2   Maturity Models 

 A  maturity model  is applied within the context of an SPI framework. The intent 

of the maturity model is to provide an overall indication of the “process maturity” 

exhibited by a software organization. That is, an indication of the quality of the 

software process, the degree to which practitioners understand and apply the 

process, and the general state of software engineering practice. This is accom-

plished using some type of ordinal scale. 

      For example, the Software Engineering Institute’s original  Capability 

Maturity Model  (Section 37.3) suggests fi ve levels of maturity ranging from  initial  

(rudimentary software process) to  optimized  (a process that leads to best prac-

tices.  2   Unfortunately, some software organizations exhibit levels of “process 

immaturity” that undermine any rational attempt at improving software 

   A maturity model de-
fi nes levels of software 
process competence 
and implementation. 

  2  The original CMM has been updated and is discussed in Section 37.3. 

pre22126_ch37_817-838.indd   821pre22126_ch37_817-838.indd   821 13/12/13   6:17 PM13/12/13   6:17 PM



822 PART FIVE  ADVANCED TOPICS

engineering practices. Schorsch [Sch06] suggests four levels of organizational 

immaturity that are often encountered in the real world of software development: 

   Level 0, Negligent —Failure to allow successful development process to succeed. All 

problems are perceived to be technical problems. Managerial and quality assurance 

activities are deemed to be overhead and superfl uous to the task of software devel-

opment process. Reliance on silver pellets. 

  Level 1, Obstructive —Counterproductive processes are imposed. Processes are 

rigidly defi ned and adherence to the form is stressed. Ritualistic ceremonies abound. 

Collective management precludes assigning responsibility. Status quo über alles. 

  Level 2, Contemptuous —Disregard for good software engineering institutional-

ized. Complete schism between software development activities and software pro-

cess improvement activities. Complete lack of a training program. 

  Level 3, Undermining —Total neglect of own charter, conscious discrediting of peer 

organizations software process improvement efforts. Rewarding failure and poor 

performance.   

 Schorsch’s immaturity levels are toxic for any software organization. If you 

encounter any one of them, attempts at SPI are doomed to failure. 

 The overriding question is whether maturity scales, such as the one proposed 

as part of the CMM, provide any real benefi t. We think that they do. A maturity 

scale provides an easily understood snapshot of process quality that can be used 

by practitioners and managers as a benchmark from which improvement strat-

egies can be planned. 

    37.1.3  Is SPI for Everyone? 

 For many years, SPI was viewed as a “corporate” activity—a euphemism for some-

thing that only large companies perform. But today, a signifi cant percentage of all 

software development is being performed by companies that employ fewer than 

100 people. Can a small company initiate SPI activities and do it successfully? 

      There are substantial cultural differences between large software develop-

ment organizations and small ones. It should come as no surprise that small or-

ganizations are more informal, apply fewer standard practices, and tend to be 

self-organizing. They also tend to pride themselves on the “creativity” of individ-

ual members of the software organization, and initially view an SPI framework 

as overly bureaucratic and ponderous. Yet, process improvement is as important 

for a small organization as it is for a large one. 

 Within small organizations the implementation of an SPI framework re-

quires resources that may be in short supply. Managers must allocate people 

and money to make software engineering happen. Therefore, regardless of the 

size of the software organization, it’s reasonable to consider the business moti-

vation for SPI. 

   If a specifi c process 
model or SPI approach 
feels like overkill for 
your organization, it 
probably is. 

pre22126_ch37_817-838.indd   822pre22126_ch37_817-838.indd   822 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  823

 SPI will be approved and implemented only after its proponents demonstrate 

 fi nancial leverage  [Bir98]. Financial leverage is demonstrated by examining tech-

nical benefi ts (e.g., fewer defects delivered to the fi eld, reduced rework, lower 

maintenance costs, or more rapid time-to-market) and translating them into dol-

lars. In essence, you must show a realistic return on investment (Section 37.7) for 

SPI costs. 

       37.2  THE SPI PROCESS 

  The hard part of SPI isn’t the defi nition of characteristics that defi ne a high- 

quality software process or the creation of a process maturity model. Those 

things are relatively easy. Rather, the hard part is establishing a consensus for 

initiating SPI and defi ning an ongoing strategy for implementing it across a soft-

ware organization. 

 The Software Engineering Institute has developed IDEAL— “an organizational 

improvement model that serves as a road map for initiating, planning, and imple-

menting improvement actions” [SEI08]. IDEAL is representative of many process 

models for SPI, defi ning fi ve distinct activities— initiating, diagnosing, establish-

ing, acting, and learning—that guide an organization through SPI activities. 

 In this book, we present a somewhat different road map for SPI, based on the 

process model for SPI originally proposed in [Pre88]. It applies a commonsense 

philosophy that requires an organization to (1) look in the mirror, (2) then get 

smarter so it can make intelligent choices, (3) select the process model (and re-

lated technology elements) that best meets its needs, (4) instantiate the model 

into its operating environment and its culture, and (5) evaluate what has been 

done. These fi ve activities (discussed in the subsections  3   that follow) are ap-

plied in an iterative (cyclical) manner in an effort to foster continuous process 

improvement.  

   37.2.1   Assessment and Gap Analysis 

 Any attempt to improve your current software process without fi rst assessing 

the effi cacy of current framework activities and associated software engineer-

ing practices would be like starting on a long journey to a new location with 

no idea where you are starting from. You’d depart with great fl ourish, wander 

around trying to get your bearings, expend lots of energy and endure large 

doses of frustration, and likely, decide you really didn’t want to travel anyway. 

Stated simply, before you begin any journey, it’s a good idea to know precisely 

where you are. 

  3  Some of the content in these sections has been adapted from [Pre88] with permission. 

pre22126_ch37_817-838.indd   823pre22126_ch37_817-838.indd   823 13/12/13   6:17 PM13/12/13   6:17 PM



824 PART FIVE  ADVANCED TOPICS

      The fi rst road map activity, called  assessment,  allows you to get your bearings. 

The intent of assessment is to uncover both strengths and weaknesses in the way 

your organization applies the existing software process and the software engi-

neering practices that populate the process. 

 Assessment examines a wide range of actions and tasks that will lead to a 

high-quality process. For example, regardless of the process model that is chosen, 

the software organization must establish generic mechanisms such as defi ned 

approaches for customer communication; established methods for representing 

user requirements; a project management framework that includes scoping, es-

timation, scheduling, and project tracking; risk analysis methods; change man-

agement procedures; quality assurance and control activities including reviews; 

and many others. Each is considered within the context of the framework activ-

ities (Chapter 3) that have been established, and is each assessed to determine 

whether all of the following questions have been addressed:

    •  Is the objective of the activity clearly defi ned?  

   •  Are work products required as input and produced as output identifi ed 

and described?  

   •  Are the work tasks to be performed clearly described?  

   •  Are the people who must perform the activity identifi ed by role?  

   •  Have entry and exit criteria been established?  

   •  Have metrics for the activity been established?  

   •  Are tools available to support the activity?  

   •  Is there an explicit training program that addresses the activity?  

   •  Is the activity performed uniformly for all projects?  

   Although the questions noted imply a  yes  or  no  answer, the role of assessment is 

to look behind the answer to determine whether the activity in question is being 

performed in a manner that would conform to best practice. 

 As the process assessment is conducted, you (or those who have been hired to 

perform the assessment) should also focus on the following issues: 

  Consistency.   Are important activities, actions, and tasks applied consis-

tently across all software projects and by all software teams? 

  Sophistication.   Are management and technical actions performed with 

a level of sophistication that implies a thorough understanding of best 

practice? 

  Acceptance.   Is the software process and software engineering practice 

widely accepted by management and technical staff? 

  Commitment.   Has management committed the resources required to 

achieve consistency, sophistication, and acceptance? 

   Be sure to understand 
your strengths as well 
as your weaknesses. 
If you’re smart, you’ll 
build on the strengths. 

pre22126_ch37_817-838.indd   824pre22126_ch37_817-838.indd   824 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  825

 The difference between local application and best practice represents a “gap” 

that offers opportunities for improvement. The degree to which consistency, so-

phistication, acceptance, and commitment are achieved indicates the amount of 

cultural change that will be required to achieve meaningful improvement. 

    37.2.2  Education and Training 

      Although few software people question the benefi t of an agile, organized soft-

ware process or solid software engineering practices, many practitioners and 

managers do not know enough about either subject.  4   As a consequence, inaccu-

rate perceptions of process and practice lead to inappropriate decisions when 

an SPI framework is introduced. It follows that a key element of any SPI strategy 

is education and training for practitioners, technical managers, and more senior 

managers who have direct contact with the software organization. Three types 

of education and training should be conducted: generic software engineering 

concepts and methods, specifi c technology and tools, and communication and 

quality-oriented topics. In a modern context, education and training can be de-

livered in a variety of different ways. Everything from podcasts, to short YouTube 

videos, to more comprehensive Internet-based training (e.g., [QAI08], to DVDs, to 

classroom courses can be offered as part of an SPI strategy.      

     37.2.3   Selection and Justifi cation 

 Once the initial assessment activity  5   has been completed and education has 

begun, a software organization should begin to make choices. These choices 

occur during a  selection and justifi cation activity  in which process characteris-

tics and specifi c software engineering methods and tools are chosen to populate 

the software process. 

 First, you should choose the process model (Chapters 3–5) that best fi ts your 

organization, its stakeholders, and the software that you build. You should decide 

which of the set of framework activities will be applied, the major work products 

that will be produced, and the quality assurance checkpoints that will enable 

your team to assess progress. If the SPI assessment activity indicates that you 

have specifi c weaknesses (e.g., you have no formal SQA functions), you should 

focus attention on process characteristics that will address these weaknesses 

directly. 

 Next, develop an adaptable work breakdown for each framework activity (e.g., 

modeling), defi ning the task set that would be applied for a typical project. You 

   Try to provide “just-in-
time” training targeted 
to the real needs of a 
software team. 

   As you make your 
choices, be sure to 
consider the culture of 
your organization and 
the level of acceptance 
that each choice will 
likely elicit. 

  4  If you’ve spent time reading this book, you won’t be one of them! 

  5  In actuality, assessment is an ongoing activity. It is conducted periodically in an effort to deter-

mine whether the SPI strategy has achieved its immediate goals and to set the stage for future 

improvement. 

pre22126_ch37_817-838.indd   825pre22126_ch37_817-838.indd   825 13/12/13   6:17 PM13/12/13   6:17 PM



826 PART FIVE  ADVANCED TOPICS

should also consider the software engineering methods that can be applied to 

achieve these tasks. As choices are made, education and training should be co-

ordinated to ensure that understanding is reinforced. 

 Ideally, everyone works together to select various process and technology el-

ements and moves smoothly toward the installation or migration activity (Sec-

tion 37.2.4). In reality, selection can be a rocky road. It is often diffi cult to achieve 

consensus among different constituencies. If the criteria for selection are es-

tablished by committee, people may argue endlessly about whether the criteria 

are appropriate and whether a choice truly meets the criteria that have been 

established. 

 It is true that a bad choice can do more harm than good, but “paralysis by 

analysis” means that little if any progress occurs and process problems remain. 

As long as the process characteristic or technology element has a good chance 

at meeting an organization’s needs, it’s sometimes better to pull the trigger and 

make a choice, rather than waiting for the perfect solution. 

    37.2.4   Installation/Migration 

  Installation  is the fi rst point at which a software organization feels the effects of 

changes implemented as a consequence of the SPI road map. In some cases, an 

entirely new process is recommended for an organization. Framework activities, 

software engineering actions, and individual work tasks must be defi ned and 

installed as part of a new software engineering culture. Such changes represent 

a substantial organizational and technological transition and must be managed 

very carefully. 

 In other cases, changes associated with SPI are relatively minor, representing 

small, but meaningful modifi cations to an existing process model. Such changes 

are often referred to as  process migration.  Today, many software organizations 

have a “process” in place. The problem is that it doesn’t work in an effective man-

ner. Therefore, an incremental  migration  from one process (that doesn’t work as 

well as desired) to another process is a more effective strategy. 

 Installation and migration are actually  software process redesign  (SPR) ac-

tivities. Scacchi [Sca00] states that “SPR is concerned with identifi cation, ap-

plication, and refi nement of new ways to dramatically improve and transform 

software processes.” When a formal approach to SPR is initiated, three different 

process models are considered: (1) the existing (“as is”) process, (2) a transitional 

(“here to there”) process, and the target (“to be”) process. If the target process 

is signifi cantly different from the existing process, the only rational approach 

to installation is an incremental strategy in which the transitional process is 

implemented in steps. The transitional process provides a series of way-points 

that enable the software organization’s culture to adapt to small changes over 

a period of time. 

pre22126_ch37_817-838.indd   826pre22126_ch37_817-838.indd   826 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  827

    37.2.5   Evaluation 

 Although it is listed as the last activity in the SPI road map,  evaluation  occurs 

throughout SPI. The evaluation activity assesses the degree to which changes 

have been instantiated and adopted, the degree to which such changes result in 

better software quality or other tangible process benefi ts, and the overall status 

of the process and the organizational culture as SPI activities proceed. 

 Both qualitative factors and quantitative metrics are considered during the 

evaluation activity. From a qualitative point of view, past management and prac-

titioner attitudes about the software process can be compared to attitudes polled 

after installation of process changes. Quantitative metrics (Chapter 32) are col-

lected from projects that have used the transitional or “to be” process and com-

pared with similar metrics that were collected for projects that were conducted 

under the “as is” process. 

    37.2.6   Risk Management for SPI 

      SPI is a risky undertaking. In fact, more than half of all SPI efforts end in failure. 

The reasons for failure vary greatly and are organizationally specifi c. Among the 

most common risks are: a lack of management support, cultural resistance by 

technical staff, a poorly planned SPI strategy, an overly formal approach to SPI, 

selection of an inappropriate process, a lack of buy-in by key stakeholders, an in-

adequate budget, a lack of staff training, organizational instability, and a myriad 

of other factors. The role of those chartered with the responsibility for SPI is to 

analyze likely risks and develop an internal strategy for mitigating them. 

 A software organization should manage risk at three key points in the SPI 

process [Sta97b]: prior to the initiation of the SPI road map, during the execution 

of SPI activities (assessment, education, selection, installation), and during the 

evaluation activity that follows the instantiation of some process characteristic. 

In general, the following categories [Sta97b] can be identifi ed for SPI risk factors: 

budget and cost, content and deliverables, culture, maintenance of SPI deliver-

ables, mission and goals, organizational management, organizational stability, 

process stakeholders, schedule for SPI development, SPI development environ-

ment, SPI development process, SPI project management, and SPI staff. 

 Within each category, a number of generic risk factors can be identifi ed. For 

example, the organizational culture has a strong bearing on risk. The following 

generic risk factors  6   can be defi ned for the culture category [Sta97b]:

     •  Attitude toward change, based on prior efforts to change  

   •  Experience with quality programs, level of success  

   SPI often fails because 
risks were not properly 
considered and no 
contingency planning 
occurred. 

  6  Risk factors for each of the risk categories noted in this section can be found in [Sta97b]. 

pre22126_ch37_817-838.indd   827pre22126_ch37_817-838.indd   827 13/12/13   6:17 PM13/12/13   6:17 PM



828 PART FIVE  ADVANCED TOPICS

   •  Action orientation for solving problems versus political struggles  

   •  Use of facts to manage the organization and business  

   •  Patience with change; ability to spend time socializing  

   •  Tools orientation—expectation that tools can solve the problems  

   •  Level of “planfulness”—ability of organization to plan  

   •  Ability of organization members to participate with various levels of 

organization openly at meetings  

   •  Ability of organization members to manage meetings effectively  

   •  Level of experience in organization with defi ned processes  

       Using the risk factors and generic attributes as a guide, a risk table (Chapter 35) 

can be developed to isolate those risks that warrant further management 

attention. 

       37.3  THE CMMI 

  The original CMM was developed and upgraded by the Software Engineering In-

stitute throughout the 1990s as a complete SPI framework. Today, it has evolved 

into the  Capability Maturity Model Integration  (CMMI) [CMM07], a comprehen-

sive process meta-model that is predicated on a set of system and software en-

gineering capabilities that should be present as organizations reach different 

levels of process capability and maturity. 

 The CMMI represents a process meta-model in two different ways: (1) 

as a “continuous” model and (2) as a “staged” model. The continuous CMMI 

 meta-model describes a process in two dimensions as illustrated in   Figure 37.2  . 

Each process area (e.g., project planning or requirements management) is for-

mally assessed against specifi c goals and practices and is rated according to the 

following  capability levels:  

  Level 0:   Incomplete — The process area (e.g., requirements management) 

is either not performed or does not achieve all goals and objectives de-

fi ned by the CMMI for level 1 capability for the process area. 

       Level 1:   Performed — All of the specifi c goals of the process area (as de-

fi ned by the CMMI) have been satisfi ed. Work tasks required to produce 

defi ned work products are being conducted. 

  Level 2:   Managed — All capability level 1 criteria have been satisfi ed. In 

addition, all work associated with the process area conforms to an orga-

nizationally defi ned policy; all people doing the work have access to ade-

quate resources to get the job done; stakeholders are actively involved in 

pre22126_ch37_817-838.indd   828pre22126_ch37_817-838.indd   828 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  829

the process area as required; all work tasks and work products are “mon-

itored, controlled, and reviewed; and are evaluated for adherence to the 

process description” [CMM07]. 

  Level 3:   Defi ned — All capability level 2 criteria have been achieved. In 

addition, the process is “tailored from the organization’s set of standard 

processes according to the organization’s tailoring guidelines, and con-

tributes work products, measures, and other process-improvement infor-

mation to the organizational process assets” [CMM07]. 

  Level 4:   Quantitatively managed — All capability level 3 criteria have been 

achieved. In addition, the process area is controlled and improved using 

measurement and quantitative assessment. “Quantitative objectives for 

quality and process performance are established and used as criteria in 

managing the process” [CMM07]. 

  Level 5:   Optimized — All capability level 4 criteria have been achieved. In 

addition, the process area is adapted and optimized using quantitative 

(statistical) means to meet changing customer needs and to continually 

improve the effi cacy of the process area under consideration. 

 The CMMI defi nes each process area in terms of “specifi c goals” and the “specifi c 

practices” required to achieve these goals.  Specifi c goals  establish the character-

istics that must exist if the activities implied by a process area are to be effective. 

 Specifi c practices  refi ne a goal into a set of process-related activities. 

   Every organization 
should strive to 
achieve the intent of 
the CMMI. However, 
implementing every 
aspect of the model 
may be overkill in your 
situation. 

0

1

2

3

4

5

C
a
p
a
b
ili

ty
 le

ve
l

Process area
REQMPP CMMA PPQA others

PP Project planning
REQM Requirements management
MA Measurement and analysis
CM Configuration management
PPQA Process and product QA

  FIGURE 37.2

 CMMI 
 Process Area 
 Capability 
Profi le   
 Source: [Phi02]. 

pre22126_ch37_817-838.indd   829pre22126_ch37_817-838.indd   829 13/12/13   6:17 PM13/12/13   6:17 PM



830 PART FIVE  ADVANCED TOPICS

 For example,  project planning  is one of eight process areas defi ned by the 

CMMI for “project management” category.  7   The specifi c goals (SG) and the asso-

ciated specifi c practices (SP) defi ned for  project planning  are [CMM07]:

    SG 1 Establish Estimates  

 SP 1.1-1 Estimate the Scope of the Project 

 SP 1.2-1 Establish Estimates of Work Product and Task Attributes 

 SP 1.3-1 Defi ne Project Life Cycle 

 SP 1.4-1 Determine Estimates of Effort and Cost 

  SG 2 Develop a Project Plan  

 SP 2.1-1 Establish the Budget and Schedule 

 SP 2.2-1 Identify Project Risks 

 SP 2.3-1 Plan for Data Management 

 SP 2.4-1 Plan for Project Resources 

 SP 2.5-1 Plan for Needed Knowledge and Skills 

 SP 2.6-1 Plan Stakeholder Involvement 

 SP 2.7-1 Establish the Project Plan 

  SG 3 Obtain Commitment to the Plan  

 SP 3.1-1 Review Plans That Affect the Project 

 SP 3.2-1 Reconcile Work and Resource Levels 

 SP 3.3-1 Obtain Plan Commitment   

      In addition to specifi c goals and practices, the CMMI also defi nes a set of 

fi ve generic goals and related practices for each process area. Each of the fi ve 

generic goals corresponds to one of the fi ve capability levels. Hence, to achieve 

a particular capability level, the generic goal for that level and the generic prac-

tices that correspond to that goal must be achieved.    

 The staged CMMI model defi nes the same process areas, goals, and practices 

as the continuous model. The primary difference is that the staged model defi nes 

fi ve maturity levels, rather than fi ve capability levels. To achieve a maturity level, 

the specifi c goals and practices associated with a set of process areas must be 

achieved. The relationship between maturity levels and process areas is shown 

in   Figure 37.3  . 

 WebRef 
 Complete information 
as well as a down-
loadable version of 
the CMMI can be 
obtained at  http:// 
cmmiinstitute 
.com/resources/ . 

  7  Other process areas defi ned for “project management” include: project monitoring and con-

trol, supplier agreement management, integrated project management for IPPD, risk man-

agement, integrated teaming, integrated supplier management, and quantitative project 

management. 

pre22126_ch37_817-838.indd   830pre22126_ch37_817-838.indd   830 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  831

  FIGURE 37.3

 Process areas 
required to 
achieve a 
 maturity level 
   Source: [Phi02]. 

Organizational innovation and deployment
Causal analysis and resolution

Continuous
process

improvement

Quantitative
management

Process
standardization

Basic
project

management

Organizational process performance
Quantitative project management

Requirements development
Technical solution 
Product integration 
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training 
Integrated project management
Integrated supplier management
Risk management
Decision analysis and resolution
Organizational environment for integration
Integrated teaming

Requirements management
Project planning
Project monitoring and control
Supplier agreement management
Measurement and analysis
Process and product quality assurance
Configuration management

Optimizing

Quantitatively
managed

Defined

Managed

Performed

Process AreasLevel Focus

  The CMMI—Should We or Shouldn’t We? 
 The CMMI is a process meta-model. It 

defi nes (in 7001 pages) the process charac-
teristics that should exist if an organization wants to es-
tablish a software process that is complete. The question 
that has been debated for almost two decades is: “Is the 
CMMI overkill?” Like most things in life (and in software), 
the answer is not a simple yes or no. 

 The spirit of the CMMI should always be adopted. At 
the risk of oversimplifi cation, it argues that software de-
velopment must be taken seriously—it must be planned 
thoroughly, it must be controlled uniformly, it must be 
tracked accurately, and it must be conducted profession-
ally. It must focus on the needs of project stakeholders, 

the skills of the software engineers, and the quality of the 
end product. No one would argue with these ideas. 

 The detailed requirements of the CMMI should be 
seriously considered if an organization builds large com-
plex systems that involve dozens or hundreds of people 
over many months or years. It may be that the CMMI is 
“just right” in such situations, if the organizational culture 
is amenable to standard process models and manage-
ment is committed to making it a success. However, in 
other situations, the CMMI may simply be too much for 
an organization to successfully assimilate. Does this 
mean that the CMMI is “bad” or “overly bureaucratic” 
or “old fashioned?” No . . . it does not. It simply means 

 INFO 

pre22126_ch37_817-838.indd   831pre22126_ch37_817-838.indd   831 13/12/13   6:17 PM13/12/13   6:17 PM



832 PART FIVE  ADVANCED TOPICS

                 37.4  THE PEOPLE CMM 

  A software process, no matter how well conceived, will not succeed without tal-

ented, motivated software people. The  People Capability Maturity Model  “is a 

road map for implementing workforce practices that continuously improve the 

capability of an organization’s workforce” [Cur01]. Developed in the mid-1990s 

and refi ned over the intervening years, the goal of the People CMM is to encour-

age continuous improvement of generic workforce knowledge (called “core com-

petencies”), specifi c software engineering and project management skills (called 

“workforce competencies”), and process-related abilities. 

 Like the CMM, CMMI, and related SPI frameworks, the People CMM defi nes 

a set of fi ve organizational maturity levels that provide an indication of the rel-

ative sophistication of workforce practices and processes. These maturity levels 

[CMM08] are tied to the existence (within an organization) of a set of key process 

areas (KPAs). An overview of organizational levels and related KPAs is shown in 

  Figure 37.4  .      

 The People CMM complements any SPI framework by encouraging an orga-

nization to nurture and improve its most important asset—its people. As import-

ant, it establishes a workforce atmosphere that enables a software organization 

to “attract, develop, and retain outstanding talent” [CMM08]. 

      37.5  OTHER SPI FRAMEWORKS 

  Although the SEI’s CMM and CMMI are the most widely applied SPI frameworks, 

a number of alternatives  8   have been proposed and are in use. We provide a brief 

overview of these frameworks in the paragraphs that follow.  9    

   The People CMM 
suggests practices that 
improve the workforce 
competence and 
culture. 

that what is right for one organizational culture may not 
be right for another. 

 The CMMI is a signifi cant achievement in software 
engineering. It provides a comprehensive discussion of 
the activities and actions that should be present when 

an organization builds computer software. Even if a soft-
ware organization chooses not to adopt its details, every 
software team should embrace its spirit and gain insight 
from its discussion of software engineering process and 
practice.  

  8  It’s reasonable to argue that some of these frameworks are not so much “alternatives” as they are 

complementary approaches to SPI. A comprehensive table of many more SPI frameworks can be 

found at  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.4787&rep=rep1&type=pdf  

  9  If you have further interest, a wide array of print and Web-based resources is available for each. 

pre22126_ch37_817-838.indd   832pre22126_ch37_817-838.indd   832 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  833

            SPICE.   The SPICE ( Software Process Improvement and Capability dEtermination ) 

model [SPI99] provides an SPI assessment framework that is compliant with ISO 

15504:2003 and ISO 12207. The SPICE document suite [SDS08] presents a complete 

SPI framework including a model for process management, guidelines for con-

ducting an assessment and rating the process under consideration, construction, 

selection, and use of assessment instruments and tools, and training for assessors. 

   Bootstrap.   The  Bootstrap  SPI framework “has been developed to ensure con-

formance with the emerging ISO standard for software process assessment and 

improvement (SPICE) and to align the methodology with ISO 12207” [Boo06]. The 

objective of Bootstrap is to evaluate a software process using a set of software 

engineering best practices as a basis for assessment. Like the CMMI, Bootstrap 

provides a process maturity level using the results of questionnaires that gather 

information about the “as is” software process and software projects. SPI guide-

lines are based on maturity level and organizational goals. 

   PSP and TSP.   Although SPI is generally characterized as an organizational ac-

tivity, there is no reason why process improvement cannot be conducted at an 

 In addition 
to the CMM, 

are there other 
SPI frameworks 
that we might 
consider? 

?

Continuous workforce innovation
Organizational performance alignment
Continuous capability improvement

Continuous
improvement

Identifies and
develops

knowledge, skills,
and abilities

Repeatable, basic
people

management
practices

Mentoring
Organizational capability management
Quantitative performance management
Competency-based assets
Empowered workgroups
Competency integration

Participatory culture
Workgroup development
Competency-based practices
Career development
Competency development
Workforce planning
Competency analysis

Compensation
Training and development
Performance management
Work environment
Communication and co-ordination
Staffing

Optimized

Quantifies and
manages

knowledge, skills, 
and abilities

Predictable

Defined

Managed

Initial Inconsistent
practices

Process AreasLevel Focus

 FIGURE 37.4

 Process areas 
for the People 
CMM

pre22126_ch37_817-838.indd   833pre22126_ch37_817-838.indd   833 13/12/13   6:17 PM13/12/13   6:17 PM



834 PART FIVE  ADVANCED TOPICS

individual or team level. Both PSP and TSP (Chapter 4 emphasize the need to 

continuously collect data about the work that is being performed and to use that 

data to develop strategies for improvement. Watts Humphrey, (Hum97], [Hum00]) 

the developer of both methods, comments:

  The PSP [and TSP] will show you how to plan and track your work and how to consis-

tently produce high quality software. Using PSP [and TSP] will give you the data that 

show the effectiveness of your work and identify your strengths and weaknesses . . . To 

have a successful and rewarding career, you need to know your skills and abilities, 

strive to improve them, and capitalize on your unique talents in the work you do.     

    TickIT.   The Ticket auditing method [Tic05] ensures compliance with  ISO 9001:2000 

for Software  — a generic standard that applies to any organization that wants to im-

prove the overall quality of the products, systems, or services that it provides. There-

fore, the standard is directly applicable to software organizations and companies. 

 The underlying strategy suggested by ISO 9001:2000 is described in the follow-

ing manner [ISO00]:

  ISO 9001:2000 stresses the importance for an organization to identify, implement, 

manage and continually improve the effectiveness of the processes that are neces-

sary for the quality management system, and to manage the interactions of these 

processes in order to achieve the organization’s objectives . . . Process effectiveness 

and effi ciency can be assessed through internal or external review processes and be 

evaluated on a maturity scale.       

  ISO 9001:2008 has adopted a “plan-do-check-act” cycle that is applied to the qual-

ity management elements of a software project. Within a software context, “plan” 

establishes the process objectives, activities, and tasks necessary to achieve 

high-quality software and resultant customer satisfaction. “Do” implements the 

software process (including both framework and umbrella activities). “Check” 

monitors and measures the process to ensure that all requirements established 

for quality management have been achieved. “Act” initiates software process im-

provement activities that continually work to improve the process. TickIt can 

be used throughout the “plan-do-check-act” cycle to ensure that SPI progress is 

being made. TickIT auditors assess the application of the cycle as a precursor to 

ISO 9001:2008 certifi cation. For a detailed discussion of ISO 9001:2008 and TickIT 

you should examine [Ant06], [Tri05], or [Sch03]. 

        37.6  SPI RETURN ON INVESTMENT 

  SPI is hard work and requires substantial investment of dollars and people. Man-

agers who approve the budget and resources for SPI will invariably ask the ques-

tion: “How do I know that we’ll achieve a reasonable return for the money we’re 

spending?” 

  uote: 

 “Software 
organizations 
have exhibited 
signifi cant 
shortcomings in 
their ability to 
capitalize on the 
experiences gained 
from completed 
projects.” 

 NASA 

 WebRef 
 An excellent summary 
of ISO 9001: 2008 
can be found at 
 http://praxiom
.com/iso-9001
.htm . 

pre22126_ch37_817-838.indd   834pre22126_ch37_817-838.indd   834 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  835

 At a qualitative level, proponents of SPI argue that an improved software pro-

cess will lead to improved software quality. They contend that improved process 

will result in the implementation of better-quality fi lters (resulting in fewer prop-

agated defects), better control of change (resulting in less project chaos), and 

less technical rework (resulting in lower cost and better time-to-market). But 

can these qualitative benefi ts be translated into quantitative results? The classic 

return on investment (ROI) equation is:

  ROI 5  [   [S ( benefi ts ) 2 S ( costs )]   ________________________  
S ( costs )

   ]  3 100%   

 where

      benefi ts  include the cost savings associated with higher product quality 

(fewer defects), less rework, reduced effort associated with changes, and the in-

come that accrues from shorter time-to-market.  

     costs  include both direct SPI costs (e.g., training, measurement) and indirect 

costs associated with greater emphasis on quality control and change manage-

ment activities and more rigorous application of software engineering methods 

(e.g., the creation of a design model).    

 In the real world, these quantitative benefi ts and costs are sometimes diffi cult 

to measure with accuracy, and all are open to interpretation. But that doesn’t 

mean that a software organization should conduct an SPI program without care-

ful analysis of the costs and benefi ts that accrue. A comprehensive treatment of 

ROI for SPI can be found in a unique book by David Rico [Ric04]. 

      37.7  SPI TRENDS 

  Over the past 25 years, many companies have attempted to improve their soft-

ware engineering practices by applying an SPI framework to effect organiza-

tional change and technology transition. As we noted earlier in this chapter, over 

half fail in this endeavor. Regardless of success or failure, all spend signifi cant 

amounts of money. David Rico [Ric04] reports that a typical application of an SPI 

framework such as the SEI CMM can cost between $25,000 and $70,000 per per-

son and take years to complete! It should come as no surprise that the future of 

SPI should emphasize a less costly and time-consuming approach. 

 To be effective in the twenty-fi rst-century world of software development, fu-

ture SPI frameworks must become signifi cantly more agile. Rather than an orga-

nizational focus (which can take years to complete successfully), contemporary 

SPI efforts should focus on the project level, working to improve a team process 

in weeks, not months or years. To achieve meaningful results (even at the project 

level) in a short time frame, complex framework models may give way to simpler 

models. Rather than dozens of key practices and hundreds of supplementary 

pre22126_ch37_817-838.indd   835pre22126_ch37_817-838.indd   835 13/12/13   6:17 PM13/12/13   6:17 PM



836 PART FIVE  ADVANCED TOPICS

practices, an agile SPI framework should emphasize only a few pivotal practices 

(e.g., analogous to the framework activities discussed throughout this book). 

 Any attempt at SPI demands a knowledgeable workforce, but education and 

training expenses can be expensive and should be minimized (and streamlined). 

Rather than classroom courses (expensive and time-consuming), future SPI 

efforts should rely on Web-based training that is targeted at pivotal practices. 

Rather than far-reaching attempts to change organizational culture (with all of 

the political perils that ensue), cultural change should occur as it does in the real 

world, one small group at a time until a tipping point is reached. 

 The SPI work of the past two decades has signifi cant merit. The frameworks 

and models that have been developed represent substantial intellectual assets 

for the software engineering community. But like all things, these assets guide 

future attempts at SPI not by becoming a recurring dogma, but by serving as the 

basis for better, simpler, and more agile SPI models. 

       37.8 SUMMARY 

 A software process improvement framework defi nes the characteristics that 

must be present if an effective software process is to be achieved, an assessment 

method that helps determine whether those characteristics are present, and 

a strategy for assisting a software organization in implementing those process 

characteristics that have been found to be weak or missing. Regardless of the 

constituency that sponsors SPI, the goal is to improve process quality and, as a 

consequence, improve software quality and timeliness. 

 A process maturity model provides an overall indication of the “process ma-

turity” exhibited by a software organization. It provides a qualitative feel for the 

relative effectiveness of the software process that is currently being used. 

 The SPI road map begins with assessment—a series of evaluation activities 

that uncover both strengths and weaknesses in the way your organization ap-

plies the existing software process and the software engineering practices that 

populate the process. As a consequence of assessment, a software organization 

can develop an overall SPI plan. 

 One of the key elements of any SPI plan is education and training, an activity 

that focuses on improving the knowledge level of managers and practitioners. 

Once staff becomes well versed in current software technologies, selection and 

justifi cation commence. These tasks lead to choices about the architecture of the 

software process, the methods that populate it, and the tools that support it. In-

stallation and evaluation are SPI activities that instantiate process changes and 

assess their effi cacy and impact. 

 To successfully improve its software process, an organization must exhibit the 

following characteristics: management commitment and support for SPI, staff 

involvement throughout the SPI process, process integration into the overall 

pre22126_ch37_817-838.indd   836pre22126_ch37_817-838.indd   836 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 37  SOFTWARE PROCESS IMPROVEMENT  837

organizational culture, an SPI strategy that has been customized for local needs, 

and solid management of the SPI project. 

 A number of SPI frameworks are in use today. The SEI’s CMM and CMMI are 

widely used. The People CMM has been customized to assess the quality of the 

organizational culture and the people who populate it. SPICE, Bootstrap, PSP, 

TSP, and TickIT are additional frameworks that can lead to effective SPI. 

 SPI is hard work that requires substantial investment of dollars and people. 

To ensure that a reasonable return on investment is achieved, an organization 

must measure the costs associated with SPI and the benefi ts that can be directly 

attributed to it. 

     PROBLEMS AND POINTS TO PONDER 
    37.1.  Why is it that software organizations often struggle when they embark on an effort to 
improve local software process?  

   37.2.  Describe the concept of “process maturity” in your own words.  

   37.3.  Do some research (check the SEI website) and determine the process maturity distri-
bution for software organizations in the United States and worldwide.  

   37.4.  You work for a very small software organization—only 11 people are involved in devel-
oping software. Is SPI for you? Explain your answer.  

   37.5.  Assessment is analogous to an annual physical exam. Using a physical exam as a met-
aphor, describe the SPI assessment activity.  

   37.6.  What is the difference between an “as is” process, a “here to there” process, and a “to 
be” process?  

   37.7.  How is risk management applied within the context of SPI?  

   37.8.  Select one of the critical success factors noted in Section 37.2.7. Do some research and 
write a brief paper on how it can be achieved.  

   37.9.  Do some research and explain how the CMMI differs from its predecessor, the CMM.  

   37.10.  Select one of the SPI frameworks discussed in Section 37.5, and write a brief paper 
describing it in more detail.  

      FUR THER READINGS AND INFORMATION SOURCES 
  One of the most readily accessible and comprehensive resources for information on SPI has 
been developed by the Software Engineering Institute and is available at  www.sei.cmu.edu  
and  www.cmmiinstitute.com . The SEI websites contain hundreds of papers, studies, and de-
tailed SPI framework descriptions. 

   Over the past few years, a number of worthwhile books have been added to a broad litera-
ture developed during the past two decades. Chrissis and her colleagues ( CMMI for Develop-

ment: Guidelines for Process Integration and Product Improvement , 3rd ed.,  Addison-Wesley, 
2011) and McMahin ( Integrating CMMI and Agile Development,   Addison-Wesley, 2010) dis-
cuss the application of CCMI in modern software development. Land  (Jumpstart CMM/

CMMI Software Process Improvements,  Wiley-IEEE Computer Society, 2007) melds the re-
quirements defi ned as part of the SEI CMM and CMMI with IEEE software engineering stan-
dards with an emphasis on the intersection of process and practice. Micklewright ( Lean 

pre22126_ch37_817-838.indd   837pre22126_ch37_817-838.indd   837 13/12/13   6:17 PM13/12/13   6:17 PM



838 PART FIVE  ADVANCED TOPICS

ISO  9001 , ASQ Quality Press, 2010) and Cianfrani and his colleagues ( ISO 9001:2008  Ex-
plained, 3rd ed., ASQ Quality Press, 2009) describe the meaning and intent of ISO 9001:2008. 
Mutafelija and Stromberg ( Systematic Process Improvement Using ISO 9001:2000 and CMMI,  
Artech House Publishers, 2007) discuss both the ISO 9001:2000 and CMMI SPI frameworks 
and the “synergy” between them. Conradi and his colleagues ( Software Process Improve-

ment: Results and Experience from the Field,  Springer, 2006) presents the results of a series 
of case studies and experiments related to SPI. 

   McKay and Black ( Improving the Software Process,  RBCS, 2012) provide a detailed look 
at SPI approaches and trends. Fauzi and his colleagues ( Software Process Improvement: 

Approaches and Tools for Practical Development,  IGI Global, 2011), Van Loon ( Process As-

sessment and Improvement: A Practical Guide for Managers, Quality Professionals and As-

sessors,  Springer, 2006) discusses SPI within the context of ISO/IEC 15504. Watts Humphrey 
( PSP,  Addison-Wesley, 2005, and  TSP,  Addison-Wesley, 2005) addresses his Personal Team 
Process SPI framework and his Team Software Process SPI framework in two separate 
books. Fantina ( Practical Software Process Improvement,  Artech House Publishers, 2004) 
provides pragmatic how-to guidance with an emphasis on CMMI/CMM. 

   A wide variety of information sources on software process improvement is available on 
the Internet. An up-to-date list of World Wide Web references can be found under “software 
engineering resources” at the SEPA website:  www.mhhe.com/pressman .       

pre22126_ch37_817-838.indd   838pre22126_ch37_817-838.indd   838 13/12/13   6:17 PM13/12/13   6:17 PM



839

 EMERGING TRENDS IN 
SOFTWARE ENGINEERING 

     Throughout the relatively brief history of software engineering, practi-

tioners and researchers have developed an array of process models, 

technical methods, and automated tools in an effort to foster fundamen-

tal change in the way we build computer software. Even though past experi-

ence indicates otherwise, there is a tacit desire to fi nd the “silver bullet”—the 

magic process or transcendent technology that will allow us to build large, 

complex, software-based systems easily, without confusion, without mistakes, 

without delay—without the many problems that continue to plague software 

work. 

 But history indicates that our quest for the silver bullet appears doomed 

to failure. New technologies are introduced regularly, hyped as a “solution” 

to many of the problems software engineers face, and incorporated into proj-

ects large and small. Industry pundits stress the importance of these “new” 

software technologies, the cognoscenti of the software community adopt them 

with enthusiasm, and ultimately, they do play a role in the software engineer-

ing world. But they tend not to meet their promise, and as a consequence, the 

quest continues. 

 In past editions of this book (over the past 35 years), we have discussed 

emerging technologies and their projected impact on software engineering.

 K E Y 
C O N C E P T S 
    building blocks  . . . 847  
    collaborative 
development. . . . . 852  
    complexity  . . . . . . 845  
    emergent 
requirements  . . . . 846  
    hype cycle. . . . . . . 842  
    innovation life 
cycle. . . . . . . . . . . 840  
    model-driven 
development. . . . . 853  
    open source  . . . . . 848  
    open-world 
software  . . . . . . . 846  
    postmodern design  . 854  
    requirements 
engineering. . . . . . 852  
    soft trends . . . . . . 843  
    technology 
directions . . . . . . . 849  
    technology 
evolution  . . . . . . . 840  

   C H A P T E R

38 

 Q U I C K 
L O O K 

  What is it?   No one can predict 
the future with absolute certainty. 
But it is possible to assess trends in 
the software engineering area and 

from those trends to suggest possible directions 
for the technology. That’s what we attempt to 
do in this chapter. 

   Who does it?   Anyone who is willing to spend 
the time to stay abreast of software engineer-
ing issues can try to predict the future direction 
of the technology. 

   Why is it important?   Why did ancient kings 
hire soothsayers? Why do major multinational 
corporations hire consulting fi rms and think 
tanks to prepare forecasts? Why does a sub-
stantial percentage of the public read horo-
scopes? We want to know what’s coming so 
we can ready ourselves. 

   What are the steps?   There is no formula for 
predicting the road ahead. We attempt to do 
this by collecting data, organizing it to pro-
vide useful information, examining subtle as-
sociations to extract knowledge, and from this 
knowledge to suggest probable trends that 
predict how things will be at some future time. 

   What is the work product?   A view of the 
near-term future that may or may not be correct. 

   How do I ensure that I’ve done it 
right?   Predicting the road ahead is an art, 
not a science. In fact, it’s quite rare when a 
serious prediction about the future is absolutely 
right or unequivocally wrong (with the excep-
tion, thankfully, of predictions of the end of the 
world). We look for trends and try to extrapo-
late them. We can assess the correctness of the 
extrapolation only as time passes.  

pre22126_ch38_839-859.indd   839pre22126_ch38_839-859.indd   839 13/12/13   6:17 PM13/12/13   6:17 PM



840 PART FIVE  ADVANCED TOPICS

Some have been widely adopted, but others never reached their potential. Our 

conclusion: technologies come and go; the real trends that we should explore 

are softer. By this we mean that progress in software engineering will be guided 

by business, organizational, market, and cultural trends. Those trends lead to 

technology innovation. 

 In this chapter, we’ll mention a few software engineering technology trends, 

but our primary emphasis will be on some of the business, organizational, mar-

ket, and cultural trends that may have an important infl uence on software engi-

neering technology over the next 10 or 20 years. 

      38.1  TECHNOLOGY EVOLUTION 

  In a fascinating book that provides a compelling look at how computing (and 

other related) technologies will evolve, Ray Kurzweil [Kur05] argues that techno-

logical evolution is similar to biological evolution, but occurs at a rate that is or-

ders of magnitude faster. Evolution (whether biological or technological) occurs 

as a result of positive feedback—“the more capable methods resulting from one 

stage of evolutionary progress are used to create the next stage” [Kur05]. 

   The big questions for the 21st century are: (1) How rapidly does a technology 

evolve? (2) How signifi cant are the effects of positive feedback? (3) How profound 

will the resultant changes be? 

 When a successful new technology is introduced, the initial concept moves 

through a reasonably predictable “innovation life cycle” [Gai95] illustrated in 

  Figure 38.1  . In the  breakthrough  phase, a problem is recognized and repeated 

attempts at a viable solution are attempted. At some point, a solution shows 

promise. The initial breakthrough work is reproduced in the  replicator  phase 

and gains wider usage.  Empiricism  leads to the creation of empirical rules that 

govern the use of the technology, and repeated success leads to a broader  theory  

of usage that is followed by the creation of automated tools during the  automa-

tion  phase. Finally, the technology matures and is used widely.      

 What are 
the “big 

questions” when 
we consider 
technology 
evolution? 

?

   Computing technology 
is evolving at an 
exponential rate, and 
its growth may soon 
become explosive. 

    test-driven 
development. . . . . 854  
    tools  . . . . . . . . . . 855  
  

100

P
er

ce
n
t 

a
d
o
p
ti
o
n

Breakthrough Replicator Empiricism Theory Automation Maturity

 FIGURE 38.1

 A technology 
innovation life 
cycle

pre22126_ch38_839-859.indd   840pre22126_ch38_839-859.indd   840 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  841

   You should note that many research and technology trends never reach ma-

turity. In fact, the vast majority of “promising” technologies in the software en-

gineering domain receive widespread interest for a few years and then fall into 

niche usage by a dedicated band of adherents. This is not to say that these tech-

nologies lack merit, but rather to emphasize that the journey through the inno-

vation life cycle is long and hard. 

 Kurzweil [Kur05] agrees that computing technologies evolve through an 

“S-curve” that exhibits relatively slow growth during the technology’s formative 

years, rapid acceleration during its growth period, and then a leveling-off period 

as the technology reaches its limits. Today, we a rapidly accelerating through 

the knee of the S-curve for modern computing technologies—at the transition 

between early growth and the explosive growth that is to follow. The implication 

is that over the next 20 to 40 years, we will see dramatic (even mind-boggling) 

changes in computing capability. He suggests that within 20 years, technology 

evolution will accelerate at an increasingly rapid pace, ultimately leading to an 

era of nonbiological intelligence that will merge with and extend human intelli-

gence in ways that are fascinating to contemplate. 

 And all of this, no matter how it evolves, will require software and systems that 

make our current efforts look infantile by comparison. By the year 2040, a com-

bination of extreme computation, nanotechnology, massively high bandwidth 

ubiquitous networks, and robotics will lead us into a different world.  1   Software, 

possibly in forms we cannot yet comprehend, will continue to reside at the core 

of this new world. Software engineering will not go away.  

      38.2  PROSPECTS FOR A TRUE ENGINEERING DISCIPL INE 

  For almost 50 years, many academic researchers and industry professionals 

have clamored for a true engineering discipline for software. In an important 

follow-on to her classic 1990 paper the subject, Mary Shaw [Sha09] comments on 

this continuing quest:

  Engineering disciplines typically evolve from craft practices of a technology, suffi -

cient for local or ad hoc use. When the technology becomes economically signifi cant, 

it requires stable production techniques and management control. The resulting 

commercial market is based on experience, rather than a deep understanding of the 

technology . . . an engineering profession emerges when . . . science becomes suffi -

ciently mature to support purposeful practice and design evolution with predictable 

outcomes.   

  1  Kurzweil [Kur05] presents a reasoned technical argument that predicts a strong artifi cial intel-

ligence (that will pass the Turing Test) by 2029 and suggests that the evolution of humans and 

machines will begin to merge by 2045. The vast majority of readers of this book will live to see 

whether this, in fact, comes to pass. 

pre22126_ch38_839-859.indd   841pre22126_ch38_839-859.indd   841 13/12/13   6:17 PM13/12/13   6:17 PM



842 PART FIVE  ADVANCED TOPICS

 We would argue that the industry has achieved “purposeful practice,” but that 

“predictable outcomes” have remained illusive. 

 As MobileApps and WebApps begin to dominate the software landscape, Shaw 

identifi es challenges that “emerge from the deep interdependencies between 

very complex systems and their users” [Sha09]. She argues that the knowledge 

base that leads to “purposeful practice” has been democratized by the specialized 

social networks that now populate the Web. For example, rather than referenc-

ing a centrally controlled software engineering handbook, a software engineer 

can pose a problem on an appropriate forum and obtain a crowd-sourced solu-

tion that draws from the experience of many other developers. The proposed 

solution if often critiqued in real time, with alternatives and adaptations offered 

as options. 

 But this is not the level of discipline that many demand. As Shaw states: “[P]ro-

blems facing software engineers are increasingly situated in complex social con-

texts, and delineating the problem’s boundaries is increasingly diffi cult” [Sha09]. 

As a consequence, isolating the scientifi c underpinnings of a discipline remains 

a challenge. At this point in the history of our fi eld, it is reasonable to state that 

“the discovery of new software engineering ideas is, by now, naturally incremen-

tal and evolutionary” [Erd10]. 

      38.3  OBSERVING SOFTWARE ENGINEERING TRENDS    

  Barry Boehm [Boe08] suggests that “software engineers [will] face the often for-

midable challenges of dealing with rapid change, uncertainty and emergence, 

dependability, diversity, and interdependence, but they also have opportunities 

to make signifi cant contributions that will make a difference for the better.” But 

what are the trends that will enable you to face these challenges in the years 

ahead? 

   In the introduction to this chapter, we noted that “soft trends” have a signifi -

cant impact on the overall direction of software engineering. But other (“harder”) 

research- and technology-oriented trends remain important. Research trends 

“are driven by general perceptions of the state of the art and the state of the 

practice, by researcher perceptions of practitioner needs, by national funding 

programs that rally around specifi c strategic goals, and by sheer technical inter-

est” [Mil00b]. Technology trends occur when research trends are extrapolated to 

meet industry needs and are shaped by market-driven demand. 

 In Section 38.1, we discussed the S-curve model for technology evolution. The 

S-curve is appropriate for considering the long-term effects of core technologies 

as they evolve. But what of more modest, short-term innovations, tools, and meth-

ods? The Gartner Group [Gar08]—a consultancy that studies technology trends 

across many industries—has developed a  hype cycle for emerging technologies,  

  uote: 

 “I think there is 
a world market 
for maybe fi ve 
computers.” 

 Thomas Watson, 
chairman of 
IBM, 1943 

pre22126_ch38_839-859.indd   842pre22126_ch38_839-859.indd   842 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  843

represented in   Figure 38.2  . Not every software engineering technology makes it 

all the way through the hype cycle. In some cases, disillusionment is justifi ed and 

the technology is relegated to obscurity.        

       38.4  IDENTIFY ING “SOFT TRENDS” 

  Each nation with a substantial IT industry has a set of unique characteristics that 

defi ne the manner in which business is conducted, the organizational dynamics 

that arise within a company, the distinct marketing issues that apply to local cus-

tomers, and the overriding culture that dictates all human interaction. However, 

some trends in each of these areas are universal and have as much to do with 

sociology, anthropology, and group psychology (often referred to as the “soft sci-

ences”) as they do with academic or industrial research. 

  Connectivity and collaboration  (enabled by high-bandwidth communication) 

has already led to software teams that do not occupy the same physical space 

(telecommuting and part-time employment in a local context). One team collab-

orates with other teams that are separated by time zones, primary language, and 

culture. Software engineering must respond with an overarching process model 

for “distributed teams” that is agile enough to meet the demands of immediacy 

but disciplined enough to coordinate disparate groups. 

  Globalization  leads to a diverse workforce (in terms of language, culture, 

problem resolution, management philosophy, communication priorities, and 

person-to-person interaction). This, in turn, demands a fl exible organizational 

structure. Different teams (in different countries) must respond to engineer-

ing problems in a way that best accommodates their unique needs, while at the 

   The “hype cycle” 
presents a realistic 
view of short-term 
technology integration. 
The long-term 
trend, however, is 
exponential. 

  uote: 

 “640K ought to 
be enough for 
anybody.” 

 Bill Gates, 
chairman of 

Microsoft, 1981 

Visibility

Technology
trigger

Peak of
inflated

expectations

Trough
of

disillusionment

Slope
of

enlightenment

Plateau
of

productivity

 FIGURE 38.2

 The  Gartner 
Group’s hype 
cycle for 
emerging 
technologies 
[Gar08]

pre22126_ch38_839-859.indd   843pre22126_ch38_839-859.indd   843 13/12/13   6:17 PM13/12/13   6:17 PM



844 PART FIVE  ADVANCED TOPICS

same time fostering a level of uniformity that allows an overall global project 

to proceed. This type of organization suggests fewer levels of management and 

a greater emphasis on team-level decision making. It can lead to greater agil-

ity, but only if communication mechanisms have been established so that every 

team can understand project and technical status (via networked groupware) at 

any time. Software engineering methods and tools can help achieve some level 

of uniformity (teams speak the same “language” implemented through specifi c 

methods and tools). Software process can provide the framework for the instan-

tiation of these methods and tools. 

 In some world regions (the United States and Europe are examples), the pop-

ulation is aging. This undeniable demographic (and cultural trend) implies that 

many experienced software engineers and managers will be leaving the fi eld 

over the coming decade. The software engineering community must respond 

with viable mechanisms that capture the knowledge of these aging managers 

and technologists (e.g., the use of  patterns  (Chapter 16) is a step in the right di-

rection), so that it will be available to future generations of software workers. In 

other regions of the world, the number of young people available to the software 

industry is exploding. This provides an opportunity to mold a software engineer-

ing culture without the burden of 50 years of “old-school” prejudices. 

 It is estimated that over 1 billion new consumers will enter the worldwide 

marketplace over the next decade. Consumer spending in emerging econo-

mies will grow to over $12 trillion in 10 years [ATK12]. There is little doubt that a 

nontrivial percentage of this spending will be applied to products and services 

that have a digital component—that are software based or software driven. The 

 implication—an increasing demand for new software. The question then is, “Can 

new software engineering technologies be developed to meet this worldwide 

demand?” Modern market trends are often driven by the supply side.  2   In other 

cases, demand-side requirements drive the market. In either case, a cycle of 

innovation and demand progresses in a way that sometimes makes it diffi cult to 

determine which came fi rst!  

 Finally, human culture itself will impact the direction of software engineering. 

Every generation establishes its own imprint on local culture, and yours will be 

no different. Faith Popcorn [Pop08], a well-known consultant who specializes in 

cultural trends, characterizes them in the following manner: “Our Trends are not 

fads. Our Trends endure. Our Trends evolve. They represent underlying forces, 

fi rst causes, basic human needs, attitudes, aspirations. They help us navigate 

the world, understand what’s happening and why, and prepare for what is yet to 

come.” A detailed discussion of how modern cultural trends will have an impact 

on software engineering is best left to those who specialize in the “soft sciences.” 

  2  Supply side adopts a “build it and they will come” approach to markets. Unique technologies 

are created, and consumers fl ock to adopt them–sometimes! 

pre22126_ch38_839-859.indd   844pre22126_ch38_839-859.indd   844 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  845

   38.4.1   Managing Complexity 

 When the fi rst edition of this book was written (1982), digital consumer prod-

ucts as we now know them today didn’t exist, and mainframe-based systems con-

taining a million lines of source code (LOC) were considered to be quite large. 

Today, it is not uncommon for small digital devices to encompass between 60,000 

to 200,000 lines of custom software, coupled with a few million LOC for operat-

ing system features. Modern computer-based systems containing 10 to 50 million 

lines of code are not uncommon.  3   In the relatively near future, systems  4   requiring 

over 1 billion LOC will begin to emerge.  5    

 Think about that for a moment! 

 Consider the interfaces for a billion LOC system, both to the outside world, 

to other interoperable systems, to the Internet (or its successor), and to the mil-

lions of internal components that must all work together to make this computing 

monster operate successfully. Is there a reliable way to ensure that all of these 

connections will allow information to fl ow properly? 

 Consider the project itself. How do we manage the work fl ow and track prog-

ress? Will conventional approaches scale upward by orders of magnitude? 

 Consider the number of people (and their locations) who will be doing 

the work, the coordination of people and technology, the unrelenting fl ow of 

changes, the likelihood of a multiplatform, multioperating system environment. 

Is there a way to manage and coordinate people who are working on a monster 

project? 

 Consider the engineering challenge. How can we analyze tens of thousands 

of requirements, constraints, and restrictions in a way that ensures that incon-

sistency and ambiguity, omissions, and outright errors are uncovered and cor-

rected? How can we create a design architecture that is robust enough to handle 

a system of this size? How can software engineers establish a change manage-

ment system that will have to handle hundreds of thousands of changes?   

  Consider the challenge of quality assurance. How can we perform verifi cation 

and validation in a meaningful way? How do you test a 1 billion LOC system? 

 In the early days, software engineers attempted to manage complexity in what 

can only be described as an ad hoc fashion. Today, we use process, methods, and 

tools to keep complexity under control. But tomorrow? Is our current approach 

up to the task? 

   uote: 

 “There is no reason 
anyone would want 
a computer in their 
home.” 

 Ken Olson, 
President, 
Chairman 

and Founder 
of Digital 

Equipment 
Corp., 1977 

  3  For example, modern PC operating systems (e.g., Linux, Mac OS, and Windows) have between 

30 and 60 million LOC. Operating system software for mobile devices can exceed 2 million 

LOC. 

  4  In reality, this “system” will actually be a system of systems–hundreds of interoperable applica-

tions working together to achieve some overall objective. 

  5  Not all complex systems are large. A relatively small application (say, less than 100,000 LOC 

can still be exceedingly complex. 

pre22126_ch38_839-859.indd   845pre22126_ch38_839-859.indd   845 13/12/13   6:17 PM13/12/13   6:17 PM



846 PART FIVE  ADVANCED TOPICS

    38.4.2   Open-World Software 

 Concepts such as ambient intelligence,  6   context-aware applications, and per-

vasive/ubiquitous computing—all focus on integrating software-based systems 

into an environment far broader that a PC, a mobile computing device, or any 

other digital device. These separate visions of the near-term future of computing 

collectively suggest “open-world software”—software that is designed to adapt 

to a continually changing environment “by self-organizing its structure and 

self-adapting its behavior” [Bar06b].  

   To help illustrate the challenges that software engineers will face in the fore-

seeable future, consider the notion of  ambient intelligence  (amI). Ducatel [Duc01] 

defi nes amI in the following way: “People are surrounded by intelligent, intuitive 

interfaces that are embedded in all kinds of objects. The ambient intelligence en-

vironment is capable of recognizing and responding to the presence of different 

individuals [while working] in a seamless, unobtrusive way.” 

 With the widespread use of low-cost, yet increasingly powerful smartphones, 

we are well on our way to ubiquitous amI systems. The challenge for software 

engineers is to develop apps that provide ever-increasing functionality in prod-

ucts of all types—functionality that adapts to user needs while at the same time 

protecting privacy and providing security. 

    38.4.3   Emergent Requirements 

 At the beginning of a software project, there’s a truism that applies equally to 

every stakeholder involved: “You don’t know what you don’t know.” That means 

that customers rarely defi ne “stable” requirements. It also means that software 

engineers cannot always foresee where ambiguities and inconsistencies lie. 

Requirements change—but that’s nothing new. 

   As systems become more complex, it follows that even a rudimentary at-

tempt to state comprehensive requirements is doomed to failure. A statement of 

overall goals may be possible, delineation of intermediate objectives can be ac-

complished, but stable requirements—not a chance! Requirements will emerge 

as everyone involved in the engineering and construction of a complex system 

learns more about it, the environment in which it is to reside, and the users who 

will interact with it. 

 This reality implies a number of software engineering trends. First, process 

models must be designed to embrace change and adopt the basic tenets of the 

agile philosophy (Chapter 5). Next, methods that yield engineering models (e.g., 

requirements and design models) must be used judiciously because those mod-

els will change repeatedly as more knowledge about the system is acquired. 

   Open-world software 
encompasses ambient 
intelligence, context-
aware apps, and 
pervasive computing. 

   Because emergent 
requirements are 
already a reality, your 
organization should 
consider adopting an 
incremental process 
model. 

  6  A worthwhile and quite detailed introduction to  ambient intelligence  can be found at www.

emergingcommunication.com/volume6.html. More information can be obtained at www. 

ambientintelligence.org/. 

pre22126_ch38_839-859.indd   846pre22126_ch38_839-859.indd   846 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  847

Finally, tools that support both process and methods must make adaptation and 

change easy. 

 But there is another aspect to emergent requirements. The vast majority of soft-

ware developed to date assumes that the boundary between the software-based 

system and its external environment is stable. The boundary may change, but it 

will do so in a controlled manner, allowing the software to be adapted as part of 

a regular software maintenance cycle. This assumption is beginning to change. 

Open-world software (Section 38.4.2) demands that software “adapt and react to 

changes dynamically, even if they’re unanticipated” [Bar06b]. 

 By their nature, emergent requirements lead to change. How do we control 

the evolution of a widely used application or system over its lifetime, and what 

effect does this have on the way we design software? 

 As the number of changes grows, the likelihood of unintended side effects also 

grows. This should be a cause for concern as complex systems with emergent 

requirements become the norm. The software engineering community must de-

velop methods that help software teams predict the impact of change across an 

entire system, thereby mitigating unintended side effects. Today, our ability to 

accomplish this is severely limited. 

    38.4.4   The Talent Mix 

 As software-based systems become more complex, as communication and collab-

oration among global teams becomes commonplace, as emergent requirements 

(with the resultant fl ow of changes) become the norm, the very nature of a soft-

ware engineering team may change. Each software team must bring a variety of 

creative talent and technical skills to its part of a complex system, and the overall 

process must allow the output of these islands of talent to merge effectively. 

 Alexandra Weber-Morales [Mor05] suggests the talent mix of a “software dream 

team.” The  Brain  is a chief architect who is able to navigate the demands of stake-

holders and map them into a technology framework that is both extensible and 

implementable. The  Data Grrl  is a database and data structures guru who “blasts 

through rows and columns with profound understanding of predicate logic and 

set theory as it pertains to the relational model.” The  Blocker  is a technical leader 

(manager) who allows the team to work free of interference from other teams 

while at the same time ensuring that collaboration is occurring. The  Hacker  is 

a consummate programmer who is at home with patterns and languages and 

can use both effectively. The  Gatherer  “deftly discovers system requirements 

with . . . anthropological insight” and accurately expresses them with clarity. 

    38.4.5   Software Building Blocks 

 All of us who have fostered a software engineering philosophy have em-

phasized the need for reuse—of source code, object-oriented classes, com-

ponents, patterns, and COTS software. Although the software engineering 

pre22126_ch38_839-859.indd   847pre22126_ch38_839-859.indd   847 13/12/13   6:17 PM13/12/13   6:17 PM



848 PART FIVE  ADVANCED TOPICS

community has made progress as it attempts to capture past knowledge and 

reuse proven solutions, a significant percentage of the software that is built 

today continues to be built “from scratch.” Part of the reason for this is a con-

tinuing desire (by stakeholders and software engineering practitioners) for 

“unique solutions.” 

 In the hardware world, original equipment manufacturers (OEMs) of digital 

devices use application-specifi c standard products (ASSPs) produced by sili-

con vendors almost exclusively. This “merchant hardware” provides the build-

ing blocks necessary to implement everything from a smartphone to a wearable 

computing device. Increasingly, the same OEMs are using “merchant software”—

software building blocks designed specifi cally for a unique application domain 

[e.g., VoIP devices]. Michael Ward [War07] comments:

  One advantage of the use of software components is that the OEM can leverage the 

functionality provided by the software without having to develop in-house expertise 

in the specifi c functions or invest developer time on the effort to implement and vali-

date the components. Other advantages include the ability to acquire and deploy only 

the specifi c set of functionalities that are needed for the system, as well as the ability 

to integrate these components into an already-existing architecture.   

 In addition to components packaged as merchant software, there is an increas-

ing tendency to adopt  software platform solutions  that “incorporate collections of 

related functionalities, typically provided within an integrated software frame-

work” [War07]. A software platform frees an OEM from the work associated with 

developing base functionality and instead allows the OEM to dedicate software 

effort on those features that differentiate its product. 

    38.4.6   Changing Perceptions of “Value” 

 During the last quarter of the 20th century, the operative question that business-

people asked when discussing software was: Why does it cost so much? That 

question is rarely asked today and has been replaced by: Why can’t we get it 

(software and/or the software-based product) sooner? 

 When computer software is considered, the modern perception of value 

is changing from business value (cost and profi tability) to customer values 

that include: speed of delivery, richness of functionality, and overall product 

quality. 

    38.4.7   Open Source 

 Who owns the software you or your organization uses? Increasingly, the an-

swer is “everyone.” The “open source” movement has been described in the 

following manner [OSO12]: “Open source is a development method for soft-

ware that harnesses the power of distributed peer review and transparency of 

process. The promise of open source is better quality, higher reliability, more 

pre22126_ch38_839-859.indd   848pre22126_ch38_839-859.indd   848 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  849

fl exibility, lower cost, and an end to predatory vendor lock-in.” The term  open 

source,  when applied to computer software, implies that software engineering 

work products (models, source code, test suites) are open to the public and 

can be reviewed and extended (with controls) by anyone with interest and 

permission.   

  If you have further interest, Weber [Web05] provides a worthwhile introduc-

tion, Feller and his colleagues [Fel07] have edited a comprehensive and objective 

anthology that considers the benefi ts and problems associated with open source, 

and Brown [Bro12] provides a more technical discussion. 

       38.5  TECHNOLOGY DIRECTIONS 

  We always seem to think that software engineering will change more rapidly 

than it does. A new “hyped” technology (it could be a new process, a unique 

method, or an exciting tool) is introduced, and pundits suggest that “everything” 

will change. But software engineering is about far more than technology—it’s 

about people and their ability to communicate their needs and innovate to make 

those needs a reality. Whenever people are involved, change occurs slowly in fi ts 

and starts. It’s only when a “tipping point” [Gla02] is reached that a technology 

cascades across the software engineering community and broad-based change 

truly does occur. 

 In this section we’ll examine a few trends in process, methods, and tools that 

are likely to have some infl uence on software engineering over the next decade. 

Will they lead to a tipping point? We’ll just have to wait and see. 

   38.5.1   Process Trends   

  It can be argued that all of the business, organizational, and cultural trends dis-

cussed in Section 38.4 reinforce the need for process. But do the frameworks 

discussed in Chapter 37 provide a road map into the future? Will process frame-

works evolve to fi nd a better balance between discipline and creativity? Will the 

software process adapt to the differing needs of stakeholders who procure soft-

ware, those who build it, and those who use it? Can it provide a means for reduc-

ing risk for all three constituencies at the same time? 

 These and many other questions remain open. In the paragraphs that follow, 

we have adapted six ideas proposed by Conradi and Fuggetta [Con02] to suggest 

possible process trends. 

       1.   As SPI frameworks evolve, they will emphasize “strategies that focus on 

goal orientation and product innovation”  [Con02]. In the fast-paced world 

of software development, long-term SPI strategies rarely survive in a dy-

namic business environment. Too much changes too quickly. This means 

that a stable, step-by-step road map for SPI may have to be replaced with 

   uote: 

 “But what is it 
good for?” 

 Engineer at 
the Advanced 

Computing 
Systems Division 

of IBM, 1968, 
commenting on 

the microchip 

   uote: 

 “The proper artistic 
response to digital 
technology is to 
embrace it as a 
new window on 
everything that’s 
eternally human, 
and to use it with 
passion, wisdom, 
fearlessness and 
joy.” 

 Ralph 
Lombreglia 

 What 
process 

trends are likely 
over the next 
decade? 

?

pre22126_ch38_839-859.indd   849pre22126_ch38_839-859.indd   849 13/12/13   6:17 PM13/12/13   6:17 PM



850 PART FIVE  ADVANCED TOPICS

a framework that emphasizes short-term goals that have a product 

orientation.  

    2.   Because software engineers have a good sense of where the process is 

weak, process changes should generally be driven by their needs and 

should start form the bottom up.  Conradi and Fuggetta [Con02] suggest 

that future SPI activities should “use a simple and focused scorecard to 

start with, not a large assessment.” By focusing SPI efforts narrowly and 

working from the bottom up, practitioners will begin to see substantive 

changes early—changes that make a real difference in the way that soft-

ware engineering work is conducted.  

    3.   Automated software process technology (SPT) will move away from global 

process management (broad-based support of the entire software process) 

to focus on those aspects of the software process that can best benefi t 

from automation.  No one is against tools and automation, but in many 

instances, SPT has not met its promise (see Section 38.3). To be most ef-

fective, it should focus on umbrella activities (Chapter 3)—the most stable 

elements of the software process.  

    4.   Greater emphasis will be placed on the return on investment of SPI activ-

ities.  In Chapter 37, you learned that return on investment (ROI) can be 

defi ned as: 

   ROI 5   o( benefi ts ) 2 o( costs )   ______________________  o( costs )
   3 100%   

   To date, software organizations have struggled to clearly delineate “bene-

fi ts” in a quantitative manner. It can be argued [Con02] that “we therefore 

need a standardized market-value model . . . to account for software im-

provement initiatives.”  

    5.   As time passes, the software community may come to understand that 

expertise in sociology and anthropology may have as much or more to do 

with successful SPI as other, more technical disciplines.  Above all else, SPI 

changes organizational culture, and cultural change involves individuals 

and groups of people. Conradi and Fuggetta [Con02] correctly note that 

“software developers are knowledge workers. They tend to respond nega-

tively to top-level dictates on how to do work or change processes.” Much 

can be learned by examining the sociology of groups to better understand 

effective ways to introduce change.  

    6.   New modes of learning may facilitate the transition to a more effective soft-

ware process.  In this context, “learning” implies learning from successes 

and mistakes. A software organization that collects metrics (Chapters 30 

and 32) allows itself to understand how elements of a process affect the 

quality of the end product.  

pre22126_ch38_839-859.indd   850pre22126_ch38_839-859.indd   850 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  851

     38.5.2   The Grand Challenge 

 There is one trend that is undeniable—software-based systems will undoubtedly 

become bigger and more complex as time passes. It is the engineering of these 

large, complex systems, regardless of delivery platform or application domain, 

that poses the “grand challenge” [Bro06] for software engineers. Manfred Broy 

[Bro06] suggests that software engineers can meet “the daunting challenge of 

complex software systems development” by creating new approaches to under-

standing system models and using those models as a basis for the construction of 

high-quality next-generation software. 

 As the software engineering community develops new model-driven approaches 

(discussed briefl y later in this section) to the representation of system requirements 

and design, the following characteristics [Bro06] must be addressed: 

      •   Multifunctionality —As digital devices evolve, they have begun to deliver a 

rich set of sometimes unrelated functions. The mobile phone, once consid-

ered a straightforward communication device, has become a powerful 

pocket computer that performs a wide spectrum of functions that are 

arguably more important than making a phone call. As Broy [Bro06] notes, 

“[E]ngineers must describe the detailed context in which the functions will 

be delivered and, most important, must identify the potentially harmful 

interactions between the system’s different features.”  

   •   Reactivity and timeliness —Digital devices increasingly interact with the 

real world and must react to external stimuli in a timely manner. They 

must interface with a broad array of sensors and must respond in a time 

frame that is appropriate to the task at hand. New methods must be de-

veloped that (1) help software engineers predict the timing of various re-

active features and (2) implement those features in a way that makes the 

feature less machine dependent and more portable.  

   •   New modes of user interaction —Open-world trends for software mean that 

new modes of interaction must be modeled and implemented. Whether 

these new approaches use multitouch interfaces, voice recognition, or di-

rect mind interfaces,  7   new generations of software for digital devices must 

accommodate them.   

   •   Complex architectures —A luxury automobile has over 2,000 functions 

controlled by software residing within a complex hardware architecture 

that includes multiple processors, a sophisticated bus structure, actua-

tors, sensors, an increasingly sophisticated human interface, and many 

 What system 
characteris-

tics must analysts 
and designers 
consider for future 
apps? 

?

 7 A brief discussion of direct mind interfaces can be found at  http://en.wikipedia.org/wiki/

Brain-computer_interface , and a commercial example which continues to evolve is described 

at  http://au.gamespot.com/news/6166959.htm l 

pre22126_ch38_839-859.indd   851pre22126_ch38_839-859.indd   851 13/12/13   6:17 PM13/12/13   6:17 PM



852 PART FIVE  ADVANCED TOPICS

safety-rated components. Even more complex systems are on the immedi-

ate horizon, presenting signifi cant challenges for software designers.  

   •   Heterogeneous, distributed systems —The real-time components of any 

modern embedded system can be connected via an internal bus, a wire-

less network, or across the Internet (or all three).  

   •   Criticality —Software has become the pivotal component in virtually all 

business-critical systems and in most safety-critical systems. Yet, the soft-

ware engineering community has only begun to apply even the most basic 

principles of software safety.  

   •   Maintenance variability —The life of software within a digital device rarely 

lasts beyond 3 to 5 years, but the complex avionics systems within an air-

craft has a useful life of at least 20 years. Automobile software falls some-

where in between. Should this have an impact on design?  

  Broy [Bro06] argues that these and other software characteristics can be man-

aged only if the software engineering community develops a more effective dis-

tributed and collaborative software engineering philosophy, better requirements 

engineering approaches, a more robust approach to model-driven development, 

and better software tools. In the sections that follow we’ll explore each of these 

areas briefl y. 

      38.5.3   Collaborative Development 

 It seems too obvious to state, but we’ll do so anyway:  software engineering is an 

information technology.  From the onset of any software project, every stake-

holder must share information—about basic business goals and objectives, about 

specifi c system requirements, about architectural design issues, about almost 

every aspect of the software to be built. 

 Today, software engineers collaborate across time zones and international 

boundaries. Every one of them must share information. The same holds for open-

source projects in which hundreds or thousands of software developers work to 

build an open-source app. Again, information must be disseminated so that open 

collaboration can occur. 

    38.5.4   Requirements Engineering 

 Basic requirements engineering actions—elicitation, elaboration, negotiation, 

specifi cation, and validation—were presented in Chapters 8 through 11. The suc-

cess or failure of these actions has a very strong infl uence on the success or failure 

of the entire software engineering process. And yet, requirements engineering 

(RE) has been compared to “trying to put a hose clamp around jello” [Gon04]. As 

we’ve noted in many places throughout this book, software requirements have a 

tendency to keep changing, and with the advent of open-world systems, emer-

gent requirements (and near-continuous change) may become the norm. 

   Collaboration involves 
the timely dissemina-
tion of information and 
an effective process 
for communication and 
decision making. 

pre22126_ch38_839-859.indd   852pre22126_ch38_839-859.indd   852 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  853

 Today, most “informal” requirements engineering approaches begin with the 

creation of user scenarios (e.g., use cases). More formal approaches create one or 

more requirements models and use these as a basis for design. Formal methods 

enable a software engineer to represent requirements using a verifi able math-

ematical notation. All can work reasonably well when requirements are stable, 

but do not readily solve the problem of dynamic or emergent requirements. 

 There are a number of distinct requirements engineering research directions 

including natural language processing from translated textual descriptions into 

more structured representations (e.g., analysis classes), greater reliance on da-

tabases for structuring and understanding software requirements, the use of RE 

patterns to describe typical problems and solutions when requirements engi-

neering tasks are conducted, and goal-oriented requirements engineering. How-

ever, at the industry level, RE actions remain relatively informal and surprisingly 

basic. To improve the manner in which requirements are defi ned, the software 

engineering community will likely implement three distinct subprocesses as RE 

is conducted [Gli07]: (1) improved knowledge acquisition and knowledge sharing 

that allows more complete understanding of application domain constraints and 

stakeholder needs, (2) greater emphasis on iteration as requirements are de-

fi ned, and (3) more effective communication and coordination tools that enable 

all stakeholders to collaborate effectively. 

 The RE subprocesses noted in the preceding paragraph will only succeed if 

they are properly integrated into an evolving approach to software engineer-

ing. As pattern-based problem solving and component-based solutions begin 

to dominate many application domains, RE must accommodate the desire for 

agility (rapid incremental delivery) and the inherent emergent requirements 

that result. The notion of a static “software specifi cation” is beginning to dis-

appear, to be replaced by “value-driven requirements” [Som05] derived as 

stakeholders respond to features and functions delivered in early software 

increments. 

    38.5.5   Model-Driven Software Development 

   Software engineers grapple with abstraction at virtually every step in the software 

engineering process. As design commences, architectural and component-level 

abstractions are represented and assessed. They must then be translated into a 

programming language representation that transforms the design (a relatively 

high level of abstraction) into an operable system with a specifi c computing envi-

ronment (a low level of abstraction).  Model-driven software development   8   couples 

domain-specifi c modeling languages with transformation engines and genera-

tors in a way that facilitates the representation of abstraction at high levels and 

then transforms it into lower levels [Sch06].  

   Model-driven 
approaches address a 
continuing challenge 
for all software 
developers—how to 
represent software 
at a higher level of 
abstraction than code. 

  8  The term  model-driven engineering  (MDE) is also used. 

pre22126_ch38_839-859.indd   853pre22126_ch38_839-859.indd   853 13/12/13   6:17 PM13/12/13   6:17 PM



854 PART FIVE  ADVANCED TOPICS

  Domain-specifi c modeling languages  (DSMLs) represent “application struc-

ture, behavior and requirements within particular application domains” and are 

described with meta-models that “defi ne the relationships among concepts in 

the domain and precisely specify the key semantics and constraints associated 

with these domain concepts” [Sch06]. The key difference between a DSML and a 

general-purpose modeling language such as UML (Appendix 1) is that the DSML 

is tuned to design concepts inherent in the application domain and can therefore 

represent relationships and constraints among design elements in an effi cient 

manner. 

    38.5.6   Postmodern Design 

 In an interesting article on software design in the “postmodern era,” Philippe 

Kruchten [Kru05] makes the following observation:

  Computer science hasn’t achieved the grand narrative that explains it all, the  big 

picture —we haven’t found the fundamental laws of software that would play the role 

that the fundamental laws of physics play in other engineering disciplines. We still 

live with the bitter aftertaste of the Internet bubble burst and the Y2K doomsday. So, 

in this postmodern era, where it seems that everything matters a bit yet not much 

really matters, what are the next directions for software design?   

 Part of any attempt to understand trends in software design is to establish 

boundaries for design. Where does requirements engineering stop and design 

begin? Where does design stop and code generation begin? The answers to these 

questions are not as easy as they might fi rst appear. Even though the require-

ments model should focus on “what,” not “how,” every analyst does a bit of design 

and almost all designers do a bit of analysis. Similarly, as the design of software 

components moves closer to algorithmic detail, a designer begins to represent 

the component at a level of abstraction that is close to code. 

    38.5.7   Test-Driven Development 

 Requirements drive design, and design establishes a foundation for construction. 

This simple software engineering reality works reasonably well and is essential 

as a software architecture is created. However, a subtle change can provide sig-

nifi cant benefi t when component-level design and construction are considered. 

 In  test-driven development  (TDD), requirements for a software component 

serve as the basis for the creation of a series of test cases that exercise the inter-

face and attempt to fi nd errors in the data structures and functionality delivered 

by the component. TDD is not really a new technology but rather a trend that 

emphasizes the design of test cases  before  the creation of source code.  9    

  9  Recall that Extreme Programming (Chapter 5) emphasizes this approach as part of its agile 

process model. 

pre22126_ch38_839-859.indd   854pre22126_ch38_839-859.indd   854 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  855

 The TDD process follows the simple procedural fl ow illustrated in   Figure 38.3  . 

Before the fi rst small segment of code is created, a software engineer creates a 

test to exercise the code (to try to make the code fail). The code is then written to 

satisfy the test. If it passes, a new test is created for the next segment of code to 

be developed. The process continues until the component is fully coded and all 

tests execute without error. However, if any test succeeds in fi nding an error, the 

existing code is refactored (corrected) and all tests created to that point are re-

executed. This iterative fl ow continues until there are no tests left to be created, 

implying that the component meets all requirements defi ned for it.      

 During TDD, code is developed in very small increments (one subfunction at a 

time), and no code is written until a test exists to exercise it. You should note that 

each iteration results in one or more new tests that are added to a regression test 

suite that is run with every change. This is done to ensure that the new code has 

not generated side effects that cause errors in the older code. If you have further 

interest in TDD, see [Bec04b], [Ste10], or [Whi12]. 

       38.6  TOOLS-RELATED TRENDS 

  Hundreds of industry-grade software engineering tools are introduced each 

year. The majority are provided by tools vendors who claim that their tool will 

improve project management, or requirements analysis, or design modeling, or 

Tests remain to
be created

Create a
test case

Write a new
code segment

Run the
test(s)

Refactor (correct)
the

code segment

No tests remain to
be created

Finds error Does not find error

 FIGURE 38.3

 Test-driven 
development 
process fl ow

pre22126_ch38_839-859.indd   855pre22126_ch38_839-859.indd   855 13/12/13   6:17 PM13/12/13   6:17 PM



856 PART FIVE  ADVANCED TOPICS

code generation, or testing, or change management, or any of the many software 

engineering activities, actions, and tasks discussed throughout this book. Other 

tools have been developed as open-source offerings. The majority of open-source 

tools focus on “programming” activities with a specifi c emphasis on the construc-

tion activity (particularly code generation). Still other tools grow out of research 

efforts at universities and government labs. Although they have appeal in very 

limited applications, the majority are not ready for broad industry application. 

 At the industry level, the most comprehensive tools packages form  software 

engineering environments  (SEE)  10   that integrate a collection of individual tools 

around a central database (repository). When considered as a whole, an SEE in-

tegrates information across the software process and assists in the collaboration 

that is required for many large, complex software-based systems. But current 

environments are not easily extensible (it’s diffi cult to integrate a COTS tool that 

is not part of the package) and tend to be general purpose (i.e., they are not ap-

plication domain specifi c). There is also a substantial time lag between the intro-

duction of new technology solutions (e.g., model-driven software development) 

and the availability of viable SEEs that support the new technology.  

 Future trends in software tools will follow two distinct paths—a  human- focused 

path  that responds to some of the “soft trends” discussed in Section 38.4, and a 

technology-centered path that addresses new technologies (Section 38.5) as they 

are introduced and adopted. 

 The soft trends discussed in Section 38.4—the need to manage complexity, 

accommodate emergent requirements, establish process models that embrace 

change, coordinate global teams with a changing talent mix, among others—sug-

gest a new era in which tools support for stakeholder collaboration will become 

as important as tools support for technology. 

 Agility in software engineering (Chapter 5) is achieved when stakeholders 

work as a team. Therefore, the trend toward collaborative SEEs will provide bene-

fi ts even when software is developed locally. But what of the technology tools that 

complement the system and components that empower better collaboration? 

 One of the dominant trends in technology tools is the creation of a tool set 

that supports model-driven development (Section 38.5.5) with an emphasis on ar-

chitecture-driven design. Oren Novotny [Nov04] suggests that the model rather 

than the source code becomes the central software engineering focus:

  Platform independent models are created in UML and then undergo various levels of 

transformation to eventually wind up as source code for a specifi c platform. It stands 

to reason then, that the model, not the fi le, should become the new unit of output. A 

model has many different views at different levels of abstraction. At the highest level, 

platform independent components can be specifi ed in analysis; at the lowest level 

there is a platform specifi c implementation that reduces to a set of classes in code.   

  10  The term  integrated development environment  (IDE) is also used. 

pre22126_ch38_839-859.indd   856pre22126_ch38_839-859.indd   856 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  857

 Novotny argues that a new generation of tools will work in conjunction with a re-

pository to create models at all necessary levels of abstraction, establish relation-

ships between the various models, translate models at one level of abstraction to 

another level (e.g., translate a design model into source code), manage changes 

and versions, and coordinate quality control and assurance actions against the 

software models. 

 In addition to complete software engineering environments, point-solution 

tools that address everything from requirements gathering to design/code refac-

toring to testing will continue to evolve and become more functionally capable. In 

some instances, modeling and testing tools targeted at a specifi c application do-

main will provide enhanced benefi t when compared to their generic equivalents. 

       38.7 SUMMARY 

 The trends that have an effect on software engineering technology often come 

from the business, organizational, market, and cultural arenas. These “soft 

trends” can guide the direction of research and the technology that is derived as 

a consequence of research. 

 As a new technology is introduced, it moves through a life cycle that does not 

always lead to widespread adoption, even though original expectations are high. 

The degree to which any software engineering technology gains widespread 

adoption is tied to its ability to address the problems posed by both soft and hard 

trends. 

 Soft trends—the growing need for connectivity and collaboration, global proj-

ects, knowledge transfer, the impact of emerging economies, and the infl uence of 

human culture itself—lead to a set of challenges that spans managing complexity 

and emergent requirements to juggling an ever-changing talent mix among geo-

graphically dispersed software teams. 

 Hard trends—the ever-accelerating pace of technology change—fl ow out of 

soft trends and affect the structure of the software and scope of the process and 

the manner in which a process framework is characterized. Collaborative devel-

opment, new forms of requirements engineering, model-based and test-driven 

development, and postmodern design will change the methods landscape. Tools 

environments will respond to a growing need for communication and collabo-

ration and at the same time integrate domain-specifi c point solutions that may 

change the nature of current software engineering tasks. 

     PROBLEMS AND POINTS TO PONDER 
    38.1.  Get a copy of the best-selling book  The Tipping Point  by Malcolm Gladwell (available 
via Google Book Search), and discuss how his theories apply to the adoption of new software 
engineering technologies.  

pre22126_ch38_839-859.indd   857pre22126_ch38_839-859.indd   857 13/12/13   6:17 PM13/12/13   6:17 PM



858 PART FIVE  ADVANCED TOPICS

   38.2.  Why does open-world software present a challenge to conventional software engineer-
ing approaches?  

   38.3.  Review the Gartner Group’s  hype cycle for emerging technologies.  Select a well-known 
technology product and present a brief history that illustrates how it traveled along the 
curve. Select another well-known technology product that did not follow the path suggested 
by the hype curve.  

   38.4.  What is a “soft trend”?  

   38.5.  You’re faced with an extremely complex problem that will require a lengthy solution. 
How would you go about addressing the complexity and crafting a solution?  

   38.6.  What are “emergent requirements” and why do they present a challenge to software 
engineers?  

   38.7.  Select an open-source development effort (other than Linux), and present a brief his-
tory of its evolution and relative success.  

   38.8.  Describe how you think the software process will change over the next decade.  

   38.9.  You’re based in Los Angeles and are working on a global software engineering team. 
You and colleagues in London, Mumbai, Hong Kong, and Sydney must edit a 245-page 
requirements specifi cation for a large system. The fi rst editing pass must be completed 
in three days. Describe the ideal online tool set that would enable you to collaborate 
effectively.  

   38.10.  Describe model-driven software development in your own words. Do the same for 
test-driven development.  

      FUR THER READINGS AND INFORMATION SOURCES 
  Books that discuss the road ahead for software and computing span a vast array of techni-
cal, scientifi c, economic, political, and social issues. Kurweil ( The Singularity Is Near,  Pen-
guin Books, 2005) and ( How to Create a Mind,  Viking, 2012) presents a compelling look at a 
world that will change in truly profound ways by the middle of this century. Sterling ( Tomor-

row Now,  Random House, 2002) reminds us that real progress is rarely orderly and effi cient. 
Books by Nanz ( The Future of Software Engineering,  Springer, 2010) and Draheim and his 
colleagues ( Software Engineering Tools: Trends of Software Engineering Tools and Platforms, 

2010 ) discuss trends in software development. Meisel ( The Software Society: Cultural and 

Economic Impact,  Trafford, 2013), Saylor ( The Mobile Wave: How Mobile Intelligence Will 

Change Everything,  Vanguard Press, 2012), Dourish and Bell ( Divining a Digital Future: Mess 

and Mythology in Ubiquitous Computing,  MIT Press, 2011) and Teich ( Technology and the 

Future,  12th ed., Wadworth, 2012) present thoughtful essays on the societal impact of tech-
nology and how changing culture shapes technology. Philips and Naisbitt ( High Tech/High 

Touch,  Nicholas Brealey, 2001) note that many of us have become “intoxicated” with high 
technology and that the “great irony of the high-tech age is that we’ve become enslaved to 
devices that were supposed to give us freedom.” Zey ( The Future Factor,  Transaction Pub-
lishers, 2004) discusses forces that will shape human destiny during this century. Negropon-
te’s  (Being Digital,  Alfred A. Knopf, 1995) was a best seller in the mid-1990s and continues to 
provide an insightful view of computing and its overall impact. 

   As software becomes part of the fabric of virtually every facet of our lives, “cyberethics” 
has evolved as an important topic of discussion. Books by Quninn ( Ethics for the Information 

Age,  5th ed., Addison-Wesley, 2012), Spinello ( Cyberethics: Morality and Law in Cyberspace , 
4th ed., Jones & Bartlett Publishers, 2010), Tavini ( Ethics and Technology,  3rd ed., Wiley, 
2010), Halbert and Ingulli ( Cyberethics,  2nd ed., South-Western College Publishers, 2004), 
and Baird and his colleagues ( Cyberethics: Social and Moral Issues in the Computer Age , 
Prometheus Books, 2000) consider the topic in detail. The U.S. government has published 

pre22126_ch38_839-859.indd   858pre22126_ch38_839-859.indd   858 13/12/13   6:17 PM13/12/13   6:17 PM



CHAPTER 38  EMERGING TRENDS IN SOFTWARE ENGINEERING  859

a voluminous report on CD-ROM ( 21st Century Guide to Cybercrime,  Progressive Manage-
ment, 2003) that considers all aspects of computer crime, intellectual property issues, and 
the National Infrastructure Protection Center (NIPC). 

   A wide variety of information sources on future directions in software-related technol-
ogies and software engineering are available on the Internet. An up-to-date list of World 
Wide Web references can be found under “software engineering resources” at the SEPA 
website:  www.mhhe.com/pressman .     

pre22126_ch38_839-859.indd   859pre22126_ch38_839-859.indd   859 13/12/13   6:17 PM13/12/13   6:17 PM



860

   C H A P T E R

39  CONCLUDING
COMMENTS 

        In the 38 chapters that have preceded this one, we’ve explored a process 

for software engineering that encompasses management procedures 

and technical methods, basic concepts and principles, specialized tech-

niques, people-oriented activities and tasks that are amenable to automation, 

paper-and-pencil notation, and software tools. We have argued that measure-

ment, discipline, and an overriding focus on agility and quality will result in 

software that meets the customer’s needs, software that is reliable, software 

that is maintainable, software that is better. Yet, we have never promised that 

software engineering is a panacea. 

 Software and systems technologies remain a challenge for every soft-

ware professional and every company that builds computer-based systems. 

Although he wrote these words with a 20th-century outlook, Max Hopper 

[Hop90] accurately describes the current state of affairs: 

  Because changes in information technology are becoming so rapid and unforgiv-

ing, and the consequences of falling behind are so irreversible, companies will 

either master the technology or die . . . Think of it as a technology treadmill. Com-

panies will have to run harder and harder just to stay in place.  

 Changes in software engineering technology are indeed ”rapid and unforgiv-

ing,” but at the same time real progress is often quite slow. By the time a de-

cision is made to adopt a new process, method, or tool; conduct the training 

necessary to understand its application; and introduce the technology into the 

software development culture, something newer (and even better) has come 

along, and the process begins anew. 

 K E Y 
C O N C E P T S 
    artifi cial 
intelligence . . . . . . 863   
   communication  . . . 862   
   ethics . . . . . . . . . . 865   
   future. . . . . . . . . . 864   
   information 
spectrum  . . . . . . . 864   
   knowledge  . . . . . . 863   
   people  . . . . . . . . . 861   
   responsibility  . . . . 865   
   software 
revisited. . . . . . . . 861    

 Q U I C K 
L O O K 

  What is it?   As we come to the 
end of a relatively long journey 
through software engineering, it’s 
time to put things into perspective 

and make a few concluding comments. 
   Who does it?   Authors like us. When you 

come to the end of a long and challenging 
book, it’s nice to wrap things up in a mean-
ingful way. 

   Why is it important?   It’s always worthwhile 
to remember where we’ve been and to con-
sider where we’re going. 

   What are the steps?   We’ll consider where 
we’ve been and address some of the core 
issues and some directions for the future. 

   What is the work product?   A discussion 
that will help you understand the big picture. 

   How do I ensure that I’ve done it right?  
 That’s diffi cult to accomplish in real time. It’s 
only after a number of years that any of us 
can tell whether the software engineering con-
cepts, principles, methods, and techniques 
discussed in this book have helped you to be-
come a better software engineer.  

pre22126_ch39_860-868.indd   860pre22126_ch39_860-868.indd   860 13/12/13   6:18 PM13/12/13   6:18 PM



CHAPTER 39  CONCLUDING COMMENTS  861

 One thing we’ve learned over our years in this fi eld is that software engineer-

ing practitioners are “fashion conscious.” The road ahead will be littered with 

the carcasses of exciting new technologies (the latest fashion) that never really 

made it (despite the hype). It will be shaped by more modest technologies that 

somehow modify the direction and width of the thoroughfare. We discussed a few 

of those in Chapter 38. 

 In this concluding chapter we’ll take a broader view and consider where we’ve 

been and where we’re going from a more philosophical perspective. 

      39.1  THE IMPOR TANCE OF SOFTWARE—REVIS ITED 

  The importance of computer software can be stated in many ways. In Chapter 1, 

software was characterized as a differentiator. The function delivered by software 

differentiates products, systems, and services and provides competitive advan-

tage in the marketplace. But software is more than a differentiator. When taken as 

a whole, software engineering work products generate the most important com-

modity that any individual, business, or government can acquire—information. 

 In Chapter 38, we briefl y discussed open-world computing—a technology that is 

fundamentally changing our perception of computers, the things that we do with 

them (and they do for us), and our perception of information as a guide, a commod-

ity, and a necessity. We also noted that software required to support open-world 

computing will present dramatic new challenges for software engineers. But far 

more important, the growing pervasiveness of computer software will present even 

more dramatic challenges for society as a whole. Whenever a technology has a broad 

impact—an impact that can save lives or endanger them, build businesses or destroy 

them, inform government leaders or mislead them—it must be “handled with care.” 

      39.2  PEOPLE AND THE WAY THEY BUILD SYSTEMS 

  The software required for high-technology systems becomes more and more com-

plex with each passing year, and the size of resultant programs increases pro-

portionally. The rapid growth in the size of the “average” program would present 

us with few problems if it wasn’t for one simple fact: As program size increases, 

the number of people who must work on the program must also increase.   

  Experience indicates that as the number of people on a software project team 

increases, the overall productivity of the group may suffer. One way around this 

problem is to create a number of software engineering teams, thereby compart-

mentalizing people into individual working groups. However, as the number of 

software engineering teams grows, communication between them becomes as 

diffi cult and time consuming as communication between individuals. Worse, 

communication (between individuals or teams) tends to be ineffi cient—that is, 

  uote: 

 “Future shock [is] 
the shattering stress 
and disorientation 
that we induce 
in individuals by 
subjecting them to 
too much change in 
too short a period 
of time.” 

 Alvin Toffl er 

pre22126_ch39_860-868.indd   861pre22126_ch39_860-868.indd   861 13/12/13   6:18 PM13/12/13   6:18 PM



862 PART FIVE  ADVANCED TOPICS

too much time is spent transferring too little information content, and all too 

often, important information “falls into the cracks.” 

 If the software engineering community is to deal effectively with the commu-

nication dilemma, the road ahead for software engineers must include radical 

changes in the way individuals and teams communicate with one another. In 

Chapter 38, we discussed collaborative environments that may provide dramatic 

improvements in the ways teams communicate. 

 In the fi nal analysis, communication is the transfer of knowledge, and the ac-

quisition (and transfer) of knowledge is changing in profound ways. As search 

engines become increasingly sophisticated, social networking and crowd-sourcing 

morph into a development tools, and Web 2.0 applications provide better synergy, 

the speed and quality of knowledge transfer will grow exponentially. 

 If past history is any indication, it is fair to say that people themselves will 

not change. However, the ways in which they communicate, the environment in 

which they work, the manner in which they acquire knowledge, the methods and 

tools that they use, the discipline that they apply, and therefore, the overall cul-

ture for software development will change in signifi cant and even profound ways. 

  Conclusion?   Conclusion? 

      The scene:  Doug Miller’s offi ce.  

     The players:  Doug Miller (manager of the  SafeHome  
software engineering group) and Vinod Raman 
(a member of the product software engineering team).  

     The conversation:   

     Doug:  I’m really pleased that we got it done without 
too much drama.  

     Vinod (sighing and leaning back in his chair): 
 Yeah, but the project grew, didn’t it.  

     Doug:  And you’re surprised? When we started 
 SafeHome , marketing thought a desktop app would do 
the trick, and then . . .  

     Vinod (smiling):  And then, the Web and mobility 
took over.  

     Doug:  But we all learned a lot.  

     Vinod:  We did. The tech stuff was interesting, but the 
software engineering stuff is probably what allowed us 
to get it done close to schedule.  

     Doug:  Yeah, that and hard work by all of you guys. 
What are you seeing from customer support? How’s 
quality in the fi eld?  

     Vinod:  There are a few issues, but nothing really seri-
ous. We’re on it. In fact, I gotta meet with Jamie on one 
of them in fi ve minutes.  

     Doug:  Before you go . . .  

     Vinod  (on his way out the door):   I know, more 
work, right?  

     Doug:  Engineering has developed a new sensor . . . very 
high tech . . . we’ll need to integrate it in  SafeHome II.   

     Vinod:   SafeHome II?   

     Doug:  Yeah,  SafeHome II.  We’ll begin planning next week.    

 SAFEHOME 

           39.3  NEW MODES FOR REPRESENTING INFORMATION 

  Over the history of computing, a subtle transition has occurred in the termi-

nology that is used to describe software development work performed for the 

business community. Fifty years ago, the term  data processing  was the operative 

pre22126_ch39_860-868.indd   862pre22126_ch39_860-868.indd   862 13/12/13   6:18 PM13/12/13   6:18 PM



CHAPTER 39  CONCLUDING COMMENTS  863

phrase for describing the use of computers in a business context. Today, data pro-

cessing has given way to another phrase— information technology —that implies 

the same thing but presents a subtle shift in focus. The emphasis is not merely 

to process large quantities of data but rather to extract meaningful information 

from this data. Obviously, this was always the intent, but the shift in terminology 

refl ects a far more important shift in management philosophy.   

  When software applications are discussed today, the words  data, informa-

tion,  and  content  occur repeatedly. We encounter the word  knowledge  in some 

 artifi cial intelligence applications, but its use is relatively rare. Virtually no one 

discusses  wisdom  in the context of software applications. 

 Data is raw information—collections of facts that must be processed to be 

meaningful. Information is derived by associating facts within a given context. 

Knowledge associates information obtained in one context with other informa-

tion obtained in a different context. Finally, wisdom occurs when generalized 

principles are derived from disparate knowledge. Each of these four views of 

“information” is represented schematically in   Figure 39.1  .      

 To date, the vast majority of all software has been built to process data or 

information. Software engineers are now equally concerned with systems that 

process knowledge.  1   Knowledge is two-dimensional. Information collected on a 

variety of related and unrelated topics is connected to form a body of fact that we 

call  knowledge.  The key is our ability to associate information from a variety of 

different sources that may not have any obvious connection and combine it in a 

way that provides us with some distinct benefi t.  2   

  uote: 

 “The best 
preparation 
for good work 
tomorrow is to do 
good work today.” 

 Elbert Hubbard 

Data:
no associativity

Information:
associativity within
one context

Knowledge:
associativity within
multiple contexts

Wisdom:
creation of generalized
principles based on
existing knowledge
from different sources

 FIGURE 39.1 

An 
“information” 
spectrum

  1  The rapid growth of data mining and data warehousing technologies refl ect this growing trend. 

 2  The semantic Web (Web 2.0) allows the creation of “mashups” that may provide a facile mecha-

nism for achieving this.

pre22126_ch39_860-868.indd   863pre22126_ch39_860-868.indd   863 13/12/13   6:18 PM13/12/13   6:18 PM



864 PART FIVE  ADVANCED TOPICS

   To illustrate the progression from data to knowledge, consider census data 

indicating that the birthrate in 1996 in the United States was 4.9 million. This 

number represents a data value. Relating this piece of data with birthrates for 

the preceding 40 years, we can derive a useful piece of information—aging baby 

boomers of the 1950s and early 1960s made a last-gasp effort to have children 

prior to the end of their child-bearing years. In addition, gen-Xers began their 

childbearing years. The census data can then be connected to other seemingly 

unrelated pieces of information. For example, the current number of elemen-

tary school teachers who will retire during the next decade, the number of col-

lege students graduating with degrees in primary and secondary education, the 

pressure on politicians to hold down taxes and therefore limit pay increases for 

teachers.   

  All of these pieces of information can be combined to formulate a representa-

tion of knowledge—there will be signifi cant pressure on the education system in 

the United States in the early 21st century, and this pressure will continue for a 

number of decades. Using this knowledge, a business opportunity may emerge. 

There may be signifi cant opportunity to develop new modes of learning that are 

more effective and less costly than current approaches. 

 The road ahead for software leads to systems that process knowledge. We 

have been processing data using computers for more than 50 years and extract-

ing information for more than three decades. One of the most signifi cant chal-

lenges facing the software engineering community is to build systems that take 

the next step along the spectrum—systems that extract knowledge from data 

and information in a way that is practical and benefi cial. 

      39.4  THE LONG VIEW 

  In Section 39.3, we suggested that the road ahead leads to systems that “process 

knowledge.” But the future of computing in general and software-based systems 

in particular may lead to events that are considerably more profound. 

 In a fascinating book that is must reading for every person involved in com-

puting technologies, Ray Kurzweil [Kur05] suggests that we have reached a time 

when “the pace of technological change will be so rapid, its impact so deep, that 

human life will be irreversibly transformed.” Kurzweil  3   makes a compelling 

argument that we are currently at the “knee” of an exponential growth curve 

that will lead to enormous increases in computing capacity over the next two 

  uote: 

 “Wisdom is 
the power that 
enables us to 
use knowledge 
for the benefi t 
of ourselves and 
others.” 

 Thomas J. 
Watson 

  3  It’s important to note that Kurzweil is not a run-of-the mill science fi ction writer or a futurist 

without portfolio. He is a serious technologist who (from Wikipedia) “has been a pioneer in 

the fi elds of optical character recognition (OCR), text-to-speech synthesis, speech recognition 

technology, and electronic keyboard instruments.” 

pre22126_ch39_860-868.indd   864pre22126_ch39_860-868.indd   864 13/12/13   6:18 PM13/12/13   6:18 PM



CHAPTER 39  CONCLUDING COMMENTS  865

decades. When coupled with equivalent advances in nanotechnology, genetics, 

and robotics, we may approach a time in the middle part of this century when 

the distinction between humans (as we know them today) and machines begins to 

blur—a time when human evolution accelerates in ways that are both frightening 

(to some) and spectacular (to others). 

 By sometime in the coming decade, Kurzweil argues that computing capacity 

and the requisite software will be suffi cient to model every aspect of the human 

brain [Kur13] —all of the physical connections, analog processes, and chem-

ical overlays. When this occurs, human beings will take the fi rst step toward 

achieving “strong AI (artifi cial intelligence),” and as a consequence, machines 

that truly do think (using today’s conventional use of the word). But there will 

be a fundamental difference. Human brain processes are exceedingly complex 

and only loosely connected to external informal sources. They are also compu-

tationally slow, even in comparison to today’s computing technology. When full 

human brain emulation occurs, “thought” will occur at speeds thousands of times 

more rapid than its human counterpart with intimate connections to a sea of 

information (think of the present-day Web as a primitive example). The result 

is . . . well . . . so fantastical that it’s best left to Kurzweil to describe.   

  It’s important to note that not everyone believes that the future Kurzweil de-

scribes is a good thing. In a now famous essay entitled “The Future Doesn’t Need 

Us,” Bill Joy [Joy00], one of the founders of Sun Microsystems, argues that “ro-

botics, genetic engineering, and nanotech are threatening to make humans an 

endangered species.” His arguments predicting a technology dystopia represent 

a counterpoint to Kurzweil’s predicted utopian future. Both should be seriously 

considered as software engineers take one of the lead roles in defi ning the long 

view for the human race. 

      39.5  THE SOFTWARE ENGINEER ’S  RESPONSIB IL ITY 

  Software engineering has evolved into a respected, worldwide profession. As 

professionals, software engineers should abide by a code of ethics that guides the 

work that they do and the products that they produce. An ACM/IEEE-CS Joint 

Task Force has produced a  Software Engineering Code of Ethics and Professional 

Practices  (Version 5.1). The code [ACM12] states: 

  Software engineers shall commit themselves to making the analysis, specifi ca-

tion, design, development, testing and maintenance of software a benefi cial and 

respected profession. In accordance with their commitment to the health, safety 

and welfare of the public, software engineers shall adhere to the following Eight 

Principles: 

      1.  PUBLIC—Software engineers shall act consistently with the public interest.  

  uote: 

 “You can’t connect 
the dots looking 
forward; you can 
only connect them 
looking backwards. 
So you have to 
trust that the dots 
will somehow 
connect in your 
future.” 

 Steve Jobs 

pre22126_ch39_860-868.indd   865pre22126_ch39_860-868.indd   865 13/12/13   6:18 PM13/12/13   6:18 PM



866 PART FIVE  ADVANCED TOPICS

    2.  CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the 

best interests of their client and employer consistent with the public interest.  

    3.  PRODUCT—Software engineers shall ensure that their products and related modifi -

cations meet the highest professional standards possible.  

    4.  JUDGMENT—Software engineers shall maintain integrity and independence in 

their professional judgment.  

    5.  MANAGEMENT—Software engineering managers and leaders shall subscribe to 

and promote an ethical approach to the management of software development and 

maintenance.  

    6.  PROFESSION—Software engineers shall advance the integrity and reputation of the 

profession consistent with the public interest.  

    7.  COLLEAGUES—Software engineers shall be fair to and supportive of their 

colleagues.  

    8.  SELF—Software engineers shall participate in lifelong learning regarding the prac-

tice of their profession and shall promote an ethical approach to the practice of the 

profession.       

  Although each of these eight principles is equally important, an overriding theme 

appears: a software engineer should work in the public interest. On a personal 

level, a software engineer should abide by the following rules: 

    •  Never steal data for personal gain.  

   •  Never distribute or sell proprietary information obtained as part of your 

work on a software project.  

   •  Never maliciously destroy or modify another person’s programs, fi les, or 

data.  

   •  Never violate the privacy of an individual, a group, or an organization.  

   •  Never hack into a system for sport or profi t.  

   •  Never create or promulgate a computer virus or worm.  

   •  Never use computing technology to facilitate discrimination or 

harassment.  

  Over the past decade, certain members of the software industry have lob-

bied for protective legislation that [SEE03]: (1) allows companies to release soft-

ware without disclosing known defects, (2) exempts developers from liability 

for any damages resulting from these known defects, (3) constrains others from 

disclosing defects without permission from the original developer, (4) allows 

the incorporation of “self-help” software within a product that can disable (via 

remote command) the operation of the product, and (5) exempts developers of 

software with “self-help” from damages should the software be disabled by a 

third party. 

 WebRef 
 A complete discussion 
of the ACM/IEEE code 
of ethics can be found 
at  seeri.etsu.edu/
Codes/default
.shtm . 

pre22126_ch39_860-868.indd   866pre22126_ch39_860-868.indd   866 13/12/13   6:18 PM13/12/13   6:18 PM



CHAPTER 39  CONCLUDING COMMENTS  867

 Like all legislation, debate often centers on issues that are political, not tech-

nological. However, many people (including us) feel that protective legislation, 

if improperly drafted, confl icts with the software engineering code of ethics by 

indirectly exempting software engineers from their responsibility to produce 

high-quality software. 

      39.6  A FINAL COMMENT FROM RSP 

  It has been almost three and a half decades since work on the fi rst edition of 

this book began. I [RSP] can still recall sitting at my desk as a young professor, 

writing the manuscript for a book on a subject that few people cared about and 

even fewer really understood. I remember the rejection letters from publishers, 

who argued (politely, but fi rmly) that there would never be a market for a book 

on “software engineering.” Luckily, McGraw-Hill decided to give it a try,  4   and the 

rest, as they say, is history. 

  Since the fi rst edition, this book has changed dramatically—in scope, in size, 

in style, and in content. Like software engineering, it has grown and (I hope) ma-

tured over the years. 

 An engineering approach to the development of computer software is now 

conventional wisdom. Debate continues on the “right paradigm,” the importance 

of agility, the degree of automation, and the most effective methods. But the un-

derlying principles of software engineering are now accepted throughout the 

industry. Why, then, have we seen their broad adoption only recently? 

 The answer, I think, lies in the diffi culty of technology transition and the cul-

tural change that accompanies it. Even though most of us appreciate the need 

for an engineering discipline for software, we struggle against the inertia of past 

practice and face new application domains (and the developers who work in 

them) that appear ready to repeat the mistakes of the past. To ease the transition 

we need many things—an agile, adaptable, and sensible software process; more 

effective methods; more powerful tools; better acceptance by practitioners and 

support from managers; and no small dose of education. 

 You may not agree with every approach described in this book. Some of the 

techniques and opinions are controversial; others must be tuned to work well in 

different software development environments. It is my sincere hope, however, 

that  Software Engineering: A Practitioner’s Approach  has delineated the prob-

lems we face, demonstrated the strength of software engineering concepts, and 

provided a framework of methods and tools. 

  4  Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill that 

it was worth a shot. Almost 2 million copies later, it’s fair to say they made a good decision. 

pre22126_ch39_860-868.indd   867pre22126_ch39_860-868.indd   867 13/12/13   6:18 PM13/12/13   6:18 PM



868 PART FIVE  ADVANCED TOPICS

 As we move further into the 21st century, software continues to be the most 

important product and the most important industry on the world stage. Its im-

pact and importance have come a long, long way. And yet, a new generation 

of software developers must meet many of the same challenges that faced ear-

lier generations. Let us hope that the people who meet the challenge—software 

engineers—will have the wisdom to develop systems that improve the human 

condition.     

pre22126_ch39_860-868.indd   868pre22126_ch39_860-868.indd   868 13/12/13   6:18 PM13/12/13   6:18 PM



869

  A P P E N D I X

1

      T
he  Unifi ed Modeling Language  (UML) is “a standard language for writing 

software blueprints. UML may be used to visualize, specify, construct, 

and document the artifacts of a software-intensive system” [Boo05]. In 

other words, just as building architects create blueprints to be used by a con-

struction company, software architects create UML diagrams to help software 

developers build the software. If you understand the vocabulary of UML (the 

diagrams’ pictorial elements and their meanings), you can much more eas-

ily understand and specify a system and explain the design of that system to 

others. 

 Grady Booch, Jim Rumbaugh, and Ivar Jacobson developed UML in the 

mid-1990s with much feedback from the software development community. 

UML merged a number of competing modeling notations that were in use by 

the software industry at the time. In 1997, UML 1.0 was submitted to the Object 

Management Group, a nonprofi t consortium involved in maintaining speci-

fi cations for use by the computer industry. UML 1.0 was revised to UML 1.1 

and adopted later that year. The current standard is UML 2.3  2 and is now an 

ISO standard. Because this standard is new, many older references, such as 

[Gam95] do not use UML notation. 

 UML 2.3 provides 13 different diagrams for use in software modeling. In this 

appendix, we will discuss only  class, deployment, use case, sequence, commu-

nication, activity,  and  state  diagrams. These diagrams are used in this edition 

of  Software Engineering: A Practitioner’s Approach.  

 You should note that there are many optional features in UML diagrams. 

The UML language provides these (sometimes arcane) options so that you can 

express all the important aspects of a system. At the same time, you have the 

fl exibility to suppress those parts of the diagram that are not relevant to the 

aspect being modeled in order to avoid cluttering the diagram with irrelevant 

details. Therefore, the omission of a particular feature does not mean that 

the feature is absent; it may mean that the feature was suppressed. In this ap-

pendix, we will not present exhaustive coverage of all the features of the UML 

diagrams. Instead, we focus on the standard options, especially those options 

that have been used in this book. 

AN INTRODUCTION

TO UML  1 

  1  This appendix has been contributed by Dale Skrien and has been adapted from his book,  An 

Introduction to Object-Oriented Design and Design Patterns in Java  (McGraw-Hill, 2008). All 

content is used with permission. 

  2  http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/ and http://www.omg.org/spec/UML/

2.3/Superstructure/PDF/. These two complementary specifi cations constitute a complete 

specifi cation for the UML 2 modeling language 

 K E Y 

C O N C E P T S 

   activity diagram  . . 881  
  class diagram  . . . . 870  
  communication 
diagram  . . . . . . . . 880  
  dependency. . . . . . 872  
  deployment 
diagram  . . . . . . . . 874  
  generalization. . . . 871  
  interaction 
frames . . . . . . . . . 878  
  multiplicity . . . . . . 872  
  object constraint 
language  . . . . . . . 887  
  sequence diagram  . 876  
  state diagram . . . . 884  
  stereotype  . . . . . . 871  
  swimlanes  . . . . . . 883  
  use-case diagram  . 875   



870 APPENDIX 1  AN INTRODUCTION TO UML

    CLASS  D IAGRAMS 

  To model classes, including their attributes, operations, and their relationships and 

associations with other classes,  3 UML provides a  class diagram.  A class diagram 

provides a static or structural view of the system. It does not show the dynamic 

nature of the communications between the objects of the classes in the diagram. 

  The main elements of a class diagram are boxes, which are the icons used to 

represent classes and interfaces. Each box is divided into horizontal parts. The 

top part contains the name of the class. The middle section lists the attributes of 

the class. Attributes can be values that the class can compute from its instance 

variables or values that the class can get from other objects of which it is com-

posed. For example, an object might always know the current time and be able 

to return it to you whenever you ask, in which case it would be appropriate to list 

the current time as an attribute of that class of objects. However, the object would 

most likely not have that time stored in one of its instance variables, because it 

would need to continually update that fi eld. Instead, the object would likely com-

pute the current time (e.g., through consultation with objects of other classes) at 

the moment when the time is requested. The third section of the class diagram 

contains the operations or behaviors of the class. An  operation  refers to what ob-

jects of the class can do. It is usually implemented as a  method  of the class. 

   Figure A1.1 presents a simple example of a  Thoroughbred  class that models 

thoroughbred horses. It has three attributes displayed— mother, father,  and  birth 

year . The diagram also shows three operations:  getCurrentAge(), getFather(),  

and  getMother() . There may be other suppressed attributes and operations not 

shown in the diagram. 

  Each attribute can have a name, a type, and a level of visibility. The type and 

visibility are optional. The type follows the name and is separated from the 

name by a colon. The visibility is indicated by a preceding –, #, ~, or +, indicating, 

  3  If you are unfamiliar with object-oriented concepts, a brief introduction is presented in 

Appendix 2. 

Thoroughbred

-father: Thoroughbred

-mother: Thoroughbred

-birthyear: int

+getFather(): Thoroughbred
+getMother(): Thoroughbred
+getCurrentAge(currentYear:Date): int

 FIGURE A1.1

A class 

diagram for a 

Thoroughbred 

class   



APPENDIX 1  AN INTRODUCTION TO UML  871

respectively,  private, protected, package,  or  public  visibility. In   Figure A1.1, all 

attributes have private visibility, as indicated by the leading minus sign (2). You 

can also specify that an attribute is a static or class attribute by underlining it. 

Each operation can also be displayed with a level of visibility, parameters with 

names and types, and a return type. 

 An abstract class or abstract method is indicated by the use of italics for the 

name in the class diagram. See the  Horse  class in   Figure A1.2 for an example. 

An interface is indicated by adding the phrase “«interface»” (called a  stereotype ) 

above the name. See the  OwnedObject  interface in   Figure A1.2. An interface can 

also be represented graphically by a hollow circle. 

 It is worth mentioning that the icon representing a class can have other op-

tional parts. For example, a fourth section at the bottom of the class box can be 

used to list the responsibilities of the class. This section is particularly useful 

when transitioning from CRC cards (Chapter 10) to class diagrams in that the 

responsibilities listed on the CRC cards can be added to this fourth section in 

the class box in the UML diagram before creating the attributes and operations 

that carry out these responsibilities. This fourth section is not shown in any of the 

fi gures in this appendix.  

 Class diagrams can also show relationships between classes. A class that is 

a subclass of another class is connected to it by an arrow with a solid line for its 

shaft and with a triangular hollow arrowhead. The arrow points from the sub-

class to the superclass. In UML, such a relationship is called a  generalization . For 

example, in   Figure A1.2, the  Thoroughbred  and  QuarterHorse  classes are shown 

to be subclasses of the  Horse  abstract class. An arrow with a dashed line for the 

arrow shaft indicates implementation of an interface. In UML, such a relation-

ship is called a  realization . For example, in   Figure A1.2, the  Horse  class imple-

ments or realizes the  OwnedObject  interface. 

 FIGURE A1.2

A class 

diagram 

regarding 

horses   

Horse

-name:String

+getName():String

+getOwner().Person

<< interface >>

OwnedObject

Thoroughbred QuarterHorse

Person
*   owner

Date
uses



872 APPENDIX 1  AN INTRODUCTION TO UML

 An  association  between two classes means that there is a structural relation-

ship between them. Associations are represented by solid lines. An association 

has many optional parts. It can be labeled, as can each of its ends, to indicate the 

role of each class in the association. For example, in   Figure A1.2, there is an as-

sociation between  OwnedObject  and  Person  in which the  Person  plays the role 

of owner. Arrows on either or both ends of an association line indicate navigabil-

ity. Also, each end of the association line can have a multiplicity value displayed. 

Navigability and multiplicity are explained in more detail later in this section. 

An association might also connect a class with itself, using a loop. Such an as-

sociation indicates the connection of an object of the class with other objects of 

the same class. 

 An association with an arrow at one end indicates one-way navigability. The 

arrow means that from one class you can easily access the second associated 

class to which the association points, but from the second class, you cannot nec-

essarily easily access the fi rst class. Another way to think about this is that the 

fi rst class is aware of the second class, but the second class object is not nec-

essarily directly aware of the fi rst class. An association with no arrows usually 

indicates a two-way association, which is what was intended in   Figure A1.2, but 

it could also just mean that the navigability is not important and so was left off. 

 It should be noted that an attribute of a class is very much the same thing as 

an association of the class with the class type of the attribute. That is, to indi-

cate that a class has a property called “name” of type String, one could display 

that property as an attribute, as in the  Horse  class in   Figure A1.2. Alternatively, 

one could create a one-way association from the  Horse  class to the  String  class 

with the role of the  String  class being “name.” The attribute approach is better 

for primitive data types, whereas the association approach is often better if the 

property’s class plays a major role in the design, in which case it is valuable to 

have a class box for that type. 

 A  dependency  relationship represents another connection between classes 

and is indicated by a dashed line (with optional arrows at the ends and with op-

tional labels). One class depends on another if changes to the second class might 

require changes to the fi rst class. An association from one class to another auto-

matically indicates a dependency. No dashed line is needed between classes if 

there is already an association between them. However, for a transient relation-

ship (i.e., a class that does not maintain any long-term connection to another 

class but does use that class occasionally) we should draw a dashed line from 

the fi rst class to the second. For example, in   Figure A1.2, the  Thoroughbred  class 

uses the  Date  class whenever its  getCurrentAge()  method is invoked, and so the 

dependency is labeled “uses.” 

 The  multiplicity  of one end of an association means the number of objects of 

that class associated with the other class. A multiplicity is specifi ed by a non-

negative integer or by a range of integers. A multiplicity specifi ed by “0..1” means 



APPENDIX 1  AN INTRODUCTION TO UML  873

that there are 0 or 1 objects on that end of the association. For example, each per-

son in the world has either a Social Security number or no such number (espe-

cially if they are not U.S. citizens), and so a multiplicity of 0..1 could be used in an 

association between a  Person  class and a  SocialSecurityNumber  class in a class 

diagram. A multiplicity specifi ed by “1..*” means one or more, and a multiplicity 

specifi ed by “0..*” or just “ * “ means zero or more. An * was used as the multiplic-

ity on the  OwnedObject  end of the association with class  Person  in   Figure A1.2 

because a  Person  can own zero or more objects. 

 If one end of an association has multiplicity greater than 1, then the objects of 

the class referred to at that end of the association are probably stored in a col-

lection, such as a set or ordered list. One could also include that collection class 

itself in the UML diagram, but such a class is usually left out and is implicitly as-

sumed to be there due to the multiplicity of the association. 

 An  aggregation  is a special kind of association indicated by a hollow diamond 

on one end of the icon. It indicates a “whole/part” relationship, in that the class 

to which the arrow points is considered a “part” of the class at the diamond end 

of the association. A  composition  is an aggregation indicating strong ownership 

of the parts. In a composition, the parts live and die with the owner because they 

have no role in the software system independent of the owner. See   Figure A1.3 

for examples of aggregation and composition.  

 A  College  has an aggregation of  Building  objects, which represent the build-

ings making up the campus. The college also has a collection of courses. If the 

college were to fold, the buildings would still exist (assuming the college wasn’t 

physically destroyed) and could be used for other things, but a  Course  object has 

no use outside of the college at which it is being offered. If the college were to 

cease to exist as a business entity, the  Course  object would no longer be useful 

and so it would also cease to exist. 

 Another common element of a class diagram is a  note , which is represented 

by a box with a dog-eared corner and is connected to other icons by a dashed 

line. It can have arbitrary content (text and graphics) and is similar to a pro-

gramming language comment. It might contain information about the role of a 

class or constraints that all objects of that class must satisfy. If the contents are 

a constraint, braces surround the contents. Note the constraint attached to the 

 Course  class in   Figure A1.3.   

 FIGURE A1.3

The relation-

ship between 

Colleges, 

Courses, and 

Buildings   
 {must take place in a Building}

CourseCollege

Building

*

*



874 APPENDIX 1  AN INTRODUCTION TO UML

    DEPLOYMENT  D IAGRAMS 

  A UML  deployment diagram  focuses on the structure of the software system and is 

useful for showing the physical distribution of a software system among hardware 

platforms and execution environments. Suppose, for example, you are developing 

a Web-based graphics-rendering package. Users of your package will use their 

Web browser to go to your website and enter rendering information. Your website 

would render a graphical image according to the user’s specifi cation and send it 

back to the user. Because graphics rendering can be computationally expensive, 

you decide to move the rendering itself off the Web server and onto a separate 

platform. Therefore, there will be three hardware devices involved in your sys-

tem: the Web client (the users’ computer running a browser), the computer host-

ing the Web server, and the computer hosting the rendering engine. 

   Figure A1.4 shows the deployment diagram for such a package. In such a dia-

gram, hardware components are drawn in boxes labeled with “«device»”. Com-

munication paths between hardware components are drawn with lines with 

optional labels. In   Figure A1.4, the paths are labeled with the communication 

protocol and the type of network used to connect the devices.  

 Each node in a deployment diagram can also be annotated with details about 

the device. For example, in   Figure A1.4, the browser client is depicted to show 

that it contains an artifact consisting of the Web browser software. An artifact 

is typically a fi le containing software running on a device. You can also specify 

tagged values, as is shown in   Figure A1.4 in the Web server node. These values 

defi ne the vendor of the Web server and the operating system used by the server. 

 Deployment diagrams can also display execution environment nodes, which are 

drawn as boxes containing the label “«execution environment»”. These nodes rep-

resent systems, such as operating systems, that can host other software programs.   

 FIGURE A1.4

A deployment 

diagram   

{web server = apache}
{OS = linux}

<<device>>
Web Server

http/LAN

http/Internet

<<device>>
Render Engine

<<artifact>>
Web Browser

<<device>>
Browser Client



APPENDIX 1  AN INTRODUCTION TO UML  875

    USE -CASE  D IAGRAMS 

  Use cases (Chapters 8 and 9) and the UML  use-case diagram  help you determine 

the functionality and features of the software from the user’s perspective. To give 

you a feeling for how use cases and use-case diagrams work, we’ll create some 

for a software application for managing an online digital music store. Some of the 

things the software might do include: 

   • Download an MP3 music fi le and store it in the application’s library.  

  • Capture streaming music and store it in the application’s library.  

  • Manage the application’s library (e.g., delete songs or organize them in 

playlists).  

  • Burn a list of the songs in the library onto a CD.  

  • Load a list of the songs in the library onto an iPod or MP3 player.  

  • Convert a song from MP3 format to AAC format and vice versa.   

 This is not an exhaustive list, but it is suffi cient to understand the role of use 

cases and use-case diagrams. 

 A  use case  describes how a user interacts with the system by defi ning the 

steps required to accomplish a specifi c goal (e.g., burning a list of songs onto a 

CD). Variations in the sequence of steps describe various scenarios (e.g., what if 

all the songs in the list don’t fi t on one CD?). 

 A UML use-case diagram is an overview of all the use cases and how they are 

related. It provides a big picture of the functionality of the system. A use-case 

diagram for the digital music application is shown in   Figure A1.5.  

 In this diagram, the stick fi gure represents an  actor  (Chapter 8) that is associ-

ated with one category of user (or other interaction element).  C omplex systems 

typically have more than one actor. For example, a vending machine application 

might have three actors representing customers, repair personnel, and vendors 

who refi ll the machine. 

 In the use-case diagram, the use cases are displayed as ovals. The actors are 

connected by lines to the use cases that they carry out. Note that none of the de-

tails of the use cases are included in the diagram and instead need to be stored 

separately. Note also that the use cases are placed in a rectangle but the actors 

are not. This rectangle is a visual reminder of the system boundaries and that the 

actors are outside the system. 

 Some use cases in a system might be related to each other. For example, there 

are similar steps in burning a list of songs to a CD and in loading a list of songs 

to an iPod or smartphone. In both cases, the user fi rst creates an empty list and 

then adds songs from the library to the list. To avoid duplication in use cases, it 

is usually better to create a new use case representing the duplicated activity, 

and then let the other uses cases include this new use case as one of their steps. 



876 APPENDIX 1  AN INTRODUCTION TO UML

Such inclusion is indicated in use-case diagrams, as in   Figure A1.6, by means of a 

dashed arrow labeled «include» connecting a use case with an included use case.  

 A use-case diagram, because it displays all use cases, is a helpful aid for en-

suring that you have covered all the functionality of the system. In our digital 

music organizer, we would surely want more use cases, such as a use case for 

playing a song in the library. But keep in mind that the most valuable contribu-

tion of use cases to the software development process is the textual description 

of each use case, not the overall use-case diagram [Fow04]. It is through the de-

scriptions that you are able to form a clear understanding of the goals of the 

system you are developing. 

      SEQUENCE  D IAGRAMS  

 In contrast to class diagrams and deployment diagrams, which show the static 

structure of a software component, a  sequence diagram  is used to show the dy-

namic communications between objects during execution of a task. It shows the 

temporal order in which messages are sent between the objects to accomplish 

 FIGURE A1.5

A use-case di-

agram for the 

music system   

User

Download music file & save to library

Capture streaming music & save to library

Burn a list of songs to CD

Load a list of songs to iPod

Convert music file to new format

Organize the library



APPENDIX 1  AN INTRODUCTION TO UML  877

that task. One might use a sequence diagram to show the interactions in one use 

case or in one scenario of the software system. 

 In   Figure A1.7, you see a sequence diagram for a drawing program. The dia-

gram shows the steps involved in highlighting a fi gure in the drawing when it has 

been clicked. Each box in the row at the top of the diagram usually corresponds 

to an object, although it is possible to have the boxes model other things, such 

as classes. If the box represents an object (as is the case in all our examples), 

then inside the box you can optionally state the type of the object preceded by 

the colon. You can also precede the colon and type by a name for the object, 

as shown in the third box in   Figure A1.7. Below each box there is a dashed line 

called the  lifeline  of the object. The vertical axis in the sequence diagram corre-

sponds to time, with time increasing as you move downward.  

 A sequence diagram shows method calls using horizontal arrows from the 

 caller  to the  callee , labeled with the method name and optionally including its 

parameters, their types, and the return type. For example, in   Figure A1.7, the 

 MouseListener  calls the  Drawing ’s  getFigureAt()  method. When an object is ex-

ecuting a method (that is, when it has an activation frame on the stack), you can 

 FIGURE A1.6

A use-case 

diagram with 

included use 

cases   

User

Convert music file to new format

Download music file & save to library

Capture streaming music & save to library

Organize the library

<< Include >>

<< Include >>

<< Include >> Edit song list

Burn a list of songs to CD

Load a list of songs to iPod



878 APPENDIX 1  AN INTRODUCTION TO UML

optionally display a white bar, called an  activation bar , down the object’s lifeline. 

In   Figure A1.7, activation bars are drawn for all method calls. The diagram can 

also optionally show the return from a method call with a dashed arrow and an 

optional label. In   Figure A1.7, the  getFigureAt()  method call’s return is shown 

labeled with the name of the object that was returned. A common practice, as we 

have done in   Figure A1.7, is to leave off the return arrow when a void method has 

been called, since it clutters up the diagram while providing little information of 

importance. A black circle with an arrow coming from it indicates a  found mes-

sage  whose source is unknown or irrelevant. 

 You should now be able to understand the task that   Figure A1.7 is displaying. 

An unknown source calls the  mouseClicked()  method of a  MouseListener , pass-

ing in the point where the click occurred as the argument. The  MouseListener  

in turn calls the  getFigureAt()  method of a  Drawing , which returns a  Figure.  The 

 MouseListener  then calls the highlight method of  Figure , passing in a  Graphics  

object as an argument. In response,  Figure  calls three methods of the  Graphics  

object to draw the fi gure in red. 

 The diagram in   Figure A1.7 is very straightforward and contains no condition-

als or loops. If logical control structures are required, it is probably best to draw 

a separate sequence diagram for each case. That is, if the message fl ow can take 

two different paths depending on a condition, then draw two separate sequence 

diagrams, one for each possibility. 

 If you insist on including loops, conditionals, and other control structures in 

a sequence diagram, you can use  interaction frames , which are rectangles that 

surround parts of the diagram and that are labeled with the type of control struc-

tures they represent.   Figure A1.8 illustrates this, showing the process involved 

 FIGURE A1.7

A sample 

sequence 

diagram   

:MouseListener :Drawing :GraphicsaFigure:Figure

.setColor(red)

.highlight(graphics)

.getFigureAt(point)

.mouseClicked(point)

 aFigure

.drawRect (x,y,w,h)

.drawString(s)



APPENDIX 1  AN INTRODUCTION TO UML  879

in highlighting all fi gures inside a given rectangle. The  MouseListener  is sent 

the  rectDragged  message. The  MouseListener  then tells the drawing to highlight 

all fi gures in the rectangle by called the method  highlightFigures() , passing the 

rectangle as the argument. The method loops through all  Figure  objects in the 

 Drawing  object and, if the  Figure  intersects the rectangle, the  Figure  is asked 

to highlight itself. The phrases in square brackets are called  guards , which are 

Boolean conditions that must be true if the action inside the interaction frame is 

to continue.  

 There are many other special features that can be included in a sequence 

diagram. For example:  

   1. You can distinguish between synchronous and asynchronous messages. 

Synchronous messages are shown with solid arrowheads while asynchro-

nous messages are shown with stick arrowheads.  

   2. You can show an object sending itself a message with an arrow going out 

from the object, turning downward, and then pointing back to the same 

object.  

   3. You can show object creation by drawing an arrow appropriately labeled 

(for example, with a «create» label) to an object’s box. In this case, the box 

will appear lower in the diagram than the boxes corresponding to objects 

already in existence when the action begins.  

   4. You can show object destruction by a big X at the end of the object’s life-

line. Other objects can destroy an object, in which case an arrow points 

from the other object to the X. An X is also useful for indicating that an 

object is no longer usable and so is ready for garbage collection.   

 The last three features are all shown in the sequence diagram in   Figure A1.9. 

 FIGURE A1.8

A sequence 

diagram with 

two interaction 

frames   

:MouseListener :Figure:Drawing

.highlightFiguresIn(rect)

.rectDragged(rect)

.highlight(g)[ figure intersects
rect ]

[ for all Figures in the Drawing ]
opt

loop (  )



880 APPENDIX 1  AN INTRODUCTION TO UML

       COMMUNICATION  D IAGRAMS 

  The UML  communication diagram  (known as a “collaboration diagram” in UML 

1.X) provides another indication of the temporal order of the communications 

but emphasizes the relationships among the objects and classes instead of the 

temporal order. A communication diagram is illustrated in   Figure A1.10, which 

displays the same actions shown in the sequence diagram in   Figure A1.7. 

  In a communication diagram the interacting objects are represented by rect-

angles. Associations between objects are represented by lines connecting the 

rectangles. There is typically an incoming arrow to one object in the diagram 

that starts the sequence of message passing. That arrow is labeled with a number 

and a message name. If the incoming message is labeled with the number 1 and 

if it causes the receiving object to invoke other messages on other objects, then 

 FIGURE A1.9

Creation, 

destruction, 

and loops 

in sequence 

diagrams   

:Thing1

:Thing2
.Thing2()

.destroy()

.foo()

x

<< create >>

 FIGURE A1.10

A UML com-

munication 

diagram   

1.1: getFigureAt(point)

1: mouseClicked(point)

1.2: highlight(graphics)

1.2.2: drawRect(x,y,w,h)

1.2.1: setColor(red)

1.2.3: drawString(s)

MouseListener

Graphics

FigureDrawing



APPENDIX 1  AN INTRODUCTION TO UML  881

those messages are represented by arrows from the sender to the receiver along 

an association line and are given numbers 1.1, 1.2, and so forth, in the order they 

are called. If those messages in turn invoke other messages, another decimal 

point and number are added to the number labeling these messages, to indicate 

further nesting of the message passing. 

 In   Figure A1.10, you see that the  mouseClicked  message invokes the methods 

 getFigureAt()  and then  highlight().  The  highlight()  message invokes three other 

messages:  setColor(), drawRect(),  and  drawstring().  The numbering in each label 

shows the nesting as well as the sequential nature of each message. 

 There are many optional features that can be added to the arrow labels. For 

example, you can precede the number with a letter. An incoming arrow could be 

labeled  A1: mouseClicked(point).  indicating an execution thread, A. If other mes-

sages are executed in other threads, their label would be preceded by a different 

letter. For example, if the  mouseClicked()  method is executed in thread A but 

it creates a new thread B and invokes  highlight()  in that thread, then the arrow 

from  MouseListener  to  Figure  would be labeled  1.B2: highlight(graphics).  

 If you are interested in showing the relationships among the objects in addition 

to the messages being sent between them, the communication diagram is probably 

a better option than the sequence diagram. If you are more interested in the tem-

poral order of the message passing, then a sequence diagram is probably better. 

      ACTIVITY  D IAGRAMS  

 A UML  activity diagram  depicts the dynamic behavior of a system or part of a 

system through the fl ow of control between actions that the system performs. It is 

similar to a fl owchart except that an activity diagram can show concurrent fl ows. 

 The main component of an activity diagram is an  action  node, represented by 

a rounded rectangle, which corresponds to a task performed by the software sys-

tem. Arrows from one action node to another indicate the fl ow of control. That is, 

an arrow between two action nodes means that after the fi rst action is complete 

the second action begins. A solid black dot forms the  initial node  that indicates 

the starting point of the activity. A black dot surrounded by a black circle is the 

 fi nal node  indicating the end of the activity. 

 A  fork  represents the separation of activities into two or more concurrent ac-

tivities. It is drawn as a horizontal black bar with one arrow pointing to it and 

two or more arrows pointing out from it. Each outgoing arrow represents a fl ow 

of control that can be executed concurrently with the fl ows corresponding to the 

other outgoing arrows. These concurrent activities can be performed on a com-

puter using different threads or even using different computers. 

   Figure A1.11 shows a sample activity diagram involving baking a cake. The 

fi rst step is fi nding the recipe. Once the recipe has been found, the dry ingre-

dients and wet ingredients can be measured and mixed and the oven can be 



882 APPENDIX 1  AN INTRODUCTION TO UML

preheated. The mixing of the dry ingredients can be done in parallel with the 

mixing of the wet ingredients and the preheating of the oven.  

 A  join  is a way of synchronizing concurrent fl ows of control. It is represented 

by a horizontal black bar with two or more incoming arrows and one outgoing 

arrow. The fl ow of control represented by the outgoing arrow cannot begin ex-

ecution until all fl ows represented by incoming arrows have been completed. In 

  Figure A1.11, we have a join before the action of mixing together the wet and dry 

ingredients. This join indicates that all dry ingredients must be mixed and all wet 

ingredients must be mixed before the two mixtures can be combined. The second 

join in the fi gure indicates that, before the baking of the cake can begin, all ingre-

dients must be mixed together, and the oven must be at the right temperature. 

 A  decision  node corresponds to a branch in the fl ow of control based on a 

condition. Such a node is displayed as a white triangle with an incoming arrow 

Find recipe

Mix dry
ingredients

Mix wet
ingredients

Heat oven

Bake

Remove from oven

Mix together

(not done)

(done)

 FIGURE A1.11

A UML activity 

diagram show-

ing how to 

bake a cake   



APPENDIX 1  AN INTRODUCTION TO UML  883

and two or more outgoing arrows. Each outgoing arrow is labeled with a guard (a 

condition inside square brackets). The fl ow of control follows the outgoing arrow 

whose guard is true. It is advisable to make sure that the conditions cover all pos-

sibilities so that exactly one of them is true every time a decision node is reached. 

  Figure A1.11 shows a decision node following the baking of the cake. If the cake is 

done, then it is removed from the oven. Otherwise, it is baked for a while longer. 

 One of the things the activity diagram in   Figure A1.11 does not tell you is 

who or what does each of the actions. Often, the exact division of labor does not 

matter. But if you do want to indicate how the actions are divided among the 

participants, you can decorate the activity diagram with swimlanes, as shown 

in   Figure  A1.12.  Swimlanes , as the name implies, are formed by dividing the 

diagram into strips or “lanes,” each of which corresponds to one of the partici-

pants. All actions in one lane are done by the corresponding participant. In   Fig-

ure A1.12, Jennie is responsible for mixing the dry ingredients and then mixing 

 FIGURE A1.12

The cake-

baking activity 

diagram with 

swimlanes 

added   
Find recipe

Mix dry
ingredients

Mix wet
ingredients

Heat oven

Bake

Mix together

(not done)

Jennie Mary Helen

(done)
Remove from oven



884 APPENDIX 1  AN INTRODUCTION TO UML

the dry and wet ingredients together, Helen is responsible for heating the oven 

and taking the cake out, and Mary is responsible for everything else. 

       STATE  D IAGRAMS  

 The behavior of an object at a particular point in time often depends on the state 

of the object, that is, the values of its variables at that time. As a trivial example, 

consider an object with a Boolean instance variable. When asked to perform an 

operation, the object might do one thing if that variable is  true  and do something 

else if it is  false.  

 A UML  state diagram  models an object’s states, the actions that are performed 

depending on those states, and the transitions between the states of the object. 

 As an example, consider the state diagram for a part of a Java compiler. The 

input to the compiler is a text fi le, which can be thought of as a long string of 

characters. The compiler reads characters one at a time and from them deter-

mines the structure of the program. One small part of this process of reading 

the characters involves ignoring “white-space” characters (e.g., the  space, tab, 

newline,  and  return  characters) and characters inside a comment. 

 Suppose that the compiler delegates to a  WhiteSpaceAndCommentEliminator  

the job of advancing over white-space characters and characters in comments. 

That is, this object’s job is to read input characters until all white-space and com-

ment characters have been read, at which point it returns control to the com-

piler to read and process non-white-space and noncomment characters. Think 

about how the  WhiteSpaceAndCommentEliminator  object reads in characters 

and determines whether the next character is white space or part of a comment. 

The object can check for white space by testing the next character against “ ”, 

“\t”, “\n”, and “\r”. But how does it determine whether the next character is part 

of a comment? For example, when it sees a “/” for the fi rst time, it doesn’t yet 

know whether that character represents a division operator, part of the /= op-

erator, or the beginning of a line or block comment. To make this determination, 

 WhiteSpaceAndCommentEliminator  needs to make a note of the fact that it saw 

a “/” and then move on to the next character. If the character following the “/” 

is another “/” or an “*”, then  WhiteSpaceAndCommentEliminator  knows that it 

is now reading a comment and can advance to the end of the comment without 

processing or saving any characters. If the character following the fi rst “/” is any-

thing other than a “/” or an “*”, then  WhiteSpaceAndCommentEliminator  knows 

that the “/” represents the division operator or part of the /= operator and so it 

stops advancing over characters. 

 In summary, as  WhiteSpaceAndCommentEliminator  reads in characters, it 

needs to keep track of several things, including whether the current character 

is white space, whether the previous character it read was a “/”, whether it is 

currently reading characters in a comment, whether it has reached the end of 



APPENDIX 1  AN INTRODUCTION TO UML  885

comment, and so forth. These all correspond to different states of the  WhiteSpace-

AndCommentEliminator  object. In each of these states,  WhiteSpaceAndCom-

mentEliminator  behaves differently with regard to the next character read in. 

  To help you visualize all the states of this object and how it changes state, 

you can use a UML state diagram as shown in   Figure A1.13. A state diagram 

displays states using rounded rectangles, each of which has a name in its upper 

half. There is also a black circle called the “initial pseudostate,” which isn’t really 

a state and instead just points to the initial state. In   Figure A1.13, the  start  state 

is the initial state. Arrows from one state to another state indicate transitions 

or changes in the state of the object. Each transition is labeled with a trigger 

event, a slash (/), and an activity. All parts of the transition labels are optional 

in state diagrams. If the object is in one state and the trigger event for one of 

its transitions occurs, then that transition’s activity is performed and the object 

takes on the new state indicated by the transition. For example, in   Figure A1.13, if 

the  WhiteSpaceAndCommentEliminator  object is in the  start  state and the next 

character is “/”, then  WhiteSpaceAndCommentEliminator  advances past that 

character and changes to the  saw ‘/’  state. If the character after the “/” is another 

“/”, then the object advances to the  line comment  state and stays there until it 

next char = eoln/advance
next char != eoln/advance

next char != ‘*’/advance

next char = ‘/’/advance

next char = ‘/’/advance

next char = ‘*’/advance next char = ‘*’/advance

next char = ‘*’/advance

next char = ‘/’/advance

next char = anything else

next char = ‘ ’,’\t‘,’\r’,’\n’/advance

End of white space

next char != ‘/’ or ‘*’/pushback’/’

saw’*’

block comment

start

line comment

saw ‘/’

 FIGURE A1.13 A state diagram for advancing past white space and comments in Java   



886 APPENDIX 1  AN INTRODUCTION TO UML

reads an end-of-line character. If instead the next character after the “/’”is a 

“*”, then the object advances to the  block comment  state and stays there until it 

sees another “*” followed by a “/”, which indicates the end of the block comment. 

Study the diagram to make sure you understand it. Note that, after advancing 

past white space or a comment,  WhiteSpaceAndCommentEliminator  goes back 

to the  start  state and starts over. That behavior is necessary since there might be 

several successive comments or white-space characters before any other char-

acters in the Java source code. 

 An object may transition to a fi nal state, indicated by a black circle with a white 

circle around it, which indicates there are no more transitions. In   Figure A1.13, 

the  WhiteSpaceAndCommentEliminator  object is fi nished when the next char-

acter is not white space or part of a comment. Note that all transitions except the 

two transitions leading to the fi nal state have activities consisting of advancing to 

the next character. The two transitions to the fi nal state do not advance over the 

next character because the next character is part of a word or symbol of interest 

to the compiler. Note that if the object is in the  saw ‘/’  state but the next character 

is not “/” or “*”, then the “/” is a division operator or part of the /= operator and 

so we don’t want to advance. In fact, we want to back up one character to make 

the “/” into the next character, so that the “/” can be used by the compiler. In 

  Figure A1.13, this activity of backing up is labeled as pushback ‘/’. 

 A state diagram will help you to uncover missed or unexpected situations. 

That is, with a state diagram, it is relatively easy to ensure that all possible trig-

ger events for all possible states have been accounted for. For example, in   Fig-

ure A1.13, you can easily verify that every state has included transitions for all 

possible characters. 

 UML state diagrams can contain many other features not included in   Fig-

ure A1.13. For example, when an object is in a state, it usually does nothing but 

sit and wait for a trigger event to occur. However, there is a special kind of state, 

called an  activity state , in which the object performs some activity, called a  do-

activity , while it is in that state. To indicate that a state is an activity state in the 

state diagram, you include in the bottom half of the state’s rounded rectangle the 

phrase “do/” followed by the activity that is to be done while in that state. The 

do-activity may fi nish before any state transitions occur, after which the activity 

state behaves like a normal waiting state. If a transition out of the activity state 

occurs before the do-activity is fi nished, then the do-activity is interrupted. 

 Because a trigger event is optional when a transition occurs, it is possible that 

no trigger event may be listed as part of a transition’s label. In such cases for nor-

mal waiting states, the object will immediately transition from that state to the 

new state. For activity states, such a transition is taken as soon as the do-activity 

fi nishes. 

   Figure A1.14 illustrates this situation using the states for a business telephone. 

When a caller is placed on hold, the call goes into the  On hold with music  state 



APPENDIX 1  AN INTRODUCTION TO UML  887

(soothing music is played for 10 seconds). After 10 seconds, the do-activity of the 

state is completed and the state behaves like a normal nonactivity state. If the 

caller pushes the # key when the call is in the  On hold with music  state, the call 

transitions to the  Canceled  state and then transitions immediately to the  dial 

tone  state. If the # key is pushed before the 10 seconds of soothing music has com-

pleted, the do-activity is interrupted and the music stops immediately.    

    OBJECT  CONSTRAINT  LANGUAGE—AN  OVERVIEW  

 The wide variety of diagrams available as part of UML provide you with a rich 

set of representational forms for the design model. However, graphical repre-

sentations are often not enough. You may need a mechanism for explicitly and 

formally representing information that constrains some element of the design 

model. It is possible, of course, to describe constraints in a natural language such 

as English, but this approach invariably leads to inconsistency and ambiguity. For 

this reason, a more formal language—one that draws on set theory and formal 

specifi cation languages (see Chapter 28 and Appendix 3) but has the somewhat 

less mathematical syntax of a programming language—seems appropriate. 

 The  Object Constraint Language  (OCL) complements UML by allowing you to 

use a formal grammar and syntax to construct unambiguous statements about 

various design model elements (e.g., classes and objects, events, messages, inter-

faces). The simplest OCL statements are constructed in four parts: (1) a  context  

that defi nes the limited situation in which the statement is valid, (2) a  property  

that represents some characteristics of the context (e.g., if the context is a class, 

a property might be an attribute), (3) an  operation  (e.g., arithmetic, set-oriented) 

that manipulates or qualifi es a property, and (4) keywords (e.g.,  if, then, else, and, 

or, not, implies ) that are used to specify conditional expressions. 

on hold with music

do/play soothing music for 10 seconds

Put on hold

canceled conversing

# key pushed Taken off hold

Hang up

dial tone

 FIGURE A1.14

A state 

diagram with 

an activity 

state and a 

triggerless 

transition   



888 APPENDIX 1  AN INTRODUCTION TO UML

 As a simple example of an OCL expression, consider the printing system dis-

cussed in Chapter 14. The guard condition placed on the  jobCostAccepted  event 

that causes a transition between the states  computingJobCost  and  formingJob  

within the statechart diagram for the  PrintJob  object (Figure 14.9). In the dia-

gram (Figure 14.9), the guard condition is expressed in natural language and im-

plies that authorization can only occur if the customer is authorized to approve 

the cost of the job. In OCL, the expression may take the form: 

  customer  

  self.authorizationAuthority = ’yes’  

 where a Boolean attribute,  authorizationAuthority,  of the class (actually a specifi c 

instance of the class) named  Customer  must be set to yes for the guard condition 

to be satisfi ed. 

 As the design model is created, there are often instances in which pre- or 

postconditions must be satisfi ed prior to completion of some action specifi ed by 

the design. OCL provides a powerful tool for specifying pre- and postconditions 

in a formal manner. As an example, consider an extension to the print shop sys-

tem (discussed as an example in Chapter 14) in which the customer provides 

an upper cost bound for the print job and a “drop-dead” delivery date at the 

same time as other print job characteristics are specifi ed. If cost and delivery 

estimates exceed these bounds, the job is not submitted and the customer must 

be notifi ed. In OCL, a set of pre- and postconditions may be specifi ed in the fol-

lowing manner: 

   context  PrintJob::validate(upperCostBound : Integer, custDeliveryReq : 

 Integer) 

   pre:  upperCostBound > 0 

 and custDeliveryReq > 07 

 and self.jobAuthorization = ‘no’ 

   post: if  self.totalJobCost <= upperCostBound 

   and self.deliveryDate <= custDeliveryReq 

  then 

   self.jobAuthorization = ‘yes’ 

  endif  

 This OCL statement defi nes an invariant  (inv )—conditions that must exist prior 

to (pre) and after (post) some behavior. Initially, a precondition establishes that 

bounding cost and delivery date must be specifi ed by the customer, and authori-

zation must be set to “no.” After costs and delivery are determined, the postcon-

dition specifi ed is applied. It should also be noted that the expression:

 self.jobAuthorization = ‘yes’ 



APPENDIX 1  AN INTRODUCTION TO UML  889

is not assigning the value “yes” but is declaring that the  jobAuthorization  must have 

been set to “yes” by the time the operation fi nishes. A complete description of 

OCL is beyond the scope of this appendix. The complete OCL specifi cation can 

be obtained at  www.omg.org/technology/documents/formal/ocl.htm.   4 

         FUR THER  READINGS  AND  INFORMATION  SOURCES 

  Dozens of books discuss UML. Books by Hay ( UML and Data Modeling: A Reconciliation,  

Technics Publications, 2011) and ( Enterprise Model Patterns: Describing the World,  Technics 

Publications, 2011), Gomaa ( Software Modeling and Design: UML, Use Cases, Patterns, and 

Software Architecture,  Cambridge University Press, 2011), ( Requirements Engineering: From 

System Goals to UML Models to Software Specifi cations , Wiley, 2009), and Podesa ( UML for 

the IT Business Analyst , Course Technology, 2009) discuss the use of UML in software devel-

opment. Other books that provide useful information include: Miles and Hamilton ( Learning 

UML 2.0,  O’Reilly Media, 2006); Booch, Rumbaugh, and Jacobson ( Unifi ed Modeling Lan-

guage User Guide,  2nd ed., Addison-Wesley, 2005), Ambler ( The Elements of UML 2.0 Style,  

Cambridge University Press, 2005), and Pilone and Pitman ( UML 2.0 in a Nutshell,  O’Reilly 

Media, 2005).  

  A wide variety of information sources on the use of UML in the software engineering 

modeling is available on the Internet. An up-to-date list of World Wide Web references can 

be found under “analysis” and “design” at the SEPA website: www.mhhe.com/pressman.     

  4  A description of the latest version of OCL can be found at http://www.omg.org/spec/OCL/2.3.1/ 



This page intentionally left blank 



891

  A P P E N D I X

2
     W hat is an object-oriented (OO) viewpoint? Why is a method con-

sidered to be object oriented? What is an object? As OO concepts 

gained widespread adherents during the 1980s and 1990s, there 

were many different opinions about the correct answers to these questions, 

but today a coherent view of OO concepts has emerged. This appendix is de-

signed to provide you with a brief overview of this important topic and to in-

troduce basic concepts and terminology. 

 To understand the object-oriented point of view, consider an example of a 

real-world object—the thing you are sitting in right now—a chair.  Chair  is a 

subclass of a much larger class that we can call  PieceOfFurniture.  Individual 

chairs are members (usually called instances) of the class  Chair . A set of ge-

neric attributes can be associated with every object in the class  PieceOfFurni-
ture . For example, all furniture has a cost, dimensions, weight, location, and 

color, among many possible attributes. These apply whether we are talking 

about a table or a chair, a sofa or an armoire. Because  Chair  is a member of 

 PieceOfFurniture ,  Chair  inherits all attributes defi ned for the class. 

 We have attempted an anecdotal defi nition of a class by describing its at-

tributes, but something is missing. Every object in the class  PieceOfFurniture  

can be manipulated in a variety of ways. It can be bought and sold, physically 

modifi ed (e.g., you can saw off a leg or paint the object purple), or moved from 

one place to another. Each of these  operations  (other terms are  services  or 

 methods ) will modify one or more attributes of the object. For example, if the 

attribute  location  is a composite data item defi ned as 

  location  = building + fl oor + room  

 then an operation named  move()  would modify one or more of the data items 

( building, fl oor,  or  room ) that form the attribute  location . To do this,  move  must 

have “knowledge” of these data items. The operation  move()  could be used for 

a chair or a table, as long as both are instances of the class  PieceOfFurniture . 

Valid operations for the class  PieceOfFurniture — buy(), sell(), weigh() —are 

specifi ed as part of the class defi nition and are inherited by all instances of 

the class. 

 The class  Chair  (and all objects in general) encapsulates data (the attribute 

values that defi ne the chair), operations (the actions that are applied to change 

the attributes of chair), other objects, constants (set values), and other related 

information.  Encapsulation  means that all of this information is packaged under 

one name and can be reused as one specifi cation or program component. 

OBJECT-ORIENTED
CONCEPTS 

 K E Y 
C O N C E P T S  
  attributes . . . . . . . 893  
  classes . . . . . . . . . 892  

  boundary . . . . . 894  
  characteristics 
of  . . . . . . . . . . 897  
  controller . . . . . 894  
  defi nition of . . . 892  
  entity  . . . . . . . 894  

  encapsulation  . . . . 891  
  inheritance  . . . . . . 894  
  messages . . . . . . . 895  
  methods . . . . . . . . 893  
  operations  . . . . . . 893  
  polymorphism . . . . 896  
  services  . . . . . . . . 893  
  subclass . . . . . . . . 893  
  superclass. . . . . . . 893   

pre22126_app2_891-898.indd   891pre22126_app2_891-898.indd   891 13/12/13   6:18 PM13/12/13   6:18 PM



892 APPENDIX 2  OBJECT-ORIENTED CONCEPTS

 Now that we have introduced a few basic concepts, a more formal defi nition 

of  object oriented  will prove more meaningful. Coad and Yourdon [Coa91] defi ne 

the term this way: 

 Object oriented = objects + classifi cation + inheritance + communication 

 Three of these concepts have already been introduced. Communication is dis-

cussed later in this appendix. 

    CLASSES AND OBJECTS 

  A class is an OO concept that encapsulates the data and procedural abstrac-

tions required to describe the content and behavior of some real-world entity. 

Data abstractions that describe the class are enclosed by a “wall” of procedural 

abstractions [Tay90] (represented in   Figure A2.1) that are capable of manipulat-

ing the data in some way. In a well-designed class, the only way to reach the at-

tributes (and operate on them) is to go through one of the methods that form the 

“wall” illustrated in the fi gure. Therefore, the class encapsulates data (inside the 

wall) and the processing that manipulates the data (the methods that make up 

the wall). This achieves information hiding (Chapter 12) and reduces the impact 

of side effects associated with change. Since the methods tend to manipulate a 

limited number of attributes, their cohesion is improved, and because communi-

cation occurs only through the methods that make up the “wall,” the class tends 

to be less strongly coupled from other elements of a system.  1  

  1  It should be noted, however, that coupling can become a serious problem in OO systems. It 
arises when classes from various parts of the system are used as the data types of attributes, 
and arguments to methods. Even though access to the objects may only be through procedure 
calls, this does not mean that coupling is necessarily low, just lower than if direct access to the 
internals of objects were allowed. 

 FIGURE A2.1

A schematic 
representation 
of a class   

Attributes

Method1()

Method3() Method4()

Methodn()Method2()

pre22126_app2_891-898.indd   892pre22126_app2_891-898.indd   892 13/12/13   6:18 PM13/12/13   6:18 PM



APPENDIX 2  OBJECT-ORIENTED CONCEPTS  893

 Stated another way, a class is a generalized description (e.g., a template or 

blueprint) that describes a collection of similar objects. By defi nition, objects are 

instances of a specifi c class and inherit its attributes and the operations that are 

available to manipulate the attributes. A  superclass  (often called a  base class ) is a 

generalization of a set of classes that are related to it. A  subclass  is a specializa-

tion of the superclass. For example, the superclass  MotorVehicle  is a generaliza-

tion of the classes  Truck, SUV, Automobile,  and  Van.  The subclass  Automobile  

inherits all attributes of  MotorVehicle,  but in addition, incorporates other attri-

butes that are specifi c only to automobiles. 

  These defi nitions imply the existence of a class hierarchy in which the attri-

butes and operations of the superclass are inherited by subclasses that may each 

add additional “private” attributes and methods. For example, the operations 

 sitOn()  and  turn()  might be private to the  Chair  subclass.   

    ATTRIBUTES  

  You have learned that attributes are attached to classes and that they describe 

the class in some way. An attribute can take on a value defi ned by an enumerated 

 domain.  In most cases, a domain is simply a set of specifi c values. For example, 

assume that a class  Automobile  has an attribute  color . The domain of values for 

 color  is {  white, black, silver, gray, blue, red, yellow, green}  . In more complex situ-

ations, the domain can be a class. Continuing the example, the class  Automobile  

also has an attribute  powerTrain  that is itself a class. The class  PowerTrain  would 

contain attributes that describe the specifi c engine and transmission for the car. 

 The  features  (values of the domain) can be augmented by assigning a default 

value (feature) to an attribute. For example, the  color  attribute defaults to   white  . It 

may also be useful to associate a probability with a particular feature by assigning 

{value, probability} pairs. Consider the  color  attribute for automobile. In some appli-

cations (e.g., manufacturing planning) it might be necessary to assign a probability 

to each of the colors (e.g., white and black are highly probable as automobile colors).   

    OPERATIONS, METHODS, AND SERVICES 

  An object encapsulates data (represented as a collection of attributes) and the al-

gorithms that process the data. These algorithms are called  operations, methods,  

or  services   2 and can be viewed as processing components.  

 Each of the operations that is encapsulated by an object provides a represen-

tation of one of the behaviors of the object. For example, the operation  GetColor()  

for the object  Automobile  will extract the color stored in the  color  attribute. The 

implication of the existence of this operation is that the class  Automobile  has 

  2  In the context of this discussion, the term  operations  is used, but the terms  methods  and  ser-

vices  are equally popular. 

pre22126_app2_891-898.indd   893pre22126_app2_891-898.indd   893 13/12/13   6:18 PM13/12/13   6:18 PM



894 APPENDIX 2  OBJECT-ORIENTED CONCEPTS

been designed to receive a stimulus (we call the stimulus a  message ) that re-

quests the color of the particular instance of a class. Whenever an object receives 

a stimulus, it initiates some behavior. This can be as simple as retrieving the 

color of automobile or as complex as the initiation of a chain of stimuli that are 

passed among a variety of different objects. In the latter case, consider an exam-

ple in which the initial stimulus received by  Object 1  results in the generation of 

two other stimuli that are sent to  Object 2  and  Object 3 . Operations encapsulated 

by the second and third objects act on the stimuli, returning necessary informa-

tion to the fi rst object.  Object 1  then uses the returned information to satisfy the 

behavior demanded by the initial stimulus. 

      OBJECT-ORIENTED ANALYS IS  AND DES IGN CONCEPTS 

  Requirements modeling (also called analysis modeling) focuses primarily on 

classes that are extracted directly from the statement of the problem. These 

 entity classes  typically represent things that are to be stored in a database and 

persist throughout the duration of the application (unless they are specifi cally 

deleted). 

 Design refi nes and extends the set of entity classes. Boundary and controller 

classes are developed and/or refi ned during design.  Boundary classes  create 

the interface (e.g., interactive screen and printed reports) that the user sees and 

interacts with as the software is used. Boundary classes are designed with the 

responsibility of managing the way entity objects are represented to users. 

  Controller classes  are designed to manage (1) the creation or update of en-

tity objects, (2) the instantiation of boundary objects as they obtain information 

from entity objects, (3) complex communication between sets of objects, and 

(4) validation of data communicated between objects or between the user and 

the application. 

 The concepts discussed in the paragraphs that follow can be useful in analysis 

and design work. 

  Inheritance.   Inheritance is one of the key differentiators between conventional 

and object-oriented systems. A subclass  Y  inherits all of the attributes and op-

erations associated with its superclass  X . This means that all data structures and 

algorithms originally designed and implemented for  X  are immediately available 

for  Y —no further work need be done. Reuse has been accomplished directly. 

 Any change to the attributes or operations contained within a superclass is 

immediately inherited by all subclasses. Therefore, the class hierarchy becomes 

a mechanism through which changes (at high levels) can be immediately propa-

gated through a system. 

 It is important to note that at each level of the class hierarchy new attributes 

and operations may be added to those that have been inherited from higher 

pre22126_app2_891-898.indd   894pre22126_app2_891-898.indd   894 13/12/13   6:18 PM13/12/13   6:18 PM



APPENDIX 2  OBJECT-ORIENTED CONCEPTS  895

levels in the hierarchy. In fact, whenever a new class is to be created, you have a 

number of options: 

   • The class can be designed and built from scratch. That is, inheritance is 

not used.  

  • The class hierarchy can be searched to determine if a class higher in the 

hierarchy contains most of the required attributes and operations. The 

new class inherits from the higher class and additions may then be added, 

as required.  

  • The class hierarchy can be restructured so that the required attributes 

and operations can be inherited by the new class.  

  • Characteristics of an existing class can be overridden, and different ver-

sions of attributes or operations are implemented for the new class.   

 Like all fundamental design concepts, inheritance can provide signifi cant benefi t 

for the design, but if it is used inappropriately,  3 it can complicate a design unnec-

essarily and lead to error-prone software that is diffi cult to maintain. 

    Messages.   Classes must interact with one another to achieve design goals. A 

message stimulates some behavior to occur in the receiving object. The behavior 

is accomplished when an operation is executed. 

 The interaction between objects is illustrated schematically in   Figure A2.2. 

An operation within  SenderObject  generates a message of the form  message  

(<parameters>) where the parameters identify  ReceiverObject  as the object 

to be stimulated by the message, the operation within  ReceiverObject  that is 

to receive the message, and the data items that provide information that is 

required for the operation to be successful. The collaboration defi ned between 

classes as part of the analysis model provides useful guidance in the design of 

messages.  

  3  For example, designing a subclass that inherits attributes and operations from more than one 
superclass (sometimes called “multiple inheritance”) is frowned upon by most designers. 

 FIGURE A2.2

Message pass-
ing between 
objects   

:SenderObject

Message (<parameters>)

:ReceiverObject

pre22126_app2_891-898.indd   895pre22126_app2_891-898.indd   895 13/12/13   6:18 PM13/12/13   6:18 PM



896 APPENDIX 2  OBJECT-ORIENTED CONCEPTS

 Cox [Cox86] describes the interchange between classes in the following manner: 

  An object [class] is requested to perform one of its operations by sending it a message 

telling the object what to do. The receiver [object] responds to the message by fi rst 

choosing the operation that implements the message name, executing this operation, 

and then returning control to the caller. Messaging ties an object-oriented system 

together. Messages provide insight into the behavior of individual objects and the OO 

system as a whole.  

   Polymorphism.    Polymorphism  is a characteristic that greatly reduces the effort 

required to extend the design of an existing object-oriented system. To understand 

polymorphism, consider a conventional application that must draw four different 

types of graphs: line graphs, pie charts, histograms, and Kiviat diagrams. Ideally, 

once data are collected for a particular type of graph, the graph should draw itself. 

To accomplish this in a conventional application (and maintain module cohesion), 

it would be necessary to develop drawing modules for each type of graph. Then, 

within the design, control logic similar to the following would have to be embedded: 

  case of graphtype: 

 if graphtype = linegraph then DrawLineGraph (data); 

 if graphtype = piechart then DrawPieChart (data); 

 if graphtype = histogram then DrawHisto (data); 

 if graphtype = kiviat then DrawKiviat (data); 

 end case;  

 Although this design is reasonably straightforward, adding new graph types could 

be tricky. A new drawing module would have to be created for each graph type and 

then the control logic would have to be updated to refl ect the new graph type. 

 To solve this problem, all of the graphs become subclasses of a general class 

called  Graph . Using a concept called  overloading  [Tay90], each subclass defi nes 

an operation called  draw . An object can send a  draw  message to any one of the 

objects instantiated from any one of the subclasses. The object receiving the mes-

sage will invoke its own  draw  operation to create the appropriate graph. There-

fore, the design is reduced to 

  draw <graphtype>  

 When a new graph type is to be added to the system, a subclass is created with its own 

 draw  operation. But no changes are required within any object that wants a graph 

drawn because the message  draw <graphtype>  remains unchanged. To summarize, 

polymorphism enables a number of different operations to have the same name. 

This in turn decouples objects from one another, making each more independent. 

   Design classes.   The requirements model defi nes a complete set of analy-

sis classes. Each describes some element of the problem domain, focusing on 

pre22126_app2_891-898.indd   896pre22126_app2_891-898.indd   896 13/12/13   6:18 PM13/12/13   6:18 PM



APPENDIX 2  OBJECT-ORIENTED CONCEPTS  897

aspects of the problem that are user or customer visible. The level of abstraction 

of an analysis class is relatively high. 

 As the design model evolves, the software team must defi ne a set of  design 

classes  that (1) refi ne the analysis classes by providing design detail that will en-

able the classes to be implemented and (2) create a new set of design classes that 

implement a software infrastructure that supports the business solution. Five 

different types of design classes, each representing a different layer of the design 

architecture are suggested [Amb01]: 

    • User interface classes  defi ne all abstractions that are necessary for 

human-computer interaction (HCI).  

   • Business domain classes  are often refi nements of the analysis classes de-

fi ned earlier. The classes identify the attributes and services (methods) 

that are required to implement some element of the business domain.  

   • Process classes  implement lower-level business abstractions required to 

fully manage the business domain classes.  

   • Persistent classes  represent data stores (e.g., a database) that will persist 

beyond the execution of the software.  

   • System classes  implement software management and control functions 

that enable the system to operate and communicate within its computing 

environment and with the outside world.   

 As the architectural design evolves, the software team should develop a complete 

set of attributes and operations for each design class. The level of abstraction is 

reduced as each analysis class is transformed into a design representation. That 

is, analysis classes represent objects (and associated methods that are applied 

to them) using the jargon of the business domain. Design classes present signifi -

cantly more technical detail as a guide for implementation. 

 Arlow and Neustadt [Arl02] suggest that each design class be reviewed to en-

sure that it is “well formed.” They defi ne four characteristics of a well-formed 

design class: 

   Complete and sufficient.   A design class should be the complete encap-

sulation of all attributes and methods that can reasonably be expected 

(based on a knowledgeable interpretation of the class name) to exist for 

the class. For example, the class  Scene  defi ned for video-editing software 

is complete only if it contains all attributes and methods that can reason-

ably be associated with the creation of a video scene. Suffi ciency ensures 

that the design class contains only those methods that are suffi cient to 

achieve the intent of the class, no more and no less. 

  Primitiveness.   Methods associated with a design class should be focused 

on accomplishing one specifi c function for the class. Once the function has 

pre22126_app2_891-898.indd   897pre22126_app2_891-898.indd   897 13/12/13   6:18 PM13/12/13   6:18 PM



898 APPENDIX 2  OBJECT-ORIENTED CONCEPTS

been implemented with a method, the class should not provide another 

way to accomplish the same thing. For example, the class  VideoClip  of the 

video editing software might have attributes  start-point  and  end-point  to in-

dicate the start and end points of the clip (note that the raw video loaded 

into the system may be longer than the clip that is used). The methods, 

 setStartPoint()  and  setEndPoint()  provide the only means for establishing 

start and end points for the clip. 

  High cohesion.   A cohesive design class is single minded. That is, it has 

a small, focused set of responsibilities and single-mindedly applies attri-

butes and methods to implement those responsibilities. For example, the 

class  VideoClip  of the video-editing software might contain a set of meth-

ods for editing the video clip. As long as each method focuses solely on at-

tributes associated with the video clip, cohesion is maintained. 

  Low coupling.   Within the design model, it is necessary for design classes 

to collaborate with one another. However, collaboration should be kept to 

an acceptable minimum. If a design model is highly coupled (all design 

classes collaborate with all other design classes), the system is diffi cult to 

implement, test, and maintain over time. In general, design classes within 

a subsystem should have only limited knowledge of other classes. This re-

striction, called the  law of Demeter  [Lie03], suggests that a method should 

only send messages to methods in neighboring classes.  4  

          FUR THER READINGS AND INFORMATION SOURCES 
  Over the past three decades hundreds of books have been written on object-oriented pro-
gramming, analysis, and design. Weisfeld ( The Object-Oriented Thought Process,  4th ed., 
Addison-Wesley, 2013) presents a worthwhile treatment of general OO concepts and prin-
ciples. Wong and Nguyen  (Principles of Object-Oriented Programming,  Amazon Digital Ser-
vices, 2011) provide a practical tutorial on many important OO concepts. McLaughlin and 
his colleagues ( Head First Object-Oriented Analysis and Design: A Brain Friendly Guide to 

OOA&D,  O’Reilly Media, 2006) have written an accessible and enjoyable treatment of OO 
analysis and design approaches. Keogh and Gianni ( OOP Demystifi ed , McGraw-Hill, 2004) 
offer a useful guidebook on the subject.  

  A more in-depth treatment of OO analysis and design is presented by Booch and his col-
leagues ( Object-Oriented Analysis and Design with Applications,  3rd ed., Addison-Wesley, 
2007). Clark ( Beginning C# Object-Oriented Programming,  Apress, 2013), Kochen ( Program-

ming in Objective-C,  5th ed., Developer’s Library, 2012), Phillips ( Python 3 Object Oriented 

Programming,  Packt Publishing, 2011), Khurana ( Object-Oriented Programming with C++,  
Vikas Publishing, 2010), and Wu ( An Introduction to Object-Oriented Programming with 

Java,  2d ed., McGraw-Hill, 2009) are representative of dozens of OO titles written for many 
different programming languages.  

  A wide variety of information sources on object-oriented technologies is available on the 
Internet. An up-to-date list of World Wide Web references can be found under “analysis” and 
“design” at the SEPA website: www.mhhe.com/pressman.     

  4  A less formal way of stating the law of Demeter is, “Each unit should only talk to its friends; 
don’t talk to strangers.” 

pre22126_app2_891-898.indd   898pre22126_app2_891-898.indd   898 13/12/13   6:18 PM13/12/13   6:18 PM



899

  A P P E N D I X

3
  APPLYING  MATHEMATICAL  NOTATION   1 
FOR  FORMAL  SPECIF ICATION 

   To illustrate the use of mathematical notation in the formal specifi cation of 

a software component, we revisit the block handler example presented in 

Chapter 28. The system for managing blocks is depicted schematically in Fig-

ure 28.8 and should be reviewed before continuing here. 

 A set named  BLOCKS  will consist of every block number.  AllBlocks  is a set 

of blocks that lie between 1 and  MaxBlocks.  The state will be modeled by two 

sets and a sequence. The two sets are  used  and  free . Both contain blocks—the 

 used  set contains the blocks that are currently used in fi les, and the  free  set 

contains blocks that are available for new fi les. The sequence will contain sets 

of blocks that are ready to be released from fi les that have been deleted. The 

state can be described as 

    used, free : P  BLOCKS   

   BlockQueue :  seq  P  BLOCKS    

 This is very much like the declaration of program variables. It states that  used  

and  free  will be sets of blocks and that  BlockQueue  will be a sequence, each 

element of which will be a set of blocks. The data invariant can be written as 

    used  >  free  5 [ `  

   used  <  free  5  AllBlocks  `  

  ;  i : dom  BlockQueue  •  BlockQueue i  #  used  `  

  ;  i, j  : dom  BlockQueue  •  i  Þ  j  5.  BlockQueue i  >  BlockQueue j  5 [   

 The fi rst line of the data invariant states that there will be no common blocks 

in the used collection and free collections of blocks. The second line states 

that the collection of used blocks and free blocks will always be equal to the 

whole collection of blocks in the system. The third line indicates the  i th ele-

ment in the block queue will always be a subset of the used blocks. The fi nal 

line states that, for any two elements of the block queue that are not the same, 

there will be no common blocks in these two elements. 

FORMAL METHODS  

  1  We have written this section of Appendix 3 making the assumption that you are familiar with 

the mathematical notation associated with sets and sequences and the logical notation used 

in predicate calculus. If you need a review, a brief overview is presented as a supplementary 

resource at the 8th edition website. For more detailed information, see [Jec06] or [Pot04]. 

K E Y 

C O N C E P T S

formal specifi cation 
language  . . . . . . . 900
Object Constraint 
Language (OLC). . . 901

notation. . . . . . 902
example of  . . . 903

Z-specifi cation 
language  . . . . . . . 904

notation. . . . . . 905
example of. . . . 906



900 APPENDIX 3  FORMAL METHODS

 The fi rst operation to be defi ned is one that removes an element from the 

head of the block queue. The precondition is that there must be at least one item 

in the queue: 

   #BlockQueue . 0,   

 The postcondition is that the head of the queue must be removed and placed in 

the collection of free blocks and the queue adjusted to show the removal: 

    used9  5  used  \  head BlockQueue  `  

  free9 5  free  <  head BlockQueue  `  

   BlockQueue9  5  tail BlockQueue    

 A convention used in many formal methods is that the value of a variable after 

an operation is primed. Hence, the fi rst component of the preceding expres-

sion states that the new used blocks ( used9 ) will be equal to the old used blocks 

minus the blocks that have been removed. The second component states that 

the new free blocks ( free9 ) will be the old free blocks with the head of the block 

queue added to it. The third component states that the new block queue will be 

equal to the tail of the old value of the block queue, that is, all elements in the 

queue apart from the fi rst one. A second operation adds a collection of blocks, 

 Ablocks,  to the block queue. The precondition is that  Ablocks  is currently a set 

of used blocks: 

  Ablocks  #  used    

 The postcondition is that the set of blocks is added to the end of the block queue 

and the set of used and free blocks remains unchanged: 

    BlockQueue9  5  BlockQueue  C KAblocksL `  

   used9  5  used  `  

   free9  5  free    

 There is no question that the mathematical specifi cation of the block queue is con-

siderably more rigorous than a natural language narrative or a graphical model. 

The additional rigor requires effort, but the benefi ts gained from improved con-

sistency and completeness can be justifi ed for some application domains. 

      FORMAL  SPECIF ICATION  LANGUAGES 

  A formal specifi cation language is usually composed of three primary compo-

nents: (1) a syntax that defi nes the specifi c notation with which the specifi cation 

is represented, (2) semantic domain to help defi ne a ”universe of objects” [Win90] 

that will be used to describe the system, and (3) a set of relations that defi ne 

the semantic rules that indicate how objects may be manipulated properly and 

satisfy the specifi cation. 

 How do I 
represent 

pre- and 
postconditions? 

?



APPENDIX 3  FORMAL METHODS  901

 The syntactic domain of a formal specifi cation language is often based on a 

syntax that is derived from standard set theory notation and predicate calculus. 

The  semantic domain  of a specifi cation language indicates how the language 

represents system requirements. 

 A variety of formal specifi cation languages are in use today. OCL [OMG03b], 

Z [ISO02], LARCH [Gut93], and VDM [Jon91] are representative formal specifi ca-

tion languages that exhibit the characteristics noted previously. In this appen-

dix, we present a brief discussion of OCL and Z. 

  Object Constraint Language (OCL)  2  

  Object Constraint Language  (OCL) is a formal notation developed so that users 

of UML can add more precision to their specifi cations. All of the power of logic 

and discrete mathematics is available in the language. However, the designers of 

OCL decided that only ASCII characters (rather than conventional mathemati-

cal notation) should be used in OCL statements. 

 To use OCL, you start with one or more UML diagrams—most commonly class, 

state, or activity diagrams (Appendix 1). OCL expressions are added and state 

facts about elements of the diagrams. These expressions are called  constraints ; 

any implementation derived from the model must ensure each of the constraints 

always remains true. 

 Like an object-oriented programming language, an OCL expression involves 

operators operating on objects. However, the result of a complete expression 

must always be a Boolean, that is, true or false. The objects can be instances of 

the OCL  Collection  class, of which  Set  and  Sequence  are two subclasses. 

 The object  self  is the element of the UML diagram in the context of which the 

OCL expression is being evaluated. Other objects can be obtained by  navigating  

using the . (dot) symbol from the  self  object. For example: 

   • If  self  is class  C , with attribute  a , then  self.a  evaluates to the object stored 

in  a .  

  • If  C  has a one-to-many association called  assoc  to another class  D , then  

 self.assoc  evaluates to a  Set  whose elements are of type  D .  

  • Finally (and a little more subtly), if  D  has attribute  b , then the expression 

 self.assoc.b  evaluates to the set of all the  b s belonging to all  D s.   

 OCL provides built-in operations implementing set and logic operators, con-

structive specifi cation, and related mathematics. A small sample of these is pre-

sented in   Table A3.1. 

 2   This section has been contributed by Professor Timothy Lethbridge of the University of Ottawa 

and is presented here with permission. 



902 APPENDIX 3  FORMAL METHODS

x.y Obtain the property y of object x. A property can be an attribute, the set of objects at 
the end of an association, the result of evaluating an operation, or other things 
depending on the type of UML diagram. If x is a Set, then y is applied to every 
element of x; the results are collected into a new Set.

c–>f() Apply the built-in OCL operation f to Collection c itself (as opposed to each of the 
objects in c). Examples of built-in operations are listed below.

and, or, 5, <> Logical and, logical or, equals, not-equals.

p implies q True if either q is true or p is false.

Sample of Operations on Collections (including Sets and Sequences)

C–>size() The number of elements in Collection c.

C–>isEmpty() True if c has no elements, false otherwise.

c1–>includesAll(c2) True if every element of c2 is found in c1.

c1–>excludesAll(c2) True if no element of c2 is found in c1.

C–>forAll(elem | boolexpr) True if boolexpr is true when applied to every element of c. As an element is being 
evaluated, it is bound to the variable elem, which can be used in boolexpr. This 
implements universal quantification, discussed earlier.

C–>forAll(elem1, elem2 | boolexpr) Same as above, except that boolexpr is evaluated for every possible pair of elements 
taken from c, including cases where the pair consists of the same element. 

C–>isUnique(elem |expr) True if expr evaluates to a different value when applied to every element of c.

Sample of Operations Specific to Sets

s1–>intersection(s2) The set of those elements found s1 and also in s2.

s1–>union(s2) The set of those elements found in either s1 or s2.

s1–>excluding(x) The set s1 with object x omitted.

Sample Operation Specific to Sequences

Seq–>first() The object that is the first element in the sequence seq.

TABLE A3.1  SUMMARY OF KEY OCL NOTATION

   To illustrate the use of OCL in specifi cation, we reexamine the block handler 

example, introduced in Chapter 28. The fi rst step is to develop a UML model 

(  Figure A3.1). This class diagram specifi es many relationships among the objects 

involved. However, OCL expressions are added to allow implementers of the sys-

tem to know more precisely what must remain true as the system runs.  

 The OCL expressions that supplement the class diagram correspond to the six 

parts of the invariant discussed in Section 28.6. In the example that follows, the in-

variant is repeated in English and then the corresponding OCL expression is written. 

It is considered good practice to provide natural language text along with the formal 

logic; doing so helps you to understand the logic, and also helps reviewers to uncover 

mistakes, for example, situations where English and the logic do not correspond. 

    1.  No block will be marked as both unused and used.  

   context BlockHandler inv: 

    (self.used–>intersection(self.free)) –>isEmpty()   



APPENDIX 3  FORMAL METHODS  903

   Note that each expression starts with the keyword  contextcontext . This indicates 

the element of the UML diagram that the expression constrains. The key-

word   self   here refers to the instance of   BlockHandler;   in the following, as is 

permissible in OCL, we will omit the   self  .  

   2.  All the sets of blocks held in the queue will be subsets of the collection of 

currently used blocks.  

   context BlockHandler inv:

     blockQueue–>forAll(aBlockSet | used–>includesAll(aBlockSet ))    

   3.  No elements of the queue will contain the same block numbers.  

   context BlockHandler inv:   

 blockQueue–>forAll(blockSet1, blockSet2 |

    blockSet1 <> blockSet2 implies  

  blockSet1.elements.number–> excludesAll(blockSet2.elements.number))   

   The expression before   implies   is needed to ensure we ignore pairs where 

both elements are the same block.  

   4.  The collection of used blocks and blocks that are unused will be the total 

collection of blocks that make up fi les.  

   context BlockHandler inv:

     allBlocks 5 used–>union(free)    

   5.  The collection of unused blocks will have no duplicate block numbers.  

   context BlockHandler inv:

     free–>isUnique(aBlock | aBlock.number)    

   6.  The collection of used blocks will have no duplicate block numbers.  

   context BlockHandler inv:  

   used–>isUnique(aBlock | aBlock.number)     

 FIGURE A3.1

Class diagram 

for a block 

handler   

11

Block BlockSet

BlockHandler

*

*
**

*

1

1

1

blockQueue
{orderd}free

allBlocks

{subset}
{subset}

used

elements

addBlock( )
removeBlock( )

number



904 APPENDIX 3  FORMAL METHODS

 OCL can also be used to specify preconditions and postconditions of operations. 

For example, the following describes operations that remove and add sets of 

blocks to the queue. Note that the notation   x@pre   indicates the object   x   as it ex-

isted  prior  to the operation; this is opposite to mathematical notation discussed 

earlier, where it is the   x    after  the operation that is specially designated (as   x  9). 

   context BlockHandler::removeBlocks( )  

   pre: blockQueue–>size( ) >0  

   post: used 5 used@pre-blockQueue@pre–>fi rst( ) and  

    free 5 free@pre–>union(blockQueue@pre–>fi rst( )) and  

    blockQueue 5 blockQueue@pre–>excluding(blockQueue@pre–>fi rst)   

   context BlockHandler::addBlocks(aBlockSet :BlockSet)  

   pre: used–>includesAll(aBlockSet.elements)  

   post: (blockQueue.elements 5 blockQueue.elements@pre  

    –> append (aBlockSet.elements) and  

    used 5 used@pre and  

    free 5 free@pre   

 OCL is a modeling language, but it has all of the attributes of a formal language. 

OCL allows the expression of various constraints, pre- and postconditions, 

guards, and other characteristics that relate to the objects represented in vari-

ous UML models. 

   The Z Specification Language 

 Z (properly pronounced as “zed”) is a specifi cation language that is widely used 

within the formal methods community. The Z language applies typed sets, re-

lations, and functions within the context of fi rst-order predicate logic to build 

 schemas —a means for structuring the formal specifi cation. 

 Z specifi cations are organized as a set of schemas. Schemas are used to struc-

ture a formal specifi cation in the same way that components are used to struc-

ture a system. 

 A schema describes the stored data that a system accesses and alters. In the 

context of Z, this is called the “state.” This usage of the term  state  in Z is slightly 

different from the use of the word in the rest of this book.  3 The generic structure 

of a schema takes the form: 

 schemaName  

  declarations 

  

  invariant 

   

  3  Recall that in other chapters  state  has been used to identify an externally observable mode of 

behavior for a system. 



APPENDIX 3  FORMAL METHODS  905

 where declarations identify the variables that comprise the system state and the 

invariant imposes constraints on the manner in which the state can evolve. A 

summary of Z language notation is presented in   Table A3.2. 

TABLE A3.2  SUMMARY OF Z NOTATION

Z notation is based on typed set theory and first-order logic. Z provides a construct, called a schema, to describe a 
specification’s state space and operations. A schema groups variable declarations with a list of predicates that constrain the 
possible value of a variable. In Z, the schema X is defined by the form 

 X

  declarations

 

  predicates

 

Global functions and constants are defined by the form

  declarations

 

  predicates 

The declaration gives the type of the function or constant, while the predicate gives it value. Only an abbreviated set of 
Z symbols is presented in this table. 

Sets:
S : PX S is declared as a set of Xs.
X [ S x is a member of S.
x Ò S x is not a member of S. 
S # T S is a subset of T: Every member of S is also in T.
S ø T The union of S and T: It contains every member of S or T or both. 
S ù T The intersection of S and T: It contains every member of both S and T.
S \ T The difference of S and T: It contains every member of S except those also in T. 
[ Empty set: It contains no members. 
{x} Singleton set: It contains just x. 
N The set of natural numbers 0, 1, 2, …. 
S : F X S is declared as a finite set of Xs. 
max (S)  The maximum of the nonempty set of numbers S.

Functions:
f:X  Y f is declared as a partial injection from X to Y.
dom f The domain of f: the set of values x for which f(x) is defined. 
ran f The range of f: the set of values taken by f(x) as x varies over the domain of f. 
f ! {x ° y} A function that agrees with f except that x is mapped to y. 
{x} v f A function like f, except that x is removed from its domain. 

Logic:
P ` Q P and Q: It is true if both P and Q are true. 
P  Q P implies Q: It is true if either Q is true or P is false. 
uS9 5 u S No components of schema S change in an operation.



906 APPENDIX 3  FORMAL METHODS

 The following example of a schema describes the state of the block handler 

and the data invariant: 

  BlockHandler   

  used, free  : P  BLOCKS  

  BlockQueue  :  seq  P  BLOCKS  

  used  >  free  5 [` 

  used  <  free  5  AllBlocks  ` 

 ; i : dom  BlockQueue  •  BlockQueue i  #  used  ` 

 ; i, j : dom  BlockQueue  •  i  Þ  j  5.  BlockQueue i  >  BlockQueue j  5 [ 

    

 As we have noted, the schema consists of two parts. The part above the cen-

tral line represents the variables of the state, while the part below the central 

line describes the data invariant. Whenever the schema specifi es operations 

that change the state, it is preceded by the D symbol. The following example of a 

schema describes the operation that removes an element from the block queue: 

 RemoveBlocks  

D    BlockHandler  

  

 #BlockQueue . 0, 

  used9  5  used  \  head BlockQueue  ` 

 free9 5  free  <  head BlockQueue  ` 

  BlockQueue9  5  tail BlockQueue  

  

 The inclusion of D  BlockHandler  results in all variables that make up the state 

being available for the  RemoveBlocks  schema and ensures that the data invari-

ant will hold before and after the operation has been executed. 

 The second operation, which adds a collection of blocks to the end of the 

queue, is represented as 

 AddBlocks  

 D BlockHandler 

 Ablocks? : BLOCKS 

  

  Ablocks?  #  used  

  BlockQueue9  5  BlockQueue  C KAblocks?L ` 

  used9  5  used  ` 

  free9  5  free  

  

 By convention in Z, an input variable that is read, but does not form part of the 

state, is terminated by a question mark. Thus, Ablocks?, which acts as an input 

parameter, is terminated by a question mark. 



APPENDIX 3  FORMAL METHODS  907

         FUR THER  READINGS  AND  INFORMATION  SOURCES 

  In the formal methods domain, books by Gabbar ( Modern Formal Methods and Applications , 

Springer, 2010), Casey ( A Programming Approach to Formal Methods,  McGraw-Hill, 2000), 

Hinchey and Bowan ( Industrial Strength Formal Methods,  Springer-Verlag, 1999), Hussmann 

( Formal Foundations for Software Engineering Methods,  Springer-Verlag, 1997), and Shep-

pard ( An Introduction to Formal Specifi cation with Z and VDM,  McGraw-Hill, 1995) provide 

useful guidance. In addition, language-specifi c books such as Liu ( Formal Engineering for 

Industrial Software Development: Using SOFL Method, 2010 ), Warmer and Kleppe ( The Ob-

ject Constraint Language: Precise Modeling with UML,  Addison-Wesley, 2005) and ( Object 

Constraint Language,  Addison-Wesley, 1998), Jacky ( The Way of Z: Practical Programming 

with Formal Methods,  Cambridge University Press, 1997), Harry ( Formal Methods Fact File: 

VDM and Z,  Wiley, 1997), and Cooper and Barden ( Z in Practice,  Prentice Hall, 1995) provide 

useful introductions to formal methods as well as a variety of modeling languages.  

  A wide variety of information sources on formal methods is available on the Internet. 

An up-to-date list of World Wide Web references can be found under “software engineering 

resources” at the SEPA website: www.mhhe.com/pressman.     



This page intentionally left blank 



909

 [Abb83] Abbott, R., “Program Design by Informal English Descriptions, “ CACM , vol. 26, 
no. 11, November 1983, pp. 892–894. 

 [Abr09] Abrial, J., “Faultless Systems: Yes We Can!”  IEEE Computer , vol. 42, no. 9, September 
2009, pp. 30–36. 

 [ACM12] ACM/IEEE-CS Joint Task Force,  Software Engineering Code of Ethics and 

Professional Practice , 2012, available at www.acm.org/serving/se/code.htm. 
 [Ada93] Adams, D.,  Mostly Harmless , Macmillan, 1993. 
 [AFC88]  Software Risk Abatement , AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 

30, 1988. 
 [Agi03] The Agile Alliance Home Page, available at www.agilealliance.org/home. 
 [Air99] Airlie Council, “Performance Based Management: The Program Manager’s Guide 

Based on the 16-Point Plan and Related Metrics,” Draft Report, March 8, 1999. 
 [Aka04] Akao, Y.,  Quality Function Deployment , Productivity Press, 2004. 
 [Ale11] Alexander, I. “Gore, Sore, or What?”  IEEE Software , vol. 28, no. 1, January–February 

2011, pp. 8–10. 
 [Ale77] Alexander, C.,  A Pattern Language , Oxford University Press, 1977. 
 [Ale79] Alexander, C.,  The Timeless Way of Building , Oxford University Press, 1979. 
 [All08] Allen, J. H., et al.,  Software Security Engineering: A Guide for Project Managers , 

Addison-Wesley, 2008. 
 [Amb01] Ambler, S.,  The Object Primer , 2nd ed., Cambridge University Press, 2001. 
 [Amb02a] Ambler, S., “What Is Agile Modeling (AM)?” 2002, available at www.agilemodeling.

com/index.htm. 
 [Amb02b] Ambler, S., and R. Jeffries,  Agile Modeling , Wiley, 2002. 
 [Amb02c] Ambler, S., “UML Component Diagramming Guidelines,” 2002, available at 

www.modelingstyle.info/. 
 [Amb04] Ambler, S., “ Examining the Cost of Change Curve ,” in  The Object Primer , 3rd ed., 

Cambridge University Press, 2004. 
 [Amb06] Ambler, S., “The Agile Unifi ed Process (AUP), 2006, available at www.ambysoft.

com/unifi edprocess/agileUP.html. 
 [Amb95] Ambler, S., “Using Use-Cases,”  Software Development , July 1995, pp. 53–61. 
 [Amb98] Ambler, S.,  Process Patterns: Building Large-Scale Systems Using Object Technology , 

Cambridge University Press/SIGS Books, 1998. 
 [And05] Andreou, A., et al., “Key Issues for the Design and Development of Mobile Com-

merce Services and Applications,”  International Journal of Mobile Communications , 
vol. 3, no. 3, March 2005, pp. 303–323. 

 And06] Andrews, M., and J. Whittaker,  How to Break Web Software: Functional and Security 

Testing of Web Applications and Web Services , Addison-Wesley, 2006. 
 [ANS87] ANSI/ASQC A3-1987,  Quality Systems Terminology , 1987. 
 [Ant06] Anton, D., and C. Anton,  ISO 9001 Survival Guide , 3rd ed., AEM Consulting Group, 

2006. 
 [AOS07] AOSD.net (Aspect-Oriented Software Development), glossary, available at http://

aosd.net/wiki/index.php?title=Glossary. 
 [App00] Appleton, B., “Patterns and Software: Essential Concepts and Terminology,” Febru-

ary 2000, available at www.cmcrossroads.com/bradapp/docs/patterns-intro.html. 
 [App13] Apple Computer,  Accessibility , 2013, available at www.apple.com/accessibility/. 
 [Arl02] Arlow, J., and I. Neustadt,  UML and the Unifi ed Process , Addison-Wesley, 2002. 
 [Arn89] Arnold, R. S., “Software Restructuring,”  Proceedings of the IEEE , vol. 77, no. 4, 

April 1989, pp. 607–617. 

     REFERENCES 

pre22126_ref_909-932.indd   909pre22126_ref_909-932.indd   909 13/12/13   6:19 PM13/12/13   6:19 PM



910 REFERENCES

 [Art97] Arthur, L. J., “Quantum Improvements in Software System Quality,”  CACM , vol. 40, 
no. 6, June 1997, pp. 47–52. 

 [Ast04] Astels, D.,  Test Driven Development: A Practical Guide , Prentice Hall, 2004. 
 [ATK12] ATKearney, “A.T. Kearney Study of Global Wealth and Spending,” 2012, avail-

able at http://www.atkearney.com/news-media/news-releases/news-release/-/asset_
publisher/00OIL7Jc67KL/content/id/387464. 

 [Baa07] de Baar, B., “Project Risk Checklist,” 2007, available at www.softwareprojects.org/
project_riskmanagement_starting62.htm. 

 [Baa10] Baaz, A., et al., “Appreciating Lessons Learned,”  IEEE Software , vol. 27, no. 4, July–
August, 2010, pp. 72–79. 

 [Bab09] Babar, M., and I. Groton, “Software Architecture Review: The State of Practice,” 
 IEEE Computer , vol. 42, no. 6, June 2009, pp. 1–8. 

 [Bab86] Babich, W. A.,  Software Confi guration Management , Addison-Wesley, 1986. 
 [Bac97] Bach, J., “‘Good Enough Quality: Beyond the Buzzword,”  IEEE Computer , vol. 30, 

no. 8, August 1997, pp. 96–98. 
 [Bac98] Bach, J., “The Highs and Lows of Change Control,”  Computer , vol. 31, no. 8, August 

1998, pp. 113–115. 
 [Bae98] Baetjer, Jr., H.,  Software as Capital , IEEE Computer Society Press, 1998, p. 85. 
 [Bak72] Baker, F. T., “Chief Programmer Team Management of Production Programming,” 

 IBM Systems Journal ., vol. 11, no. 1, 1972, pp. 56–73. 
 [Ban06a] Baniassad, E., et al., “Discovering Early Aspects,”  IEEE Software , vol. 23, no. 1, 

January–February, 2006, pp. 61–69. 
 [Bar06b] Baresi, L., E. DiNitto, and C. Ghezzi, “Toward Open-World Software: Issues and 

Challenges,”  IEEE Computer , vol. 39, no. 10, October 2006, pp. 36–43. 
 [Bas03] Bass, L., P. Clements, and R. Kazman,  Software Architecture in Practice , 2nd ed., 

Addison-Wesley, 2003 
 [Bas84] Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software 

Engineering Data,”  IEEE Trans. Software Engineering , vol. SE-10, 1984, pp. 728–738. 
 [Bea11] Beaird, J., The Principles of Beautiful Web Design, 2nd ed., Sitepoint, 2011. 
 [Bec00] Beck, K.,  Extreme Programming Explained: Embrace Change , Addison-Wesley, 1999. 
 [Bec01] Beck, K., et al., “Manifesto for Agile Software Development,” www.agilemanifesto

.org/. 
 [Bec04a] Beck, K.,  Extreme Programming Explained: Embrace Change , 2nd ed., Addison-

Wesley, 2004. 
 [Bec04b] Beck, K.,  Test-Driven Development: By Example , 2nd ed., Addison-Wesley, 2004. 
 [Bee99] Beedle, M., et al., “SCRUM: An Extension Pattern Language for Hyperproduc-

tive Software Development,” included in:  Pattern Languages of Program Design 4 , 
Addison-Wesley Longman, Reading MA, 1999, downloadable from http://jeffsutherland
.com/scrum/scrum_plop.pdf. 

 [Beg10] Begel, A., R. DeLine, and T. Zimmermann, “Social Media for Software Engineering,” 
 Proc. FoSER 2010 , ACM, November, 2010. 

 [Bei84] Beizer, B.,  Software System Testing and Quality Assurance , Van Nostrand-Reinhold, 
1984. 

 [Bei90] Beizer, B.,  Software Testing Techniques , 2nd ed., Van Nostrand-Reinhold, 1990. 
 [Bei95] Beizer, B.,  Black-Box Testing , Wiley, 1995. 
 [Bel81] Belady, L., Foreword to  Software Design: Methods and Techniques  (L. J. Peters, 

author), Yourdon Press, 1981. 
 [Bel95] Bellinzona R., M. G. Gugini, and B. Pernici, “Reusing Specifi cations in OO Applica-

tions,”  IEEE Software , March 1995, pp. 65–75. 
 [Ben00] Bennatan, E.,  Software Project Management: A Practitioner’s Approach , 3rd ed., 

McGraw-Hill, 2000. 
 [Ben99] Bentley, J.,  Programming Pearls , 2nd ed., Addison-Wesley, 1999. 
 [Ben02] Bennett, S., S. McRobb, and R. Farmer,  Object-Oriented Analysis and Design , 2nd 

ed., McGraw-Hill, 2002. 
 [Ben10] Benaroch, M., and A. Appari, “Financial Pricing of Software Development Risk 

Facotrs,”  IEEE Software , vol. 27, no. 3, September–October, 2010, pp. 65–73. 

pre22126_ref_909-932.indd   910pre22126_ref_909-932.indd   910 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 911

 [Ber80] Bersoff, E., V. Henderson, and S. Siegel,  Software Confi guration Management , 
Prentice Hall, 1980. 

 [Ber93] Berard, E.,  Essays on Object-Oriented Software Engineering , vol. 1, Addison-Wesley, 1993. 
 [Bes04] Bessin, J., “The Business Value of Quality,” IBM developerWorks, June 15, 2004, download-

able from http://cm.techwell.com/articles/original/business-value-quality-and-testing. 
 [Bie94] Bieman, J. M., and L. M. Ott, “Measuring Functional Cohesion,”  IEEE Trans. Software 

Engineering , vol. SE-20, no. 8, August 1994, pp. 308–320. 
 [Bin93] Binder, R., “Design for Reuse Is for Real,”  American Programmer , vol. 6, no. 8, August 

1993, pp. 30–37. 
 [Bin94a] Binder, R., “Testing Object-Oriented Systems: A Status Report,”  American 

Programmer , vol. 7, no. 4, April 1994, pp. 23–28. 
 [Bin94b] Binder, R. V., “Object-Oriented Software Testing,”  Communications of the ACM , 

vol. 37, no. 9, September 1994, p. 29. 
 [Bin99] Binder, R.,  Testing Object-Oriented Systems: Models, Patterns, and Tools , 

Addison-Wesley, 1999. 
 [Bir98] Biró, M., and T. Remzsö, “Business Motivations for Software Process Improvement,” 

ERCIM News No. 32, January 1998, available at www.ercim.org/publication/Ercim_
News/enw32/biro.html. 

 [Bla09] Black, S., et al. “Formal Versus Agile: Survival of the Fittest?”  IEEE Computer , vol. 42, 
no. 9, September 2009, pp. 37–45. 

 [Bla10] Blair, S., et al., “Responsibility-Driven Architecture,”  IEEE Software , vol. 27, no. 3, 
March–April 2010, pp. 26–32. 

 [Bod09] Bode, S., et al., “Software Architectural Design Meets Security Engineering,” 
 Proceedings of 16th Annual IEEE International Conference and Workshop on the 

Engineering of Computer Based Systems , 2009. 
 [Boe00] Boehm, B., et al.,  Software Cost Estimation in COCOMO II , Prentice Hall, 2000. 
 [Boe01a] Boehm, B., “The Spiral Model as a Tool for Evolutionary Software Acquisition,” 

 CrossTalk , May 2001, available at www.stsc.hill.af.mil/crosstalk/2001/05/boehm.html. 
 [Boe01b] Boehm, B., and V. Basili, “Software Defect Reduction Top 10 List,”  IEEE Computer , 

vol. 34, no. 1, January 2001, pp. 135–137. 
 [Boe08] Boehm, B., “Making a Difference in the Software Century,”  IEEE Computer , vol. 41, 

no. 3, March 2008, pp. 32–38. 
 [Boe81] Boehm, B.,  Software Engineering Economics , Prentice Hall, 1981. 
 [Boe88] Boehm, B., “A Spiral Model for Software Development and Enhancement,” 

 Computer , vol. 21, no. 5, May 1988, pp. 61–72. 
 [Boe89] Boehm, B. W.,  Software Risk Management , IEEE Computer Society Press, 1989. 
 [Boe96] Boehm, B., “Anchoring the Software Process,”  IEEE Software , vol. 13, no. 4, July 1996, 

pp. 73–82. 
 [Boe98] Boehm, B., “Using the WINWIN Spiral Model: A Case Study,”  Computer , vol. 31, no. 7, 

July 1998, pp. 33–44. 
 [Boh00] Bohl, M., and M. Rynn,  Tools for Structured Design: An Introduction to Programming 

Logic , 5th ed., Prentice Hall, 2000. 
 [Boh66] Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines and Languages with 

Only Two Formation Rules,”  CACM , vol. 9, no. 5, May 1966, pp. 366–371. 
 [Boi04] Boiko, B.,  Content Management Bible , 2nd ed., Wiley, 2004. 
 [Boo02] Booch, G., and A. Brown, “Collaborative Development Environments,” Rational Soft-

ware Corp., October 28, 2002. 
 [Boo05] Booch, G., J. Rumbaugh, and I. Jacobsen,  The Unifi ed Modeling Language User 

Guide . 2nd ed., Addison-Wesley, 2005. 
 [Boo06] Bootstrap-institute.com, 2006, www.cse.dcu.ie/espinode/directory/directory.html. 
 [Boo08] Booch, G.,  Handbook of Software Architecture , 2008, available at www.booch.com/

architecture/systems.jsp. 
 [Boo11a] Booch, G., “Dominant Design,”  IEEE Software , vol. 28, no. 2, January–February 

2011, pp. 8–9. 
 [Boo11b] Booch, G., “Draw Me a Picture,”  IEEE Software , vol. 28, no. 1, January–February 

2011, pp. 6–7. 

pre22126_ref_909-932.indd   911pre22126_ref_909-932.indd   911 13/12/13   6:19 PM13/12/13   6:19 PM



912 REFERENCES

 [Boo94] Booch, G.,  Object-Oriented Analysis and Design , 2nd ed., Benjamin Cummings, 1994. 
 [Bor01] Borchers, J.,  A Pattern Approach to Interaction Design , Wiley, 2001. 
 [Bos00] Bosch, J.,  Design & Use of Software Architectures , Addison-Wesley, 2000. 
 [Bos11] Bose, B., et al., “Morphing Smartphones into Automotive Application Platforms,” 

 IEEE Computer , vol. 44, no. 5, May 2011, pp. 28–29. 
 [Bra94] Bradac, M., D. Perry, and L. Votta, “Prototyping a Process Monitoring Experiment,” 

 IEEE Trans. Software Engineering , vol. 20, no. 10, October 1994, pp. 774–784. 
 [Bre02] Breen, P., “Exposing the Fallacy of ‘Good Enough’ Software,” informit.com, February 

1, 2002, available at www.informit.com/articles/article.asp?p=25141&rl=1. 
 [Bre03] Breu, R., et al.,  Key Issues of a Formally Based Process Model for Security Engineering , 

Proceedings of the 16th International Conference on Software & Systems Engineering 
and their Applications,  2003 . 

 [Bre10] Breu, R.,  Ten Principles for Living Models—A Manifesto of Change-Driven Software 

Engineering , International Conference on Complex, Intelligent and Software Intensive 
Systems (CISIS), Krakow, Poland, February 2010, pp. 1–8. 

 [Bro01] Brown, B.,  Oracle9i Web Development , 2nd ed., McGraw-Hill, 2001. 
 [Bro03] Brooks, F., “Three Great Challenges for Half-Century-Old Computer Science,” 

 JACM , vol. 50, no. 1, January 2003, pp. 25–26. 
 [Bro06] Broy, M., “The ‘Grand Challenge’ in Informatics: Engineering Software Intensive 

Systems,”  IEEE Computer , vol. 39, no. 10, October 2006, pp. 72–80. 
 [Bro10a] Brown, N., R. Nord, and I. Ozkaya, “Enabling Agility through Architecture,” 

 Crosstalk , November–December 2010, available at www.crosstalkonline.org/storage/
issue-archives/…/201011-Brown.pdf. 

 [Bro10b] Broy, M., and R. Reussner, “Software Architecture Review: The State of Practice,” 
 IEEE Computer , vol. 43, no. 10, June 2010, pp. 88–91. 

 [Bro11] Brown, M., “The Best Tools for Mobile App Testing,” available at  http://www
.mobileapptesting.com/the-best-tools-for-mobile-app-testing/2011/08/.  

 [Bro12] Brown, A.,  The Architecture of Open Source Applications , lulu.com, 2012. 
 [Bro95] Brooks, F.,  The Mythical Man-Month , Silver Anniversary edition, Addison-Wesley, 1995. 
 [Bro96] Brown, A., and K. Wallnau, “Engineering of Component Based Systems,” 

 Component-Based Software Engineering , IEEE Computer Society Press, 1996, pp. 7–15. 
 [Buc99] Bucanac, C., “The V-Model,” University of Karlskrona/Ronneby, January 1999, 

downloadable from www.bucanac.com/documents/The_V-Model.pdf. 
 [Bud96] Budd, T.,  An Introduction to Object-Oriented Programming , 2nd ed., Addison-Wesley, 

1996. 
 [Bus07] Buschmann, F., et al.,  Pattern-Oriented Software Architecture, A System of Pattern , 

Wiley, 2007. 
 [Bus10] Buschmann, F., “Learning from Failure, Part 2: Featuritis, Performitis, and Other 

Diseases,”  IEEE Software , vol. 27, no. 1, January–February 2010, pp. 10–11. 
 [Bus10a] Buschmann, F., “On Architecture Styles and Paradigms,”  IEEE Software , vol. 27, no. 

5, September–October 2010, pp. 92–94. 
 [Bus10b] Buschmann, F., and K. Henley, “Five Considerations for Software Architecture, 

Part 1,”  IEEE Software , vol. 27, no. 3, May–June 2010, pp. 63–65. 
 [Bus10c] Buschmann, F., and K. Henley, “Five Considerations for Software Architecture, 

Part 2,”  IEEE Software , vol. 27, no. 4, July–August 2010, pp. 12–14. 
 [Bus96] Buschmann, F., et al.,  Pattern-Oriented Software Architecture , Wiley, 1996. 
 [Cac02] Cachero, C., et al., “Conceptual Navigation Analysis: a Device and Platform Inde-

pendent Navigation Specifi cation,”  Proceedings of the Second International Workshop 

on Web-Oriented Technology , June 2002, available at www.dsic.upv.es/~west/iwwost02/
papers/cachero.pdf. 

 [Car08] Carrasco, M., “7 Key Attributes of High Performance Software Development 
Teams,” June 30, 2008, available at  http://www.realsoftwaredevelopment.com/7-key-
attributes-of-high-performance-software-development-teams/.  

 [Car90] Card, D., and R. Glass,  Measuring Software Design Quality , Prentice Hall, 1990. 
 [Cas06] Casey, V., and I. Richardson, “Uncovering the Reality within Virtual Software 

Teams,”  Proc. GSD’06 , ACM, May 23, 2006. 

pre22126_ref_909-932.indd   912pre22126_ref_909-932.indd   912 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 913

 [Cas89] Cashman, M., “Object Oriented Domain Analysis,”  ACM Software Engineering 

Notes , vol. 14, no. 6, October 1989, p. 67. 
 [Cav78] Cavano, J., and J. McCall, “A Framework for the Measurement of Software Quality,” 

 Proc. ACM Software Quality Assurance Workshop , November 1978, pp. 133–139. 
 [CCS02] CS3 Consulting Services, 2002, available at www.cs3inc.com/DSDM.htm. 
 [Cec06] Cechich, A., et al., “Trends on COTS Component Identifi cation,”  Proc. Fifth Intl. 

Conf. on COTS-Based Software Systems , IEEE, 2006. 
 [Cha89] Charette, R.,  Engineering Risk Analysis and Management , McGraw-Hill/Intertext, 

1989. 
 [Cha92] Charette, R., “Building Bridges over Intelligent Rivers,”  American Programmer , 

vol. 5, no. 7, September 1992, pp. 2–9. 
 [Cha93] de Champeaux, D., D. Lea, and P. Faure,  Object-Oriented System Development , 

Addison-Wesley, 1993. 
 [Chi94] Chidamber, S., and C. Kemerer, “A Metrics Suite for Object-Oriented Design,”  IEEE 

Trans. Software Engineering , vol. SE-20, no. 6, June 1994, pp. 476–493. 
 [Cho89] Choi, S., and W. Scacchi, “Assuring the Correctness of a Confi gured Software 

Description,”  Proceedings of the Second International Workshop on Software Confi gura-

tion Management , ACM, Princeton, NJ, October 1989, pp. 66–75. 
 [Chu09] Chung, L., and J. Leite, “On Non-Functional Requirements in Software Engineer-

ing,” published in  Conceptual Modeling: Foundations and Applications , Springer-Verlag, 
2009. 

 [Chu95] Churcher, N., and M. Shepperd, “Towards a Conceptual Framework for Object-
Oriented Metrics,”  ACM Software Engineering Notes , vol. 20, no. 2, April 1995, pp. 69–76. 

 [Cia09] Ciafrani, C., et al.,  ISO 9000:2008 Explained , 3rd ed., ASQ Quality Press, 2009. 
 [Cig07] Cigital, Inc., “Case Study: Finding Defects Earlier Yields Enormous Savings,” 2007, 

available at www.cigital.com/solutions/roi-cs2.php. 
 [Cla05] Clark, S., and E. Baniasaad,  Aspect-Oriented Analysis and Design , Addison-Wesley, 

2005. 
 [Cle03] Clements, P., R. Kazman, and M. Klein,  Evaluating Software Architectures: Methods 

and Case Studies , Addison-Wesley, 2003. 
 [Cle06] Clemmons, R., “Project Estimation with Use Case Points,”  CrossTalk , February 2006, 

pp. 18–222, available at www.stsc.hill.af.mil/crosstalk/2006/02/0602Clemmons.pdf. 
 [Cle10] Clements, P., and L. Bass, “The Business Goals Viewpoint,”  IEEE Software , vol. 27, 

no. 6, November–December 2010, pp. 38–45. 
 [CMM07]  Capability Maturity Model Integration (CMMI) , Software Engineering Institute, 

2007, available at www.sei.cmu.edu/cmmi/. 
 [CMM08]  People   Capability Maturity Model Integration (People CMM) , Software Engineering 

Institute, 2008, available at www.sei.cmu.edu/cmm-p/. 
 [Coa91] Coad, P., and E. Yourdon,  Object-Oriented Analysis , 2nd ed., Prentice Hall, 1991. 
 [Coa99] Coad, P., E. Lefebvre, and J. DeLuca,  Java Modeling in Color with UML , Prentice 

Hall, 1999. 
 [Coc01a] Cockburn, A., and J. Highsmith, “Agile Software Development: The People Factor,” 

 IEEE Computer , vol. 34, no. 11, November 2001, pp. 131–133. 
 [Coc01b] Cockburn, A.,  Writing Effective Use-Cases , Addison-Wesley, 2001. 
 [Coc02] Cockburn, A.,  Agile Software Development , Addison-Wesley, 2002. 
 [Coc04] Cockburn, A., “What the Agile Toolbox Contains,”  CrossTalk , November 2004, avail-

able at www.stsc.hill.af.mil/crosstalk/2004/11/0411Cockburn.html. 
 [Coc05] Cockburn, A.,  Crystal Clear , Addison-Wesley, 2005. 
 [Coc11] Cochran, C.,  ISO 9001 in Plain English , Paton Professional, 2011. 
 [Coh05] Cohn, M., “Estimating with Use Case Points,”  Methods & Tools , Fall, 2005, available 

at  http://www.mountaingoatsoftware.com/articles/estimating-with-use-case-points . 
 [Col09] Collaris, R-A., and E. Dekker, “Software Cost Estimation Using Use Case Points, ” IBM 

Developer Works, March 15, 2009, available at http://www.ibm.com/developerworks/
rational/library/edge/09/mar09/collaris_dekker/. 

 [Con93] Constantine, L., “Work Organization: Paradigms for Project Management and 
Organization,  CACM , vol. 36, no. 10, October 1993, pp. 34–43. 

pre22126_ref_909-932.indd   913pre22126_ref_909-932.indd   913 13/12/13   6:19 PM13/12/13   6:19 PM



914 REFERENCES

 [Con95] Constantine, L., “What DO Users Want? Engineering Usability in Software,”  Windows 

Tech Journal , December 1995, available from www.forUse.com. 
 [Con96] Conradi, R., “Software Process Improvement: Why We Need SPIQ,” NTNU, October 

1996, downloadable from www.idi.ntnu.no/grupper/su/publ/pdf/nik96-spiq.pdf. 
 [Con99] Constantine, L., and L. Lockwood, “Learning the Laws of Usability,”  Software 

Development , vol. 7, no. 10, October, 1999. 
 [Con02] Conradi, R., and A. Fuggetta, “Improving Software Process Improvement,” 

 IEEE Software , July–August 2002, pp. 2–9, available at http://citeseer.ist.psu.edu/
conradi02improving.html. 

 [Cop05] Coplien, J., “Software Patterns,” 2005, available at http://hillside.net/patterns/
defi nition.html. 

 [Cou00] Coulouris, G., J. Dollimore, and T. Kindberg,  Distributed Systems: Concepts and 

Design , 3rd ed., Addison-Wesley, 2000. 
 [Cri92] Christel, M., and K. Kang, “Issues in Requirements Elicitation,” Software Engineer-

ing Institute, CMU/SEI-92-TR-12 7, September 1992. 
 [Crn11] Crnkovic, I., et al., “A Classifi cation Framework for Software Component Models,” 

 IEEE Transactions on Software Engineering , vol. 37, no. 5, September–October 2011, 
pp. 593–615. 

 [Cro79] Crosby, P.,  Quality Is Free , McGraw-Hill, 1979. 
 [Cur01] Curtis, B., W. Hefl ey, and S. Miller,  People Capability Maturity Model , Addison-

Wesley, 2001. 
 [Cur86] Curritt, P., M. Dyer, and H. Mills, “Certifying the Reliability of Software,”  IEEE Trans, 

Software Engineering , vol. SE-12, no. 1, January 1994. 
 [Cur90] Curtis, B., and D. Walz, “The Psychology of Programming in the Large: Team and 

Organizational Behavior,”  Psychology of Programming , Academic Press, 1990. 
 [CVS07] Concurrent Versions System, Ximbiot, 2007, available at http://ximbiot.com/cvs/

wiki/index.php?title=Main_Page. 
 [CVS12]  Open CVS , 2012, available at http://web.archive.org/web/20041220041434/http://

www.opencvs.org/. 
 [DAC03] “An Overview of Model-Based Testing for Software,” Data and Analysis Center 

for Software, CR/TA 12, June 2003, available from www.goldpractices.com/dwnload/
practice/pdf/Model_Based_Testing.pdf. 

 [Dah72] Dahl, O., E. Dijkstra, and C. Hoare,  Structured Programming , Academic Press, 1972. 
 [Dan09] Dang, A., “How Correct is Security by Correctness?” Tom’s Hardware, July 16, 2009, 

available at http://www.tomshardware.com/reviews/joanna-rutkowska-rootkit,2356-7.html. 
 [Dar01] Dart, S.,  Spectrum of Functionality in Confi guration Management Systems , Soft-

ware Engineering Institute, 2001, available at www.sei.cmu.edu/legacy/scm/tech_rep/
TR11_90/TOC_TR11_90.html. 

 [Dar91] Dart, S., “Concepts in Confi guration Management Systems,”  Proc. Third Interna-

tional Workshop on Software Confi guration Management , ACM SIGSOFT, 1991, available 
at www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html. 

 [Dar99] Dart, S., “Change Management: Containing the Web Crisis,”  Proc. Software Con-

fi guration Management Symposium , Toulouse, France, 1999, available at www.perforce
.com/perforce/conf99/dart.html. 

 [Dav90] Davenport, T. H., and J. E. Young, “The New Industrial Engineering: Information 
Technology and Business Process Redesign,”  Sloan Management Review , Summer 1990, 
pp. 11–27. 

 [Dav93] Davis, A., et al., “Identifying and Measuring Quality in a Software Requirements 
Specifi cation,”  Proceedings of the First International Software Metrics Symposium , IEEE, 
Baltimore, MD, May 1993, pp. 141–152. 

 [Dav95a] Davis, M., “Process and Product: Dichotomy or Duality,”  Software Engineering 

Notes , ACM Press, vol. 20, no. 2, April 1995, pp. 17–18. 
 [Dav95b] Davis, A.,  201 Principles of Software Development , McGraw-Hill, 1995. 
 [Day99] Dayani-Fard, H., et al., “Legacy Software Systems: Issues, Progress, and Chal-

lenges,” IBM Technical Report: TR-74.165-k, April 1999, available at www.cas.ibm.com/
toronto/publications/TR-74.165/k/legacy.html. 

pre22126_ref_909-932.indd   914pre22126_ref_909-932.indd   914 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 915

 [DeM02] DeMarco, T., and B. Boehm, “The Agile Methods, Fray,”  IEEE Computer , vol. 35, no. 
6, June 2002, pp. 90–92. 

 [DeM79] DeMarco, T.,  Structured Analysis and System Specifi cation , Prentice Hall, 1979. 
 [DeM95] DeMarco, T.,  Why Does Software Cost So Much?  Dorset House, 1995. 
 [DeM98] DeMarco, T., and T. Lister,  Peopleware , 2nd ed., Dorset House, 1998. 
 [Dem86] Deming, W.,  Out of the Crisis , MIT Press, 1986. 
 [Den73] Dennis, J., “Modularity,” in  Advanced Course on Software Engineering  (F. L. Bauer, 

ed.), Springer-Verlag, 1973, pp. 128–182. 
 [Des08] de Sá, M., and L. Carriço, “Lessons from Early Stages Design of Mobile Applica-

tions,”  Proceedings of 10th International Conference on Human Computer Human with 

Mobile Services and Devices , September 2008, pp. 127–136. 
 [deS09] de Sousa, C., et al, “Cooperative and Human Aspects of Software Engineering,” 

 IEEE Software , vol. 26, no. 6, pp. 17–19. 
 [Dev00] Devanbu, P., and S. Stubblebine, “Software Engineering for Security: A Roadmap,” 

 Proc. ICSE , IEEE, 2000, available at http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/fose/ 
fi naldevanbu.pdf. 

 [Dev01] Devedzik, V., “Software Patterns,” in  Handbook of Software Engineering and 

Knowledge Engineering , World Scientifi c Publishing Co., 2001. 
 [Dha95] Dhama, H., “Quantitative Metrics for Cohesion and Coupling in Software,”  Journal 

of Systems and Software , vol. 29, no. 4, April 1995. 
 [Dij65] Dijkstra, E., “Programming Considered as a Human Activity,” in  Proc. 1965 IFIP 

Congress , North-Holland Publishing Co., 1965. 
 [Dij72] Dijkstra, E., “The Humble Programmer,” 1972 ACM Turing Award Lecture,  CACM , 

vol. 15, no. 10, October 1972, pp. 859–866. 
 [Dij76a] Dijkstra, E., “Structured Programming,” in  Software Engineering, Concepts and 

Techniques  (J. Buxton et al., ed.), Van Nostrand-Reinhold, 1976. 
 [Dij76b] Dijkstra, E.,  A Discipline of Programming , Prentice Hall, 1976. 
 [Dij82] Dijksta, E., “On the Role of Scientifi c Thought,”  Selected Writings on Computing: 

A Personal Perspective , Springer-Verlag, 1982. 
 [Dix99] Dix, A., “Design of User Interfaces for the Web,”  Proc. User Interfaces to Data 

Systems Conference , September 1999, available at www.comp.lancs.ac.uk/computing/
users/dixa/topics/webarch/. 

 [Don99] Donahue, G., S. Weinschenck, and J. Nowicki, “Usability Is Good Business,” Compu-
ware Corp., July 1999, available at www.compuware.com. 

 [Dre99] Dreilinger, S., “CVS Version Control for Web Site Projects,” 1999, available at www
.durak.org/cvswebsites/howto-cvs/howto-cvs.html. 

 [Dru75] Drucker, P.,  Management , W. H. Heinemann, 1975. 
 [DSi08] D’Silva, V., et al., “Interview: Software Security in the Real World,”  IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems , vol. 27, no. 7, July 2008, 
pp. 1165–1178. 

 [Duc01] Ducatel, K., et al.,  Scenarios for Ambient Intelligence in 2010 , ISTAG-European 
Commission, 2001, downloadable from ftp://ftp.cordis.europa.eu/pub/ist/docs/
istagscenarios2010.pdf. 

 [Dun01] Dunaway, D., and S. Masters,  CMM-Based Appraisal for Internal Process Improve-

ment (CBA IPI Version 1,2 Method Description) , Software Engineering Institute, 2001, 
available at www.sei.cmu.edu/publications/documents/01.reports/01tr033.html. 

 [Dun02] Dunn, W.,  Practical Design of Safety-Critical Computer Systems , William Dunn, 2002. 
 [Dun82] Dunn, R., and R. Ullman,  Quality Assurance for Computer Software , McGraw-Hill, 

1982. 
 [Duy02] VanDuyne, D., J. Landay, and J. Hong,  The Design of Sites , Addison-Wesley, 2002. 
 [Dye92] Dyer, M.,  The Cleanroom Approach to Quality Software Development , Wiley, 1992. 
 [Edg95] Edgemon, J., “Right Stuff: How to Recognize It When Selecting a Project Manager,” 

 Application Development Trends , vol. 2, no. 5, May 1995, pp. 37–42. 
 [Eis01] Eisenstein, J., et al., “Applying Model-Based Techniques to the Development of UIs 

for Mobile Computers,”  Proceedings of Intelligent User Interfaces , January 2001. 
 [Eji91] Ejiogu, L.,  Software Engineering with Formal Metrics , QED Publishing, 1991. 

pre22126_ref_909-932.indd   915pre22126_ref_909-932.indd   915 13/12/13   6:19 PM13/12/13   6:19 PM



916 REFERENCES

 [Elr01] Elrad, T., R. Filman, and A. Bader (ed.), “Aspect Oriented Programming,”  Comm. 

ACM , vol. 44, no. 10, October 2001, special issue. 
 [Erd09] Ergomus, H., “The Seven Traits of Superprofessionals,”  IEEE Software , vol. 26, no. 4, 

July–August, 2009, pp. 4–6. 
 [Erd10] Ergogmus, H., “Déjà vu: The Life of Software Engineering Ideas,”  IEEE Software , 

vol. 27, no. 1, January–February 2010, pp. 2–3. 
 [Eri05] Ericson, C.,  Hazard Analysis Techniques for System Safety , Wiley-Interscience, 2005. 
 [Eri08] Erickson, T.,  The Interaction Design Patterns Page , May 2008, available at www.visi

.com/~snowfall/InteractionPatterns.html. 
 [Eva04] Evans, E.,  Domain Driven Design , Addison-Wesley, 2004. 
 [Eve09] Everett, G., and B. Meyer, “Point/Counterpoint,”  IEEE Software , vol. 26, no. 4, July–

August 2009, pp. 62–65. 
 [Fag86] Fagan, M., “Advances in Software Inspections,”  IEEE Trans. Software Engineering , 

vol. 12, no. 6, July 1986. 
 [Fal10] Falessi, D., et al., “Peaceful Coexistence: Agile Developer Perspectives on Software 

Architecture,”  IEEE Software , vol. 27, no. 3, March–April 2010, pp. 23–25. 
 [Fel07] Feller, J., et al. (eds.),  Perspectives on Free and Open Source Software , The MIT Press, 

2007. 
 [Fel89] Felican, L., and G. Zalateu, “Validating Halstead’s Theory for Pascal Programs,”  IEEE 

Trans. Software Engineering , vol. SE-15, no. 2, December 1989, pp. 1630–1632. 
 [Fen91] Fenton, N.,  Software Metrics , Chapman and Hall, 1991. 
 [Fen94] Fenton, N., “Software Measurement: A Necessary Scientifi c Basis,”  IEEE Trans. 

Software Engineering , vol. SE-20, no. 3, March 1994, pp. 199–206. 
 [Fer00] Fernandez, E. B., and X. Yuan, “Semantic Analysis Patterns,”  Proceedings of the   19th 

International Conerence on Conceptual Modeling, ER2000 , Lecture Notes in Computer 
Science 1920, Springer, 2000, pp. 183–195. Also available from www.cse.fau.edu/~ed/
SAPpaper2.pdf. 

 [Fer97] Ferguson, P., et al., “Results of Applying the Personal Software Process,”  IEEE Com-

puter , vol. 30, no. 5, May 1997, pp. 24–31. 
 [Fer98] Ferdinandi, P. L., “Facilitating Communication,”  IEEE Software , September 1998, 

pp. 92–96. 
 [Fil05] Filman, R., et al.,  Aspect-oriented Software Development , Addison-Wesley, 2005. 
 [Fir12] Firesmith, D.,  Security and Safety Requirements for Software-Intensive Systems , 

Auerbach, 2012. 
 [Fir93] Firesmith, D. G.,  Object-Oriented Requirements Analysis and Logical Design , Wiley, 

1993. 
 [Fis11] Fisher, R., et al.,  Getting to Yes: Negotiating without Giving In , Penguin Books, 2011. 
 [Fle98] Fleming, Q., and J. Koppelman, “Earned Value Project Management,”  CrossTalk , vol. 

11, no. 7, July 1998, p. 19. 
 [Fok10] Fokaefs, M., et al., WikiDev 2.0: Facilitating Software Development Teams,  Proceed-

ings of the 14th European Conference on Software Maintenance and Reengineering , 
March 15–18, 2010, pp. 276–277. 

 [Fos06] Foster, E., “Quality Culprits,” InfoWorld Grip Line Weblog, May 2, 2006, available at 
http://weblog.infoworld.com/gripeline/2006/05/02_a395.html. 

 [Fow00] Fowler, M., et al.,  Refactoring: Improving the Design of Existing Code , Addison-
Wesley, 2000. 

 [Fow01] Fowler, M., and J. Highsmith, “The Agile Manifesto,”  Software Development Mag-

azine , August 2001, available at www.sdmagazine.com/documents/s=844/sdm0108a/
0108a.htm. 

 [Fow02] Fowler, M., “The New Methodology,” June 2002, available at www.martinfowler
.com/articles/newMethodology.html#N8B. 

 [Fow03] Fowler, M., et al.,  Patterns of Enterprise Application Architecture , Addison-Wesley, 
2003. 

 [Fow04] Fowler, M.,  UML Distilled , 3rd ed., Addison-Wesley, 2004. 
 [Fow97] Fowler, M.,  Analysis Patterns: Reusable Object Models , Addison-Wesley, 1997. 

pre22126_ref_909-932.indd   916pre22126_ref_909-932.indd   916 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 917

 [Fra93] Frankl, P., and S. Weiss, “An Experimental Comparison of the Effectiveness of Branch 
Testing and Data Flow,”  IEEE Trans. Software Engineering , vol. SE-19, no. 8, August 1993, 
pp. 770–787. 

 [Fre80] Freeman, P., “The Context of Design,” in  Software Design Techniques , 3rd ed. 
(P. Freeman and A. Wasserman, eds.), IEEE Computer Society Press, 1980, pp. 2–4. 

 [Fre90] Freedman, D., and G. Weinberg,  Handbook of Walkthroughs, Inspections and 

Technical Reviews , 3rd ed., Dorset House, 1990. 
 [Fri10] Fricker, S., “Handshaking with Implementation Proposals: Negotiating Requirements 

Understanding,”  IEEE Software , vol. 27, no. 2, March–April 2010, pp. 72–80. 
 [Gag04] Gage, D., and J. McCormick, “We Did Nothing Wrong,”  Baseline Magazine , March 4, 

2004, available at www.baselinemag.com/article2/0,1397,1544403,00.asp. 
 [Gai95] Gaines, B., “Modeling and Forecasting the Information Sciences,” Technical Report, 

University of Calgary, Calgary, Alberta, September 1995. 
 [Gam95] Gamma, E., et al.,  Design Patterns: Elements of Reusable Object-Oriented Software , 

Addison-Wesley, 1995. 
 [Gar08] GartnerGroup, “Understanding Hype Cycles,” 2008, available at www.gartner.com/

pages/story.php.id.8795.s.8.jsp. 
 [Gar09] Gardner, D., “Can Software Development Aspire to the Cloud?”  ZDNet.com , April 

28, 2009, available at  http://www.zdnet.com/blog/gardner/can-software-development-
aspire-to-the-cloud/2915 . 

 [Gar09a] Garlan, D., et al., “Architectural Mismatch: Way Reuse is Still So Hard,”  IEEE 

Software , vol. 26, no. 4, July–August 2009, pp. 66–69. 
 [Gar10] Garcia-Crespo, A. et al., “A Qualitative Study of Hard Decision Making in Manag-

ing Global Software Development Teams,”  Journal of Management Information Systems , 
vol. 27, no. 3, June 2010, pp. 247–252. 

 [Gar12] GartnerGroup, “Gartner Says Worldwide Media Tablets Sales to Reach 119 
Million Units in 2012,” April 2012, available at http://www.gartner.com/it/page.jsp?id=
1980115. 

 [Gar84] Garvin, D., “What Does ‘Product Quality’ Really Mean?”  Sloan Management Review , 
Fall 1984, pp. 25–45. 

 [Gar87] Garvin D., “Competing on the Eight Dimensions of Quality,”  Harvard Business 

Review , November 1987, pp. 101–109. A summary is available at www.acm.org/crossroads/
xrds6-4/software.html. 

 [Gar95] Garlan, D., and M. Shaw, “An Introduction to Software Architecture,”  Advances in 

Software Engineering and Knowledge Engineering , vol. I (V. Ambriola and G. Tortora, 
eds.), World Scientifi c Publishing Company, 1995. 

 [Gau89] Gause, D., and G. Weinberg,  Exploring Requirements: Quality Before Design , Dorset 
House, 1989. 

 [Gav11] Gavalas, D., and D. Economou, “Development Platforms for Mobile Applications,” 
 IEEE Software , vol. 28, no. 1, January–February, 2011, pp. 77–86. 

 [Gey01] Geyer-Schulz, A., and M. Hahsler, “Software Engineering with Analysis Pat-
terns,” Technical Report 01/2001, Institut für Informationsverarbeitung und -wirtschaft, 
Wirschaftsuniversität Wien, November 2001, downloadable from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.70.8415&rep=rep1&type=pdf. 

 [Gho01] Ghoshm, A., and Swaminatha, T. “Software Security and Privacy Risks in Mobile 
E-Commerce,”  Communication of the ACM , vol. 44, no. 2, February 2001, pp. 51–57. 

 [Gil06] Gillis, D., “Pattern-Based Design,” tehan + lax blog, September 14, 2006, available at 
www.teehanlax.com/blog/?p=96. 

 [Gil88] Gilb, T.,  Principles of Software Project Management , Addison-Wesley, 1988. 
 [Gil95] Gilb, T., “What We Fail to Do in Our Current Testing Culture,”  Testing Techniques 

Newsletter  (online edition, ttn@soft.com), Software Research, January 1995. 
 [Gla02] Gladwell, M.,  The Tipping Point , Back Bay Books, 2002. 
 [Gla98] Glass, R., “Defi ning Quality Intuitively,”  IEEE Software , May 1998, pp. 103–104, 107. 
 [Gli07] Glinz, M., and R. Wieringa, “Stakeholders in Requirements Engineering,”  IEEE 

Software , vol. 24, no. 2, March–April 2007, pp. 18–20. 

pre22126_ref_909-932.indd   917pre22126_ref_909-932.indd   917 13/12/13   6:19 PM13/12/13   6:19 PM



918 REFERENCES

 [Gli09] Glinz, M., “A Risk-Base, Value-Oriented Approach to Quality Requirements,”  IEEE 

Software , vol. 26, no. 5, March–April 2009, pp. 34–41. 
 [Glu94] Gluch, D., “A Construct for Describing Software Development Risks,” CMU/SEI-

94-TR-14, Software Engineering Institute, 1994. 
 [Gna99] Gnaho, C., and F. Larcher, “A User-Centered Methodology for Complex and Cus-

tomizable Web Engineering,”  Proceedings of the First ICSE Workshop on Web Engineering , 
ACM, Los Angeles, May 1999. 

 [Gon04] Gonzales, R., “Requirements Engineering,” Sandia National Laboratories, a slide 
presentation, available at www.incose.org/enchantment/docs/04AprRequirement-
sEngineering.pdf. 

 [Gor06] Gorton, I.,  Essential Software Architecture , Springer, 2006. 
 [Got11] Gotel, O., and S. Morris, “Requirements Tracery,”  IEEE Software , vol. 28, no. 5, 

September–October 2011, pp. 92–94. 
 [Gra03] Gradecki, J., and N. Lesiecki,  Mastering AspectJ: Aspect-Oriented Programming in 

Java , Wiley, 2003. 
 [Gra87] Grady, R. B., and D. L. Caswell,  Software Metrics: Establishing a Company-Wide 

Program , Prentice Hall, 1987. 
 [Gra92] Grady, R. G.,  Practical Software Metrics for Project Management and Process 

Improvement , Prentice Hall, 1992. 
 [Gru00] Gruia-Catalin, R., et al., “Software Engineering for Mobility: A Roadmap,”  Proceed-

ings   of the 22nd International Conference on the Future of Software Engineering , 2000. 
 [Gru02] Grundy, J., “Aspect-Oriented Component Engineering,” 2002, www.cs.auckland.

ac.nz/~john-g/aspects.html. 
 [Gub09] Gube, J., “40+ Helpful Resources on User Interface Design Patterns,” June 15, 

2009, http://www.smashingmagazine.com/2009/06/15/40-helpful-resources-on-user-
interface-design-patterns/. 

 [Gus89] Gustavsson, A., “Maintaining the Evolution of Software Objects in an Integrated 
Environment,”  Proceedings of the Second International Workshop on Software Confi gu-

ration Management , ACM, Princeton, NJ, October 1989, pp. 114–117. 
 [Gut93] Guttag, J., and J. Horning,  Larch: Languages and Tools for Formal Specifi cation , 

Springer-Verlag, 1993. 
 [Hac98] Hackos, J., and J. Redish,  User and Task Analysis for Interface Design , Wiley, 1998. 
 [Hai02] Hailpern, B., and P. Santhanam, “Software Debugging, Testing and Verifi cation,” 

 IBM Systems Journal , vol. 41, no. 1, 2002, available at www.research.ibm.com/journal/
sj/411/hailpern.html. 

 [Hal77] Halstead, M.,  Elements of Software Science , North-Holland, 1977. 
 [Hal90] Hall, A., “Seven Myths of Formal Methods,”  IEEE Software , September 1990, pp. 11–20. 
 [Hal98] Hall, E. M.,  Managing Risk: Methods for Software Systems Development , Addison-

Wesley, 1998. 
 [Ham90] Hammer, M., “Reengineer Work: Don’t Automate, Obliterate,”  Harvard Business 

Review , July–August 1990, pp. 104–112. 
 [Han95] Hanna, M., “Farewell to Waterfalls,”  Software Magazine , May 1995, pp. 38–46. 
 [Har11] Harris, N., and P. Avgeriou, “Pattern-Based Architecture Reviews,”  IEEE Software , 

vol. 28, no. 6, November–December 2011, pp. 66–71. 
 [Har12] Hardy, T.,  Software and System Safety , Authorhouse, 2012. 
 [Har98b] Harrison, R., S. Counsell, and R. Nithi, “An Evaluation of the MOOD Set of 

Object-Oriented Software Metrics,”  IEEE Trans. Software Engineering , vol. SE-24, no. 6, 
June 1998, pp. 491–496. 

 [Hen10] Hendler, J., “Web 3.0: The Dawn of Semantic Search,”  IEEE Computer , January, 
2010, p. 77. 

 [Her00] Herrmann, D.,  Software Safety and Reliability , Wiley-IEEE Computer Society Press, 
2000. 

 [Het84] Hetzel, W.,  The Complete Guide to Software Testing , QED Information Sciences, 1984. 
 [Het93] Hetzel, W.,  Making Software Measurement Work , QED Publishing, 1993. 
 [Hev93] Hevner, A., and H. Mills, “Box Structure Methods for System Development with 

Objects,”  IBM Systems Journal , vol. 31, no. 2, February 1993, pp. 232–251. 

pre22126_ref_909-932.indd   918pre22126_ref_909-932.indd   918 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 919

 [Hig01] Highsmith, J. (ed.), “The Great Methodologies Debate: Part 1,”  Cutter IT Journal ., 
vol. 14, no. 12, December 2001. 

 [Hig02a] Highsmith, J. (ed.), “The Great Methodologies Debate: Part 2,”  Cutter IT Journal , 
vol. 15, no. 1, January 2002. 

 [Hig95] Higuera, R., “Team Risk Management,”  CrossTalk , U.S. Dept. of Defense, January 
1995, pp. 2–4. 

 [Hil05] Hildreth, S., “Buggy Software: Up from a Low Quality Quagmire,”  Computerworld , 
July 25, 2005, available at www.computerworld.com/developmenttopics/development/
story/0,10801,103378,00.html. 

 [Hil13] Hillside.net,  Patterns Catalog , 2013, available at http://hillside.net/patterns/patterns-
catalog. 

 [Hne11] Hneif, M., and S. Lee, “Using Guidelines to Improve Quality in Software Nonfunc-
tional Attributes,”  IEEE Software , vol. 28, no. 5, November–December 2011, pp. 72–73. 

 [Hof00] Hofmeister, C., R. Nord, and D. Soni,  Applied Software Architecture , Addison-
Wesley, 2000. 

 [Hof01] Hofmann, C., et al., “Approaches to Software Architecture,” 2001, downloadable 
from http://citeseer.nj.nec.com/84015.html. 

 [Hol06] Holzner, S.,  Design Patterns for Dummies , For Dummies Publishers, 2006. 
 [Hoo96] Hooker, D., “Seven Principles of Software Development,” September 1996, available 

at http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment. 
 [Hoo12] Hoober, S., and E. Berkman,  Designing Mobile Interfaces , O’Reilly Media, 2012. 
 [Hop90] Hopper, M., “Rattling SABRE, New Ways to Compete on Information,”  Harvard 

Business Review , May–June 1990. 
 [Hor03] Horch, J.,  Practical Guide to Software Quality Management , 2nd ed., Artech House, 

2003. 
 [Hoy09] Hoyle, D.,  ISO 9000 Quality Systems Handbook , 6th ed., Taylor & Francis, 2009. 
 [Hum00] Humphrey, W.,  Introduction to the Team Software Process , Addison-Wesley, 2000. 
 [Hum05] Humphrey, W.,  A Self-Improvement Process for Software Engineers , Addison-

Wesley, 2005. 
 [Hum95] Humphrey, W.,  A Discipline for Software Engineering , Addison-Wesley, 1995. 
 [Hum96] Humphrey, W., “Using a Defi ned and Measured Personal Software Process,”  IEEE 

Software , vol. 13, no. 3, May–June 1996, pp. 77–88. 
 [Hum97] Humphrey, W.,  Introduction to the Personal Software Process , Addison-Wesley, 1997. 
 [Hum98] Humphrey, W., “The Three Dimensions of Process Improvement, Part III: The 

Team Process,”  CrossTalk , April 1998, available at www.stsc.hill.af.mil/crosstalk/1998/
apr/dimensions.asp. 

 [Hun99] Hunt, A., D. Thomas, and W. Cunningham,  The Pragmatic Programmer , Addison-
Wesley, 1999. 

 [Hya96] Hyatt, L., and L. Rosenberg, “A Software Quality Model and Metrics for Identifying 
Project Risks and Assessing Software Quality,” NASA SATC, 1996, available at http://
satc.gsfc.nasa.gov/support/STC_APR96/qualtiy/stc_qual.html. 

 [IBM13] IBM,  Web Services Globalization Model , 2013, available at http://www.ibm.com/
developerworks/webservices/library/ws-global/. 

 [IBM81] “Implementing Software Inspections,” course notes, IBM Systems Sciences Insti-
tute, IBM Corporation, 1981. 

 [IEE93a]  IEEE Standards Collection: Software Engineering , IEEE Standard 610.12-1990, IEEE, 
1993. 

 [IEE93b]  IEEE Standard Glossary of Software Engineering Terminology , IEEE, 1993. 
 [IEE00] IEEE Standard Association, IEEE-Std-1471-2000,  Recommended Practice for Archi-

tectural Description of Software-Intensive Systems , 2000, available at http://standards.
ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html. 

 [IEE05] IEEE Std. 982.1-2005,  IEEE Standard Dictionary of Measures of the Software As-

pects of Dependability , 2005, available at http://standards.ieee.org/fi ndstds/standard/
982.1-2005.html. 

 [IEE09]  IEEE Software  (special issue), “Human Aspects of Software Engineering,” vol. 28, 
no 6, November–December, 2009. 

pre22126_ref_909-932.indd   919pre22126_ref_909-932.indd   919 13/12/13   6:19 PM13/12/13   6:19 PM



920 REFERENCES

 [IFP01]  Function Point Counting Practices Manual , 2001, downloadable from: perun.pmf.uns.
ac.rs/old/repository/…/se/functionpoints.pdf. 

 [IFP12]  Function Point Bibliography/Reference Library , International Function Point Users 
Group, 2012, available from http://www.ifpug.org/?page_id=237. 

 [Isk08] Iskold, A., “Top Ten Concepts that Every Software Engineer Should Know,” Read-
Write, July 2008, available from http://readwrite.com/2008/07/22/top_10_concepts_
that_every_software_engineer_should_know. 

 [ISO00]  ISO 9001: 2000 Document Set , International Organization for Standards, 2000, avail-
able at www.iso.ch/iso/en/iso9000-14000/iso9000/iso9000index.html. 

 [ISO02]  Z Formal Specifi cation Notation—Syntax, Type System and Semantics , ISO/IEC 
13568:2002, Intl. Standards Organization, 2002. 

 [ISO08] ISO SPICE, 2008, available at www.isospice.com/categories/SPICE-Project/. 
 [Ivo01] Ivory, M., R. Sinha, and M. Hearst, “ Empirically Validated Web Page Design Metrics,” 

ACM  SIGCHI’01 , March 31–April 4, 2001, available at http://webtango.berkeley.edu/
papers/chi2001/. 

 [Jac02a] Jacobson, I., “A Resounding ‘Yes’ to Agile Processes—But Also More,”  Cutter IT 

Journal , vol. 15, no. 1, January 2002, pp. 18–24. 
 [Jac02b] Jacyntho, D., D. Schwabe, and G. Rossi, “An Architecture for Structuring Complex 

Web Applications,” 2002, available at www2002.org/CDROM/alternate/478/. 
 [Jac04] Jacobson, I., and P. Ng,  Aspect-Oriented Software Development , Addison-Wesley, 

2004. 
 [Jac75] Jackson, M. A.,  Principles of Program Design , Academic Press, 1975. 
 [Jac92] Jacobson, I.,  Object-Oriented Software Engineering , Addison-Wesley, 1992. 
 [Jac98] Jackman, M., “Homeopathic Remedies for Team Toxicity,”  IEEE Software , July 1998, 

pp. 43–45. 
 [Jac99] Jacobson, I., G. Booch, and J. Rumbaugh,  The Unifi ed Software Development Process , 

Addison-Wesley, 1999. 
 [Jal04] Jalote, P., et al., “Timeboxing: A Process Model for Iterative Software Development,” 

 Journal of Systems and Software , vol. 70, issue 2, 2004, pp. 117–127. Available at www.cse.
iitk.ac.in/users/jalote/papers/Timeboxing.pdf. 

 [Jec06] Jech, T.,  Set Theory , 3rd ed., Springer, 2006. 
 [Jon04] Jones, C., “Software Project Management Practices: Failure Versus Success,”  Cross-

Talk , October 2004. Available at www.stsc.hill.af.mil/crossTalk/2004/10/0410Jones.html. 
 [Jon86] Jones, C.,  Programming Productivity , McGraw-Hill, 1986. 
 [Jon91] Jones, C.,  Systematic Software Development Using VDM , 2nd ed., Prentice Hall, 1991. 
 [Jon96] Jones, C., “How Software Estimation Tools Work,”  American Programmer , vol. 9, 

no. 7, July 1996, pp. 19–27. 
 [Jon98] Jones, C.,  Estimating Software Costs , McGraw-Hill, 1998. 
 [Joy00] Joy, B., “The Future Doesn’t Need Us,”  Wired , vol. 8, no. 4, April 2000. 
 [Kai02] Kaiser, J., “Elements of Effective Web Design,”  About, Inc ., 2002, available at http://

webdesign.about.com/library/weekly/aa091998.htm. 
 [Kan01] Kaner, C., “Pattern: Scenario Testing” (draft), 2001, available at www.testing.com/

test-patterns/patterns/pattern-scenario-testing-kaner.html. 
 [Kan93] Kaner, C., J. Falk, and H. Q. Nguyen,  Testing Computer Software , 2nd ed., Van Nostrand-

Reinhold, 1993. 
 [Kan95] Kaner, C., “Lawyers, Lawsuits, and Quality Related Costs,” 1995, available at www.

badsoftware.com/plaintif.htm. 
 [Kanll] Kannan, N., “Mobile Testing: Nine Strategy Tests You’ll Want to Perform,” 2011, avail-

able at  http://searchsoftwarequality.techtarget.com/tip/Mobile-testing-Nine-strategy-
tests-youll-want-to-perform . 

 [Kar94] Karten, N.,  Managing Expectations , Dorset House, 1994. 
 [Kau95] Kauffman, S.,  At Home in the Universe , Oxford, 1995. 
 [Kaz03] Kazman, R., and A. Eden, “Defi ning the Terms Architecture, Design, and Implemen-

tation,”  news@sei interactive , Software Engineering Institute, vol. 6, no. 1, 2003, available 
at www.sei.cmu.edu/news-at-sei/columns/the_architect/2003/1q03/architect-1q03.htm. 

pre22126_ref_909-932.indd   920pre22126_ref_909-932.indd   920 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 921

 [Kaz98] Kazman, R., et al.,  The Architectural Tradeoff Analysis Method , Software Engineer-
ing Institute, CMU/SEI-98-TR-008, July 1998, summarized at http://www.sei.cmu.edu/
architecture/tools/evaluate/atam.cfm. 

 [Kea07] Keane, “Testing Mobile Business Applications,” a white paper, 2007, available at 
www.keane.com. 

 [Kei98] Keil, M., et al., “A Framework for Identifying Software Project Risks,”  CACM , vol. 41, 
no. 11, November 1998, pp. 76–83. 

 [Kel00] Kelly, D., and R. Oshana, “Improving Software Quality Using Statistical Techniques, 
Information and Software Technology,”  Elsevier , vol. 42, August 2000, pp. 801–807, avail-
able at www.eng.auburn.edu/~kchang/comp6710/readings/Improving_Quality_with_
Statistical_Testing_InfoSoftTech_August2000.pdf. 

 [Ker05] Kerievsky, J.,  Industrial XP: Making XP Work in Large Organizations , Cutter Con-
sortium, Executive Report, vol. 6., no. 2, 2005, available at www.cutter.com/content-
and-analysis/resource-centers/agile-project-management/sample-our-research/
apmr0502.html. 

 [Ker11] Kershbaum, F., et al., “Secure Collaborative Supply-Chain Management,”  IEEE 

Computer , vol. 44, no. 9, September 2011, pp. 38–43. 
 [Ker78] Kernighan, B., and P. Plauger,  The Elements of Programming Style , 2nd ed., 

McGraw-Hill, 1978. 
 [Kho12a] Khode, A., “Getting Started with Mobile Apps Testing,” 2012, available at  http://

www.mobileappstesting.com/getting-started-with-mobile-apps-testing/ . 
 [Kho12b] Khode, A., “Checklist for Mobile Test Automation Tools,” 2012, available at  http://

www.mobileappstesting.com/getting-started-with-mobile-apps-testing/  
 [Kir94] Kirani, S., and W. Tsai, “Specifi cation and Verifi cation of Object-Oriented Programs,” 

Technical Report TR 94-64, Computer Science Department, University of Minnesota, 
December 1994. 

 [Kiz05] Kizza, J.,  Computer Network Security , Springer, 2005. 
 [Knu98] Knuth, D.,  The Art of Computer Programming , three volumes, Addison-Wesley, 1998. 
 [Koe12] Koester, J., “The Seven Deadly Sins of MobileApp Design,”  Venture Beat/Mobile , 

May 31, 2012, available at http://venturebeat.com/2012/05/31/the-7-deadly-sins-of-mobile-
app-design/ 

 [Kon02] Konrad, S., and B. Cheng, “Requirements Patterns for Embedded Systems,”  Pro-

ceedings of the 10th Anniversary IEEE Joint International Conference on Requirements 

Engineering , IEEE, September 2002, pp. 127–136, available at http://citeseer.ist.psu.
edu/669258.html. 

 [Kor03] Korpipaa, P., et al., “Managing Context Information in Mobile Devices,”  IEEE Perva-

sive Computing , vol. 2, no. 3, July–September 2003, pp. 42–51. 
 [Kra88] Krasner, G., and S. Pope, “A Cookbook for Using the Model-View Controller User 

Interface Paradigm in Smalltalk-80,”  Journal of Object-Oriented Programming , vol. 1, 
no. 3, August–September 1988, pp. 26–49. 

 [Kra95] Kraul, R., and L. Streeter, “Coordination in Software Development,”  CACM , vol. 38, 
no. 3, March 1995, pp. 69–81. 

 [Kru05] Krutchen, P., “Software Design in a Postmodern Era,”  IEEE Software , vol. 22, no. 2, 
March–April 2005, pp. 16–18. 

 [Kru06] Kruchten, P., H. Obbink, and J. Stafford (eds.), “Software Architectural” (special 
issue),  IEEE Software , vol. 23, no. 2, March–April 2006. 

 [Kru09] Kruchten, P., et al. “The Decision View’s Role in Software Architecture Practice,” 
 IEEE Software , vol. 26, no. 2, March–April 2009, pp. 70–72. 

 [Kur05] Kurzweil, R.,  The Singularity Is Near , Penguin Books, 2005. 
 [Kur13] Kurzweil, R.,  How to Create a Mind , Viking, 2013. 
 [Kyb84] Kyburg, H.,  Theory and Measurement , Cambridge University Press, 1984. 
 [Laa00] Laakso, S., et al., “Improved Scroll Bars,”  CHI 2000 Conf. Proc ., ACM, 2000, pp. 97–98, 

available at www.cs.helsinki.fi /u/salaakso/patterns/. 
 [Lag10] Lago, P., et al., “Software Architecture: Framing Stakeholders’ Concerns,”  IEEE 

Software , vol. 27, no. 6, November–December 2010, pp. 20–24. 

pre22126_ref_909-932.indd   921pre22126_ref_909-932.indd   921 13/12/13   6:19 PM13/12/13   6:19 PM



922 REFERENCES

 [Lai02] Laitenberger, A., “A Survey of Software Inspection Technologies,” in  Handbook on 

Software Engineering and Knowledge Engineering , World Scientifi c Publishing Com-
pany, 2002. 

 [Lam01a] Lam, W., “Testing E-Commerce Systems: A Practical Guide,”  IEEE IT Pro , March–
April 2001, pp. 19–28. 

 [Lam01b] Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour,” 
 Proceedings of 5th IEEE International Symposium on Requirements Engineering , 
Toronto, August 2009, pp. 249–263. 

 [Lan01] Lange, M., “It’s Testing Time! Patterns for Testing Software,” June 2001, available at 
www.testing.com/test-patterns/patterns/index.html. 

 [Lan02] Land, R., “A Brief Survey of Software Architecture,” technical report, Dept. of 
Computer Engineering, Mälardalen University, Sweden, February 2002. 

 [Lan10] Lanubile, F., C. Ebert, R. Prikladnicki, and A. Vizcaino, “ Collaboration Tools for 
Global Software Engineering ,”  IEEE Software , vol. 27, 2010, pp. 52–55. 

 [Laz11] Lazzaroni, M., et al.,  Reliability Engineering , Springer, 2011. 
 [Leh97a] Lehman, M., and L. Belady,  Program Evolution: Processes of Software Change , 

Academic Press, 1997. 
 [Leh97b] Lehman, M., et al., “Metrics and Laws of Software Evolution—The Nineties View,” 

 Proceedings of the 4th International Software Metrics Symposium (METRICS ’97) , IEEE, 
1997, available at www.ece.utexas.edu/~perry/work/papers/feast1.pdf. 

 [Let01] Lethbridge, T., and R. Laganiere,  Object-Oriented Software Engineering: Practical 

Software Development Using UML and Java , McGraw-Hill, 2001. 
 [Let03a] Lethbridge, T., Personal communication on domain analysis, May 2003. 
 [Let03b] Lethbridge, T., Personal communication on software metrics, June 2003. 
 [Lev01] Levinson, M., “Let’s Stop Wasting $78 billion a Year,”  CIO Magazine , October 15, 

2001, available at www.cio.com/archive/101501/wasting.html. 
 [Lev95] Leveson, N.,  Safeware: System Safety and Computers , Addison-Wesley, 1995. 
 [Lew09] Lewicki, R., B. Barry, and D. Saunders,  Negotiation , McGraw-Hill, 2009. 
 [Lie03] Lieberherr, K., “Demeter: Aspect-Oriented Programming,” May 2003, available at 

www.ccs.neu.edu/home/lieber/LoD.html. 
 [Lin79] Linger, R., H. Mills, and B. Witt,  Structured Programming , Addison-Wesley, 1979. 
 [Lin88] Linger, R., and H. Mills, “A Case Study in Cleanroom Software Engineering: The IBM 

COBOL Structuring Facility,”  Proc. COMPSAC ‘88 , Chicago, October 1988. 
 [Lin94] Linger, R., “Cleanroom Process Model,”  IEEE Software , vol. 11, no. 2, March 1994, 

pp. 50–58. 
 [Lip10] Lipner, S., “The Security Development Life Cycle,” June 24, 2010, available at  https://

www.owasp.org/images/7/78/OWASP_AppSec_Research_2010_Keynote_2_by_Lipner.pdf . 
 [Lis88] Liskov, B., “Data Abstraction and Hierarchy,”  SIGPLAN Notices , vol. 23, no. 5, May 

1988. 
 [Liu98] Liu, K., et al., “Report on the First SEBPC Workshop on Legacy Systems,” Durham Uni-

versity, February 1998, available at www.dur.ac.uk/CSM/SABA/legacy-wksp1/report.html. 
 [Lon02] Longstreet, D., “Fundamental of Function Point Analysis,” Longstreet Consulting, 

Inc., 2002, available at www.ifpug.com/fpafund.htm. 
 [Lor94] Lorenz, M., and J. Kidd,  Object-Oriented Software Metrics , Prentice Hall, 1994. 
 [Lup08] Lupton, E., and J. Cole,  Graphic Design: The New Basics , Princeton Architectural 

Press, 2008. 
 [Maa07] Maassen, O., and S. Stelting, “Creational Patterns: Creating Objects in an OO 

System,” 2007, available at www.informit.com/articles/article.asp?p=26452&rl=1. 
 [Mad10] Madison, J., “Agile-Architecture Interactions,”  IEEE Software , vol. 27, no. 3, March–

April 2010, pp. 41–48. 
 [Mai10a] Maiden, N., and S. Jones, “Agile Requirements—Can We Have Our Cake and Eat It 

Too?”  IEEE Software , vol. 27, no. 3, May–June 2010, pp. 20–24. 
 [Mai10b] Maiden, N., “Service Design: It’s All in the Brand,“  IEEE Software , vol. 27, no. 5, 

September–October 2010, pp. 18–19. 
 [Man81] Mantai, M., “The Effect of Programming Team Structures on Programming Tasks,” 

 CACM , vol. 24, no. 3, March 1981, pp. 106–113. 

pre22126_ref_909-932.indd   922pre22126_ref_909-932.indd   922 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 923

 [Man97] Mandel, T.,  The Elements of User Interface Design , Wiley, 1997. 
 [Mar00] Martin, R., “Design Principles and Design Patterns,” 2000, available at www

.objectmentor.com. 
 [Mar01] Marciniak, J. (ed.),  Encyclopedia of Software Engineering , 2nd ed., Wiley, 2001. 
 [Mar02a] Marick, B., “Software Testing Patterns,” 2002, available at www.testing.com/

test-patterns/index.html. 
 [Mar94] Marick, B.,  The Craft of Software Testing , Prentice Hall, 1994. 
 [Mas02] Mascolo, C., et al., “Mobile Computing Middleware,” appears in  Advanced Lectures 

on Networking  (E. Georgi, ed.), Springer-Verlag, 2002. 
 [Mat94] Matson, J., et al, “Software Cost Estimation Using Function Points,” IEEE Trans. 

Software Engineering, vol. SE-20, no. 4, April 1994, pp. 275–287. 
 [McC04] McConnell, S.,  Code Complete , 2nd. ed., Microsoft Press, 2004. 
 [McC09] McCaffrey, J., “Analyzing Risk Exposure and Risk using PERIL,”  MSDN Magazine , 

January 2009, available at http://msdn.microsoft.com/en-us/magazine/dd315417.aspx 
 [McC76] McCabe, T., “A Software Complexity Measure,”  IEEE Trans. Software Engineering , 

vol. SE-2, December 1976, pp. 308–320. 
 [McC77] McCall, J., P. Richards, and G. Walters, “Factors in Software Quality,” three 

volumes, NTIS AD-A049-014, 015, 055, November 1977. 
 [McC94] McCabe, T. J., and A. H. Watson, “Software Complexity,”  CrossTalk , vol. 7, no. 12, 

December 1994, pp. 5–9. 
 [McC96] McConnell, S., “Best Practices: Daily Build and Smoke Test,”  IEEE Software , vol. 13, 

no. 4, July 1996, pp. 143–144. 
 [McC98] McConnell, S.,  Software Project Survival Guide , Microsoft Press, 1998. 
 [McC99] McConnell, S., “Software Engineering Principles,”  IEEE Software , vol. 16, no. 2, 

March–April 1999, available at www.stevemcconnell.com/ieeesoftware/eic04.htm. 
 [McD93] McDermid, J., and P. Rook, “Software Development Process Models,” in  Software 

Engineer’s Reference Book , CRC Press, 1993, pp. 15/26–15/28. 
 [McG91] McGlaughlin, R., “Some Notes on Program Design,”  Software Engineering Notes , 

vol. 16, no. 4, October 1991, pp. 53–54. 
 [McG94] McGregor, J., and T. Korson, “Integrated Object-Oriented Testing and Develop-

ment Processes,”  Communications of the ACM , vol. 37, no. 9, September, 1994, pp. 59–77. 
 [McN10] McNeil, P.,  The Web Designer’s Idea Book , vol. 2, How Publishers, 2010. 
 [Mea10] Mead, N., and Jarzombek, J., “Advancing Software Assurance with Public-Private 

Collaboration,”  IEEE Computer , vol. 43, no. 9, September 2010, pp. 21–30. 
 [Mei06] Meier, J., “Web Application Security Engineering,”  IEEE Security and Privacy , July–

August 2006, pp. 16–24. 
 [Mei09] Meier, J., et al.,  Microsoft Application Architecture Guide , 2nd ed., Microsoft Press, 

2009, available at  http://msdn.microsoft.com/en-us/library/ff650706 . 
 [Mei12] Meier, J., et al., “Chapter 19: Mobile Applications,”  Application Architecture Guide, 

2.0 , 2012, available at http://apparchguide.codeplex.com/wikipage?title=Chapter%20
19%20-%20Mobile%20Applications 

 [Men01] Mendes, E., N. Mosley, and S. Counsell, “Estimating Design and Authoring Effort,” 
 IEEE Multimedia , vol. 8, no. 1, January–March 2001, pp. 50–57. 

 [Mer93] Merlo, E., et al., “Reengineering User Interfaces,”  IEEE Software , January 1993, 
pp. 64–73. 

 [Mes08] Messeguer, R., et al. “Communication and Coordination Patterns to Support Mobile 
Collaboration,”  Proceedings of 12th International Conference on Collaborative and Coop-

erative Work , April 2008, pp. 565–570. 
 [Mey09] Meyer, B., et al., “Programs that Test Themselves,”  IEEE Computer , vol. 42, no. 9, 

September 2009, pp. 46–55. 
 [Mic04] Microsoft, “Prescriptive Architecture: Integration and Patterns,”  MSDN , May 2004, 

available at http://msdn2.microsoft.com/en-us/library/ms978700.aspx. 
 [Mic12] “Principles of Service-Oriented Design,” Microsoft, 2012, available at http://msdn

.microsoft.com/en-us/library/bb972954.aspx 
 [Mic13a] Microsoft, “Patterns and Practices,”  MSDN , available at http://msdn.microsoft.com/

en-us/library/ff647589.aspx. 

pre22126_ref_909-932.indd   923pre22126_ref_909-932.indd   923 13/12/13   6:19 PM13/12/13   6:19 PM



924 REFERENCES

 [Mic13b]  Microsoft Accessibility Technology for Everyone , 2013, available at www.microsoft.
com/enable/. 

 [Mil00a] Miller, E., “WebSite Testing,” 2000, available at www.soft.com/eValid/Technology/
White.Papers/website.testing.html. 

 [Mil04] Miler, J., and J. Gorski, “Risk Identifi cation Patterns for Software Projects,”  Foun-

dations of Computing and Decision Sciences , vol. 29, no. 1, 2004, pp. 115–131, available at 
 http://iag.pg.gda.pl/iag/download/Miler-Gorski_Risk_Identifi cation_Patterns.pdf . 

 [Mil72] Mills, H., “Mathematical Foundations for Structured Programming,” Techni-
cal Report FSC 71-6012, IBM Corp., Federal Systems Division, Gaithersburg, MD, 
1972. 

 [Mil77] Miller, E., “The Philosophy of Testing,” in  Program Testing Techniques , IEEE Com-
puter Society Press, 1977, pp. 1–3. 

 [Mil87] Mills, H., M. Dyer, and R. Linger, “Cleanroom Software Engineering,”  IEEE Software , 
September 1987, pp. 19–25. 

 [Mil88] Mills, H., “Stepwise Refi nement and Verifi cation in Box Structured Systems,” 
 Computer , vol. 21, no. 6, June 1988, pp. 23–35. 

 [Min95] Minoli, D.,  Analyzing Outsourcing , McGraw-Hill, 1995. 
 [Mob11] Mobile Labs, “Mobile Application Test Automation: Best Practices for Best Results,” 

a white paper, 2011, available at  http://mobilelabsinc.com/wp-content/uploads/2012/01/
Mobile-Application-Test-Automation-Best-Practices-White-Paper.pdf.  

 [Mob12] “Mobile UI Patterns,” 2012, available at  http://mobile-patterns.com/ . 
 [Mor05] Morales, A., “The Dream Team,”  Dr. Dobbs Portal , March 3, 2005, available at www

.ddj.com/dept/global/184415303. 
 [Mor81] Moran, T., “The Command Language Grammar: A Representation for the User 

Interface of Interactive Computer Systems,”  Intl. Journal of Man-Machine Studies , 
vol. 15, pp. 3–50. 

 [Mus87] Musa, J., A. Iannino, and K. Okumoto,  Engineering and Managing Software with 

Reliability Measures , McGraw-Hill, 1987. 
 [Mye78] Myers, G.,  Composite Structured Design , Van Nostrand, 1978. 
 [Mye79] Myers, G.,  The Art of Software Testing , Wiley, 1979. 
 [Myl11] Malavarapu, V., and M. Inanamdar, “Taking Testing to the Cloud,” 2012, available at 

http://www.cognizant.com/InsightsWhitepapers/Taking-Testing-to-the-Cloud.pdf. 
 [NAS07] NASA,  Software Risk Checklist , Form LeR-F0510.051, March 2007, available at 

http://osat-ext.grc.nasa.gov/rmo/spa/SoftwareRiskChecklist.doc. 
 [Nei11] Neil, T., “A Look Inside Mobile Design Patterns,” UXBooth.com, November 12, 2011, 

available at http://www.uxbooth.com/blog/mobile-design-patters/. 
 [Nei12] Neil, T.,  Mobile Design Pattern Gallery , O’Reilly Media, 2012. 
 [Ngu00] Nguyen, H., “Testing Web-Based Applications,”  Software Testing and Quality 

Engineering , May–June 2000, available at www.stqemagazine.com. 
 [Ngu01] Nguyen, H.,  Testing Applications on the Web , Wiley, 2001. 
 [Nie00] Nielsen, J.,  Designing Web Usability , New Riders Publishing, 2000. 
 [Nie92] Nierstrasz, O., S. Gibbs, and D. Tsichritzis, “Component-Oriented Software Develop-

ment,”  CACM , vol. 35, no. 9, September 1992, pp. 160–165. 
 [Nie94] Nielsen, J., and J. Levy, “Measuring Usability: Preference vs. Performance,”  CACM , 

vol. 37, no. 4, April 1994, pp. 65–75. 
 [Nie96] Nielsen, J., and A. Wagner, “User Interface Design for the WWW,”  Proc. CHI ’96 Conf. 

on Human Factors in Computing Systems , ACM Press, 1996, pp. 330–331. 
 [Nir10] Niranjan, P., and C. V. Guru Rao, “A Mockup Tool for Software Component Reuse 

Library,”  Intl. J. Software Engineering & Applications , vol. 1, no. 2, April 2010, available at 
http://airccse.org/journal/ijsea/papers/0410ijsea1.pdf. 

 [Nok13] “Category: Mobile Design,” Nokia Developer, 2013, available at http://www
.developer.nokia.com/Community/Wiki/Category:Mobile_Design_Patterns. 

 [Nog00] Nogueira, J., C. Jones, and Luqi, “Surfi ng the Edge of Chaos: Applications to Soft-
ware Engineering,” Command and Control Research and Technology Symposium, 
Naval Post Graduate School, Monterey, CA, June 2000, available at www.dodccrp.org/
2000CCRTS/cd/html/pdf_papers/Track_4/075.pdf. 

pre22126_ref_909-932.indd   924pre22126_ref_909-932.indd   924 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 925

 [Nor70] Norden, P., “Useful Tools for Project Management” in  Management of Production , 
M. K. Starr (ed.), Penguin Books, 1970. 

 [Nor86] Norman, D. A., “Cognitive Engineering,” in  User Centered Systems Design , Law-
rence Earlbaum Associates, 1986. 

 [Nor88] Norman, D.,  The Design of Everyday Things , Doubleday, 1988. 
 [Nov04] Novotny, O., “Next Generation Tools for Object-Oriented Development,”  The Archi-

tecture Journal , January 2005, available at http://msdn2.microsoft.com/en-us/library/
aa480062.aspx. 

 [Noy02] Noyes, B., “Rugby, Anyone?”  Managing Development  (an online publication of Faw-
cette Technical Publications), June 2002, available at www.fawcette.com/resources/
managingdev/methodologies/scrum/. 

 [Nun11] Nunes, N., L. Constantine, and R. Kazman, “iUCP: Estimating Interactive Software 
Project Size with Enhanced Use Case Points,”  IEEE Software , vol. 28, no. 4, July–August 
2011, pp. 64–73. 

 [Obj10] “The Dependency Inversion Principle,”  Objectmentor.com , 2010, available at www
.objectmentor.com/resources/articles/dip.pdf>. 

 [Off02] Offutt, J., “Quality Attributes of Web Software Applications,”  IEEE Software , March–
April 2002, pp. 25–32. 

 [Ols06] Olsen, G., “From COM to Common,”  Component Technologies , ACM, vol. 4, no. 5, June 
2006, available at http://acmqueue.com/modules.php?name=Content&pa=showpage&
pid=394. 

 [Ols99] Olsina, L., et al., “Specifying Quality Characteristics and Attributes for Web Sites,” 
 Proc. 1st ICSE Workshop on Web Engineering , ACM, Los Angeles, May 1999. 

 [OMG03a] Object Management Group,  OMG Unifi ed Modeling Language Specifi cation , ver-
sion 1.5, March 2003, available at www.rational.com/uml/resources/documentation/. 

 [OMG03b] “Object Constraint Language Specifi cation,” in  Unifi ed Modeling Language , v2.0, 
Object Management Group, September 2003, available at www.omg.org. 

 [Orf99] Orfali, R., D. Harkey, and J. Edwards,  Client/Server Survival Guide , 3rd ed., Wiley, 1999. 
 [Osb90] Osborne, W. M., and E. J. Chikofsky, “Fitting Pieces to the Maintenance Puzzle,” 

 IEEE Software , January 1990, pp. 10–11. 
 [OSO12]  OpenSource.org , 2012, available at www.opensource.org/. 
 [Pag85] Page-Jones, M.,  Practical Project Management , Dorset House, 1985, p. vii. 
 [Par72] Parnas, D., “On Criteria to Be Used in Decomposing Systems into Modules,”  CACM , 

vol. 14, no. 1, April 1972, pp. 221–227. 
 [Par96a] Pardee, W.,  To Satisfy and Delight Your Customer , Dorset House, 1996. 
 [Par96b] Park, R. E., W. B. Goethert, and W. A. Florac,  Goal Driven Software Measurement—A 

Guidebook , CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon Uni-
versity, August 1996. 

 [Par10] Parnas, D., “Interview: Software Security in the Real World,”  IEEE Computer , vol. 43, 
no. 1, January 2010, pp. 28–34. 

 [Par11] Pardo, C., et al., “Harmonizing Quality Assurance Processes and Product Charac-
teristics,”  IEEE Computer , June 2011, pp. 94–96. 

 [Pas10] Passos, L., et al., “Static Architecture-Conformance Checking: An Illustrative 
Overview,”  IEEE Software , vol. 27, no. 5, September–October 2010, pp. 82–89, 

 [Pat07] Patton, J., “Understanding User Centricity,”  IEEE Software , vol. 24, no. 6, November–
December 2007, pp. 9–11. 

 [Pau94] Paulish, D., and A. Carleton, “Case Studies of Software Process Improvement 
Measurement,”  Computer , vol. 27, no. 9, September 1994, pp. 50–57. 

 [Pea11] Pearson, S., and M. Mont, “Sticky Policies: An Approach for Managing Privacy 
across Multiple Parties,”  IEEE Computer , vol. 44, no. 9, September 2011, pp. 60–68. 

 [Pee11] Peeters, J., “Agile Security Requirements Engineering,”  Proceedings of First Inter-

national Workshop on Empirical Requirements Engineering , 2011. 
 [Per74] Persig, R.,  Zen and the Art of Motorcycle Maintenance , Bantam Books, 1974. 
 [Pha89] Phadke, M.,  Quality Engineering Using Robust Design , Prentice Hall, 1989. 
 [Pha97] Phadke, M., “Planning Effi cient Software Tests,”  CrossTalk , vol. 10, no. 10, October 

1997, pp. 11–15. 

pre22126_ref_909-932.indd   925pre22126_ref_909-932.indd   925 13/12/13   6:19 PM13/12/13   6:19 PM



926 REFERENCES

 [Phi02] Phillips, M., “CMMI V1.1 Tutorial,” April 2002, available at www.sei.cmu.edu/cmmi/. 
 [Phi98] Phillips, D.,  The Software Project Manager’s Handbook , IEEE Computer Society 

Press, 1998. 
 [Pol45] Polya, G.,  How to Solve It , Princeton University Press, 1945. 
 [Poo88] Poore, J., and H. Mills, “Bringing Software Under Statistical Quality Control,” 

 Quality Progress , November 1988, pp. 52–55. 
 [Poo93] Poore, J., H. Mills, and D. Mutchler, “Planning and Certifying Software System 

Reliability,”  IEEE Software , vol. 10, no. 1, January 1993, pp. 88–99. 
 [Pop08] Popcorn, F.,  Faith Popcorn’s Brain Reserve , 2008, available at www.faithpopcorn

.com/. 
 [Pot04] Potter, M.,  Set Theory and Its Philosophy: A Critical Introduction , Oxford University 

Press, 2004. 
 [Pow02] Powell, T.,  Web Design , 2nd ed., McGraw-Hill/Osborne, 2002. 
 [Pow98] Powell, T.,  Web Site Engineering , Prentice Hall, 1998. 
 [Pra07] Pratt, M., “Five Tips for Building an Incident Response Plan,”  Computerworld , May 16, 2007, 

available at http://www.computerworld.com/s/article/9019558/Five_tips_for_building_
an_incident_response_pla. 

 [Pre05] Pressman, R.,  Adaptable Process Model , Version 2.0, R. S. Pressman & Associates, 
2005, available at www.rspa.com/apm/index.html. 

 [Pre08] Pressman, R., and D. Lowe,  Web Engineering: A Practitioner’s Approach , McGraw-Hill, 
2008. 

 [Pre88] Pressman, R.,  Making Software Engineering Happen , Prentice Hall, 1988. 
 [Pre94] Premerlani, W., and M. Blaha, “An Approach for Reverse Engineering of Relational 

Databases,”  CACM , vol. 37, no. 5, May 1994, pp. 42–49. 
 [Pri10] Prince, B., “10 Most Dangerous Web App Security Flaws,”  eWeek.com , April, 19, 2010, 

available at http://www.eweek.com/c/a/Security/10-Most-Dangerous-Web-App-
Security-Risks-730757/. 

 [Put78] Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estima-
tion Problem,”  IEEE Trans. Software Engineering , vol. SE-4, no. 4, July 1978, pp. 345–361. 

 [Put92] Putnam, L., and W. Myers,  Measures for Excellence , Yourdon Press, 1992. 
 [Put97a] Putnam, L., and W. Myers, “How Solved Is the Cost Estimation Problem?”  IEEE 

Software , November 1997, pp. 105–107. 
 [Put97b] Putnam, L., and W. Myers,  Industrial Strength Software: Effective Management 

Using Measurement , IEEE Computer Society Press, 1997. 
 [Pyz03] Pyzdek, T.,  The Six Sigma Handbook , McGraw-Hill, 2003. 
 [QAI08]  A Software Engineering Curriculum , QAI, 2008, information available at www.qaie-

school.com/innerpages/offer.asp. 
 [QSM02] “QSM Function Point Language Gearing Factors,” Version 2.0,  Quantitative Soft-

ware Management , 2002, available at www.qsm.com/FPGearing.html. 
 [Qur09] Qureshi N., and A. Perini, “Engineering Adaptive Requirements,”  Proceedings of 

Workshop on Software Engineering for Adaptive and Self-Managing Systems , Vancouver, 
May 2009, pp. 126–131. 

 [Rad02] Radice, R.,  High-Quality Low Cost Software Inspections , Paradoxicon Publishing, 
2002. 

 [Rai06] Raiffa, H.,  The Art and Science of Negotiation , Belknap Press, 2005. 
 [Rat12] Raatikainen, M., et al., “Mobile Content as a Service: A Blueprint for a Vendor-Neutral 

Cloud of Mobile Devices,”  IEEE Software , vol. 29, no. 4, July–August, 2012, pp. 28–32. 
 [Red10] Redwine, S., “Fitting Software Assurance into Higher Education,”  IEEE Computer , 

vol. 43, no. 9, September 2010, pp. 41–66. 
 [Ree99] Reel, J., “Critical Success Factors in Software Projects,”  IEEE Software , May 1999, 

pp. 18–23. 
 [Reu12] Reuveni, D. “Crowdsourcing Provides Answer to App Testing Dilemma,” 2012, available 

at  http://www.wirelessweek.com/Articles/2010/02/Mobile-Content-Crowdsourcing-
Answer-App-Testing-Dilemma-Mobile-Applications/ . 

 [Ric01] Ricadel, A., “The State of Software Quality,”  InformationWeek , May 21, 2001, avail-
able at www.informationweek.com/838/quality.htm. 

pre22126_ref_909-932.indd   926pre22126_ref_909-932.indd   926 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 927

 [Ric04] Rico, D.,  ROI of Software Process Improvement , J. Ross Publishing, 2004. A summary 
article can be found at http://davidfrico.com/rico03a.pdf. 

 [Rob10] Robinson, W., “A Roadmap for Comprehensive Requirements Monitoring,”  IEEE 

Computer , vol. 43, no. 5, May 2010, pp. 64–72. 
 [Roc06]  Graphic Design That Works , Rockport Publishers, 2006. 
 [Roc11] Rocha, F., S, Abreus, and M. Correia, “The Final Frontier: Confi dentiality and Privacy 

in the Cloud,”  IEEE Computer , vol. 44, no. 9, September 2011, pp. 44–50. 
 [Roc94] Roche, J. M., “Software Metrics and Measurement Principles,”  Software Engineer-

ing Notes , ACM, vol. 19, no. 1, January 1994, pp. 76–85. 
 [Rod12] Rodriguez, S., “Half of Americans Now Have Smartphones,”  The Los Angeles Times , 

August 14, 2012, available at http://www.latimes.com/business/technology/la-fi -tn-
americans-smartphones-20120814,0,6077673.story. 

 [Rod98] Rodden, T., et al., “Exploiting Context in HCI Design for Mobile Systems,”  Proceed-

ings of Workshop on Human Computer Interaction with Mobile Devices , 1998. 
 [Roe00] Roetzheim, W., “Estimating Internet Development,”  Software Development , August 

2000, available at www.sdmagazine.com/documents/s=741/sdm0008d/0008d.htm. 
 [Rog12] Rogers, A., “Software Quality Assurance Engineers Are the Happiest Workers in 

America,“  Business Insider , April 16, 2012, available at http://www.businessinsider.com/
happiest-jobs-in-america-2012-4. 

 [Rom11] Roman, R., et al., “Securing the Internet of Things,”  IEEE Computer , vol. 44, no. 9, 
September 2011, pp. 51–58. 

 [Roo09] Rooksby, J., et al., “Testing in the Wild: The Social and Organizational Dimensions 
of Real World Practice,”  Journal of Computer Supported Work , vol. 18, no. 5–6, December 
2009, pp. 559–580. 

 [Roo96] Roos, J., “The Poised Organization: Navigating Effectively on Knowledge Land-
scapes,” 1996, available at www.imd.ch/fac/roos/paper_po.html. 

 [Ros04] Rosenhainer, L., “Identifying Crosscutting Concerns in Requirements Specifi ca-
tions,” 2004, available at http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-
2004/Papers/Rosenhainer.pdf. 

 [Ros75] Ross, D., J. Goodenough, and C. Irvine, “Software Engineering: Process, Principles 
and Goals,”  IEEE Computer , vol. 8, no. 5, May 1975. 

 [Rot02] Roth, J., “Seven Challenges for Developers of Mobile Groupware,” in    Proceedings of 

Computer Human Interaction Workshop on Mobile Ad Hoc Collaboration , 2002. 
 [Rou02] Rout, T. (project manager),  SPICE: Software Process Assessment—Part 1: Concepts 

and Introductory Guide , 2002, available at www.sqi.gu.edu.au/spice/suite/download.html. 
 [Roy70] Royce, W., “Managing the Development of Large Software Systems: Concepts and 

Techniques,”  Proc. WESCON , August 1970. 
 [Roz11] Rozanski, N., and E. Woods,  Software Systems Architecture , second edition, Addison-

Wesley, 2011. 
 [Rum91] Rumbaugh, J., et al.,  Object-Oriented Modeling and Design , Prentice Hall, 1991. 
 [Rya11a] Ryan, M., “Cloud Computing Privacy Concerns on Our Doorstep,”  Communication 

of the ACM , vol. 44, no. 2, January 2011, pp. 36–38. 
 [Sae11] Saeed, A., T. Chen, and O. Alzubi, “Malicious and Spam Posts in Online Social Net-

works,”  IEEE Computer , vol. 44, no. 9, September 2011, pp. 23–28. 
 [Saf08] Safanov, V.,  Using Aspect-Oriented Programming for Trustworthy Software Develop-

ment , Wiley-Interscience, 2008. 
 [Sai11] Saieddian, H., and D. Broyles, “Security Vulnerabilities in the Same Origin Pol-

icy Implications and Alternatives,”  IEEE Computer , vol. 44, no. 9, September 2011, 
pp. 29–36. 

 [Sal09] Saleh, K., and G. Elshahry, “Modeling Security Requirements for Trustworthy 
Systems,”  Encyclopedia of Information Science and Technology , 2nd ed., 2009. 

 [Sar06] Sarwate, A., “Hot or Not: Web Application Vulnerabilities,”  SC Magazine , Decem-
ber  27, 2006, available at http://www.scmagazine.com/hot-or-not-web-application-
vulnerabilities/article/34315/. 

 [Saw08] Sawyer, S., et al., “Social Interactions of Information Systems Development Teams: 
A Performance Perspective,”  Information Systems Journal , vol. 20, 2008, pp. 81–107. 

pre22126_ref_909-932.indd   927pre22126_ref_909-932.indd   927 13/12/13   6:19 PM13/12/13   6:19 PM



928 REFERENCES

 [Sca00] Scacchi, W., “Understanding Software Process Redesign Using Modeling, Analysis, 
and Simulation,”  Software Process Improvement and Practice , Wiley, 2000, pp. 185–195, 
available at www.ics.uci.edu/~wscacchi/Papers/Software_Process_Redesign/SPIP-
ProSim99.pdf. 

 [Sce02] Sceppa, D.,  Microsoft ADO.NET , Microsoft Press, 2002. 
 [Sch01b] Schwaber, K., and M. Beedle,  Agile Software Development with SCRUM , Prentice 

Hall, 2001. 
 [Sch03] Schlickman, J.,  ISO 9001: 2000 Quality Management System Design , Artech House 

Publishers, 2003. 
 [Sch06] Schmidt, D., “Model-Driven Engineering,”  IEEE Computer , vol. 39, no. 2, February 

2006, pp. 25–31. 
 [Sch09] Schumacher, R. (ed.),  Handbook of Global User Research , Morgan-Kaufmann, 2009. 
 [Sch11] Schilit, B. “Mobile Computing: Looking to the Future,”  IEEE Computer , vol. 44, no. 5, 

May 2011. pp. 28–29. 
 [Sch98a] Schneider, G., and J. Winters,  Applying Use Cases , Addison-Wesley, 1998. 
 [Sch98c] Schulmeyer, G., and J. McManus (eds.),  Handbook of Software Quality Assurance , 

3rd ed., Prentice Hall, 1998. 
 [Sch99] Schneidewind, N., “Measuring and Evaluating Maintenance Process Using Reliabil-

ity, Risk, and Test Metrics,”  IEEE Trans. SE , vol. 25, no. 6, November–December 1999, 
pp. 768–781, available at www.dacs.dtic.mil/topics/reliability/IEEETrans.pdf. 

 [SDS08] Spice Document Suite, “The SPICE and ISO Document Suite,”  ISO-Spice , 2008, 
available at www.isospice.com/articles/9/1/SPICE-Project/Page1.html. 

 [SEE03] The Software Engineering Ethics Research Institute, “UCITA Updates,” 2003, avail-
able at http://seeri.etsu.edu/default.htm. 

 [SEI00]  SCAMPI, V1.0 Standard CMMI ®Assessment Method for Process Improvement: Method 

Description , Software Engineering Institute, Technical Report CMU/SEI-2000-TR-009, 
available at www.sei.cmu.edu/publications/documents/00.reports/00tr009.html. 

 [SEI02] “Maintainability Index Technique for Measuring Program Maintainability,” SEI, 
2002, available at www.sei.cmu.edu/str/descriptions/mitmpm_body.html. 

 [SEI08] “The Ideal Model,” Software Engineering Institute, 2008, available at  www.sei.cmu
.edu/ideal/ . 

 [SEI13] “Software Product Lines—Overview,” Software Engineering Institute, 2013, available 
at www.sei.cmu.edu/productlines/. 

 [Sha05] Shalloway, A., and J. Trott,  Design Patterns Explained , 2nd ed., Addison-Wesley, 
2005. 

 [Sha09] Shaw, M., “Continuing Prospects for an Engineering Discipline of Software,”  IEEE 

Software , vol. 26, no. 8, November–December 2009, pp. 64–67. 
 [Sha95a] Shaw, M., and D. Garlan, “Formulations and Formalisms in Software Architec-

ture,”  Volume 1000—Lecture Notes in Computer Science , Springer-Verlag, 1995. 
 [Sha95b] Shaw, M., et al., “Abstractions for Software Architecture and Tools to Support 

Them,”  IEEE Trans. Software Engineering , vol. SE-21, no. 4, April 1995, pp. 314–335. 
 [Sha96] Shaw, M., and D. Garlan,  Software Architecture , Prentice Hall, 1996. 
 [She10] Sheldon, F., and Vishik, C. “Moving Toward Trustworthy Systems: R&D Essentials,” 

 IEEE Computer , vol. 43, no. 9, September 2010, pp. 31–40. 
 [Shn04] Shneiderman, B., and C. Plaisant,  Designing the User Interface , 4th ed., Addison-

Wesley, 2004. 
 [Shn09] Shneiderman, B., et al.,  Designing the User Interface , 5th ed., Addison-Wesley, 2009. 
 [Shn80] Shneiderman, B.,  Software Psychology , Winthrop Publishers, 1980, p. 28. 
 [Sho83] Shooman, M.,  Software Engineering , McGraw-Hill, 1983. 
 [Shu12] Shull, F., “Designing a World at Your Fingertips: A Look at Mobile User Interfaces,” 

 IEEE Software , vol. 29, no. 4, July–August, 2012, pp. 4–7. 
 [Sin08] Sinn, R. H.,  Software Security Technologies: A Programmatic Approach , Addison-

Wesley, 2008. 
 [Sne03] Snee, R., and R. Hoerl,  Leading Six Sigma , Prentice Hall, 2003. 
 [Sne95] Sneed, H., “Planning the Reengineering of Legacy Systems,”  IEEE Software , January 

1995, pp. 24–25. 

pre22126_ref_909-932.indd   928pre22126_ref_909-932.indd   928 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 929

 [Soa10] Soares, G., et al., “Making Program Refactoring Safer,”  IEEE Software , vol. 37, no. 4, 
July–August 2010, pp. 52–57. 

 [Soa11] Soasta, “Five Strategies for Performance Testing Mobile Applications,” a white paper, 
2011, available at  http://info.soasta.com/performance-testing-mobile-apps-sem2.html . 

 [Sob10] Sobel, A., and G. McGraw, “Interview: Software Security in the Real World,”  IEEE 

Computer , vol. 43, no. 9, September 2010, pp. 47–53. 
 [Sol99] van Solingen, R., and E. Berghout,  The Goal/Question/Metric Method , McGraw-Hill, 

1999. 
 [Som05] Somerville, I., “Integrating Requirements Engineering: A Tutorial,”  IEEE Software , 

vol. 22, no. 1, January–February 2005, pp. 16–23. 
 [Som97] Somerville, I., and P. Sawyer,  Requirements Engineering , Wiley, 1997. 
 [Sou08] de Sousa, C., and D. Redmiles, “An Empirical Study of Software Developer’s 

 Management of Dependencies and Changes,”  ICSE Proceedings , May 2008, available at 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.427&rep=rep1&type=pdf. 

 [Spa11] Spagnolli, B., et al., “Eco-Feedback on the Go: Motivating Energy Awareness,”  IEEE 

Computer , vol. 44, no. 5, May 2011, pp. 38–45. 
 [SPI99] “SPICE: Software Process Assessment, Part 1: Concepts and Introduction,” Version 

1.0, ISO/IEC JTC1, 1999. 
 [Spl01] Splaine, S., and S. Jaskiel,  The Web Testing Handbook , STQE Publishing, 2001. 
 [Spo02] Spolsky, J., “The Law of Leaky Abstractions,” November 2002, available at www

.joelonsoftware.com/articles/LeakyAbstractions.html. 
 [Spr04] Spriestersbach, A., and T. Springer, “Quality Attributes in Mobile Web Application 

Development,” 2004, available at  http://atlas.tk.informatik.tu-darmstadt.de/Publications/
2004/profes.pdf . 

 [Sri01] Sridhar, M., and N. Mandyam, “Effective Use of Data Models in Building Web Appli-
cations,” 2001, available at www2002.org/CDROM/alternate/698/. 

 [SSO08] Software-Supportability.org, 2008, available at www.software-supportability.org/. 
 [Sta10] Stafford, T., and R. Poston, “Online Security Threats and Computer User Intentions,” 

 IEEE Computer , vol. 43, no. 1, January 2010, pp. 58–64. 
 [Sta97] Stapleton, J.,  DSDM—Dynamic System Development Method: The Method in Practice , 

Addison-Wesley, 1997. 
 [Sta97b] Statz, J., D. Oxley, and P. O’Toole, “Identifying and Managing Risks for Software 

Process Improvement,”  CrossTalk , April 1997, available at www.stsc.hill.af.mil/crosstalk/
1997/04/identifying.asp. 

 [Ste93] Stewart, T., “Reengineering: The Hot New Managing Tool,”  Fortune , August 23, 1993, 
pp. 41–48. 

 [Sto05] Stone, D., et al.,  User Interface Design and Evaluation , Morgan Kaufman, 2005. 
 [Str08] Stickland, J., “How Cloud Computing Works,”  http://computer.howstuffworks.com/

cloud-computing/cloud-computing.htm , April, 2008. 
 [Ste10] Stephens, M., and D. Rosenberg,  Design Driven Testing , Apress, 2010. 
 [Tai89] Tai, K., “What to Do Beyond Branch Testing,”  ACM Software Engineering Notes , 

vol. 14, no. 2, April 1989, pp. 58–61. 
 [Tai12] Taivalsaari, A., and K. Systa, “Mobile Content as a Service: A Blueprint for a 

Vendor-Neutral Cloud of Mobile Devices,”  IEEE Software , vol. 29, no. 4, July–August 2012, 
pp. 28–33. 

 [Tan01] Tandler, P., “Aspect-Oriented Model-Driven Development for Mobile Context-
Aware Computing,”  Proceedings of UbiComp 2001: Ubiquitous Computing , 2001. 

 [Tay09] Taylor, R., N. Medvidovic, and E. Dashofy,  Software Architecture , Wiley, 2009. 
 [Tay90] Taylor, D.,  Object-Oriented Technology: A Manager’s Guide , Addison-Wesley, 

1990. 
 [The01] Thelin, T., H. Petersson, and C. Wohlin, “Sample Driven Inspections,”  Proc. of Work-

shop on Inspection in Software Engineering (WISE’01) , Paris, France, July 2001, pp. 81–91. 
Available at http://www.cas.mcmaster.ca/wise/wise01/ThelinPeterssonWohlin.pdf. 

 [The13] “The Emergence of Cloud Computing,” 2013, available at http://www.opensourcery.
com/clouddev.htm. 

 [Tho04] Thomas, J., et al.,  Java Testing Patterns , Wiley, 2004. 

pre22126_ref_909-932.indd   929pre22126_ref_909-932.indd   929 13/12/13   6:19 PM13/12/13   6:19 PM



930 REFERENCES

 [Tho92] Thomsett, R., “The Indiana Jones School of Risk Management,”  American 

Programmer , vol. 5, no. 7, September 1992, pp. 10–18. 
 [Tic05]  TickIT , 2005, available at www.tickit.org/. 
 [Tid02] Tidwell, J., “IU Patterns and Techniques,” May, 2002, available at  http://

designinginterfaces.com/ . 
 [Til00] Tillman, H., “Evaluating Quality on the Net,” Babson College, May 30, 2000, available 

at www.hopetillman.com/fi ndqual.html#2. 
 [Tog01] Tognozzi, B., “First Principles,”  askTOG , 2001, available at www.asktog.com/basics/

fi rstPrinciples.html. 
 [Tra95] Tracz, W., “Third International Conference on Software Reuse—Summary,”  ACM 

Software Engineering Notes , vol. 20, no. 2, April 1995, pp. 21–22. 
 [Tyr05] Tyree, J., and A. Akerman, “Architectural Decisions: Demystifying Architecture,” 

 IEEE Software , vol. 22, no. 2, March–April, 2005. 
 [Uem99] Uemura, T., S. Kusumoto, and K. Inoue, “A Function Point Measurement Tool for 

UML Design Specifi cations,”  Proc. of Sixth International Symposium on Software Metrics , 
IEEE, November 1999, pp. 62–69. 

 [Ull97] Ullman, E.,  Close to the Machine: Technophilia and its Discontents , City Lights Books, 
2002. 

 [Uni03] Unicode, Inc.,  The Unicode Home Page , 2003, available at www.unicode.org/. 
 [USA87]  Management Quality Insight , AFCSP 800-14 (U.S. Air Force), January 20, 1987. 
 [Ute12] UTest, E-book:  Essential Guide to Mobile App Testing, 2012 , available at  http://www

.utest.com/landing-blog/essential-guide-mobile-app-testing . 
 [UXM10] “Four Best User Interface Pattern Libraries,”  UX Movement.com , available at 

http://uxmovement.com/resources/4-best-design-pattern-libraries/. 
 [Vac06] Vacca, J.,  Practical Internet Security , Springer, 2006. 
 [Van02] Van Steen, M., and A. Tanenbaum,  Distributed Systems: Principles and Paradigms , 

Prentice Hall, 2002. 
 [Van89] Van Vleck, T., “Three Questions About Each Bug You Find,”  ACM Software Engi-

neering Notes , vol. 14, no. 5, July 1989, pp. 62–63. 
 [Ven03] Venners, B., “Design by Contract: A Conversation with Bertrand Meyer,”  Artima 

Developer , December 8, 2003, available at www.artima.com/intv/contracts.html. 
 [Vin11] Vinson, L., “Mobile Application Testing: Process, Tools, and Techniques,” 2011, available 

at  http://threeminds.organic.com/2011/05/mobile-application-testing-process-tools-
techniques.html . 

 [Voa12] Voas, J., et al., “Mobile Software App Takeover,”  IEEE Software , vol. 29, no. 4, July–
August 2012, pp. 25–27. 

 [Wal03] Wallace, D., I. Raggett, and J. Aufgang,  Extreme Programming for Web Projects , 
Addison-Wesley, 2003. 

 [Wal12] Walker, J., “Computer Programmers Learn Tough Lesson in Sharing,”  The Wall 

Street Journal , vol. 260, no. 48, August 27, 2012, p. 1. 
 [War07] Ward, M., “Using VoIP Software Building zBlocks—A Look at the Choices,” TMNNet, 

2007, available at www.tmcnet.com/voip/0605/featurearticle-using-voip-software-
building-blocks.htm. 

 [War74] Warnier, J. D.,  Logical Construction of Programs , Van Nostrand-Reinhold, 1974. 
 [Was10] Wasserman, A., “Software Engineering Issues for Mobile Application Development,” 

 Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research , 2010. 
 [Web05] Weber, S.,  The Success of Open Source , Harvard University Press, 2005. 
 [Web13] Web Application Security Consortium, 2013, available at http://www.webappsec

.org/. 
 [Wee11] Weevers, I., “Seven Guidelines for Designing High Performance Mobile User 

Experiences,”  Smashing Magazine , July 18, 2011, available at http://uxdesign
.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-
mobile-user-experiences/ 

 [Wei86] Weinberg, G.,  On Becoming a Technical Leader , Dorset House, 1986. 
 [Wel01] vanWelie, M., “Interaction Design Patterns,” 2001, available at www.welie.com/

patterns/. 

pre22126_ref_909-932.indd   930pre22126_ref_909-932.indd   930 13/12/13   6:19 PM13/12/13   6:19 PM



REFERENCES 931

 [Wel99] Wells, D., “XP—Unit Tests,” 1999, available at www.extremeprogramming.org/
rules/unittests.html. 

 [Wev11] Wever, A., and N. Maiden, ”Requirements Analysis: The Next Generation,”  IEEE 

Software , vol. 28, no. 2, March–April 2011, pp. 22–23. 
 [Whi07] Whitehead, J., “Collaboration in Software Engineering: A Roadmap,” in  Future of 

Software Engineering 2007 , L. Briand and A. Wolf (eds.), IEEE-CS Press, 2007. 
 [Whi08] White, J., “Start Your Engines: Mobile Application Development,” April 22, 2008, 

available at  http://www.devx.com/SpecialReports/Article/37693 . 
 [Whi12] Whittaker, J., et al.,  How Google Tests Software , Addison-Wesley, 2012. 
 [Whi97] Whitmire, S.,  Object-Oriented Design Measurement , Wiley, 1997. 
 [Wie02] Wiegers, K.,  Peer Reviews in Software , Addison-Wesley, 2002. 
 [Wie03] Wiegers, K.,  Software Requirements , 2nd ed., Microsoft Press, 2003. 
 [Wik12] Wikipedia, “Data Modeling,” 2012, available at  http://en.wikipedia.org/wiki/

Data_modeling . 
 [Wik13] “Cloud Computing,” January 2013, available at  http://en.wikipedia.org/wiki/Cloud_

computing . 
 [Wil00] Williams, L., and R. Kessler, “All I Really Need to Know about Pair Programming I 

Learned in Kindergarten,”  CACM , vol. 43, no. 5, May 2000, available at http://collabora-
tion.csc.ncsu.edu/laurie/Papers/Kindergarten.PDF. 

 [Wil05] Willoughby, M., “Q&A: Quality Software Means More Secure Software,”  Comput-

erworld , March 21, 2005, available at www.computerworld.com/securitytopics/security/
story/0,10801,91316,00.html. 

 [Wil97] Williams, R., J. Walker, and A. Dorofee, “Putting Risk Management into Practice,” 
 IEEE Software , May 1997, pp. 75–81. 

 [Wil99] Wilkens, T., “Earned Value, Clear and Simple,”  Primavera Systems , April 1, 1999, p. 2. 
 [Win90] Wing, J., “A Specifi er’s Introduction to Formal Methods,”  IEEE Computer , vol. 23, 

no. 9, September 1990, pp. 8–24. 
 [Wir71] Wirth, N., “Program Development by Stepwise Refi nement,”  CACM , vol. 14, no. 4, 

1971, pp. 221–227. 
 [Wir90] Wirfs-Brock, R., B. Wilkerson, and L. Weiner,  Designing Object-Oriented Software , 

Prentice Hall, 1990. 
 [WMT02]  Web Mapping Testbed Tutorial , 2002, available at www.webmapping.org/

vcgdocuments/vcgTutorial/. 
 [Woh94] Wohlin, C., and P. Runeson, “Certifi cation of Software Components,”  IEEE Trans. 

Software Engineering , vol. SE-20, no. 6, June 1994, pp. 494–499. 
 [Wor04] World Bank,  Digital Technology Risk Checklist , 2004, available at www.moonv6.org/

lists/att-0223/WWBANK_Technology_Risk_Checklist_Ver_6point1.pdf. 
 [Wri11] Wright, A., “Lessons Learned: Architects Are Facilitators, Too!”  IEEE Software , 

vol. 28, no. 2, January–February 2011, pp. 70–72. 
 [W3C03] World Wide Web Consortium,  Web Content Accessibility Guidelines , 2003, available 

at www.w3.org/TR/2003/WD-WCAG20-20030624/. 
 [Yac03] Yacoub, S., et al.,  Pattern-Oriented Analysis and Design , Addison-Wesley, 2003. 
 [Yah13] Yahoo Developer Network, Yahoo! Design Pattern Library, 2013, available at http://

developer.yahoo.com/ypatterns/. 
 [Yau11] Yau, S., and H. An, “Software Engineering Meets Services and Cloud Computing,” 

 IEEE Computer , vol. 44, no. 10, October 2011, pp. 47–53. 
 [You01] Young, R.,  Effective Requirements Practices , Addison-Wesley, 2001. 
 [You75] Yourdon, E.,  Techniques of Program Structure and Design , Prentice Hall, 1975. 
 [You95] Yourdon, E., “When Good Enough Is Best,”  IEEE Software , vol. 12, no. 3, May 1995, 

pp. 79–81. 
 [Yau02] Yaun, M. “Best Tools for Mobile Application Development,”  Java World , available at 

www.javaworld.com/javaworld/jw-10-2002/jw-1018-wireless.html. 
 [Zah90] Zahniser, R., “Building Software in Groups,”  American Programmer , vol. 3, no. 7–8, 

July–August 1990. 
 [Zah94] Zahniser, R., “Timeboxing for Top Team Performance,”  Software Development , 

March 1994, pp. 35–38. 

pre22126_ref_909-932.indd   931pre22126_ref_909-932.indd   931 13/12/13   6:19 PM13/12/13   6:19 PM



932 REFERENCES

 [Zha05] Zhang, W., and S. Jarzabek, “Reuse without Compromising Performance: Industrial 
Experience from RPG Software Product Line for Mobile Devices,”  Proceedings of 9th 

Software Product Line Conference , September 2005, pp. 57–69. 
 [Zim11] Zimmermann, O., “Architectural Decisions as Reusable Design Assets,”  IEEE 

Software , vol. 28, no. 1, January–February 2011, pp. 64–69. 
 [Zul92] Zultner, R., “Quality Function Deployment for Software: Satisfying Customers,” 

 American Programmer , February 1992, pp. 28–41. 
 [Zus90] Zuse, H.,  Software Complexity: Measures and Methods , DeGruyter, 1990. 
 [Zus97] Zuse, H.,  A Framework of Software Measurement , DeGruyter, 1997.    

pre22126_ref_909-932.indd   932pre22126_ref_909-932.indd   932 13/12/13   6:19 PM13/12/13   6:19 PM



933

  INDEX    

   Behavioral testing,   509   
   Beta test,   485   
   Big-bang integration testing,  

 476   
   Black box,   604  

  specifi cation,   605  
  testing,   509   

   Bootstrap, SPI framework,   833   
   Bottom-up integration,   477   
   Boundary classes,   892   
   Boundary value analysis,   512   
   Box structure specifi cation,   604   
   Brute force, debugging,   491   
   Bugs (See also, Faults, Defects),  

 432   
   Building blocks,   848   
   Business classes,   897   
   Business process 

reengineering,   799  
  tools,   801   

   Business risk,   779   

       Casual meeting,   439   
   Cause elimination,   491   
   Certifi cation,   612  

  model,   612  
  teams,   611  
  testing,   489  
  testing for MobileApps,   570   

   Change control,   626  
  process,   636   

   Change management,   451, 631   
   Changes, types of,   8   
   Checklist,  

  MobileApp,   570  
  review,   439  
  risk item,   781   

   Chief programmer team,   92   
   CK metrics suite,   667   
   Class-oriented metrics,   667   
   Class-Responsibility-

Collaborator (CRC),   192  
  cards,   74   

   Classes (also see, object),   892  
  aggregate,   196  
  analysis,   185  
  attributes,   188  
  boundary,   892  
  business,   897  
  characteristics,   897  
  cohesion,   898  
  controller,   894  
  coupling,   898  
  design,   239  

   Architectural design metrics,  
 663   

   Architectural design tools,   273   
   Architecture,   118, 253  

  alternatives,   274  
  call and return,   260  
  conformance checking,   279  
  data centered,   258  
  data fl ow,   259  
  defi nition of,   253  
  description template,   257  
  genres,   257  
  importance of,   254  
  mismatch,   311  
  patterns,   278  
  service-oriented,   266  
  structural properties,   233  
  styles,   258  
  tradeoffs,   275  
  WebApp design,   381   

   Arguments for metrics,   720   
   Artifi cial intelligence software,  

 7   
   Aspect-oriented software 

development,   54   
   Aspects,   55, 237   
   Assessment, risk,   777   
   Asset,   585   
   Asset value,   591   
   Associations,   198, 872   
   Assurance, security,   592   
   Attack,   585   
   Attack pattern,   589   
   Attack surface,   596   
   Attributes,   188, 893  

  metrics,   654, 657  
  quality,   455   

   Audit trails,   632   
   Audits, software quality,   450   
   Automated debugging,   491   
   Automated estimation 

techniques,   743   
   Automated testing,   571   
   Availability measures,   460   
   Avoiding management 

problems,   697   

       Backlog,   79   
   Backtracking, debugging,   491   
   Backward impact management,  

 639   
   Baselines,   626, 720   
   Basis path testing,   500   
   Behavioral models,   203   

   Abstraction,   108, 232   
   Access control,   637   
   Accessibility,   336   
   Action,   16   
   Activity diagram,   155, 180, 303, 

869   
   Actors,   149   
   Aggregate objects,   633   
   Aggregation,   873   
   Agile alliance,   66   
   Agile development (see also 

Agile process),   71  
  politics of,   71   

   Agile manifesto,   66   
   Agile modeling principles,   81   
   Agile process,   70   
   Agile teams,   691   
   Agility,  

  cost of change,   69  
  defi nition of,   68  
  principles,   70   

   Alpha test,   485   
   Analysis,  

  defect,   450  
  display content,   331  
  rule of thumb,   169  
  tasks,   326  
  threat,   585  
  user,   325  
  user interface,   322, 325  
  work environment,   331   

   Analysis classes,  
  characteristics of,   187  
  identifying,   185  
  state diagrams,   204   

   Analysis model,  
  building,   154  
  elements of,   154, 172   

   Analysis packages,   199   
   Annual loss expectancy (ALE),  

 594   
   Application domains,   6   
   Application software,   7   
   Appraisal costs,   422   
   Archetype,   269   
   Architectural agility,   280   
   Architectural components,   270   
   Architectural context diagram 

(ACD),   267   
   Architectural decisions,   256, 266   
   Architectural description 

language (ADL),   233, 
276   

   Architectural descriptions,   255   



934 INDEX

  diagrams of,   156, 191, 870  
  operations (see also, 

 Methods),   189  
  persistent,   897  
  process,   897  
  testing,   481, 528  
  user interface,   897   

   Classic life cycle,   42   
   Cleanroom  

  design,   607  
  process model,   603  
  testing (see also, Statistical 

use testing),   610   
   Clear box,   605  

  specifi cation,   607   
   Closed paradigm team,   689   
   Cloud computing,   10, 97, 405   
   Cluster testing,   482, 529   
   CMM,   38   
   CMMI,   38, 828   
   COCOMO II Model,   744   
   Code quality,   454   
   Code restructuring,   809   
   Code reviews,   433   
   Coding principles,   122   
   Cohesion,   296, 898   
   Collaboration,   140, 195  

  diagram,   880  
  tools,   98   

   Collaborative development,   852   
   Communication activity,   17  

  principles of,   110  
  diagram,   880  
  team,   692  
  work tasks,   696   

   Compatibility tests,   554   
   Completion,   484   
   Complexity,  

  management of,   845  
  elements,   626   

   Component model,   612   
   Component-based 

development,   53, 308   
   Component-based software 

engineering (CBSE),  
 308   

   Component-based standards,  
 291   

   Component-level metrics,   671   
   Component-level testing,   555   
   Components,  

  adaptation,   310  
  class-based,   291  
  classifi cation,   312  
  composition,   310  
  defi nition of,   286  
  design guidelines,   295  
  design of,   290, 299  
  elaboration,   287  
  object-oriented view,   286  
  process-related view,   291  

  retrieval,   312  
  traditional view,   288  
  WebApp design,   387   

   Composition,   873   
   Concurrent models,   49   
   Condition testing,   507   
   Confi guration audit,   639   
   Confi guration management,   626   
   Confi guration models,   220   
   Confi guration objects,   642   
   Confi guration review,   484   
   Confi guration testing,   558   
   Connectivity testing,   483   
   Consistency,   526   
   Construction activity,   17  

  principles,   121   
   Content  

  model,   216  
  objects,   379  
  management,   643  
  repository,   630  
  testing,   545  
  testing tools,   547, 645   

   Context,   694   
   Context aware apps,   399   
   Contingency planning,   789   
   Continuous process 

improvement,   449   
   Control structure testing,   507   
   Controller class,   894   
   Conventional software test 

strategies,   475   
   Coordination and 

communication,   692   
   Coordination, team,   692   
   Correctness checks,  

  OOA model,   525  
  security,   591   

   Correctness proof,   609   
   Correctness verifi cation 

(see also, Design 
verifi cation),   608   

   Cost estimation tools,   748   
   Cost-effectiveness,   436   
   Coupling,   298  

  class,   898   
   CRC model review,   527   
   Critical practices,   699   
   Cross-cutting concerns,   54, 237, 

589   
   Customer voice table,   146   
   Customers,   111  

  Myths about,   24   
   Cyclomatic complexity,   503   

       Data design,   244   
   Data fl ow modeling,   511   
   Data fl ow testing,   507   
   Data restructuring,   810   
   Data tree,   217   
   Database testing,   547   
   Debugging,   488  

  automated,   492  
  psychological considerations,  

 491  
  strategies,   491  
  tactics,   491   

   Decision tree,   749   
   Decomposition,  

  problem,   694   
   Decomposition techniques, 

estimation,   734   
   Defect amplifi cation,   433   
   Defect analysis,   450   
   Defect removal effi ciency 

(DRE),   718   
   Defects  (also see bug, faults),   432   
   Dependability,   591   
   Dependencies,   198, 872  

  inversion,   241  
  management,   628  
  tracking,   631   

   Deployment  
  activity,   17, 125  
  diagram,   874  
  testing,   487   

   Deployment-level design,   248   
   Depth-fi rst integration,   480   
   Design  

  aesthetic,   377  
  architectural,   267  
  architectural elements,   244  
  classes,   239  
  cleanroom,   607  
  component level,   247, 290, 

299  
  concepts,   231  
  content,   379  
  data,   244  
  deployment level,   248  
  evolution of,   230  
  formal,   603  
  granularity,   365  
  interfaces,   245, 317  
  metrics,   663  
  model,   226  
  navigation,   385  
  object-oriented concepts,   238  
  pattern-based,   347, 354  
  postmodern,   854  
  process,   228  
  quality guidelines,   228, 454  
  refactoring,   74  
  refi nement,   237, 608  
  reuse,   312  
  scenario-based design,   532  
  task set,   231  
  technical reviews,   229  
  test case,   242, 515  
  traditional components,   307  
  verifi cation,   608  
  WebApps,   371   

   Desk check,   439   
   Device compatibility testing,   483   

Classes (also see, object) (Cont.)



INDEX 935

   Diagram,  
  activity,   869  
  class,   870  
  collaboration,   880  
  communication,   880  
  deployment,   874  
  sequence,   876  
  state,   884  
  use-case,   875   

   Direct measures,   708   
   Document  

  restructuring,   804  
  testing,   517   

   Domain analysis,   170   
   Domain engineering,   308   
   Drivers,   469   
   Dynamic system development 

method (DSSD),   79   

       Effort estimation tools,   748   
   Elaboration,   135, 237  

  component,   287  
  task,   327   

   Elicitation,   134  
  agile,   148  
  work products,   147   

   Embedded Software,   7   
   Empirical models,  

  estimation,   743   
   Encapsulation,   892   
   End users,   111   
   Engineering,  

  forward,   811  
  reverse,   805  
  security,   588   

   Engineering/scientifi c 
software,   7   

   Environmental resources,   732   
   Equivalence partitioning,   511   
   Error correction,   492   
   Error density,   435   
   Errors,   432  

   cost of,   423  
   WebApp environment,   542   

   Estimation  
  agile development,   746  
  concepts,   750  
  decomposition techniques,  

 734  
  empirical models,   743  
  FP-based,   738  
  object-oriented projects,   746  
  problem-based,   735  
  problem-based,   735  
  process-based,   739  
  reconciliation,   742  
  risk (see also, Risk 

 projection),   782  
  software,   727  
  use case,   740  
  WebApp,   747   

   Evaluations, post-mortem,   445   

   Exceptions,   178   
   Exhaustive testing,   500   
   Exposure, risk,   786   
   Extreme programming (XP),   72  

  activities,   72  
  industrial,   75  
  testing,   75  
  team,   94   

       Failure costs,   422   
   Failure curve,  

  hardware,   5  
  software,   6   

   Fault (see also, Bug, Defects),   432   
   Fault-based testing,   531   
   Feasibility analysis,  

  MobileApp,   571   
   Finite state modeling,   511   
   Fire-fi ghting,   778   
   Flow graph,   500   
   Formal design,   603   
   Formal methods,   53, 602  

  tools,   614   
   Formal specifi cation language,  

 900   
   Formal technical review (FTR),  

 432, 441   
   Forward engineering,   811   
   Forward impact management,  

 638   
   Framework,   17, 291, 351  

  activities,   16, 17, 32  
  SPI,   819   

   Function point (FP),   659, 710  
  estimation,   738   

   Functional decomposition,   694   
   Functional independence,   236   
   Functional model,   218   
   Functional testing,   509   

       Gap analysis,   823   
   Generalization,   871   
   Genres,   257   
   Gesture testing,   575   
   Goal/question/metric (GQM),  

 656   
   Graph matrices,   506   
   Graph-based testing,   509   
   Graphic design,   378   

       Hazards,   463, 790   
   Help facilities testing,   516   
   Historical data,   659   
   Horizontal refi nement,   613   
   Human elements,   626   
   Human resources,   731   
   Hype cycle,   843   

       Identifi cation,   633  
  risk,   780   

   Impact management,   638  
  risk,   785   

   Impact of risk,   785   
   Inception,   133   
   increments,   44   
   Independent program paths,  

 502   
   Independent test group (ITG),  

 475   
   Indicator,   655   
   Informal reviews,   439   
   Information,   3  

  objectives,   694  
  representing,   862   

   Information hiding,   235   
   Information objectives,   694   
   Inheritance,   894   
   Inspections,   432, 437   
   Integration testing,   475  

  object-oriented,   529  
  work products,   480   

   Integration,  
  bottom-up,   481  
  top-down,   473   

   Interaction frames,   878   
   Interclass test-case design,   534   
   Interface analysis,   325   
   Interface design,   245, 317  

  evaluation of,   342  
  golden rules,   318  
  issues,   335  
  MobileApps,   341, 399  
  models,   323  
  patterns,   362  
  process,   323  
  steps,   332  
  WebApps,   337, 376   

   Internationalization,   336, 578   
   Internet of things,   588   
   Invariant,   616   
   Inventory analysis,   803   
   ISO 9001:2000,   38   
   ISO 9001:2008,   462   

       Language  
  formal specifi cation,   900  
  object constraint,   887  
  semantics,   901  
  syntax,   901  
  z-specifi cation,   904   

   Layout,   378   
   Legacy software,   7   
   Liability,   425   
   Living models,   120   
   Load testing,   562   
   LOC-based metrics,   712   
   Loop testing,   507   
   Lorenz and Kidd OO metrics,  

 671   

       Maintainability,   797   
   Maintenance,   108  

  software,   796   
   Make/Buy decision,   748   



936 INDEX

   Management,  
  myths,   23  
  project,   684  
  risk,   451, 777  
  security,   451  
  spectrum,   685   

   Manual test integration tools,  
 614   

   Maturity level,   831   
   Maturity models,   821   
   Measurement,   654, 708  

  principles,   656   
   Measures,   654  

  availability,   461  
  direct,   708  
  direct,   708  
  reliability,   460   

   Meetings,  
  casual,   439  
  review,   441   

   Melding problem and process,  
 695   

   Messages,   895   
   Methods (see also, Operations),  

 16, 893   
   Metrics,   654  

  architectural design,   663  
  arguments,   720  
  attributes,   654, 657  
  baseline,   720  
  business goals,   724  
  collection,   721  
  small organizations,   721  
  program establishment,   722  
  class-oriented,   667  
  component-level,   671  
  design,   663  
  function-based,   659, 710  
  LOC-based,   712  
  MobileApp design,   673  
  object-oriented,   666, 713  
  private,   706  
  process,   704  
  productivity,   712  
  project,   707  
  public,   706  
  quality,   456  
  requirements model,   659  
  reviews,   534  
  size-oriented,   709  
  software quality,   716  
  source code,   675  
  specifi cation quality,   663  
  testing,   676  
  use case,   714  
  user interface design,   672  
  WebApp,   714  
  WebApp design,   673   

   Middleware,   405   
   MobileApps (mobile 

applications),   9  
  architectural design of,   274  

  best design practices,   401  
  checklist,   570  
  component-level design,   306  
  context aware,   399  
  design,   391  
  design challenges,   392  
  design mistakes,   401  
  design metrics,   673  
  development activities,   395  
  interface design,   398  
  patterns,   366  
  quality checklist,   397  
  real-time testing,   578  
  requirements modeling,   214  
  SCM,   640  
  software engineering,   407  
  stress testing,   573  
  test matrix,   572  
  testing,   483  
  testing guidelines,   568  
  testing strategies,   569  
  testing tools,   579  
  tools,   404  
  usability testing,   575   

   Mobility environments,   403   
   Model-based testing,   514   
   Model-driven software 

development,   853   
   Model-View-Controller (MVC),  

 384   
   Model,  

  certifi cation,   612  
  COCOMO II,   744  
  component,   612  
  sampling,   612  
  security,   590   

   Modeling,   17  
  agile,   80  
  CRC,   192  
  data fl ow,   511  
  fi nite state,   511  
  principles,   114  
  scenario-based,   173  
  security,   590  
  threat,   594  
  timing,   511  
  transaction,   511   

   Models  
  behavioral,   203  
  design,   243  
  object-oriented,   525  
  requirements,   167   

   Modularity,   234   
   Module (see also, Component),  

 288   
   MOI leadership model,   688   
   Mongolian horde concept,   24   
   MOOD metrics suite,   670   
   Multiple class testing,   534   
   Multiplicity,   872   
   Myths,   23  

  customer,   24  

  management,   23  
  practitioner,   25       

   Navigation,  
  semantic unit,   387  
  semantics,   385  
  syntax,   387   

   Navigation modeling,   220   
   Navigation testing,   556   
   Negligence,   425   
   Negotiation,   135, 159       

   Object (see also, Class),   892   
   Object constraint language 

(OCL),   887, 901  
  example of, 903 
notation,   902   

   Object-oriented  
  analysis,   172, 184  
  design metrics,   666  
  integration testing,   529  
  metrics,   713  
  model consistency,   526  
  models,   525  
  OOA model correctness,   525  
  OOD model correctness,   525  
  project estimation,   746  
  software,   481  
  test case design,   530  
  testing strategies,   528  
  unit testing,   528  
  validation testing,   529         

   OO metrics, Lorenzz and Kidd,  
 671   

   Open paradigm team,   689   
   Open source,   848   
   Open world software,   846   
   Open-closed principle,   292   
   Operations (see also Methods),  

 189, 893   
   Organizational paradigms,   92   
   Orthogonal array testing,   513   
   Outsourcing,   750       

   Pair programming,   75, 440   
   Partition testing,   533   
   Partitioning,   694   
   Pattern organizing table,   358   
   Patterns,   109  

  analysis,   157, 207  
  architectural,   263, 278, 359  
  component-level,   360  
  context,   348  
  describing,   352  
  design,   348  
  example of,   209  
  interface design,   362  
  kinds of,   349  
  languages,   353  
  MobileApps,   366  
  process,   35  
  repository,   353, 360  



INDEX 937

  requirements modeling,   207  
  template for,   352  
  testing,   519  
  WebApps,   364   

   Peer reviews,   432   
   People,   687   
   People Capability Maturity 

Model,   685, 832   
   People software process (PSP),  

 59, 833   
   Performance testing,   487, 580   
   Persistent classes,   897   
   Phishing,   587   
   Plan, RMMM,   790   
   Plan, SQA,   
   Planning activity,   17  

  principles,   112  
  web testing,   543   

   Plug points,   351   
   Polymorphism,   896   
   Post-mortem evaluations (PME),  

 445   
   Postconditions,   616   
   Practice (software engineering),  

  core principles,   108  
  essence of,   19   

   Pre-condition,   178, 616   
   Predictable risk,   779   
   Prevention costs,   422   
   Priority points,   140   
   Privacy,   586  

   cloud computing,   587  
   social media,   587   

   Private metrics,   706   
   Proactive risk strategies,   778   
   Problem decomposition,   694   
   Problem elaboration,   694   
   Problem solving,   19   
   Problem-based estimation,   735   
   Process,   16, 686  

  adaptation,   18  
  agile,   69  
  assessment,   37  
  classes,   897  
  components of,   16  
  debugging,   490  
  decomposition,   694  
  elements,   626  
  extreme programming,   72  
  fl ow,   31, 33  
  framework,   17, 32  
  generic,   31  
  iterative,   31  
  immaturity,   822  
  pattern template,   35  
  patterns,   35, 37  
  principles,   106  
  relationship to product,   62  
  SCM,   632   

   Process improvement,   37, 818  
  approaches,   819  
  continuous,   449  

  education,   825  
  evaluation,   827  
  gap analysis,   823  
  installation,   826  
  justifi cation,   825  
  other frameworks,   832  
  ROI,   834  
  steps,   823  
  trends,   835   

   Process maturity,   821   
   Process metrics,   704   
   Process modeling, tools,   62   
   Process models,   40  

  cleanroom,   603  
  concurrent,   49, 51  
  evolutionary,   45  
  incremental,   43  
  prescriptive,   41  
  risk driven,   48  
  software reengineering,   803  
  specialized,   52   

   Process technology,   61   
   Process-based estimation,   339   
   Producer,   441   
   Product,   686, 693   
   Product metrics,   653  

  tools,   678   
   Product-line software,   7, 11   
   Product-specifi c risk,   780   
   Productivity measures,   712   
   Productivity metrics,   712   
   Project,   686, 693   
   Project complexity,   728   
   Project database,   627   
   Project management,   684  

  tools,   699   
   Project metrics,   707   
   Project planning,   729  

  process,   729  
  task set,   730   

   Project risk,   779   
   Project size,   729   
   Project velocity,   73   
   Projects, getting started,   26   
   Projection, risk (see also, Risk 

estimation),   782   
   Prototyping,   45  

  problems with,   46   
   Public metrics,   706   
   Public metrics,   706       

   Quality,  
  attributes,   455  
  “good enough”,   421  
  code,   455  
  concepts,   412  
  cost of,   422  
  defi nition of,   413  
  design,   454  
  Garvin’s dimensions,   415  
  ISO 9126,   418  
  management actions,   426  

  McCall’s factors,   416  
  methods for achieving,   427  
  metrics,   455  
  MobileApps,   397  
  quantitative view,   420  
  requirements,   454  
  requirements tree,   373  
  security,   425  
  WebApp design,   372   

   Quality assurance,   428  
  statistical,   456   

   Quality control,   427   
   Quality function deployment 

(QFD),   146   
   Quality management,   449  

  resources,   452       

   Random paradigm team,   689   
   Random testing,   532   
   Rapid cycle testing,   473   
   Reactive risk strategies,   778   
   Real-time testing,  

  MobileApps,   578  
  System,   517   

   Reconciliation,  
  estimation,   742  
  LOC and FP metrics,   711   

   Record keeping,   442   
   Recorder,   442   
   Recovery testing,   486   
   Reengineering  

  business process,   799  
  economics,   813  
  software,   802   

   Refactoring,   74, 238, 301   
   Refi nement, (see also, 

Elaboration),   237   
   Regression testing,   478   
   Reliability,  

  measures,   459  
  software,   459   

   Repository,   630  
  content,   630  
  design patterns,   360  
  hypermedia,   365  
  SCM,   630   

   Requirements,  
  emergent,   846  
  negotiating,   159  
  nonfunctional,   141  
  security,   585  
  understanding,   131  
  validation,   161   

   Requirements elicitation, 
security,   589   

   Requirements engineering,  
 132, 852  

  agile,   158  
  common mistakes,   162  
  fi rst questions,   140  
  goal-oriented,   134  
  tools,   138   



938 INDEX

   Requirements gathering, 
collaborative,   143   

   Requirements modeling,  
  approaches to,   171  
  objectives,   168  
  principles,   116  
  WebApps,   213  
  MobileApps,   213   

   Requirements models (see also, 
Analysis models),   114  

  metrics,   659  
  types of,   167   

   Requirements quality,   454   
   Requirements specifi cation, 

template for,   136   
   Requirements tasks,  

  elaboration,   135  
  elicitation,   134, 142  
  inception,   133  
  negotiation,   135  
  specifi cation,   135  
  validation,   136   

   Requirements tracing,   631   
   Resources,   731  

  environmental,   732  
  human,   731  
  quality management,   452  
  reusable software,   732   

   Responsibilities,   193   
   Restructuring,   809  

  code,   809  
  data,   810  
  document,   804   

   Reusable software resources,  
 732   

   Reuse,   312   
   Reverse engineering,   805  

  data,   807  
  processing,   807  
  tools,   809  
  user interfaces,   808   

   Review  
  checklist,   439  
  guidelines,   442  
  issues list,   442  
  leader,   441  
  meeting,   441  
  metrics,   435  
  reporting,   442   

   Review information sheet (RIS),  
 790   

   Reviews,  
  architectural,   277  
  code,   433  
  confi guration,   488  
  informal,   439  
  peer,   432  
  sample-driven,   444  
  software quality,   450  
  technical,   441   

   Risk  
  assessment,   777  

  categories,   779  
  components,   782  
  drivers,   782  
  estimation (see also risk 

 projection),   782  
  exposure,   786  
  identifi cation,   780  
  impact,   785  
  information sheet,   790  
  item checklist,   781  
  patterns,   781  
  projection (see also risk 

 estimation),   782  
  refi nement,   787   

   Risk management,   777  
  principles,   780  
  tools,   791  
  SPI,   827   

   Risk Mitigation, Monitoring, 
and Management 
(RMMM),   788, 790   

   Risk strategies,  
  proactive,   778  
  reactive,   778   

   Risk table,   783   
   Risks,   424  

  business,   779  
  known,   779  
  predictable,   779  
  product-specifi c,   780  
  project,   779  
  technical,   779  
  unpredictable,   779       

   SafeHome,   143, 150  
  activity diagram,   220  
  analysis patterns,   209  
  applying patterns,   362  
  architectural assessment,  

 276  
  architectural decisions,   265  
  architecture context 

 diagram,   269  
  behavioral modeling,   157  
  choosing an architecture,   262  
  class models,   190  
  cohesion in action,   297  
  communication mistakes,  

 111  
  conclusion,   862  
  considering agile process,   76  
  coupling in action,   298  
  CRC models,   197  
  data tree,   217  
  design classes,   241  
  design concepts,   239  
  design patterns,   356  
  design vs. coding,   227  
  domain analysis,   171  
  getting started,   26  
  grammatical parse,   186  
  graphic design,   377  

  instantiations of,   272  
  interface design review,   340  
  interface golden rules,   320  
  MobileApp requirements,  

 396  
  negotiation,   160  
  open closed principle,   293  
  preliminary user scenario,  

 174  
  quality issues,   424  
  requirements gathering,   145  
  screen layout,   334  
  selecting a model,   47, 50  
  sequence diagram,   206  
  state diagram,   205  
  swimlane diagram,   181  
  team structure,   93  
  use case diagram,   153  
  use case for UI design,   327  
  use case template,   178  
  user scenarios,   147   

   Safety,   451, 790  
  software,   460   

   Sample-driven reviews,   444   
   Sampling model,   612   
   Scenario-based testing,   532   
   Scope,   113, 134  

  software,   694   
   Scrum,   78  

  meetings,   79   
   Security and privacy,   586   
   Security assurance,   592   
   Security assurance case (see 

also, Trustworthiness),  
 592   

   Security engineering,   588  
  tools,   598  
  user-centered,   589   

   Security  
  case,   591  
  concerns, cross-cutting,   589  
  management,   451  
  correctness checks,   591  
  model,   590  
  objectives,   590  
  requirements elicitation,  

 585, 589  
  quality aspects,   425   

   Self-adaptive systems,   158   
   Self-organizing teams,   692   
   Semantics, language,   901   
   Separation of concerns,   108, 234   
   Sequence diagrams,   205, 876   
   Service-oriented methods,   148   
   Services,   893   
   Six sigma,   458   
   Size-oriented metrics,   709   
   Smoke testing,   479   
   Social media,   95   
   Social media and privacy,   587   
   Software architecture, see 

Architecture   



INDEX 939

   Software component, see 
Component   

   Software confi guration audit,  
 639   

   Software confi guration items 
(SCI),   628   

   Software confi guration 
management 
(SCM),   623  

  MobileApps,   640  
  process,   632  
  Repository,   630  
  standards,   649  
  tools,   640  
  WebApps,   640   

   Software defects, cost impact,  
 432   

   Software design, see Design,   
   Software development, myths,  

 23   
   Software engineer,  

  characteristic of,   88  
  roles,   89   

   Software engineering,  
  cloud-based,   97  
  component-based,   308  
  core concepts,   106  
  defi nition of,   15  
  design,   225  
  ethics,   865  
  grand challenge,   851  
  impact of social media,   95  
  layers of,   16  
  long view,   864  
  practice,   19  
  principles,   21, 104  
  psychology,   89  
  technology directions,   849  
  trends,   839  
  video games,   1  
  work practices,   126   

   Software equation,   744   
   Software estimation,   727   
   Software maintenance, (see 

also, Maintenance),   796   
   Software Process,   16   
   Software process improvement 

(SPI), see Process 
improvement   

   Software quality assurance 
(SQA),   448  

  elements of,   450   
   Software quality, see also, 

Quality  
  audits,   450  
  metrics,   716  
  reviews,   450  
  standards,   450   

   Software reengineering,  
 802  

  process model,   803   
   Software reliability,   459   

   Software restructuring tools,  
 810   

   Software safety,   460   
   Software scope, (see also, 

Scope),   694, 730   
   Software sizing,   734   
   Software teams, (see also, 

Teams),   689   
   Software,  

  application domains,   6  
  as capital,   30  
  defi nition of,   4  
  “good enough”,   421  
  importance of,   2, 861  
  key questions,   4  
  nature of,   3  
  object-oriented,   487  
  realities,   14   

   Source code metrics,   675   
   Specifi cation,   135  

  black-box,   605  
  box structure,   604  
  clear-box,   607  
  quality metrics,   663  
  state-box,   606   

   SPICE,   38, 833   
   Spike solution,   74   
   Spiral model,   47   
   Sprints,   79   
   SQA group,   450   
   SQA plan,   454   
   Stakeholder,   687  

  defi nition of,   17  
  identifying,   139   

   Standards,  
  ISO 9001:2008,   462  
  SCM,   649  
  software quality,   450   

   State box,   604   
   State diagram,   884   
   State representations,   204   
   State-box specifi cation,   606   
   Statechart,   304   
   Statistical quality assurance,  

 456   
   Statistical software process 

improvement 
(SSPI),   707   

   Statistical use testing,   604   
   Status reporting, confi guration,  

 639   
   Stereotype,   871   
   Strategy,  

  debugging,   491  
  testing,   471   

   Stress testing,   487, 562  
  MobileApp,   573   

   Structure chart,   289   
   Structured analysis,   171   
   Stub,   486   
   Subclass,   893   
   Superclass,   893   

   Supportability,   798   
   Surface, attack,   596   
   Survivability,   591   
   Swimlane diagram,   181, 330   
   Synchronization control,   637   
   Synchronous paradigm team,  

 690   
   Syntax,   901   
   System classes,   897   
   System of forces,   348   
   System software,   6   
   System testing,   486   
   System vulnerability,   591       

   Task,   16   
   Task analysis,   326   
   Task set,   31  

  identifi cation of,   34  
  project planning,   730  
  project planning,   730   

   Team leader,   688   
   Team Software Process (TSP),  

 60, 833   
   Teams,   90  

  agile,   93, 691  
  closed paradigm,   689  
  global,   99  
  jelled,   90  
  open paradigm,   689  
  organizational paradigms,   92  
  random paradigm,   689  
  self-organizing,   94, 692  
  structures,   92  
  synchronous paradigm,   690  
  talent mix,   847  
  toxicity,   91  
  XP,   94   

   Technical review reference 
model,   438   

   Technical reviews,   441   
   Technical risk,   779   
   Technology evolution,   840   
   Test across borders (also see, 

Internationalization),  
 578   

   Test case derivation,   504   
   Test case design,   515   
   Test,  

  alpha,   485  
  beta,   477  
  characteristics,   498  
  extraction tools,   614  
  generation tools,   614  
  object-oriented,   530  
  strategies for conventional 

software,   473   
   Test matrix,   572   
   Test-driven development,   854   
   Testability,   497   
   Testing  

  automated,   571  
  basis path,   500  



940 INDEX

  behavioral,   509  
  black-box,   509  
  certifi cation,   570  
  class,   482, 528  
  cleanroom (see also Statisti-

cal use testing),   610  
  cluster,   529, 472  
  component-level,   555  
  condition,   507  
  control structure,   507  
  criteria,   472  
  data fl ow,   507  
  database,   547  
  deployment,   475  
  documentation,   517  
  exhaustive,   500  
  fault-based,   531  
  functional,   509  
  gesture,   575  
  graph-based,   509  
  guidelines,   568  
  help facilities,   516  
  integration,   481  
  loop,   507  
  methods,   529, 676  
  mobile-app,   482  
  model-based,   514  
  multiple class,   534  
  object-oriented,   528  
  orthogonal array,   513  
  partition,   533  
  patterns,   519  
  performance,   486  
  principles,   123  
  process,   544  
  Testing, random,   532  
  real-time system,   517  
  recovery,   478  
  regression,   486  
  scenario-based,   532  
  security,   479  
  smoke,   487  
  statistical use,   604  
  strategies,   528, 543, 569, 470  
  stress,   475  
  system,   483  
  thread-based,   476  
  thread-based,   529  
  tools,   579  
  unit,   468  
  use-based,   529  
  validation,   468  
  WebApp,   482  
  white-box,   500   

   Testing-in-the-wild,   483, 573   
   Thread-based testing,   482, 529   
   Threat  

  analysis,   585  
  likelihood,   591  
  modeling,   594   

   TickIt,   834   

   Timing modeling,   511   
   Tools,  

  agile process,  
  architectural description 

languages,   277  
  architectural design,   273  
  architecural conformance,  

 280  
  business process 

 reengineering,   801  
  CBSE,   313  
  collaboration,   98  
  content management,   645  
  cost estimation,   748  
  effort and cost estimation,  

 748  
  effort estimation,   748  
  formal methods,   614  
  manual test integration,   614  
  MobileApp testing,   580  
  process modeling,   62  
  product metrics,   678  
  project and process metrics,  

 716  
  project management,   699  
  requirements engineering,  

 138  
  reverse engineering,   809  
  risk management,   791  
  SCM,   640  
  security engineering,   598  
  software restructuring,   810  
  test extraction,   614  
  test generation,   614  
  use cases,   154  
  user interface development,  

 337  
  user-interface testing,   554  
  version control,   635  
  web confi guration testing,  

 559  
  web content testing,   547  
  web navigation tools,   557  
  web performance testing,   563  
  web security testing,   560  
  WebApp change manage-

ment,   647  
  WebApp Metrics,   675   

   Top-down integration,   476   
   Toxicity, team,   690   
   Traceability,   118, 142  

  matrix,   142, 628   
   Tracking,  

  dependency,   631   
   Transaction modeling,   511   
   Trends,  

  process,   849  
  tools,   855   

   Trigger,   178   
   Trust verifi cation,   591   
   Trustworthiness,   591       

   Umbrella activities,   17   
   UML Notation,   869  

  activity diagram,   155, 180, 303  
  analysis modeling,   207  
  class diagram,   156  
  deployment diagram,   248  
  interface representation,   246  
  state diagram,   156  
  swimlane diagram,   181  
  use case diagram,   153   

   Uncertainty,   779   
   Unifi ed Process,   55  

  agile,   82  
  history of,   56  
  phases,   56  
  workfl ow,   58   

   Unit testing,   473  
  object-oriented,   528   

   Usability,   322  
  testing,   552, 575   

   Usage scenarios,   146   
   Use-based testing,   529   
   Use case,   875  

  estimation,   740   
   Use case points (UCP’s),   742   
   Use cases,   146, 326  

  creating,   173  
  developing,   149  
  diagram,   153, 179, 875  
  estimation,   740  
  events,   203  
  formal,   177  
  metrics,   714  
  question to be answered,   150  
  refi nement of,   176  
  tools,   154   

   User interface classes,   897   
   User interface design, see 

Interface design,   
   User interface design metrics,  

 672   
   User interface testing,   549   
   User stories,   73   
   User-centered security 

engineering,   589   
   User experience testing,   483       

   V-model,   43   
   Validation,   136, 161, 483   
   Validation testing,   483  

  checklist,   137  
  object-oriented,   529   

   Value adjustment factors 
(VAF),   660   

   Verifi cation,   470  
  correctness (see also design 

verifi cation),   608  
  design (see also design 

 verifi cation),   608  
  trust,   591   

Testing (Cont.)



INDEX 941

  metrics,   714  
  metrics tools,   675  
  SCM,   640  
  design pyramid,   375  
  functional model,   218  
  interface design,   376  
  managing change,   647  
  navigation modeling,   220  
  quality of,   372  
  requirements modeling,   213  
  testing,   482   

   White-box testing,   500   
   Work practices,   126   
   Work products, integration 

testing,   483   
   Work tasks, communication,   696   
   Workfl ow analysis,   328   

       Z specifi cation language,   904  
  example of,   906  
  notation,   905     

   Version control,   634  
  tools,   635   

   Versioning,   631   
   Vertical refi nement,   613   
   Viewpoints, multiple,   139   
   Virtual keyboard input,   577   
   Voice input,   576   
   Voice recognition,   576   
   Volatility,   134   

       W5HH principle,   698   
   Walkthroughs,   432   
   Waterfall model,   41  

  problems with,   42   
   Web  

  confi guration testing tools,  
 559  

  navigation testing tools,   557  
  performance testing tools,  

 563  
  quality dimensions,   541  

  security testing tools,   560  
  test planning,   543  
  testing process,   544  
  testing strategy,   543  
  user-interface (UI) testing 

tools,   554   
   Web/mobile applications,   7   
   WebApps (Web applications),   9  

  architectural design of,   273  
  architecture,   381  
  change management tools,  

 647  
  characteristics,   379  
  component design,   387  
  component-level design,   305  
  content model,   216  
  design,   371  
  design goals,   374  
  design metrics,   673  
  environment errors,   542  
  Estimation,   747  



This page intentionally left blank 



This page intentionally left blank 



This page intentionally left blank 



This page intentionally left blank 



This page intentionally left blank 


	Preface
	Chapter 1. The Nature of Software
	1.1. The Nature of Software
	1.1.1. Defining Software
	1.1.2. Software Application Domains
	1.1.3. Legacy Software

	1.2. The Changing Nature of Software
	1.2.1. WebApps
	1.2.2. Mobile Applications
	1.2.3. Cloud Computing
	1.2.4. Product Line Software

	1.3. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 2. Software Engineering
	2.1. Defining the Discipline
	2.2. The Software Process
	2.2.1. The Process Framework
	2.2.2. Umbrella Activities
	2.2.3. Process Adaptation

	2.3. Software Engineering Practice
	2.3.1. The Essence of Practice
	2.3.2. General Principles

	2.4. Software Development Myths
	2.5. How It All Starts
	2.6. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Part One. The Software Process
	Chapter 3. Software Process Structure
	3.1. A Generic Process Model
	3.2. Defining a Framework Activity
	3.3. Identifying a Task Set
	3.4. Process Patterns
	3.5. Process Assessment and Improvement
	3.6. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 4. Process Models
	4.1. Prescriptive Process Models
	4.1.1. The Waterfall Model
	4.1.2. Incremental Process Models
	4.1.3. Evolutionary Process Models
	4.1.4. Concurrent Models
	4.1.5. A Final Word on Evolutionary Processes

	4.2. Specialized Process Models
	4.2.1. Component-Based Development
	4.2.2. The Formal Methods Model
	4.2.3. Aspect-Oriented Software Development

	4.3. The Unified Process
	4.3.1. A Brief History
	4.3.2. Phases of the Unified Process

	4.4. Personal and Team Process Models
	4.4.1. Personal Software Process
	4.4.2. Team Software Process

	4.5. Process Technology
	4.6. Product and Process
	4.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 5. Agile Development
	5.1. What Is Agility?
	5.2. Agility and the Cost of Change
	5.3. What Is an Agile Process?
	5.3.1. Agility Principles
	5.3.2. The Politics of Agile Development

	5.4. Extreme Programming
	5.4.1. The XP Process
	5.4.2. Industrial XP

	5.5. Other Agile Process Models
	5.5.1. Scrum
	5.5.2. Dynamic Systems Development Method
	5.5.3. Agile Modeling
	5.5.4. Agile Unified Process

	5.6. A Tool Set for the Agile Process
	5.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 6. Human Aspects of Software Engineering
	6.1. Characteristics of a Software Engineer
	6.2. The Psychology of Software Engineering
	6.3. The Software Team
	6.4. Team Structures
	6.5. Agile Teams
	6.5.1. The Generic Agile Team
	6.5.2. The XP Team

	6.6. The Impact of Social Media
	6.7. Software Engineering Using the Cloud
	6.8. Collaboration Tools
	6.9. Global Teams
	6.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources


	Part Two. Modeling
	Chapter 7. Principles That Guide Practice
	7.1. Software Engineering Knowledge
	7.2. Core Principles
	7.2.1. Principles That Guide Process
	7.2.2. Principles That Guide Practice

	7.3. Principles That Guide Each Framework Activity
	7.3.1. Communication Principles
	7.3.2. Planning Principles
	7.3.3. Modeling Principles
	7.3.4. Construction Principles
	7.3.5. Deployment Principles

	7.4. Work Practices
	7.5. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 8. Understanding Requirements
	8.1. Requirements Engineering
	8.2. Establishing the Groundwork
	8.2.1. Identifying Stakeholders
	8.2.2. Recognizing Multiple Viewpoints
	8.2.3. Working toward Collaboration
	8.2.4. Asking the First Questions
	8.2.5. Nonfunctional Requirements
	8.2.6. Traceability

	8.3. Eliciting Requirements
	8.3.1. Collaborative Requirements Gathering
	8.3.2. Quality Function Deployment
	8.3.3. Usage Scenarios
	8.3.4. Elicitation Work Products
	8.3.5. Agile Requirements Elicitation
	8.3.6. Service-Oriented Methods

	8.4. Developing Use Cases
	8.5. Building the Analysis Model
	8.5.1. Elements of the Analysis Model
	8.5.2. Analysis Patterns
	8.5.3. Agile Requirements Engineering
	8.5.4. Requirements for Self-Adaptive Systems

	8.6. Negotiating Requirements
	8.7. Requirements Monitoring
	8.8. Validating Requirements
	8.9. Avoiding Common Mistakes
	8.10. Summary
	Problems and Points to Ponder
	Further Readings and Other Information Sources

	Chapter 9. Requirements Modeling: Scenario-Based Methods
	9.1. Requirements Analysis
	9.1.1. Overall Objectives and Philosophy
	9.1.2. Analysis Rules of Thumb
	9.1.3. Domain Analysis
	9.1.4. Requirements Modeling Approaches

	9.2. Scenario-Based Modeling
	9.2.1. Creating a Preliminary Use Case
	9.2.2. Refining a Preliminary Use Case
	9.2.3. Writing a Formal Use Case

	9.3. UML Models That Supplement the Use Case
	9.3.1. Developing an Activity Diagram
	9.3.2. Swimlane Diagrams

	9.4. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 10. Requirements Modeling: Class-Based Methods
	10.1. Identifying Analysis Classes
	10.2. Specifying Attributes
	10.3. Defining Operations
	10.4. Class-Responsibility-Collaborator Modeling
	10.5. Associations and Dependencies
	10.6. Analysis Packages
	10.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 11. Requirements Modeling: Behavior, Patterns, and Web/Mobile Apps
	11.1. Creating a Behavioral Model
	11.2. Identifying Events with the Use Case
	11.3. State Representations
	11.4. Patterns for Requirements Modeling
	11.4.1. Discovering Analysis Patterns
	11.4.2. A Requirements Pattern Example: Actuator-Sensor

	11.5. Requirements Modeling for Web and Mobile Apps
	11.5.1. How Much Analysis Is Enough?
	11.5.2. Requirements Modeling Input
	11.5.3. Requirements Modeling Output
	11.5.4. Content Model
	11.5.5. Interaction Model for Web and Mobile Apps
	11.5.6. Functional Model
	11.5.7. Configuration Models for WebApps
	11.5.8. Navigation Modeling

	11.6. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 12. Design Concepts
	12.1. Design within the Context of Software Engineering
	12.2. The Design Process
	12.2.1. Software Quality Guidelines and Attributes
	12.2.2. The Evolution of Software Design

	12.3. Design Concepts
	12.3.1. Abstraction
	12.3.2. Architecture
	12.3.3. Patterns
	12.3.4. Separation of Concerns
	12.3.5. Modularity
	12.3.6. Information Hiding
	12.3.7. Functional Independence
	12.3.8. Refinement
	12.3.9. Aspects
	12.3.10. Refactoring
	12.3.11. Object-Oriented Design Concepts
	12.3.12. Design Classes
	12.3.13. Dependency Inversion
	12.3.14. Design for Test

	12.4. The Design Model
	12.4.1. Data Design Elements
	12.4.2. Architectural Design Elements
	12.4.3. Interface Design Elements
	12.4.4. Component-Level Design Elements
	12.4.5. Deployment-Level Design Elements

	12.5. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 13. Architectural Design
	13.1. Software Architecture
	13.1.1. What Is Architecture?
	13.1.2. Why Is Architecture Important?
	13.1.3. Architectural Descriptions
	13.1.4. Architectural Decisions

	13.2. Architectural Genres
	13.3. Architectural Styles
	13.3.1. A Brief Taxonomy of Architectural Styles
	13.3.2. Architectural Patterns
	13.3.3. Organization and Refinement

	13.4. Architectural Considerations
	13.5. Architectural Decisions
	13.6. Architectural Design
	13.6.1. Representing the System in Context
	13.6.2. Defining Archetypes
	13.6.3. Refining the Architecture into Components
	13.6.4. Describing Instantiations of the System
	13.6.5. Architectural Design for Web Apps
	13.6.6. Architectural Design for Mobile Apps

	13.7. Assessing Alternative Architectural Designs
	13.7.1. Architectural Description Languages
	13.7.2. Architectural Reviews

	13.8. Lessons Learned
	13.9. Pattern-based Architecture Review
	13.10. Architecture Conformance Checking
	13.11. Agility and Architecture
	13.12. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 14. Component-Level Design
	14.1. What Is a Component?
	14.1.1. An Object-Oriented View
	14.1.2. The Traditional View
	14.1.3. A Process-Related View

	14.2. Designing Class-Based Components
	14.2.1. Basic Design Principles
	14.2.2. Component-Level Design Guidelines
	14.2.3. Cohesion
	14.2.4. Coupling

	14.3. Conducting Component-Level Design
	14.4. Component-Level Design for WebApps
	14.4.1. Content Design at the Component Level
	14.4.2. Functional Design at the Component Level

	14.5. Component-Level Design for Mobile Apps
	14.6. Designing Traditional Components
	14.7. Component-Based Development
	14.7.1. Domain Engineering
	14.7.2. Component Qualification, Adaptation, and Composition
	14.7.3. Architectural Mismatch
	14.7.4. Analysis and Design for Reuse
	14.7.5. Classifying and Retrieving Components

	14.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 15. User Interface Design
	15.1. The Golden Rules
	15.1.1. Place the User in Control
	15.1.2. Reduce the User’s Memory Load
	15.1.3. Make the Interface Consistent

	15.2. User Interface Analysis and Design
	15.2.1. Interface Analysis and Design Models
	15.2.2. The Process

	15.3. Interface Analysis
	15.3.1. User Analysis
	15.3.2. Task Analysis and Modeling
	15.3.3. Analysis of Display Content
	15.3.4. Analysis of the Work Environment

	15.4. Interface Design Steps
	15.4.1. Applying Interface Design Steps
	15.4.2. User Interface Design Patterns
	15.4.3. Design Issues

	15.5. WebApp and Mobile Interface Design
	15.5.1. Interface Design Principles and Guidelines
	15.5.2. Interface Design Workflow for Web and Mobile Apps

	15.6. Design Evaluation
	15.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 16. Pattern-Based Design
	16.1. Design Patterns
	16.1.1. Kinds of Patterns
	16.1.2. Frameworks
	16.1.3. Describing a Pattern
	16.1.4. Pattern Languages and Repositories

	16.2. Pattern-Based Software Design
	16.2.1. Pattern-Based Design in Context
	16.2.2. Thinking in Patterns
	16.2.3. Design Tasks
	16.2.4. Building a Pattern-Organizing Table
	16.2.5. Common Design Mistakes

	16.3. Architectural Patterns
	16.4. Component-Level Design Patterns
	16.5. User Interface Design Patterns
	16.6. WebApp Design Patterns
	16.6.1. Design Focus
	16.6.2. Design Granularity

	16.7. Patterns for Mobile Apps
	16.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 17. WebApp Design
	17.1. WebApp Design Quality
	17.2. Design Goals
	17.3. A Design Pyramid for WebApps
	17.4. WebApp Interface Design
	17.5. Aesthetic Design
	17.5.1. Layout Issues
	17.5.2. Graphic Design Issues

	17.6. Content Design
	17.6.1. Content Objects
	17.6.2. Content Design Issues

	17.7. Architecture Design
	17.7.1. Content Architecture
	17.7.2. WebApp Architecture

	17.8. Navigation Design
	17.8.1. Navigation Semantics
	17.8.2. Navigation Syntax

	17.9. Component-Level Design
	17.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 18. MobileApp Design
	18.1. The Challenges
	18.1.1. Development Considerations
	18.1.2. Technical Considerations

	18.2. Developing MobileApps
	18.2.1. MobileApp Quality
	18.2.2. User Interface Design
	18.2.3. Context-Aware Apps
	18.2.4. Lessons Learned

	18.3. MobileApp Design—Best Practices
	18.4. Mobility Environments
	18.5. The Cloud
	18.6. The Applicability of Conventional Software Engineering
	18.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources


	Part Three. Quality Management
	Chapter 19. Quality Concepts
	19.1. What Is Quality?
	19.2. Software Quality
	19.2.1. Garvin’s Quality Dimensions
	19.2.2. McCall’s Quality Factors
	19.2.3. ISO 9126 Quality Factors
	19.2.4. Targeted Quality Factors
	19.2.5. The Transition to a Quantitative View

	19.3. The Software Quality Dilemma
	19.3.1. “Good Enough” Software
	19.3.2. The Cost of Quality
	19.3.3. Risks
	19.3.4. Negligence and Liability
	19.3.5. Quality and Security
	19.3.6. The Impact of Management Actions

	19.4. Achieving Software Quality
	19.4.1. Software Engineering Methods
	19.4.2. Project Management Techniques
	19.4.3. Quality Control
	19.4.4. Quality Assurance

	19.5. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 20. Review Techniques
	20.1. Cost Impact of Software Defects
	20.2. Defect Amplification and Removal
	20.3. Review Metrics and Their Use
	20.3.1. Analyzing Metrics
	20.3.2. Cost-Effectiveness of Reviews

	20.4. Reviews: A Formality Spectrum
	20.5. Informal Reviews
	20.6. Formal Technical Reviews
	20.6.1. The Review Meeting
	20.6.2. Review Reporting and Record Keeping
	20.6.3. Review Guidelines
	20.6.4. Sample-Driven Reviews

	20.7. Post-Mortem Evaluations
	20.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 21. Software Quality Assurance
	21.1. Background Issues
	21.2. Elements of Software Quality Assurance
	21.3. SQA Processes and Product Characteristics
	21.4. SQA Tasks, Goals, and Metrics
	21.4.1. SQA Tasks
	21.4.2. Goals, Attributes, and Metrics

	21.5. Formal Approaches to SQA
	21.6. Statistical Software Quality Assurance
	21.6.1. A Generic Example
	21.6.2. Six Sigma for Software Engineering

	21.7. Software Reliability
	21.7.1. Measures of Reliability and Availability
	21.7.2. Software Safety

	21.8. The ISO 9000 Quality Standards
	21.9. The SQA Plan
	21.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 22. Software Testing Strategies
	22.1. A Strategic Approach to Software Testing
	22.1.1. Verification and Validation
	22.1.2. Organizing for Software Testing
	22.1.3. Software Testing Strategy—The Big Picture
	22.1.4. Criteria for Completion of Testing

	22.2. Strategic Issues
	22.3. Test Strategies for Conventional Software
	22.3.1. Unit Testing
	22.3.2. Integration Testing

	22.4. Test Strategies for Object-Oriented Software
	22.4.1. Unit Testing in the OO Context
	22.4.2. Integration Testing in the OO Context

	22.5. Test Strategies for WebApps
	22.6. Test Strategies for MobileApps
	22.7. Validation Testing
	22.7.1. Validation-Test Criteria
	22.7.2. Configuration Review
	22.7.3. Alpha and Beta Testing

	22.8. System Testing
	22.8.1. Recovery Testing
	22.8.2. Security Testing
	22.8.3. Stress Testing
	22.8.4. Performance Testing
	22.8.5. Deployment Testing

	22.9. The Art of Debugging
	22.9.1. The Debugging Process
	22.9.2. Psychological Considerations
	22.9.3. Debugging Strategies
	22.9.4. Correcting the Error

	22.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 23. Testing Conventional Applications
	23.1. Software Testing Fundamentals
	23.2. Internal and External Views of Testing
	23.3. White-Box Testing
	23.4. Basis Path Testing
	23.4.1. Flow Graph Notation
	23.4.2. Independent Program Paths
	23.4.3. Deriving Test Cases
	23.4.4. Graph Matrices

	23.5. Control Structure Testing
	23.6. Black-Box Testing
	23.6.1. Graph-Based Testing Methods
	23.6.2. Equivalence Partitioning
	23.6.3. Boundary Value Analysis
	23.6.4. Orthogonal Array Testing

	23.7. Model-Based Testing
	23.8. Testing Documentation and Help Facilities
	23.9. Testing for Real-Time Systems
	23.10. Patterns for Software Testing
	23.11. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 24. Testing Object-Oriented Applications
	24.1. Broadening the View of Testing
	24.2. Testing OOA and OOD Models
	24.2.1. Correctness of OOA and OOD Models
	24.2.2. Consistency of Object-Oriented Models

	24.3. Object-Oriented Testing Strategies
	24.3.1. Unit Testing in the OO Context
	24.3.2. Integration Testing in the OO Context
	24.3.3. Validation Testing in an OO Context

	24.4. Object-Oriented Testing Methods
	24.4.1. The Test-Case Design Implications of OO Concepts
	24.4.2. Applicability of Conventional Test-Case Design Methods
	24.4.3. Fault-Based Testing
	24.4.4. Scenario-Based Test Design

	24.5. Testing Methods Applicable at the Class Level
	24.5.1. Random Testing for OO Classes
	24.5.2. Partition Testing at the Class Level

	24.6. Interclass Test-Case Design
	24.6.1. Multiple Class Testing
	24.6.2. Tests Derived from Behavior Models

	24.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 25. Testing Web Applications
	25.1. Testing Concepts for WebApps
	25.1.1. Dimensions of Quality
	25.1.2. Errors within a WebApp Environment
	25.1.3. Testing Strategy
	25.1.4. Test Planning

	25.2. The Testing Process—An Overview
	25.3. Content Testing
	25.3.1. Content Testing Objectives
	25.3.2. Database Testing

	25.4. User Interface Testing
	25.4.1. Interface Testing Strategy
	25.4.2. Testing Interface Mechanisms
	25.4.3. Testing Interface Semantics
	25.4.4. Usability Tests
	25.4.5. Compatibility Tests

	25.5. Component-Level Testing
	25.6. Navigation Testing
	25.6.1. Testing Navigation Syntax
	25.6.2. Testing Navigation Semantics

	25.7. Configuration Testing
	25.7.1. Server-Side Issues
	25.7.2. Client-Side Issues

	25.8. Security Testing
	25.9. Performance Testing
	25.9.1. Performance Testing Objectives
	25.9.2. Load Testing
	25.9.3. Stress Testing

	25.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 26. Testing MobileApps
	26.1. Testing Guidelines
	26.2. The Testing Strategies
	26.2.1. Are Conventional Approaches Applicable?
	26.2.2. The Need for Automation
	26.2.3. Building a Test Matrix
	26.2.4. Stress Testing
	26.2.5. Testing in a Production Environment

	26.3. Considering the Spectrum of User Interaction
	26.3.1. Gesture Testing
	26.3.2. Voice Input and Recognition
	26.3.3. Virtual Key Board Input
	26.3.4. Alerts and Extraordinary Conditions

	26.4. Test Across Borders
	26.5. Real-Time Testing Issues
	26.6. Testing Tools and Environments
	26.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 27. Security Engineering
	27.1. Analyzing Security Requirements
	27.2. Security and Privacy in an Online World
	27.2.1. Social Media
	27.2.2. Mobile Applications
	27.2.3. Cloud Computing
	27.2.4. The Internet of Things

	27.3. Security Engineering Analysis
	27.3.1. Security Requirement Elicitation
	27.3.2. Security Modeling
	27.3.3. Measures Design
	27.3.4. Correctness Checks

	27.4. Security Assurance
	27.4.1. The Security Assurance Process
	27.4.2. Organization and Management

	27.5. Security Risk Analysis
	27.6. The Role of Conventional Software Engineering Activities
	27.7. Verification of Trustworthy Systems
	27.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 28. Formal Modeling and Verification
	28.1. The Cleanroom Strategy
	28.2. Functional Specification
	28.2.1. Black-Box Specification
	28.2.2. State-Box Specification
	28.2.3. Clear-Box Specification

	28.3. Cleanroom Design
	28.3.1. Design Refinement
	28.3.2. Design Verification

	28.4. Cleanroom Testing
	28.4.1. Statistical Use Testing
	28.4.2. Certification

	28.5. Rethinking Formal Methods
	28.6. Formal Methods Concepts
	28.7. Alternative Arguments
	28.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 29. Software Configuration Management
	29.1. Software Configuration Management
	29.1.1. An SCM Scenario
	29.1.2. Elements of a Configuration Management System
	29.1.3. Baselines
	29.1.4. Software Configuration Items
	29.1.5. Management of Dependencies and Changes

	29.2. The SCM Repository
	29.2.1. General Features and Content
	29.2.2. SCM Features

	29.3. The SCM Process
	29.3.1. Identification of Objects in the Software Configuration
	29.3.2. Version Control
	29.3.3. Change Control
	29.3.4. Impact Management
	29.3.5. Configuration Audit
	29.3.6. Status Reporting

	29.4. Configuration Management for Web and MobileApps
	29.4.1. Dominant Issues
	29.4.2. Configuration Objects
	29.4.3. Content Management
	29.4.4. Change Management
	29.4.5. Version Control
	29.4.6. Auditing and Reporting

	29.5. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 30. Product Metrics
	30.1. A Framework for Product Metrics
	30.1.1. Measures, Metrics, and Indicators
	30.1.2. The Challenge of Product Metrics
	30.1.3. Measurement Principles
	30.1.4. Goal-Oriented Software Measurement
	30.1.5. The Attributes of Effective Software Metrics

	30.2. Metrics for the Requirements Model
	30.2.1. Function-Based Metrics
	30.2.2. Metrics for Specification Quality

	30.3. Metrics for the Design Model
	30.3.1. Architectural Design Metrics
	30.3.2. Metrics for Object-Oriented Design
	30.3.3. Class-Oriented Metrics—The CK Metrics Suite
	30.3.4. Class-Oriented Metrics—The MOOD Metrics Suite
	30.3.5. OO Metrics Proposed by Lorenz and Kidd
	30.3.6. Component-Level Design Metrics
	30.3.7. Operation-Oriented Metrics
	30.3.8. User Interface Design Metrics

	30.4. Design Metrics for Web and Mobile Apps
	30.5. Metrics for Source Code
	30.6. Metrics for Testing
	30.6.1. Halstead Metrics Applied to Testing
	30.6.2. Metrics for Object-Oriented Testing

	30.7. Metrics for Maintenance
	30.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources


	Part Four. Managing Software Projects
	Chapter 31. Project Management Concepts
	31.1. The Management Spectrum
	31.1.1. The People
	31.1.2. The Product
	31.1.3. The Process
	31.1.4. The Project

	31.2. People
	31.2.1. The Stakeholders
	31.2.2. Team Leaders
	31.2.3. The Software Team
	31.2.4. Agile Teams
	31.2.5. Coordination and Communication Issues

	31.3. The Product
	31.3.1. Software Scope
	31.3.2. Problem Decomposition

	31.4. The Process
	31.4.1. Melding the Product and the Process
	31.4.2. Process Decomposition

	31.5. The Project
	31.6. The W5HH Principle
	31.7. Critical Practices
	31.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 32. Process and Project Metrics
	32.1. Metrics in the Process and Project Domains
	32.1.1. Process Metrics and Software Process Improvement
	32.1.2. Project Metrics

	32.2. Software Measurement
	32.2.1. Size-Oriented Metrics
	32.2.2. Function-Oriented Metrics
	32.2.3. Reconciling LOC and FP Metrics
	32.2.4. Object-Oriented Metrics
	32.2.5. Use Case-Oriented Metrics
	32.2.6. WebApp Project Metrics

	32.3. Metrics for Software Quality
	32.3.1. Measuring Quality
	32.3.2. Defect Removal Efficiency

	32.4. Integrating Metrics within the Software Process
	32.4.1. Arguments for Software Metrics
	32.4.2. Establishing a Baseline
	32.4.3. Metrics Collection, Computation, and Evaluation

	32.5. Metrics for Small Organizations
	32.6. Establishing a Software Metrics Program
	32.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 33. Estimation for Software Projects
	33.1. Observations on Estimation
	33.2. The Project Planning Process
	33.3. Software Scope and Feasibility
	33.4. Resources
	33.4.1. Human Resources
	33.4.2. Reusable Software Resources
	33.4.3. Environmental Resources

	33.5. Software Project Estimation
	33.6. Decomposition Techniques
	33.6.1. Software Sizing
	33.6.2. Problem-Based Estimation
	33.6.3. An Example of LOC-Based Estimation
	33.6.4. An Example of FP-Based Estimation
	33.6.5. Process-Based Estimation
	33.6.6. An Example of Process-Based Estimation
	33.6.7. Estimation with Use Cases
	33.6.8. An Example of Estimation Using Use Case Points
	33.6.9. Reconciling Estimates

	33.7. Empirical Estimation Models
	33.7.1. The Structure of Estimation Models
	33.7.2. The COCOMO II Model
	33.7.3. The Software Equation

	33.8. Estimation for Object-Oriented Projects
	33.9. Specialized Estimation Techniques
	33.9.1. Estimation for Agile Development
	33.9.2. Estimation for WebApp Projects

	33.10. The Make/Buy Decision
	33.10.1. Creating a Decision Tree
	33.10.2. Outsourcing

	33.11. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 34. Project Scheduling
	34.1. Basic Concepts
	34.2. Project Scheduling
	34.2.1. Basic Principles
	34.2.2. The Relationship between People and Effort
	34.2.3. Effort Distribution

	34.3. Defining a Task Set for the Software Project
	34.3.1. A Task Set Example
	34.3.2.  Refinement of Major Tasks

	34.4. Defining a Task Network
	34.5. Scheduling
	34.5.1. Time-Line Charts
	34.5.2. Tracking the Schedule
	34.5.3. Tracking Progress for an OO Project
	34.5.4. Scheduling for WebApp and Mobile Projects

	34.6. Earned Value Analysis
	34.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 35. Risk Management
	35.1. Reactive versus Proactive Risk Strategies
	35.2. Software Risks
	35.3. Risk Identification
	35.3.1. Assessing Overall Project Risk
	35.3.2. Risk Components and Drivers

	35.4. Risk Projection
	35.4.1. Developing a Risk Table
	35.4.2. Assessing Risk Impact

	35.5. Risk Refinement
	35.6. Risk Mitigation, Monitoring, and Management
	35.7. The RMMM Plan
	35.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 36. Maintenance and Reengineering
	36.1. Software Maintenance
	36.2. Software Supportability
	36.3. Reengineering
	36.4. Business Process Reengineering
	36.4.1. Business Processes
	36.4.2. A BPR Model

	36.5. Software Reengineering
	36.5.1. A Software Reengineering Process Model
	36.5.2. Software Reengineering Activities

	36.6. Reverse Engineering
	36.6.1. Reverse Engineering to Understand Data
	36.6.2. Reverse Engineering to Understand Processing
	36.6.3. Reverse Engineering User Interfaces

	36.7. Restructuring
	36.7.1. Code Restructuring
	36.7.2. Data Restructuring

	36.8. Forward Engineering
	36.8.1. Forward Engineering for Client-Server Architectures
	36.8.2. Forward Engineering for Object-Oriented Architectures

	36.9. The Economics of Reengineering
	36.10. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources


	Part Five. Advanced Topics
	Chapter 37. Software Process Improvement
	37.1. What Is SPI?
	37.1.1. Approaches to SPI
	37.1.2. Maturity Models
	37.1.3. Is SPI for Everyone?

	37.2. The SPI Process
	37.2.1. Assessment and Gap Analysis
	37.2.2. Education and Training
	37.2.3. Selection and Justification
	37.2.4. Installation/Migration
	37.2.5. Evaluation
	37.2.6. Risk Management for SPI

	37.3. The CMMI
	37.4. The People CMM
	37.5. Other SPI Frameworks
	37.6. SPI Return on Investment
	37.7. SPI Trends
	37.8. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 38. Emerging Trends in Software Engineering
	38.1. Technology Evolution
	38.2. Prospects for a True Engineering Discipline
	38.3. Observing Software Engineering Trends
	38.4. Identifying “Soft Trends”
	38.4.1. Managing Complexity
	38.4.2. Open-World Software
	38.4.3. Emergent Requirements
	38.4.4. The Talent Mix
	38.4.5. Software Building Blocks
	38.4.6. Changing Perceptions of “Value”
	38.4.7. Open Source

	38.5. Technology Directions
	38.5.1. Process Trends
	38.5.2. The Grand Challenge
	38.5.3. Collaborative Development
	38.5.4. Requirements Engineering
	38.5.5. Model-Driven Software Development
	38.5.6. Postmodern Design
	38.5.7. Test-Driven Development

	38.6. Tools-Related Trends
	38.7. Summary
	Problems and Points to Ponder
	Further Readings and Information Sources

	Chapter 39. Concluding Comments
	39.1. The Importance of Software—Revisited
	39.2. People and the Way They Build Systems
	39.3. New Modes for Representing Information
	39.4. The Long View
	39.5. The Software Engineer’s Responsibility
	39.6. A Final Comment from RSP
	Appendix 1. AN INTRODUCTION TO UML
	Appendix 2. OBJECT-ORIENTED CONCEPTS
	Appendix 3. FORMAL METHODS
	References
	Index





